1
|
Choi S, Ekpe OD, Macha FJ, Sim W, Kim M, Lee M, Oh JE. Occurrence and distribution of brominated and fluorinated persistent organic pollutants in surface sediments focusing on industrially affected rivers. CHEMOSPHERE 2025; 371:144066. [PMID: 39756700 DOI: 10.1016/j.chemosphere.2025.144066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
This study investigated legacy persistent organic pollutants, including polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDs), and per- and polyfluoroalkyl substances (PFAS), as well as their alternatives, in sediments from five major rivers, to assess their contamination status and usage patterns. The concentration levels of ΣPBDEs (median 9.98 ng/g dry weight (dw), mean 190 ng/g dw), ΣHBCDs (median 9.35 ng/g dw, mean 39.8 ng/g dw), Σnovel brominated flame retardants (NBFRs) (median not detected, mean 821 ng/g dw), and ∑PFAS (median 1.14 ng/g dw, mean 13.9 ng/g dw) in river sediments affected by high industrial activity were statistically significantly higher than at other sites with less or no industrial activity (Kruskal-Wallis test, p < 0.05). The dominant compounds among legacy substances for brominated flame retardants (BFRs) and PFAS are decaBDE for PBDEs, γ-HBCD for HBCDs, and perfluorooctane sulfonate (PFOS) for PFAS. The detection frequencies of 1,2-Bis(2,4,6-tribromophenoxy)ethane (BTBPE) and 6:2 chlorinated perfluoroalkylether sulfonic acid (F53B), as alternative substances for PBDEs and PFOS, were 16% and 9%, respectively. Regarding substances used as alternatives for perfluorooctanoic acid (PFOA) were detected at only one site for hexafluoropropylene oxide dimer acid (Gen-X), while 4,8-dioxo-3H-perfluorononanoic acid (ADONA) was not detected. The hazard quotient (HQ) values from the ecological risk assessment were generally low (HQ < 1), except for ΣPBDEs and PFOS at several sites. The present study emphasizes the need for continuous monitoring and risk assessment of these pollutants in river sediments, particularly in industrial areas, and highlights the importance of addressing the ecological toxicity of these substances to safeguard aquatic ecosystems.
Collapse
Affiliation(s)
- Sol Choi
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea; Institute for Environment and Energy, Pusan National University, Busan, 46241, Republic of Korea.
| | - Okon Dominic Ekpe
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea; Institute for Environment and Energy, Pusan National University, Busan, 46241, Republic of Korea.
| | - Fulgence Jacob Macha
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea.
| | - Wonjin Sim
- Institute for Environment and Energy, Pusan National University, Busan, 46241, Republic of Korea.
| | - MinGyeong Kim
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea.
| | - Mikyung Lee
- Department of Water and Environmental Engineering, National Institute of Environmental Research, Incheon 22689, Republic of Korea.
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea; Institute for Environment and Energy, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
2
|
Eze OO, Ogbuene EB, Ibraheem O, Küster E, Eze CT. Novel flame retardants (NFRs) in e-waste: Environmental burdens, health implications, and recommendations for safety assessment and sustainable management. Toxicology 2024; 511:154037. [PMID: 39716513 DOI: 10.1016/j.tox.2024.154037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
Novel flame retardants (NFRs) have emerged as chemicals of environmental health concern due to their widespread use as an alternative to polybrominated diphenyl ethers (PBDE) in electrical and electronic devices. Humans and ecosystems are under threat because of e-waste recycling procedures that may emit NFRs and other anthropogenic chemicals into the e-waste workplace and the surrounding environment. The individual toxicity of NFRs including novel brominated flame retardants (NBFRs), their combined effects and the underlying mechanisms of toxicity have remained poorly understood. Exposure assessment as well as chemical safety testing should focus on prioritizing N(B)FRs for regulation and management. Here, the occurrence of N(B)FRs in the vicinity and surroundings of e-waste recycling sites are presented. Important knowledge gaps and prospects for a more integrated, harmonized, and mechanistically positioned risk assessment strategy for N(B)FRs as well as possible economically feasible and environmentally sustainable approaches for removing them from complex matrices are highlighted. Overall, data in the ng to µg-ranges of N(B)FR in soil, dust, sediment, water and fish were found. Dust and soil sample concentrations ranged from the low ng to low µg/g range while water concentrations were always in the low ng/L range (∼0.5 to ∼4 ng/L). Concentration in fish was usually in the range of 3- ∼300 ng/g with two substances in the low to medium-high µg/g range (DBDPE, BTBPE). From the 20 N(B)FR analysed in sediment samples only 10 were above detection limit. Most chemicals were found in a low ng/g range.
Collapse
Affiliation(s)
- Obianuju Oluchukwu Eze
- Helmholtz Centre for Environmental Research - UFZ, Department Ecotoxicology, Leipzig, Germany
| | - Emeka Bright Ogbuene
- Centre for Environmental Management and Control, University of Nigeria, Enugu Campus, Nigeria
| | - Omodele Ibraheem
- Department of Biochemistry, Faculty of Science, Federal University Oye-Ekiti, Ekiti State, Nigeria
| | - Eberhard Küster
- Helmholtz Centre for Environmental Research - UFZ, Department Ecotoxicology, Leipzig, Germany.
| | - Chukwuebuka ThankGod Eze
- Helmholtz Centre for Environmental Research - UFZ, Department Ecotoxicology, Leipzig, Germany; Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
3
|
Wang R, Cheng H, Bian Z. Global occurrence and environmental behavior of novel brominated flame retardants in soils: Current knowledge and future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136298. [PMID: 39476697 DOI: 10.1016/j.jhazmat.2024.136298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 12/01/2024]
Abstract
Since polybrominated diphenyl ethers (PBDEs) are on the list of regulated chemicals, novel brominated flame retardants (NBFRs) have been produced as alternatives and extensively used since the end of the 19th century. A comprehensive assessment of the environmental burden of NBFRs, which are emerging contaminants with bio-toxic and carcinogenic properties, is urgently needed. Given that soil is a major sink for organic pollutants, this study systematically reviewed global data on NBFRs in soil for the period of 1990-2024 via a bibliometric analysis of 70 publications from the Web of Science Core Collection, reaching the following achievements. (1) NBFRs in soils have been reported in 17 countries or regions worldwide, ranging from not detected to 8.46 × 104 ng/g dw, showing an increasing trend over time, with severe contamination in Asia and Australia. (2) NBFR concentrations varied significantly across land use types: manufacturing land > electronic waste disposal areas > urban soil > farmland > forest > remote areas. (3) NBFRs with log KOA > 10 tend to settle from the air into the soil, where they may be absorbed by plant roots and bioaccumulate in the food chain. (4) Organism dietary habits and metabolism, along with the hydrophobicity and molecular weight of NBFRs, contribute to bioaccumulation differences. (5) Successive reductive debromination is the primary degradation pathway for NBFRs, and microorganisms such as the white-rot fungus P. ostreatus show potential for remediating NBFR-contaminated soil. This review clarifies the pollution status of soil NBFRs and provides a solid reference to develop management policies. Future research should focus on studying the transport mechanisms of NBFRs between soil and other media, and assessing the cumulative effects of high trophic level organisms on NBFRs.
Collapse
Affiliation(s)
- Rui Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Hongguang Cheng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Zhaoyong Bian
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
4
|
Jiang L, Yang J, Yang H, Kong L, Ma H, Zhu Y, Zhao X, Yang T, Liu W. Advanced understanding of the polybrominated diphenyl ethers (PBDEs): Insights from total environment to intoxication. Toxicology 2024; 509:153959. [PMID: 39341352 DOI: 10.1016/j.tox.2024.153959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) are brominated compounds connected by ester bonds between two benzene rings. There are 209 congeners of PBDEs, classified according to the number and position of the bromine atoms. Due to their low cost and superior flame retardant properties, PBDEs have been extensively used as flame retardants in electronic products, plastics, textiles, and other materials since the 1970s. PBDEs are classified as persistent organic pollutants (POPs) under the Stockholm Convention because of their environmental persistence, bioaccumulation, and toxicity to both humans and wildlife. Due to their extensive use and significant quantities, PBDEs have been detected across a range of environments and biological organisms. These compounds are known to cause damage to the metabolic system, exhibit neurotoxicity, and pose reproductive hazards. This review investigates the environmental distribution and human exposure pathways of PBDEs. Using China-a country with significant PBDE use-as an example, it highlights substantial regional and temporal variations in PBDE concentrations and notes that certain environmental levels may pose risks to human health. The article then examines the toxic effects and mechanisms of PBDEs on several major target organs, summarizing recent research and the specific mechanisms underlying these toxic effects from multiple toxicological perspectives. This review enhances our understanding of PBDEs' environmental distribution, exposure pathways, and toxic mechanisms, offering valuable insights for further research and management strategies.
Collapse
Affiliation(s)
- Liujiangshan Jiang
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China
| | - Jing Yang
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China
| | - Huajie Yang
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China
| | - Lingxu Kong
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China
| | - Haonan Ma
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China
| | - Yapei Zhu
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China
| | - Xuan Zhao
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China
| | - Tianyao Yang
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China.
| | - Wei Liu
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China.
| |
Collapse
|
5
|
Xu Y, Zhou Q, Luan J, Hou J. Recoverability of zebrafish from decabromodiphenyl ether exposure: The persisted interference with extracellular matrix production and collagen synthesis and the enhancement of arrhythmias. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176349. [PMID: 39299332 DOI: 10.1016/j.scitotenv.2024.176349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/29/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
As a widely used brominated flame retardant, the widespread presence of decabromodiphenyl ether (BDE-209) in the natural environment and the toxicity risks it poses are well established, but the recoverability of BDE-209-induced individual injuries remains unknown. Therefore, a 7-day depuration experiment following a 4-day exposure of zebrafish to BDE-209 was conducted to confirm the recoverability and its mode of action. Oxidative stress after depuration was significantly reduced compared with BDE-209 exposure as indicated by the decreased expression level of oxidative stress-related genes and the reduced MDA, Gpx, and GST in zebrafish, indicating a gradual recovery of antioxidant activity. However, BDE-209 inhibition of extracellular matrix (ECM) proteins worsened after depuration. Mechanistically, BDE-209 mediated ECM production and secretion by down-regulating integrin expression. Furthermore, BDE-209 inhibition of collagen synthesis worsened after depuration. Biochemical assays and histopathological observations revealed a same result in zebrafish. Mechanistically, lysine hydroxylation is inhibited thereby affecting collagen synthesis. Interestingly, zebrafish showed arrhythmia after depuration compared to BDE-209 exposure, and abnormal changes in ATPase levels indicated that disturbances in Ca2+ homeostasis contributed to arrhythmia. Collectively, BDE-209-induced interference with ECM production and collagen synthesis persisted after depuration, which will provide new insights for understanding the recovery patterns of individuals under BDE-209 stress.
Collapse
Affiliation(s)
- Yanli Xu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Qi Zhou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jian Luan
- College of Life Sciences, Jilin Normal University, Jilin 136000, China
| | - Jing Hou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
6
|
Xie Y, Li M, Ma J, Gong X, Tong Y, Wang D, Ai L, Gong Z. Occurrence and distribution of legacy and novel brominated flame retardants in river and sediments in southwest China: A seasonal investigation. ENVIRONMENTAL RESEARCH 2024; 262:119842. [PMID: 39187148 DOI: 10.1016/j.envres.2024.119842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/21/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
Brominated flame retardants (BFRs) and their substitutes are prevalent in the environment, especially near industrial point sources. In non-point source pollution areas, it is crucial to investigate the seasonal pollution characteristics to identify the pollution sources. In this study, compositional profiles, seasonal variations, and ecological risks of legacy BFRs and novel BFRs (NBFRs) in the water and sediment from the Tuojiang River located in southwest China were investigated. The results indicated that ΣBFRs ranged from not detected (n.d.) to 42.0 ng/L in water and from 0.13 to 17.6 ng/g in sediment, while ΣNBFRs ranged from n.d. to 15.8 ng/L in water, and from 0.25 to 6.82 ng/g in sediment. A significant seasonal variation was observed in water and sediments with high proportions of legacy BFRs (median percentage of 68.8% and 51.3% in water and sediment) in the dry season, while NBFRs (median percentage of 53.2% and 71.6% in water and sediment) exhibited predominance in the wet season. This highlighted the importance of surface runoff and atmospheric deposition as important sources of NBFRs in aquatic environments. Moreover, there were high ratios of decabromodiphenyl ethane (DBDPE) and BDE-209 (average: 1.38 and 2.76 in dry and wet season) in sediments adjacent to the residual areas, indicating a consumption shift from legacy BFRs to NBFRs in China. It was observed that legacy BFRs showed higher ecological risks compared to NBFRs in both water and sediment environments, with BDE-209 posing low to medium risks to sediment organisms. This study provides better understanding of contamination characteristics and sources of legacy BFRs and NBFRs in non-point source pollution areas.
Collapse
Affiliation(s)
- Yonghong Xie
- Sichuan Province Ecological Environment Monitoring Station, Chengdu, 610074, China
| | - Mao Li
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Junyi Ma
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Xinying Gong
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China; Chengdu Research Academy of Environmental Protection Science, Chengdu, 610072, China.
| | - Yuanjun Tong
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Dongmei Wang
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Lian Ai
- Sichuan Province Ecological Environment Monitoring Station, Chengdu, 610074, China
| | - Zhengjun Gong
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| |
Collapse
|
7
|
Qiao Z, Fu M, Liang W, Zhou S, Han Y, Luo K, Peng C, Wang G, Zhang W, Zhan X. Effects of Decabromodiphenyl Ethane and Cadmium Coexposure on Their Bioaccumulation, Oxidative Stress, Root Metabolism, and Rhizosphere Soil Microorganisms in a Soil-Rice System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24246-24259. [PMID: 39440867 DOI: 10.1021/acs.jafc.4c05342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Decabromodiphenyl ethane (DBDPE) and cadmium (Cd) are typical pollutants in e-waste, seriously threatening crop growth. This study investigated the bioaccumulation and toxicity mechanisms of DBDPE and Cd in a soil-rice system. The results showed that 50 mg/kg DBDPE could reduce the level of accumulation of Cd in rice roots. DBDPE and Cd induced the antioxidant system (SOD, POD, and MDA) in rice seedlings. The combined exposure reduced the contents of carbohydrates, lipids, amino acids, and organic acids. Phenylalanine and phenylpropanoid metabolisms were identified as the key detoxification metabolic pathways under combined exposure. DBDPE and Cd disrupted the functional cycling of carbon and nitrogen in rhizosphere soil, while Gemmatimonadetes, Actinobacteria, and Bacteroidetes were the key bacterial groups responding to DBDPE and Cd stress. This work provides data for the toxicity risk evaluation of DBDPE and Cd combined exposure to food crops.
Collapse
Affiliation(s)
- Zhihua Qiao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mengru Fu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weiyu Liang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shanqi Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yanna Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kailun Luo
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Gehui Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiuping Zhan
- Shanghai Agricultural Extension and Service Center, Shanghai 201103, China
| |
Collapse
|
8
|
Zhou S, Qiao Z, Ling S, Fu M, Han Y, Peng C, Zhang W, Lei J. Contamination characteristics and dietary intake risk of brominated flame retardants in fishes around a typical e-waste dismantling site in Southern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173991. [PMID: 38901601 DOI: 10.1016/j.scitotenv.2024.173991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/23/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) and their substitutes, novel brominated flame retardants (NBFRs), are ubiquitously present in the aquatic environment of electronic waste (e-waste) dismantling region, leading to their inevitable absorption and accumulation by aquatic organisms, which can be transferred to human via directly aquatic product consumption or through food chain, thereby posing potential health risks. This study focused on fish samples from Guiyu and its surrounding areas, and found the total PBDEs concentrations were 24-7400 ng/g lw (mean: 1800 ng/g lw) and the total NBFRs concentrations were 14 to 2300 ng/g lw (mean: 310 ng/g lw). Significant positive correlations were found among PBDE congeners, among different NBFRs, and between NBFRs and commercial PBDEs that they replace. ΣPBDEs and ΣNBFRs in the intestine were 620-350,000 and 91-81,000 ng/g lw (mean: 83000 and 12,000 ng/g lw, respectively), significantly exceeding those in the gills, where ΣPBDEs and ΣNBFRs were 14-37,000 and 39-45,000 ng/g lw (mean: 9200 and 2400 ng/g lw, respectively). The ΣPBDEs and ΣNBFRs showed no non-carcinogenic risks to the target population through dietary intake. Despite the significantly higher daily intake of decabromodiphenyl ethane (DBDPE) compared to decabromodiphenyl ether (BDE209), the non-carcinogenic risk associated with BDE209 remained higher than that of DBDPE. Our findings can assist researchers in understanding the presence of BFRs in aquatic organisms, inhabiting e-waste dismantling areas, and in evaluating the associated health risks posed to humans through dietary exposure.
Collapse
Affiliation(s)
- Shanqi Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhihua Qiao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Siyuan Ling
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Mengru Fu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yanna Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Juying Lei
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
9
|
Li M, Gong X, Tan Q, Xie Y, Tong Y, Ma J, Wang D, Ai L, Gong Z. A review of occurrence, bioaccumulation, and fate of novel brominated flame retardants in aquatic environments: A comparison with legacy brominated flame retardants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173224. [PMID: 38763187 DOI: 10.1016/j.scitotenv.2024.173224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/08/2024] [Accepted: 05/12/2024] [Indexed: 05/21/2024]
Abstract
Novel brominated flame retardants (NBFRs) have been developed as replacements for legacy brominated flame retardants (BFRs) such as polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDs). The prevalence of NBFRs in aquatic environments has initiated intense concerns that they resemble to BFRs. To comprehensively elucidate the fate of NBFRs in aquatic environments, this review summarizes the physico-chemical properties, distribution, bioaccumulation, and fates in aquatic environments. 1,2-bis(2,3,4,5,6-pentabromophenyl) ethane (DBDPE) as the major substitute for PBDEs is the primary NBFR. The release from industrial point sources such as e-waste recycling stations is the dominant way for NBFRs to enter the environment, which results in significant differences in the regional distribution of NBFRs. Sediment is the major sink of NBFRs attributed to the high hydrophobicity. Significantly, there is no decreasing trend of NBFRs concentrations, while PBDEs achieved the peak value in 1970-2000 and decreased gradually. The bioaccumulation of NBFRs is reported in both field studies and laboratory studies, which is regulated by the active area, lipid contents, trophic level of aquatic organisms, and the log KOW of NBFRs. The biotransformation of NBFRs showed similar metabolism patterns to that of BFRs, including debromination, hydroxylation, methoxylation, hydrolysis, and glycosylation. In addition, NBFRs show great potential in trophic magnification along the aquatic food chain, which could pose a higher risk to high trophic-level species. The passive uptake by roots dominates the plant uptake of NBFRs, followed by acropetal and basipetal bidirectional transportation between roots and leaves in plants. This review will provide the support to understand the current pollution characteristics of NBFRs and highlight perspectives for future research.
Collapse
Affiliation(s)
- Mao Li
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Xinying Gong
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China; Chengdu Research Academy of Environmental Protection Science, Chengdu 610072, China
| | - Qinwen Tan
- Chengdu Research Academy of Environmental Protection Science, Chengdu 610072, China
| | - Yonghong Xie
- Sichuan Province Ecological Environment Monitoring Station, Chengdu 610074, China
| | - Yuanjun Tong
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Junyi Ma
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Dongmei Wang
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Lian Ai
- Sichuan Province Ecological Environment Monitoring Station, Chengdu 610074, China
| | - Zhengjun Gong
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| |
Collapse
|
10
|
Chen Z, Ma T, Liu W, Yuan G, Pan X, Zhang M, Luan X, Cui Z, Xin J. Brominated Flame Retardants (BFRs) in China Over the Past Half-Century: Stocks, Flows, Fates, and Ecological Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13613-13623. [PMID: 39051121 DOI: 10.1021/acs.est.4c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
China is a significant producer and consumer of various brominated flame retardants (BFRs), raising environmental concerns due to their widespread presence and potential threats to ecosystems and organisms. This study adopts a life cycle perspective, combining material flow analysis, multimedia environmental modeling, and ecological risk assessment to systematically analyze the substance metabolism and ecological risks of six BFR types in China from 1970 to 2021. The findings reveal that China's cumulative BFR consumption reached 3.3 Mt, with the electronics sector being the predominant contributor at 52.1%. Consequently, 1.5 kt of BFRs were released into the environment, with 24.9%, 31.5%, and 43.6% being discharged into the air, water, and soil, respectively. Notably, the proportion of novel BFRs in emissions has steadily increased over the years, exemplified by the increase in decabromodiphenyl ethane (DBDPE) from 21.3% in 2010 to 30.1% in 2021. Geographically, BFR concentrations are higher in the eastern and southwestern regions compared to those in the northwest. Presently, certain BFRs like tetrabromobisphenol A (TBBPA) and DBDPE exhibit moderate to high ecological risks, primarily concentrated in the Shandong and Sichuan provinces. A combination of efficient recycling, emission control, and substitution with novel flame-retardant can minimize the exposure of BFRs to the environment and organisms.
Collapse
Affiliation(s)
- Zhihui Chen
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Tengyun Ma
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Wei Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
- Shandong Key Laboratory of Environmental Processes and Health, Shandong University, Qingdao 266237, China
| | - Gang Yuan
- Jiaozhou Branch, Qingdao Municipal Bureau of Ecology and Environment, Qingdao 266300, China
| | - Xin Pan
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Mingyue Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaoyu Luan
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhaojie Cui
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jia Xin
- School of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
11
|
Han Y, Ling S, Hu S, Shen G, Zhang H, Zhang W. Combined exposure to decabromodiphenyl ether and nano zero-valent iron aggravated oxidative stress and interfered with metabolism in earthworms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172033. [PMID: 38547968 DOI: 10.1016/j.scitotenv.2024.172033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Decabromodiphenyl ether (BDE-209) is a common brominated flame retardant in electronic waste, and nano zero-valent iron (nZVI) is a new material in the field of environmental remediation. Little is known about how BDE-209 and nZVI combined exposure influences soil organisms. During the 28 days study, we determined the effects of single and combined exposures to BDE-209 and nZVI on the oxidative stress and metabolic response of earthworms (Eisenia fetida). On day 7, compared to CK, malondialdehyde (MDA) content increased in most combined exposure groups. To remove MDA and reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activities were induced in most combined exposure groups. On day 28, compared to CK, the activities of SOD and CAT were inhibited, while POD activity was significantly induced, indicating that POD plays an important role in scavenging ROS. Combined exposure to BDE-209 and nZVI significantly affected amino acid biosynthesis and metabolism, purine metabolism, and aminoacyl-tRNA biosynthesis pathways, interfered with energy metabolism, and aggravated oxidative stress in earthworms. These findings provide a basis for assessing the ecological impacts of using nZVI to remediate soils contaminated with BDE-209 from electronic waste.
Collapse
Affiliation(s)
- Ying Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Siyuan Ling
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Shuangqing Hu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China.
| | - Genxiang Shen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Hongchang Zhang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
12
|
Yu Y, Wang Z, Yao B, Zhou Y. Occurrence, bioaccumulation, fate, and risk assessment of emerging pollutants in aquatic environments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171388. [PMID: 38432380 DOI: 10.1016/j.scitotenv.2024.171388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Significant concerns on a global scale have been raised in response to the potential adverse impacts of emerging pollutants (EPs) on aquatic creatures. We have carefully reviewed relevant research over the past 10 years. The study focuses on five typical EPs: pharmaceuticals and personal care products (PPCPs), per- and polyfluoroalkyl substances (PFASs), drinking water disinfection byproducts (DBPs), brominated flame retardants (BFRs), and microplastics (MPs). The presence of EPs in the global aquatic environment is source-dependent, with wastewater treatment plants being the main source of EPs. Multiple studies have consistently shown that the final destination of most EPs in the water environment is sludge and sediment. Simultaneously, a number of EPs, such as PFASs, MPs, and BFRs, have long-term environmental transport potential. Some EPs exhibit notable tendencies towards bioaccumulation and biomagnification, while others pose challenges in terms of their degradation within both biological and abiotic treatment processes. The results showed that, in most cases, the ecological risk of EPs in aquatic environments was low, possibly due to potential dilution and degradation. Future research topics should include adding EPs detection items for the aquatic environment, combining pollution, and updating prediction models.
Collapse
Affiliation(s)
- Yuange Yu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Zhu Wang
- Institute of Environmental Research at Greater Bay/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Bin Yao
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Yaoyu Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
13
|
Huang C, Zeng Y, Liu YE, Zhang Y, Guo J, Luo X, Mai B. Historical Occurrence and Composition of Novel Brominated Flame Retardants and Dechlorane Plus in Sediments from an Electronic Waste Recycling Site in South China. TOXICS 2024; 12:84. [PMID: 38251039 PMCID: PMC10821507 DOI: 10.3390/toxics12010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Novel brominated flame retardants (NBFRs) and dechlorane plus (DP) have been widely used as alternatives to traditional BFRs. However, little is known about the temporal trends of NBFR and DP pollution in e-waste recycling sites. In the current study, three composite sediment cores were collected from an e-waste-polluted pond located in a typical e-waste recycling site in South China to investigate the historical occurrence and composition of NBFRs and DP. The NBFRs and DP were detected in all layers of the sediment cores with concentration ranges of 5.71~180,895 and 4.95~109,847 ng/g dw, respectively. Except for 2,3,5,6-tetrabromo-p-xylene (pTBX) and 2,3,4,5,6-pentabromoethylbenzene (PBEB), all the NBFR compounds and DP showed a clear increasing trend from the bottom to top layers. These results implied the long-term and severe contamination of NBFRs and DP. Decabromodiphenyl ethane (DBDPE) was the most abundant NBFR with the contribution proportions of 58 ± 15%, 73 ± 15%, and 71 ± 18% in three sediment cores, followed by 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE) and pentabromobenzene (HBB). The ratios of BTBPE/Octa-BDEs and DBDPE/Deca-BDEs varied from 0.12 to 60 and from 0.03 to 0.49, respectively, which had no clear increase trends with a decrease in sediment depth. As for DP, the fanti values (the concentration ratios of anti-DP to the sum of anti-DP and syn-DP) in sediment cores ranged from 0.41 to 0.83, almost falling in the range of those in DP technical products, suggesting that DP degradation did not occur in sediment cores. The environmental burdens of DBDPE, BTBPE, HBB, PBT, PBEB, pTBX, and DP were estimated to be 34.0, 5.67, 10.1, 0.02, 0.02, 0.01, and 34.8 kg, respectively. This work provides the first insight into the historical contamination status of NBFRs and DP in the sediments of an e-waste recycling site.
Collapse
Affiliation(s)
- Chenchen Huang
- School of Environmental Science & Spatial Informatics, China University of Mining & Technology, Xuzhou 221116, China
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yanhong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| | - Yin-E Liu
- School of Environmental Science & Spatial Informatics, China University of Mining & Technology, Xuzhou 221116, China
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yanting Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jian Guo
- Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| |
Collapse
|
14
|
Wang N, Lai C, Xu F, Huang D, Zhang M, Zhou X, Xu M, Li Y, Li L, Liu S, Huang X, Nie J, Li H. A review of polybrominated diphenyl ethers and novel brominated flame retardants in Chinese aquatic environment: Source, occurrence, distribution, and ecological risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166180. [PMID: 37562617 DOI: 10.1016/j.scitotenv.2023.166180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Due to the widespread commercial production and use of brominated flame retardants (BFRs) in China, their potential impact on human health development should not be underestimated. This review searched the literature on Polybrominated diphenyl ethers and Novel brominated flame retardant (PBDEs and NBFRs) (broad BFRs) in the aquatic environment (including surface water and sediment) in China over the last decade. It was found that PBDEs and NBFRs entered the aquatic environment through four main pathways, atmospheric deposition, surface runoff, sewage effluent and microplastic decomposition. The distribution of PBDEs and NBFRs in the aquatic environment was highly correlated with the local economic structure and population density. In addition, a preliminary risk assessment of existing PBDEs and PBDEs in sediments showed that areas with high-risk quotient values were always located in coastal areas with e-waste dismantling sites, which was mainly attributed to the historical legacy of electronic waste. This research provides help for the human health development and regional risk planning management posed by PBDEs and NBFRs.
Collapse
Affiliation(s)
- Neng Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China.
| | - Fuhang Xu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China.
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Xuerong Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Mengyi Xu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Yixia Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Ling Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Shiyu Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Xinyu Huang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR. China
| | - Jinxin Nie
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Hanxi Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| |
Collapse
|
15
|
Preetam A, Dwivedi U, N Naik S, Pant KK, Kumar V. A feasible approach for the treatment of waste computer casing plastic using subcritical to supercritical acetone: Statistical modelling and optimization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118549. [PMID: 37421717 DOI: 10.1016/j.jenvman.2023.118549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/08/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
Electronic waste (e-waste) usage has increased tremendously with the rapid evolution of technologies. The accumulated e-waste has now emerged as one of the crucial concerns regarding environmental pollution and human health. Recycling e-waste is commonly focused on metal recovery; nevertheless, a significant fraction of plastics (20-30%) are in e-waste. There is an indispensable need to focus on e-waste plastic recycling in an effective way, which has been mostly overlooked to date. An environmentally safe and efficient study is conducted using subcritical to supercritical acetone (SCA) to degrade the real waste computer casing plastics (WCCP) in the central composite design (CCD) of response surface methodology (RSM) to achieve the maximum oil yield of the product. The experiment parameters were varied in the temperature span of 150-300 °C, residence time between 30 and 120 min, solid/liquid ratio between 0.02 and 0.05 (g/ml), and NaOH amount from 0 to 0.5 g. Adding NaOH into the acetone helps to achieve efficient degradation and debromination efficiency. The study emphasized the attributes of oils and solid products recovered from the SCA-treated WCCP. The characterization of feed and formed products is performed with different characterization techniques such as TGA, CHNS, ICP-MS, FTIR, GC-MS, Bomb calorimeter, XRF, and FESEM. The highest oil yield achieved is 87.89% from the SCA process at 300 °C, in 120min, 0.05 S/L ratio, and 0.5 g of NaOH. GC-MS results disclose that the liquid product (oil) comprises single- and duplicate-ringed aromatic and oxygen-containing compounds. Isophorone is the significant component of the liquid product obtained. Furthermore, SCA's possible polymer degradation mechanistic route, bromine distribution, economic feasibility, and environmental aspect were also explored. This present work represents an environmentally friendly and promising approach for recycling the plastic fraction of e-waste and recovering valuable chemicals from WCCP.
Collapse
Affiliation(s)
- Amrita Preetam
- Supercritical Fluid Extraction Laboratory, Centre for Rural Development and Technology, IIT Delhi, 110016, India; Catalytic Reaction Engineering Laboratory, Chemical Engineering Department, Indian, IIT Delhi, 110016, India
| | - Uma Dwivedi
- Supercritical Fluid Extraction Laboratory, Centre for Rural Development and Technology, IIT Delhi, 110016, India; Catalytic Reaction Engineering Laboratory, Chemical Engineering Department, Indian, IIT Delhi, 110016, India
| | - S N Naik
- Supercritical Fluid Extraction Laboratory, Centre for Rural Development and Technology, IIT Delhi, 110016, India
| | - K K Pant
- Catalytic Reaction Engineering Laboratory, Chemical Engineering Department, Indian, IIT Delhi, 110016, India.
| | - Vivek Kumar
- Supercritical Fluid Extraction Laboratory, Centre for Rural Development and Technology, IIT Delhi, 110016, India
| |
Collapse
|
16
|
Wang R, Cheng H, Gong Y, Huang T. New brominated flame retardant decabromodiphenyl ethane (DBDPE) in water sediments: A review of contamination characteristics, exposure pathways, ecotoxicological effects and health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122121. [PMID: 37385359 DOI: 10.1016/j.envpol.2023.122121] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
As an alternative to polybrominated diphenyl ethers (PBDEs), decabromodiphenyl ethane (DBDPE) has become one of the most important new brominated flame retardants (NBFRs). However, little is known about whether this emerging contaminant may has an environmental fate similar to PBDEs. Sediments are the main sink for DBDPE in the aqueous phase. Worldwide concentration data, since it was first found in sediments to date, have been collated, and the following conclusions have been drawn. (1) DBDPE concentrations in sediments have increased rapidly, often with a higher risk of contamination in source discharge areas. Compared with other countries, DBDPE contamination in China is more severe, especially in Guangdong Province, which is closely related to its being an e-waste dismantling area. (2) The amount of DBDPE in surface sediments has exceeded that of legacy brominated flame retardants (BFRs), and data recorded in sediment cores also corroborate that DBDPE is replacing decabromodiphenyl ether (BDE-209) as one of the most dominant NBFRs in the environment. (3) The exposure pathways of DBDPE include dietary intake, air or indoor dust intake, cutaneous absorption and endogenous exposure. For sediments, dietary exposure and endogenous exposure pathways need to be considered. Sediment DBDPE can enter the human body through bioenrichment such as contaminated seafood and the food chain. (4) DBDPE can exhibit neurotoxicity, thyrotoxicity, reproductive and developmental toxicity, hepatotoxicity and oxidative stress in organisms. Long-term DBDPE exposure may increase hyperthyroidism risk and inhibit normal cells activity. This review focuses on the distribution characteristics and exposure risks of DBDPE in global water sediments, providing a strong reference for environmental management and related legal policy formulation. The next steps are to focus on continuous source monitoring, process control and sediment clean-up of DBDPE. The development of sustainable water management options for waste microplastics (MPs) and e-waste spiked with DBDPE is a priority.
Collapse
Affiliation(s)
- Rui Wang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Hongguang Cheng
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Yiwei Gong
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Tao Huang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
17
|
Cheng Z, Zhang S, Su H, Zhao H, Su G, Fang M, Wang L. Emerging organic contaminants of liquid crystal monomers: Environmental occurrence, recycling and removal technologies, toxicities and health risks. ECO-ENVIRONMENT & HEALTH 2023; 2:131-141. [PMID: 38074986 PMCID: PMC10702903 DOI: 10.1016/j.eehl.2023.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 09/19/2024]
Abstract
Liquid crystal monomers (LCMs) are a family of synthetic organic chemicals applied in the liquid crystal displays (LCDs) of various electric and electronic products (e-products). Due to their unique properties (i.e., persistence, bioaccumulative potential, and toxicity) and widespread environmental distributions, LCMs have attracted increasing attention across the world. Recent studies have focused on the source, distribution, fate, and toxicity of LCMs; however, a comprehensive review is scarce. Herein, we highlighted the persistence and bioaccumulation potential of LCMs by reviewing their physical-chemical properties. The naming rules were suggested to standardize the abbreviations regarding LCMs. The sources and occurrences of LCMs in different environmental compartments, including dust, sediment, soil, leachate, air and particulate, human serum, and biota samples, were reviewed. It is concluded that the LCMs in the environment mainly originate from the usage and disassembly of e-products with LCDs. Moreover, the review of the potential recycling and removal technologies regarding LCMs from waste LCD panels suggests that a combination of natural attenuation and physic-chemical remediation should be developed for LCMs remediations in the future. By reviewing the health risks and toxicity of LCMs, it is found that a large gap exists in their toxicity and risk to organisms. The fate and toxicity investigation of LCMs, and further investigations on the effects on the human exposure risks of LCMs to residents, especially to occupational workers, should be considered in the future.
Collapse
Affiliation(s)
- Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shaohan Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Huijun Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Haoduo Zhao
- Department of Environmental Science and Engineering, The University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC 27599, USA
| | - Guanyong Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mingliang Fang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
18
|
Xing W, Zhong L, Gu W, Liang M, Wang L, Wang Z, Shi L, Sun S. Occurrence and accumulation characteristics of legacy and novel brominated flame retardants in surface soil and river sediments from the downstream of Chuhe River basin, East China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:97416-97425. [PMID: 37592071 DOI: 10.1007/s11356-023-29300-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
Surface soil and river sediment samples were collected from the downstream of Chuhe River basin, East China, to investigate the occurrence and accumulation characteristics of legacy and novel brominated flame retardants (NBFRs). The respective concentrations of BDE-209 and nine NBFRs ranged from n.d. to 41.4 ng/g dry weight (dw) and from 0.35 to 362.78 ng/g dw in the collected surface soil samples and ranged from 0.29 to 19.73 ng/g dw and from 0.70 to 66.83 ng/g dw in the collected river sediment samples. Soil samples exhibited a higher potential to accumulate BTBPE while the relative abundance of PBT in the collected sediment samples was significantly higher than that in soils. Even so, BTBPE was the predominant NBFR in both soil and sediment samples. The concentrations and relative abundances of legacy and NBFRs exhibited large spatial variation. The calculated concentration ratios of the total of the nine NBFRs (∑9NBFRs) to BDE-209 (∑9NBFRs/BDE-209) in most of the analyzed samples far exceeded 1, implying a clear shift from legacy brominated flame retardants to NBFRs in the downstream of Chuhe River basin.
Collapse
Affiliation(s)
- Weilong Xing
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Liangchen Zhong
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
- School of Civil Engineering, Southeast University, Nanjing, 211189, China
| | - Wen Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Mengyuan Liang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Lei Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Zhen Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Lili Shi
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Shuai Sun
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China.
| |
Collapse
|
19
|
Zhou S, Fu M, Ling S, Qiao Z, Luo K, Peng C, Zhang W, Lei J, Zhou B. Legacy and novel brominated flame retardants in a lab-constructed freshwater ecosystem: Distribution, bioaccumulation, and trophic transfer. WATER RESEARCH 2023; 242:120176. [PMID: 37301001 DOI: 10.1016/j.watres.2023.120176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
The extensive utilization of both legacy and novel brominated flame retardants (BFRs) leads to high environmental concentrations, which would be bioaccumulated by organisms and further transferred through the food webs, causing potential risks to humans. In this study, five BFRs, that showed high detection frequencies and concentrations in sediments from an e-waste dismantling site in Southern China, namely 2,3,4,5,6-pentabromotoluene (PBT), hexabromobenzene (HBB), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), decabromodiphenyl ethane (DBDPE), and decabromodiphenyl ether (BDE209), were selected as target pollutants in the lab-constructed aquatic food web as part of a micro-ecosystem, to investigate their distribution, bioaccumulation, and trophic transfer patterns. The significant correlations between different samples in the food web indicated that the dietary uptake appeared to influence the levels of BFRs in organisms. Significant negative correlations were observed between the trophic level of organisms and the lipid-normalized concentrations of BTBPE and DBDPE, indicating the occurrence of trophic dilution after 5-month exposure. However, the average values of bioaccumulation factors (BAFs) were from 2.49 to 5.17 L/kg, underscoring the importance of continued concern for environmental risks of BFRs. The organisms occupying higher trophic levels with greater bioaccumulation capacities may play a pivotal role in determining the trophic magnification potentials of BFRs. This research provides a helpful reference for studying the impacts of feeding habits on bioaccumulation and biomagnification, as well as for identifying the fate of BFRs in aquatic environment.
Collapse
Affiliation(s)
- Shanqi Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mengru Fu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Siyuan Ling
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Zhihua Qiao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kailun Luo
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Juying Lei
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
20
|
Ma Y, Chen J, Du X, Xie C, Zhou J, Tao X, Dang Z, Lu G. Efficient removal of polybrominated diphenyl ethers from soil washing effluent by dummy molecular imprinted adsorbents: Selectivity and mechanisms. J Environ Sci (China) 2023; 129:45-57. [PMID: 36804241 DOI: 10.1016/j.jes.2022.08.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/20/2022] [Accepted: 08/20/2022] [Indexed: 06/18/2023]
Abstract
Surfactant enhanced elution is an effective method for removing hydrophobic organic pollutants from soils. The key to the development of leaching technology is selective removal of targeted pollutants in soil washing effluent and recycling of surfactant solutions. In this study, a molecular imprinting technique was applied to selectively sorb polybrominated diphenyl ethers (PBDEs) in soil washing effluent. The novel molecular imprinted polymers (MIPs) using different template molecules were synthesized by precipitation polymerization. Adsorption behaviors and mechanisms of MIPs were studied through experiments and theoretical calculations. The results show that 4-bromo-4'-hydroxybiphenyl and toluene can be effective imprinting molecule for MIPs synthesis. The maximal adsorption capacity of selected dummy molecular imprinted polymer (D1-MIP) was 1032.36 µmol/g, and that of part molecular imprinted polymer (P-MIP) was 981.13 µmol/g. Their imprinting factors in 5 PBDEs adsorption ranged from 2.13 to 5.88, the recovery percentage of Triton X-100 can reach 99.09%, confirming the feasibility of reusing surfactant. Various PBDEs could be removed by MIPs, and Quantitative Structure Property Relationship analysis revealed that PBDEs' molecular volume, planarity, polarity, and hydrophobicity have major influences on their adsorption performance. DFT calculation revealed that Van der Waals force and hydrogen bonding played important roles during selective adsorption. These results can provide effective theoretical guidance for surfactant enhanced soil elution in practical engineering applications.
Collapse
Affiliation(s)
- Yao Ma
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jinfan Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiaodong Du
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chunsheng Xie
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing 526061, China.
| | - Jiangmin Zhou
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China.
| |
Collapse
|
21
|
Chen A, Chen C, Zhang S, Li L, Zhang Z, Chen J, Jing Q, Liu J. Emission and environmental distribution of decabromodiphenyl ethane (DBDPE) in China from 2006 to 2026: Retrospection, forecasting, and implications for assessment and management. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121536. [PMID: 37003589 DOI: 10.1016/j.envpol.2023.121536] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Decabromodiphenyl ethane (DBDPE) is the main alternative to decabromodiphenyl ether (deca-BDE) in commercial use. However, there is increasing evidence show that DBDPE is a potential persistent organic pollutant, and it has been found ubiquitously in environmental media across China in recent years. Monitoring studies have not been able to determine the overall levels and temporal trends of DBDPE contamination in China, and have been unable to explain how emission patterns can affect their environmental distribution. Therefore, this study estimated the temporal variance of DBDPE emissions and environmental concentrations in five regions of China from 2006 to 2026 using the PROduction-To-EXposure (PROTEX) mass balance model. The results showed that Guangdong Province was the greatest DBDPE pollution hotspot in China due to emissions from plastics manufacturing and e-waste disposal; there was also severe pollution in Shandong Province, where almost all the DBDPE in China is produced. The DBDPE concentrations in indoor and outdoor environments increased substantially in all regions during 2006-2021. Furthermore, in Guangdong Province and Shandong Province, the ratio of indoor/outdoor air concentrations was greater than or close to 1, indicative of significant outdoor emission sources of DBDPE. In contrast, the ratios for the Beijing-Tianjin-Hebei region, East China, and Southwest China were below 1 due to the indoor use of electronic equipment containing DBDPE. The temporal trends of these ratios indicated that DBDPE contamination has gradually spread from high-concentration environments with strong emission sources to low-concentration environments. The outcomes of this study have important implications for the risk assessment of DBDPE use in China and can be used to establish contamination-mitigation actions.
Collapse
Affiliation(s)
- Anna Chen
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Chengkang Chen
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Shaoxuan Zhang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Li Li
- School of Public Health, University of Nevada, Reno, Reno, NV, 89557, USA
| | - Zhizhen Zhang
- School of Public Health, University of Nevada, Reno, Reno, NV, 89557, USA
| | - Jiazhe Chen
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Qiaonan Jing
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Jianguo Liu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
22
|
Tholley MS, George LY, Fu M, Qiao Z, Wang G, Ling S, Peng C, Zhang W, Ye C, Liu F, Yang J. Occurrence, spatial distribution, and risk assessment of brominated flame retardants in farmland soils of typical provinces in China. CHEMOSPHERE 2023; 313:137356. [PMID: 36460150 DOI: 10.1016/j.chemosphere.2022.137356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
In the present study, we investigated the occurrence, distribution, and potential risks of 4 brominated flame retardants in farmland soils across 18 provinces of China. The total mean concentrations of the BFRs were in order as DBDPE > BDE209 > HBB > TBB. DBDPE concentration was highest at 177.208 ng/kg, revealing its long-term use and persistence across the study areas. In parts of China, DBDPE was highest in the south (Sichuan, Shaanxi and Guangdong provinces), BDE209 was highest in the south (Sichuan province) and north (Jilin province), while HBB was highest in the south (Sichuan province) and east (Anhui and Zhejiang provinces) of China. Comparisons of the results in this study to other reported studies in different regions indicated that the studied BFRs concentrations were higher in the studied provinces of China. Pearson correlation between BFRs revealed both positive and negative associations within the BFRs groups and between BFRs and soil properties (SOM, CEC, pH, EC and PS%). The mean hazard quotients (HQ) of ecological risks ranged from 8.76 × 10-6 to 1.16 × 10-2 (HQ < 1) while non-carcinogenic human health risk evaluation for adults ranged from 7.05 × 10-7 - 7.48 × 10-4 (HQ < 1) and for children 2.99 × 10-4 - 4.30 × 10-2 (HQ < 1). Although the risk evaluations of BFRs from farmland soils in this study were low, the results serve as useful indicators of potential cumulative and long-term threats of BFR to rural areas where there is a high conversion of agricultural lands to non-agricultural use.
Collapse
Affiliation(s)
- Mabinty Sarah Tholley
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, PR China
| | - Lartey Young George
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Mengru Fu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, PR China
| | - Zhihua Qiao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Gehui Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Siyuan Ling
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, PR China.
| | - Chunmei Ye
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, PR China
| | - Fang Liu
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, PR China.
| | - Jie Yang
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, PR China
| |
Collapse
|
23
|
Li X, Wang Y, Bai W, Zhang Q, Zhao L, Cheng Z, Zhu H, Sun H. Novel Brominated Flame Retardants in Dust from E-Waste-Dismantling Workplace in Central China: Contamination Status and Human Exposure Assessment. TOXICS 2023; 11:58. [PMID: 36668783 PMCID: PMC9864280 DOI: 10.3390/toxics11010058] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Novel brominated flame retardants (NBFRs) have been widely used as alternatives to legacy BFRs. However, information on the contamination status and human exposure risks of electronic waste (e-waste)-derived NBFRs in the e-waste workplace is limited. In this study, six NBFRs and the legacy BFRs, hexabromocyclododecanes (HBCDs), were analyzed in 50 dust samples from an e-waste-dismantling workplace in Central China. The dust concentration of NBFRs in e-waste-dismantling workshops (median, 157−169 ng/g) was found to be significantly higher than those in an outdoor environment (17.3 ng/g) (p < 0.01). Differently, the highest median concentration of HBCDs was found in dust from the dismantling workshop for cellphones and computers (367 ng/g) among studied areas. The bis(2-ethylhexyl)-3,4,5,6-tetrabromo-phthalate (BEHTBP) was the predominant compound, which contributed 66.0−88.0% of measured NBFR concentrations. NBFRs might originate from plastic and rubber materials in wastes based on the correlation and principal component analysis. Moreover, the total estimated daily intakes (average scenario) of NBFRs were calculated at 2.64 × 10−2 ng/kg bw/d and 2.91× 10−2 ng/kg bw/d for the male and female dismantling workers, respectively, via dust ingestion, inhalation, and dermal contact pathways, which were lower than the reference dose values, and thus indicated a limited human exposure risk for NBFRs at the current level. Although the dust concentrations and daily intakes of NBFRs were still lower than those of other emerging pollutants (e.g., organophosphate and nitrogenous flame retardants) measured in the same sampling set, the elevated levels of NBFRs suggested the progressive BFR replacement process in China, which deserves more attention regarding their adverse effects on both the environment and human health.
Collapse
|
24
|
Li Y, Zhang T, Cheng Z, Zhang Q, Yang M, Zhao L, Zhang S, Lu Y, Sun H, Wang L. Direct evidence on occurrence of emerging liquid crystal monomers in human serum from E-waste dismantling workers: Implication for intake assessment. ENVIRONMENT INTERNATIONAL 2022; 169:107535. [PMID: 36152360 DOI: 10.1016/j.envint.2022.107535] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/12/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Liquid crystal monomers (LCMs) are widely used chemicals and ubiquitous emerging organic pollutants in the environment, some of which have persistent, bio-accumulative, and toxic potentials. Elevated levels of LCMs have been found in the e-waste dismantling associated areas. However, information on their internal exposure bio-monitoring is scarce. For the first time, occurrences of LCMs were observed in the serum samples of occupational workers (n = 85) from an e-waste dismantling area in South China. Twenty-nine LCMs were detected in serum samples of the workers, with a median value of 35.2 ng/mL (range: 7.78-276 ng/mL). Eight noticed LCMs were found to have relatively high detection frequencies ranging from 52.9% to 96.5%. The correlation analysis of individual LCMs indicated potential common applications and similar sources to the LCMs in occupational workers. Fluorinated LCMs were identified as the predominant monomers in the workers. Additionally, the estimated daily intake of the LCMs in the occupational workers was significantly higher than those in residents from the reference areas (p < 0.05, Mann-Whitney U Test, median values: 1.46 ng/kg bw/day versus 0.40 ng/kg bw/day), indicating a substantially higher exposure level to e-waste dismantling workers.
Collapse
Affiliation(s)
- Yuhe Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, 135 Xingang West Street, Guangzhou 510275, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Qianru Zhang
- Institute of Agriculture Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Ming Yang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Leicheng Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shaohan Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuan Lu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
25
|
Qiao Z, Lu C, Han Y, Luo K, Fu M, Zhou S, Peng C, Zhang W. Enrichment and removal of five brominated flame retardants in the presence of co-exposure in a soil-earthworm system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119877. [PMID: 35926732 DOI: 10.1016/j.envpol.2022.119877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Brominated flame retardants (BFRs) are widely used because of their excellent flame retardant performance and are frequently detected in the soil environment. Their adverse impacts on soil organisms cannot be ignored. The enrichment and removal dynamics of the five BFRs (pentabromotoluene (PBT), hexabromobenzene (HBB), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), decabromodiphenyl ethane (DBDPE), and decabromodiphenyl ether (BDE209)) in earthworms and different tissues (epidermis, intestinal tract, and cast) in the presence of co-exposure were explored for the first time. The results showed that the enrichment of the five BFRs in earthworms increased with increasing exposure concentration and time. The distribution of these chemicals in different tissues of earthworms was different. The contents of HBB and PBT in the intestine and epidermis were the highest and were more than 60% during most of the time. Additionally, the contents of BTBPE, BDE209, and DBDPE were significantly increased while the contents of HBB and PBT were significantly decreased in the cast. The correlation analysis indicated that HBB and PBT had a significant relationship in all the tissues, but BDE209 and DBDPE only had a relationship in the cast, which might be attributed to the structure of the pollutants. Additionally, the experiments illustrated that earthworms had strong removal for HBB and PBT, but were weak for DBDPE and BDE209.
Collapse
Affiliation(s)
- Zhihua Qiao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Cong Lu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yanna Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Kailun Luo
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Mengru Fu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Shanqi Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
26
|
Wang Y, Su P, Ge X, Ren H, Ma S, Shen G, Chen Q, Yu Y, An T. Identification of specific halogenated polycyclic aromatic hydrocarbons in surface soils of petrochemical, flame retardant, and electronic waste dismantling industrial parks. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129160. [PMID: 35605502 DOI: 10.1016/j.jhazmat.2022.129160] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/29/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Halogenated polycyclic aromatic hydrocarbons (Cl/Br-PAHs) have received tremendous attention due to their high toxicity. To identify the emission pattern of Cl/Br-PAHs from various industrial productions, understand the formation mechanisms and the influence on the surroundings, this study investigated the surface soils of three typical industrial parks. Generally, traces of Cl-PAHs were much lower than Br-PAHs. The mean Cl-PAH concentrations followed the trend of petrochemical industrial park (3.12 ng/g), brominated flame retardant (BFR) manufacturing park (1.48 ng/g), and electronic waste dismantling park (0.26 ng/g). However, the BFR manufacturing park had the highest mean Br-PAH concentration (21.6 ng/g), significantly higher than the other two parks. Generally, higher levels of the chemicals were found in the parks than in their surroundings, except for the electronic waste dismantling park. The massive addition of chlorine additives in crude oil and its by-products, plus the enormous quantity of brominated brines used in BFR productions, favor Cl/Br-PAH formation. Analyzing the homolog compositions of Cl/Br-PAHs suggested that 3- or 4-ring Cl/Br-PAHs were typically come from the petrochemical industrial park and electronic waste dismantling park. Contrarily, 4- or 5-ring Cl/Br-PAHs were predominantly come from the BFR manufacturing activity. This study provides fingerprints to trace the Cl/Br-PAH emissions during industrial production and analyzes the formation mechanism.
Collapse
Affiliation(s)
- Yujie Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Peixin Su
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xiang Ge
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Helong Ren
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Guofeng Shen
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Qiang Chen
- College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|