1
|
Chen W, Bibby K. Temporal, spatial, and methodological considerations in evaluating the viability of measles wastewater surveillance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 959:178141. [PMID: 39709841 DOI: 10.1016/j.scitotenv.2024.178141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/24/2024]
Abstract
Measles is a highly transmissible disease of increasing concern due to waning vaccination contributing to a significant rise in measles cases, with 283 reported cases and 16 outbreaks in the U.S. as of November 7, 2024. Early identification of measles cases is thus critical to disease containment and control. Wastewater-based epidemiology (WBE) represents a potential strategy for the efficient identification of measles outbreaks. We investigated the suitability of WBE for measles outbreak identification by using a model-based approach to elucidate the relationship between measles shedding, wastewater concentration, and detectability. The model reveals conditions for effective detection, specifying the optimal timing, location, and methodology needed to achieve a specific probability of detection, including accounting for geographic variability of wastewater generation and measles case rates. Measles RNA shedding, primarily from urine, contributes an average of 8.72 log10 genome copies (GC) daily per infection into sewage. At the average U.S. wastewater treatment plant (WWTP), achieving a 50 % probability of detection requires approximately 78 cases per 100,000 people with a process limit of detection (PLOD) of 3.0 log10 GC/L. At a PLOD of 3.0 log10 GC/L, over half of all WWTPs in the world can detect a single hypothetical measles case at a 10 % probability of detection. However, achieving a 50-90 % detection rate is challenging, especially with a higher PLOD, except in areas with the highest measles cases. Some locations require case levels consistent with a complete lack of vaccination for feasible measles detection in wastewater. Future work exploring measles shedding, variable shedding behavior, and local case rates can enhance model predictions. Overall, this analysis suggests that WBE detection of measles in most locations remains challenging without a significant increase in case rates or technical improvements decreasing the PLOD.
Collapse
Affiliation(s)
- William Chen
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, United States of America
| | - Kyle Bibby
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, United States of America.
| |
Collapse
|
2
|
Toancha K, Borges A, Lázaro L, Teixeira N, Lima AK, Gonçalves A, Winter D, Santos A, do Nascimento M, de Sousa AB, May J, Sequeira YS, Neto RMA, Fernandez-Cassi X, Schuldt K. Wastewater-based surveillance for Hepatitis A virus, Enterovirus, Poliovirus, and SARS-CoV-2 in São Tomé and Príncipe: A pilot study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176923. [PMID: 39427898 DOI: 10.1016/j.scitotenv.2024.176923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Wastewater-based surveillance is a valuable tool for monitoring pathogen transmission in communities, especially in regions where formal surveillance systems are limited. AIM The aim of this study was to implement and evaluate a wastewater-based monitoring system for viral pathogens in São Tomé and Príncipe. METHODS A total of 122 water samples were collected bi-weekly from June 2022 to July 2023 at six locations in São Tomé city and analysed for molecular detection of Hepatitis A Virus (HAV), Enterovirus (EV), Poliovirus (PV), SARS-CoV-2, as well as JC-Polyomavirus (JCPyV) and pepper mild mottle virus (PMMoV) as indicators of human contamination. Prevalence was analysed per pathogen and across sampling locations. Results for SARS-CoV-2 were assessed together with notifications from national COVID-19 surveillance. Further, we estimated resources needed to establish a wastewater-based approach to assess community-level transmission of viral pathogens. RESULTS All 122 and 117 samples were found positive for PMMoV and JCPyV, respectively, demonstrating a high level of human contamination at all sampling locations. The prevalence of HAV and EV ranged from 0 % to 59 % and 56 % respectively. Consistent with national surveillance data the highest proportion of SARS-CoV-2 positive water samples coincides with the highest number of COVID-19 cases reported during the study, demonstrating the potential of wastewater-based surveillance to identify signals. In addition, for SARS-CoV-2 this approach provided evidence of continuous circulation of the virus in the community, most importantly during weeks when no COVID-19 cases were reported. CONCLUSION Our findings provide evidence of high transmission of HAV and EV in communities in São Tomé and continuous circulation of SARS-CoV-2, even in weeks without COVID-19 case notifications. This study demonstrates that monitoring of viral pathogens in humanly impacted open water streams and sewage tanks is a valuable tool to complement clinical surveillance in resource-limited settings.
Collapse
Affiliation(s)
- Katia Toancha
- National Reference Laboratory for Tuberculosis and Emerging Diseases, Ministry of Health, São Tomé, São Tomé and Príncipe
| | - Adjaia Borges
- National Reference Laboratory for Tuberculosis and Emerging Diseases, Ministry of Health, São Tomé, São Tomé and Príncipe
| | - Lazismino Lázaro
- National Reference Laboratory for Tuberculosis and Emerging Diseases, Ministry of Health, São Tomé, São Tomé and Príncipe
| | - Nilton Teixeira
- National Reference Laboratory for Tuberculosis and Emerging Diseases, Ministry of Health, São Tomé, São Tomé and Príncipe
| | - Anery Katia Lima
- National Reference Laboratory for Tuberculosis and Emerging Diseases, Ministry of Health, São Tomé, São Tomé and Príncipe
| | - Anabela Gonçalves
- National Reference Laboratory for Tuberculosis and Emerging Diseases, Ministry of Health, São Tomé, São Tomé and Príncipe
| | - Doris Winter
- Infectious Disease Epidemiology Department, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany
| | - Asmiralda Santos
- National Reference Laboratory for Tuberculosis and Emerging Diseases, Ministry of Health, São Tomé, São Tomé and Príncipe
| | - Marcos do Nascimento
- National Reference Laboratory for Tuberculosis and Emerging Diseases, Ministry of Health, São Tomé, São Tomé and Príncipe
| | | | - Jürgen May
- Infectious Disease Epidemiology Department, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany; Tropical Medicine II, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Yardlene Sacramento Sequeira
- National Reference Laboratory for Tuberculosis and Emerging Diseases, Ministry of Health, São Tomé, São Tomé and Príncipe
| | - Rosa Maria Afonso Neto
- National Reference Laboratory for Tuberculosis and Emerging Diseases, Ministry of Health, São Tomé, São Tomé and Príncipe
| | - Xavier Fernandez-Cassi
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Science, University of Barcelona, Spain
| | - Kathrin Schuldt
- Infectious Disease Epidemiology Department, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|
3
|
Cheshomi N, Alum A, Smith MF, Lim ES, Conroy-Ben O, Abbaszadegan M. Viral concentration method biases in the detection of viral profiles in wastewater. Appl Environ Microbiol 2024:e0133924. [PMID: 39641602 DOI: 10.1128/aem.01339-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Viral detection methodologies used for wastewater-based epidemiology (WBE) studies have a broad range of efficacies. The complex matrix and low viral particle load in wastewater emphasize the importance of the concentration method. This study focused on comparing three commonly used virus concentration methods: polyethylene glycol precipitation (PEG), immuno-magnetic nanoparticles (IMNP), and electronegative membrane filtration (EMF). Influent and effluent wastewater samples were processed by the methods and analyzed by DNA/RNA quantification and sequencing for the detection of human viruses. SARS-COV-2, Astrovirus, and Hepatitis C virus were detected by all the methods in both sample types. PEG precipitation resulted in the detection of 20 types of viruses in influent and 16 types in effluent samples. The corresponding number of virus types detected was 21 and 11 for IMNP, and 16 and 8 for EMF. Certain viruses were unique to only one concentration method. For example, PEG detected three types of viruses in influent and six types in effluent compared to IMNP, which detected seven types in influent and one type in effluent samples. However, the EMF method appeared to be the least effective, detecting three types in influent and none in effluent samples. Rotavirus was detected in influent sample using IMNP method, whereas EMF and PEG methods failed to yield a similar outcome. Consequently, the potential false negative results pose a risk to the credibility of WBE applications. Therefore, implementation of a proper concentration technique is critical to minimize method biases and ensure accurate viral profiling in WBE studies.IMPORTANCEIn recent years, significant research efforts have been focused on the development of viral detection methodology for wastewater-based epidemiology studies, showing a range of variability in detection efficacies. A proper methodology is essential for an appropriate evaluation of disease prevalence and community health in such studies and necessitates designing a concentration method based on the target pathogenic virus. There remains a need for comparative performance evaluations of methods in the context of detection efficiencies. This study highlights the significant impact of sample matrix, viral structure, and nucleic acid composition on the efficacy of viral concentration methods. Assessing WBE techniques to ensure accurate detection and understanding of viral presence within wastewater samples is critical for revealing viral profiles in municipality wastewater samples.
Collapse
Affiliation(s)
- Naeema Cheshomi
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA
- Water and Environmental Technology Center, Arizona State University, Tempe, Arizona, USA
| | - Absar Alum
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA
- Water and Environmental Technology Center, Arizona State University, Tempe, Arizona, USA
| | - Matthew F Smith
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Efrem S Lim
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Otakuye Conroy-Ben
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA
| | - Morteza Abbaszadegan
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA
- Water and Environmental Technology Center, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
4
|
Chai X, Liu S, Liu C, Bai J, Meng J, Tian H, Han X, Han G, Xu X, Li Q. Surveillance of SARS-CoV-2 in wastewater by quantitative PCR and digital PCR: a case study in Shijiazhuang city, Hebei province, China. Emerg Microbes Infect 2024; 13:2324502. [PMID: 38465692 DOI: 10.1080/22221751.2024.2324502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/22/2024] [Indexed: 03/12/2024]
Abstract
In this study, we reported the first long-term monitoring of SARS-CoV-2 in wastewater in Mainland China from November 2021 to October 2023. The city of Shijiazhuang was employed for this case study. We developed a triple reverse transcription droplet digital PCR (RT-ddPCR) method using triple primer-probes for simultaneous detection of the N1 gene, E gene, and Pepper mild mottle virus (PMMoV) to achieve accurate quantification of SARS-CoV-2 RNA in wastewater. Both the RT-ddPCR method and the commercial multiplex reverse transcription quantitative polymerase chain reaction (RT-qPCR) method were implemented for the detection of SARS-CoV-2 in wastewater in Shijiazhuang City over a 24-month period. Results showed that SARS-CoV-2 was detected for the first time in the wastewater of Shijiazhuang City on 10 November 2022. The peak of COVID-19 cases occurred in the middle of December 2022, when the concentration of SARS-CoV-2 in the wastewater was highest. The trend of virus concentration increases and decreases forming a "long-tailed" shape in the COVID-19 outbreak and recession cycle. The results indicated that both multiplex RT-ddPCR and RT-qPCR are effective in detecting SARS-CoV-2 in wastewater, but RT-ddPCR is capable of detecting low concentrations of SARS-CoV-2 in wastewater which is more efficient. The SARS-CoV-2 abundance in wastewater is correlated to clinical data, outlining the public health utility of this work.HighlightsFirst long-term monitoring of SARS-CoV-2 in wastewater in Mainland ChinaCOVID-19 outbreak was tracked in Shijiazhuang City from outbreak to containmentWastewater was monitored simultaneously using RT-ddPCR and RT-qPCR methodsTriple primer-probe RT-ddPCR detects N1 and E genes of SARS-CoV-2 and PMMoV.
Collapse
Affiliation(s)
- Xiaoru Chai
- School of Public Health, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Shiyou Liu
- Hebei Key Laboratory of Pathogens and Epidemiology of Infectious Diseases, Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, People's Republic of China
| | - Chao Liu
- Shijiazhuang Qiaodong Sewage Treatment Plant, Shijiazhuang, People's Republic of China
| | - Jiaxuan Bai
- School of Public Health, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Juntao Meng
- School of Public Health, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Hong Tian
- School of Public Health, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Xu Han
- Hebei Key Laboratory of Pathogens and Epidemiology of Infectious Diseases, Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, People's Republic of China
| | - Guangyue Han
- Hebei Key Laboratory of Pathogens and Epidemiology of Infectious Diseases, Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, People's Republic of China
| | - Xiangdong Xu
- School of Public Health, Hebei Medical University, Shijiazhuang, People's Republic of China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, People's Republic of China
| | - Qi Li
- Hebei Key Laboratory of Pathogens and Epidemiology of Infectious Diseases, Hebei Provincial Center for Disease Control and Prevention, Shijiazhuang, People's Republic of China
| |
Collapse
|
5
|
Karamati N E, Law I, Weese JS, McCarthy DT, Murphy HM. Passive sampling of microbes in various water sources: A systematic review. WATER RESEARCH 2024; 266:122284. [PMID: 39353231 DOI: 10.1016/j.watres.2024.122284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 10/04/2024]
Abstract
Traditional methods for monitoring pathogens in environmental waters have numerous drawbacks. Sampling approaches that are low-cost and time efficient that can capture temporal variation in microbial contamination are needed. Passive sampling of aquatic environments has shown promise as an alternative water monitoring technique for waterborne pathogens and microbial contaminants. The present systematic review aimed to compile and synthesize existing literature on the use of passive samplers for the monitoring of microbes in different water sources and identify research gaps. The review summarizes current knowledge on materials used for detection, deployment durations, analytical methods, quantification as well as benefits and limitations of passive sampling. This review found that electronegative nitrocellulose membrane filters are effective for both detection and quantification of viruses in wastewater, while gauze passive samplers have been effective for detecting bacterial targets in wastewater. There is a large knowledge gap in the use of passive samplers in a quantitative manner, especially for the back-calculation of water-column microbial concentrations or for correlation to outcomes of interest (e.g. prevalence rates). Further, there is very limited attention paid to the use of membrane filters for the monitoring of bacteria in any water source as well as a lack of studies utilizing passive sampling approaches for protozoa.
Collapse
Affiliation(s)
- Elnaz Karamati N
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Department of Civil Engineering, Monash University, Australia
| | - Ilya Law
- Water, Health and Applied Microbiology Lab (WHAM Lab), Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - J Scott Weese
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - David T McCarthy
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Department of Civil Engineering, Monash University, Australia; School of Environmental Sciences, Ontario Agricultural College, University of Guelph, Guelph, ON, Canada; Department of Civil and Environmental Engineering, Queensland University of Technology, Brisbane, Australia
| | - Heather M Murphy
- Water, Health and Applied Microbiology Lab (WHAM Lab), Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada; Department of Civil and Environmental Engineering, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
6
|
Hall GJ, Page EJ, Rhee M, Hay C, Krause A, Langenbacher E, Ruth A, Grenier S, Duran AP, Kamara I, Iskander JK, Alsayyid F, Thomas DL, Bock E, Porta N, Pharo J, Osterink BA, Zelmanowitz S, Fleischmann CM, Liyanage D, Gray JP. Wastewater Surveillance of US Coast Guard Installations and Seagoing Military Vessels to Mitigate the Risk of COVID-19 Outbreaks, March 2021-August 2022. Public Health Rep 2024; 139:699-707. [PMID: 38561999 PMCID: PMC11504356 DOI: 10.1177/00333549241236644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
OBJECTIVES Military training centers and seagoing vessels are often environments at high risk for the spread of COVID-19 and other contagious diseases, because military trainees and personnel arrive after traveling from many parts of the country and live in congregate settings. We examined whether levels of SARS-CoV-2 genetic material in wastewater correlated with SARS-CoV-2 infections among military personnel living in communal barracks and vessels at US Coast Guard training centers in the United States. METHODS The Coast Guard developed and established 3 laboratories with wastewater testing capability at Coast Guard training centers from March 2021 through August 2022. We analyzed wastewater from barracks housing trainees and from 4 Coast Guard vessels for the presence of SARS-CoV-2 genes N and E and quantified the results relative to levels of a fecal indicator virus, pepper mild mottle virus. We compared quantified data with the timing of medically diagnosed COVID-19 infection among (1) military personnel who had presented with symptoms or had been discovered through contact tracing and had medical tests and (2) military personnel who had been discovered through routine surveillance by positive SARS-CoV-2 antigen or polymerase chain reaction test results. RESULTS Levels of viral genes in wastewater at Coast Guard locations were best correlated with diagnosed COVID-19 cases when wastewater testing was performed twice weekly with passive samplers deployed for the entire week; such testing detected ≥1 COVID-19 case 69.8% of the time and ≥3 cases 88.3% of the time. Wastewater assessment in vessels did not continue because of logistical constraints. CONCLUSION Wastewater testing is an effective tool for measuring the presence and patterns of SARS-CoV-2 infections among military populations. Success with wastewater testing for SARS-CoV-2 infections suggests that other diseases may be assessed with similar approaches.
Collapse
Affiliation(s)
- Gregory J. Hall
- Department of Chemical and Environmental Sciences, US Coast Guard Academy, New London, CT, USA
| | - Eric J. Page
- Department of Physics, US Coast Guard Academy, New London, CT, USA
| | - Min Rhee
- Department of Chemical and Environmental Sciences, US Coast Guard Academy, New London, CT, USA
| | - Clara Hay
- Department of Chemical and Environmental Sciences, US Coast Guard Academy, New London, CT, USA
| | - Amelia Krause
- Department of Chemical and Environmental Sciences, US Coast Guard Academy, New London, CT, USA
| | - Emma Langenbacher
- Department of Chemical and Environmental Sciences, US Coast Guard Academy, New London, CT, USA
| | - Allison Ruth
- Department of Chemical and Environmental Sciences, US Coast Guard Academy, New London, CT, USA
| | - Steve Grenier
- Department of Civil and Environmental Engineering, US Coast Guard Academy, New London, CT, USA
| | - Alexander P. Duran
- Office of Environmental Safety, US Coast Guard Academy, New London, CT, USA
| | - Ibrahim Kamara
- Occupational Medicine and Quality Improvement Division, US Coast Guard Headquarters, Washington, DC, USA
| | - John K. Iskander
- Preventive Medicine and Population Health, US Coast Guard Headquarters, Washington, DC, USA
| | - Fahad Alsayyid
- Coast Guard Medical Directorate, US Coast Guard, Cape May, NJ, USA
| | - Dana L. Thomas
- Health, Safety, and Work-Life Service Center, US Coast Guard Headquarters, Washington, DC, USA
| | - Edward Bock
- Health, Safety, and Work-Life Service Center, US Coast Guard, Norfolk, VA, USA
| | - Nicholas Porta
- Health, Safety, and Work-Life Service Center, US Coast Guard, Norfolk, VA, USA
| | - Jessica Pharo
- Health, Safety, and Work-Life Service Center, US Coast Guard, Norfolk, VA, USA
| | - Beth A. Osterink
- Health, Safety, and Work-Life Service Center, US Coast Guard, Norfolk, VA, USA
| | - Sharon Zelmanowitz
- Department of Civil and Environmental Engineering, US Coast Guard Academy, New London, CT, USA
| | - Corinna M. Fleischmann
- Department of Civil and Environmental Engineering, US Coast Guard Academy, New London, CT, USA
| | - Dilhara Liyanage
- Department of Chemical and Environmental Sciences, US Coast Guard Academy, New London, CT, USA
| | - Joshua P. Gray
- Department of Chemical and Environmental Sciences, US Coast Guard Academy, New London, CT, USA
| |
Collapse
|
7
|
Hayes EK, Gagnon GA. From capture to detection: A critical review of passive sampling techniques for pathogen surveillance in water and wastewater. WATER RESEARCH 2024; 261:122024. [PMID: 38986282 DOI: 10.1016/j.watres.2024.122024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/05/2024] [Accepted: 06/29/2024] [Indexed: 07/12/2024]
Abstract
Water quality, critical for human survival and well-being, necessitates rigorous control to mitigate contamination risks, particularly from pathogens amid expanding urbanization. Consequently, the necessity to maintain the microbiological safety of water supplies demands effective surveillance strategies, reliant on the collection of representative samples and precise measurement of contaminants. This review critically examines the advancements of passive sampling techniques for monitoring pathogens in various water systems, including wastewater, freshwater, and seawater. We explore the evolution from conventional materials to innovative adsorbents for pathogen capture and the shift from culture-based to molecular detection methods, underscoring the adaptation of this field to global health challenges. The comparison highlights passive sampling's efficacy over conventional techniques like grab sampling and its potential to overcome existing sampling challenges through the use of innovative materials such as granular activated carbon, thermoplastics, and polymer membranes. By critically evaluating the literature, this work identifies standardization gaps and proposes future research directions to augment passive sampling's efficiency, specificity, and utility in environmental and public health surveillance.
Collapse
Affiliation(s)
- Emalie K Hayes
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3H 4R2, Canada
| | - Graham A Gagnon
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
8
|
Dlamini M, Msolo L, Ehi Ebomah K, Nontongana N, Ifeanyi Okoh A. A systematic review on the incidence of influenza viruses in wastewater matrices: Implications for public health. PLoS One 2024; 19:e0291900. [PMID: 38662758 PMCID: PMC11045120 DOI: 10.1371/journal.pone.0291900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/05/2024] [Indexed: 04/28/2024] Open
Abstract
Influenza viruses pose a significant public health threat, necessitating comprehensive surveillance strategies to enhance early detection and preventive measures. This systematic review investigates the incidence of influenza viruses in wastewater matrices, aiming to elucidate the potential implications for public health. The study synthesizes existing literature, employing rigorous inclusion criteria to identify relevant studies conducted globally. The essence of the problem lies in the gaps of traditional surveillance methods, which often rely on clinical data and may underestimate the true prevalence of influenza within communities. Wastewater-based epidemiology offers a novel approach to supplementing these conventional methods, providing a broader and more representative assessment of viral circulation. This review systematically examines the methodologies employed in the selected studies, including virus concentration techniques and molecular detection methods, to establish a standardized framework for future research. Our findings reveal a consistent presence of influenza viruses in diverse wastewater matrices across different geographic locations and seasons. Recommendations for future research include the standardization of sampling protocols, improvement of virus concentration methods, and the integration of wastewater surveillance into existing public health frameworks. In conclusion, this systematic review contributes to the understanding of influenza dynamics in wastewater matrices, offering valuable insights for public health practitioners and policymakers. Implementation of wastewater surveillance alongside traditional methods can enhance the resilience of public health systems and better prepare communities for the challenges posed by influenza outbreaks.
Collapse
Affiliation(s)
- Mbasa Dlamini
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Department of Biochemistry and Microbiology, Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, Alice, South Africa
| | - Luyanda Msolo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Department of Biochemistry and Microbiology, Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, Alice, South Africa
| | - Kingsley Ehi Ebomah
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Department of Biochemistry and Microbiology, Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, Alice, South Africa
| | - Nolonwabo Nontongana
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Department of Biochemistry and Microbiology, Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, Alice, South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Department of Biochemistry and Microbiology, Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, Alice, South Africa
| |
Collapse
|
9
|
Cha G, Zhu KJ, Fischer JM, Flores CI, Brown J, Pinto A, Hatt JK, Konstantinidis KT, Graham KE. Metagenomic evaluation of the performance of passive Moore swabs for sewage monitoring relative to composite sampling over time resolved deployments. WATER RESEARCH 2024; 253:121269. [PMID: 38359595 DOI: 10.1016/j.watres.2024.121269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/07/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
Moore swabs have re-emerged as a versatile tool in the field of wastewater-based epidemiology during the COVID-19 pandemic and offer unique advantages for monitoring pathogens in sewer systems, especially at the neighborhood-level. However, whether Moore swabs provide comparable results to more commonly used composite samples remains to be rigorously tested including the optimal duration of Moore swab deployment. This study provides new insights into these issues by comparing the results from Moore swab samples to those of paired composite samples collected from the same sewer lines continuously over six to seventy-two hours post-deployment, during low COVID-19 prevalence periods. Our results show that Moore swabs accumulated approximately 10-fold higher PMMoV concentrations (on a basis of mL of Moore swab squeezed filtrate to mL of composite sewage) and showed comparable trends in terms of bacterial species abundance when compared to composite samples. Moore swabs also generally captured higher SARS-CoV-2 N1/N2 RNA concentrations than composite samples. Moore swabs showed comparable trends in terms of abundance dynamics of the sewage microbiome to composite samples and variable signs of saturation over time that were site and/or microbial population-specific. Based on our dual ddRT-PCR and shotgun metagenomic approach, we find that Moore swabs at our sites were optimally deployed for 6 h at a time at two sites.
Collapse
Affiliation(s)
- Gyuhyon Cha
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Kevin J Zhu
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| | - Jamie M Fischer
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Camryn I Flores
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Joe Brown
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| | - Ameet Pinto
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Janet K Hatt
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | - Katherine E Graham
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
10
|
Geissler M, Mayer R, Helm B, Dumke R. Food and Environmental Virology: Use of Passive Sampling to Characterize the Presence of SARS-CoV-2 and Other Viruses in Wastewater. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:25-37. [PMID: 38117471 DOI: 10.1007/s12560-023-09572-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/18/2023] [Indexed: 12/21/2023]
Abstract
Fecal shedding of SARS-CoV-2 leads to a renaissance of wastewater-based epidemiology (WBE) as additional tool to follow epidemiological trends in the catchment of treatment plants. As alternative to the most commonly used composite samples in surveillance programs, passive sampling is increasingly studied. However, the many sorbent materials in different reports hamper the comparison of results and a standardization of the approach is necessary. Here, we compared different cost-effective sorption materials (cheesecloths, gauze swabs, electronegative filters, glass wool, and tampons) in torpedo-style housings with composite samples. Despite a remarkable variability of the concentration of SARS-CoV-2-specific gene copies, analysis of parallel-deposited passive samplers in the sewer demonstrated highest rate of positive samples and highest number of copies by using cheesecloths. Using this sorption material, monitoring of wastewater of three small catchments in the City of Dresden resulted in a rate of positive samples of 50% in comparison with composite samples (98%). During the investigation period, incidence of reported cases of SARS-CoV-2 in the catchments ranged between 16 and 170 per 100,000 persons and showed no correlation with the measured concentrations of E gene in wastewater. In contrast, constantly higher numbers of gene copies in passive vs. composite samples were found for human adenovirus and crAssphage indicating strong differences of efficacy of methods concerning the species investigated. Influenza virus A and B were sporadically detected allowing no comparison of results. The study contributes to the further understanding of possibilities and limits of passive sampling approaches in WBE.
Collapse
Affiliation(s)
- Michael Geissler
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Robin Mayer
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, Dresden, Germany
| | - Björn Helm
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, Dresden, Germany
| | - Roger Dumke
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
11
|
Farkas K, Kevill JL, Adwan L, Garcia-Delgado A, Dzay R, Grimsley JMS, Lambert-Slosarska K, Wade MJ, Williams RC, Martin J, Drakesmith M, Song J, McClure V, Jones DL. Near-source passive sampling for monitoring viral outbreaks within a university residential setting. Epidemiol Infect 2024; 152:e31. [PMID: 38329110 PMCID: PMC10894896 DOI: 10.1017/s0950268824000190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/09/2024] Open
Abstract
Wastewater-based epidemiology (WBE) has proven to be a powerful tool for the population-level monitoring of pathogens, particularly severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For assessment, several wastewater sampling regimes and methods of viral concentration have been investigated, mainly targeting SARS-CoV-2. However, the use of passive samplers in near-source environments for a range of viruses in wastewater is still under-investigated. To address this, near-source passive samples were taken at four locations targeting student hall of residence. These were chosen as an exemplar due to their high population density and perceived risk of disease transmission. Viruses investigated were SARS-CoV-2 and its variants of concern (VOCs), influenza viruses, and enteroviruses. Sampling was conducted either in the morning, where passive samplers were in place overnight (17 h) and during the day, with exposure of 7 h. We demonstrated the usefulness of near-source passive sampling for the detection of VOCs using quantitative polymerase chain reaction (qPCR) and next-generation sequencing (NGS). Furthermore, several outbreaks of influenza A and sporadic outbreaks of enteroviruses (some associated with enterovirus D68 and coxsackieviruses) were identified among the resident student population, providing evidence of the usefulness of near-source, in-sewer sampling for monitoring the health of high population density communities.
Collapse
Affiliation(s)
- Kata Farkas
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Jessica L. Kevill
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Latifah Adwan
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | | | - Rande Dzay
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Jasmine M. S. Grimsley
- Data Analytics & Surveillance Group, UK Health Security Agency, London, UK
- The London Data Company, London, UK
| | | | - Matthew J. Wade
- Data Analytics & Surveillance Group, UK Health Security Agency, London, UK
- School of Engineering, Newcastle University, Newcastle-upon-Tyne, UK
| | - Rachel C. Williams
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Javier Martin
- Division of Vaccines, Medicines and Healthcare Products Regulatory Agency, Hertfordshire, UK
| | - Mark Drakesmith
- Communicable Disease Surveillance Centre, Public Health Wales, Cardiff, UK
| | - Jiao Song
- Communicable Disease Surveillance Centre, Public Health Wales, Cardiff, UK
| | - Victoria McClure
- Communicable Disease Surveillance Centre, Public Health Wales, Cardiff, UK
| | - Davey L. Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK
- Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
12
|
Farkas K, Pântea I, Woodhall N, Williams D, Lambert-Slosarska K, Williams RC, Grimsley JMS, Singer AC, Jones DL. Diurnal changes in pathogenic and indicator virus concentrations in wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123785-123795. [PMID: 37989946 PMCID: PMC10746776 DOI: 10.1007/s11356-023-30381-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/06/2023] [Indexed: 11/23/2023]
Abstract
Wastewater-based epidemiology (WBE) has been commonly used for monitoring SARS-CoV-2 outbreaks. As sampling times and methods (i.e. grab vs composite) may vary, diurnal changes of viral concentrations in sewage should be better understood. In this study, we collected untreated wastewater samples hourly for 4 days at two wastewater treatment plants in Wales to establish diurnal patterns in virus concentrations and the physico-chemical properties of the water. Simultaneously, we also trialled three absorbent materials as passive samples as a simple and cost-efficient alternative for the collection of composite samples. Ninety-six percent of all liquid samples (n = 74) and 88% of the passive samplers (n = 59) were positive for SARS-CoV-2, whereas 87% and 97% of the liquid and passive samples were positive for the faecal indicator virus crAssphage, respectively. We found no significant daily variations in the concentration of the target viruses, ammonium and orthophosphate, and the pH and electrical conductivity levels were also stable. Weak positive correlations were found between some physico-chemical properties and viral concentrations. More variation was observed in samples taken from the influent stream as opposed to those taken from the influent tank. Of the absorbent materials trialled as passive samples, we found that tampons provided higher viral recoveries than electronegative filter paper and cotton gauze swabs. For all materials tested, viral recovery was dependent on the virus type. Our results indicate that grab samples may provide representative alternatives to 24-h composite samples if taken from the influent tank, hence reducing the costs of sampling for WBE programmes. Tampons are also viable alternatives for cost-efficient sampling; however, viral recovery should be optimised prior to use.
Collapse
Affiliation(s)
- Kata Farkas
- School of Environmental Natural Sciences, Bangor University, Bangor, LL57 2UW, Gwynedd, UK.
| | - Igor Pântea
- School of Environmental Natural Sciences, Bangor University, Bangor, LL57 2UW, Gwynedd, UK
| | - Nick Woodhall
- School of Environmental Natural Sciences, Bangor University, Bangor, LL57 2UW, Gwynedd, UK
| | - Denis Williams
- School of Environmental Natural Sciences, Bangor University, Bangor, LL57 2UW, Gwynedd, UK
| | | | - Rachel C Williams
- School of Environmental Natural Sciences, Bangor University, Bangor, LL57 2UW, Gwynedd, UK
| | - Jasmine M S Grimsley
- Data Analytics & Surveillance Division, UK Health Security Agency, 10 South Colonnade, Canary Wharf, London, E14 4PU, UK
- The London Data Company, London, EC2N 2AT, UK
| | - Andrew C Singer
- UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
| | - Davey L Jones
- School of Environmental Natural Sciences, Bangor University, Bangor, LL57 2UW, Gwynedd, UK
- Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
| |
Collapse
|
13
|
Aguayo-Acosta A, Jiménez-Rodríguez MG, Silva-Lance F, Oyervides-Muñoz MA, Armenta-Castro A, de la Rosa O, Ovalle-Carcaño A, Melchor-Martínez EM, Aghalari Z, Parra-Saldívar R, Sosa-Hernández JE. Passive Sampler Technology for Viral Detection in Wastewater-Based Surveillance: Current State and Nanomaterial Opportunities. Viruses 2023; 15:1941. [PMID: 37766347 PMCID: PMC10537877 DOI: 10.3390/v15091941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Although wastewater-based surveillance (WBS) is an efficient community-wide surveillance tool, its implementation for pathogen surveillance remains limited by ineffective sample treatment procedures, as the complex composition of wastewater often interferes with biomarker recovery. Moreover, current sampling protocols based on grab samples are susceptible to fluctuant biomarker concentrations and may increase operative costs, often rendering such systems inaccessible to communities in low-to-middle-income countries (LMICs). As a response, passive samplers have emerged as a way to make wastewater sampling more efficient and obtain more reliable, consistent data. Therefore, this study aims to review recent developments in passive sampling technologies to provide researchers with the tools to develop novel passive sampling strategies. Although promising advances in the development of nanostructured passive samplers have been reported, optimization remains a significant area of opportunity for researchers in the area, as methods for flexible, robust adsorption and recovery of viral genetic materials would greatly improve the efficacy of WBS systems while making them more accessible for communities worldwide.
Collapse
Affiliation(s)
- Alberto Aguayo-Acosta
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.A.-A.); (M.A.O.-M.); (O.d.l.R.); (A.O.-C.); (E.M.M.-M.)
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| | - Mildred G. Jiménez-Rodríguez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| | - Fernando Silva-Lance
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| | - Mariel Araceli Oyervides-Muñoz
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.A.-A.); (M.A.O.-M.); (O.d.l.R.); (A.O.-C.); (E.M.M.-M.)
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| | - Arnoldo Armenta-Castro
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| | - Orlado de la Rosa
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.A.-A.); (M.A.O.-M.); (O.d.l.R.); (A.O.-C.); (E.M.M.-M.)
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| | - Antonio Ovalle-Carcaño
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.A.-A.); (M.A.O.-M.); (O.d.l.R.); (A.O.-C.); (E.M.M.-M.)
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| | - Elda M. Melchor-Martínez
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.A.-A.); (M.A.O.-M.); (O.d.l.R.); (A.O.-C.); (E.M.M.-M.)
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| | - Zahra Aghalari
- Faculty of Public Health, Babol University of Medical Sciences, Babol 47176-47754, Iran;
| | - Roberto Parra-Saldívar
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.A.-A.); (M.A.O.-M.); (O.d.l.R.); (A.O.-C.); (E.M.M.-M.)
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| | - Juan Eduardo Sosa-Hernández
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.A.-A.); (M.A.O.-M.); (O.d.l.R.); (A.O.-C.); (E.M.M.-M.)
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| |
Collapse
|
14
|
West NW, Hartrick J, Alamin M, Vasquez AA, Bahmani A, Turner CL, Shuster W, Ram JL. Passive swab versus grab sampling for detection of SARS-CoV-2 markers in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 889:164180. [PMID: 37201848 PMCID: PMC10185491 DOI: 10.1016/j.scitotenv.2023.164180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/01/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Early detection of the COVID-19 virus, SARS-CoV-2, is key to mitigating the spread of new outbreaks. Data from individual testing is increasingly difficult to obtain as people conduct non-reported home tests, defer tests due to logistics or attitudes, or ignore testing altogether. Wastewater based epidemiology is an alternative method for surveilling a community while maintaining individual anonymity; however, a problem is that SARS-CoV-2 markers in wastewater vary throughout the day. Collecting grab samples at a single time may miss marker presence, while autosampling throughout a day is technically challenging and expensive. This study investigates a passive sampling method that would be expected to accumulate greater amounts of viral material from sewers over a period of time. Tampons were tested as passive swab sampling devices from which viral markers could be eluted with a Tween-20 surfactant wash. Six sewersheds in Detroit were sampled 16-22 times by paired swab (4 h immersion before retrieval) and grab methods over a five-month period and enumerated for N1 and N2 SARS-CoV-2 markers using ddPCR. Swabs detected SARS-CoV-2 markers significantly more frequently (P < 0.001) than grab samples, averaging two to three-fold more copies of SARS-CoV-2 markers than their paired grab samples (p < 0.0001) in the assayed volume (10 mL) of wastewater or swab eluate. No significant difference was observed in the recovery of a spiked-in control (Phi6), indicating that the improved sensitivity is not due to improvements in nucleic acid recovery or reduction of PCR inhibition. The outcomes of swab-based sampling varied significantly between sites, with swab samples providing the greatest improvements in counts for smaller sewersheds that otherwise tend to have greater variation in grab sample counts. Swab-sampling with tampons provides significant advantages in detection of SARS-CoV-2 wastewater markers and are expected to provide earlier detection of new outbreaks than grab samples, with consequent public health benefits.
Collapse
Affiliation(s)
- Nicholas W West
- Department of Physiology, Wayne State, Detroit, MI 48201, USA
| | | | - Md Alamin
- Department of Physiology, Wayne State, Detroit, MI 48201, USA
| | | | - Azadeh Bahmani
- Department of Physiology, Wayne State, Detroit, MI 48201, USA
| | | | - William Shuster
- Department of Civil and Environmental Engineering, Wayne State, Detroit, MI 48201, USA
| | - Jeffrey L Ram
- Department of Physiology, Wayne State, Detroit, MI 48201, USA.
| |
Collapse
|
15
|
Do Nascimento J, Bichet M, Challant J, Loutreul J, Petinay S, Perrotte D, Roman V, Cauvin E, Robin M, Ladeiro MP, La Carbona S, Blin JL, Gantzer C, Geffard A, Bertrand I, Boudaud N. Toward better monitoring of human noroviruses and F-specific RNA bacteriophages in aquatic environments using bivalve mollusks and passive samplers: A case study. WATER RESEARCH 2023; 243:120357. [PMID: 37549447 DOI: 10.1016/j.watres.2023.120357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/09/2023]
Abstract
Monitoring pathogenic enteric viruses in continental and marine water bodies is essential to control the viral contamination of human populations. Human Noroviruses (NoV) are the main enteric viruses present in surface waters and foodstuff. In a context of global change, it is currently a challenge to improve the management of viral pollutions in aquatic environments and thereby limit the contamination of vulnerable water bodies or foodstuffs. The aim of this study is to evaluate the potential of specific accumulation systems for improving the detection of NoV in water bodies, compared to direct water analyses. Passive samplers (Zetapor filters) and three species of bivalve molluscan shellfish (BMS) (Dreissena polymorpha, Mytilus edulis and Crassostreas gigas) were used as accumulation systems to determine their performance in monitoring continental and marine waters for viruses. F-specific RNA bacteriophages (FRNAPH) were also analyzed since they are described as indicators of NoV hazard in many studies. During a one-year study in a specific area frequently affected by fecal pollution, twelve campaigns of exposure of passive samplers and BMS in continental and coastal waters were conducted. Using suitable methods, NoV (genome) and FRNAPH (infectious and genome) were detected in these accumulation systems and in water at the same time points to determine the frequency of detection but also to gain a better understanding of viral pollution in this area. The reliability of FRNAPH as a NoV indicator was also investigated. Our results clearly showed that BMS were significantly better than passive samplers and direct water analyses for monitoring NoV and FRNAPH contamination in water bodies. A dilution of viral pollution between the continental and the coastal area was observed and can be explained by the distance from the source of the pollution. Viral pollution is clearly greater during the winter period, and stakeholders should take this into consideration in their attempts to limit the contamination of food and water. A significant correlation was once again shown between NoV and FRNAPH genomes in BMS, confirming the reliability of FRNAPH as a NoV indicator. Moreover, a strong correlation was observed between NoV genomes and infectious FRNAPH, suggesting recent viral pollution since infectious particles had not been inactivated at sufficient levels in the environment. More generally, this study shows the value of using BMS as an active method for improving knowledge on the behavior of viral contamination in water bodies, the ranking of the contamination sources, and the vulnerability of downstream water bodies.
Collapse
Affiliation(s)
- Julie Do Nascimento
- Université de Reims Champagne-Ardenne, UMR-I 02 SEBIO, F-51687 Reims, France
| | - Marion Bichet
- Actalia, Food Safety Department, F-50000 Saint-Lô, France; LCPME, UMR 7564, CNRS, Université de Lorraine, F-54000 Nancy, France
| | - Julie Challant
- LCPME, UMR 7564, CNRS, Université de Lorraine, F-54000 Nancy, France
| | - Julie Loutreul
- Actalia, Food Safety Department, F-50000 Saint-Lô, France
| | | | | | - Véronica Roman
- LCPME, UMR 7564, CNRS, Université de Lorraine, F-54000 Nancy, France
| | - Elodie Cauvin
- LABEO Manche, Virology Department, F-50000 Saint-Lô, France
| | - Maëlle Robin
- Actalia, Food Safety Department, F-50000 Saint-Lô, France
| | | | | | | | | | - Alain Geffard
- Université de Reims Champagne-Ardenne, UMR-I 02 SEBIO, F-51687 Reims, France
| | - Isabelle Bertrand
- LCPME, UMR 7564, CNRS, Université de Lorraine, F-54000 Nancy, France
| | | |
Collapse
|
16
|
Holm RH, Pocock G, Severson MA, Huber VC, Smith T, McFadden LM. Using wastewater to overcome health disparities among rural residents. GEOFORUM; JOURNAL OF PHYSICAL, HUMAN, AND REGIONAL GEOSCIENCES 2023; 144:103816. [PMID: 37396346 PMCID: PMC10292026 DOI: 10.1016/j.geoforum.2023.103816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023]
Abstract
The SARS-CoV-2 pandemic highlighted the need for novel tools to promote health equity. There has been a historical legacy around the location and allocation of public facilities (such as health care) focused on efficiency, which is not attainable in rural, low-density, United States areas. Differences in the spread of the disease and outcomes of infections have been observed between urban and rural populations throughout the COVID-19 pandemic. The purpose of this article was to review rural health disparities related to the SARS-CoV-2 pandemic while using evidence to support wastewater surveillance as a potentially innovative tool to address these disparities more widely. The successful implementation of wastewater surveillance in resource-limited settings in South Africa demonstrates the ability to monitor disease in underserved areas. A better surveillance model of disease detection among rural residents will overcome issues around the interactions of a disease and social determinants of health. Wastewater surveillance can be used to promote health equity, particularly in rural and resource-limited areas, and has the potential to identify future global outbreaks of endemic and pandemic viruses.
Collapse
Affiliation(s)
- Rochelle H Holm
- Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, 302 E. Muhammad Ali Blvd., Louisville, KY 40202, United States
| | - Gina Pocock
- Waterlab, 23B De Havilland Crescent, 0020 Persequor Technopark, South Africa
| | - Marie A Severson
- Division of Basic Biomedical Sciences, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, United States
| | - Victor C Huber
- Division of Basic Biomedical Sciences, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, United States
| | - Ted Smith
- Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, 302 E. Muhammad Ali Blvd., Louisville, KY 40202, United States
| | - Lisa M McFadden
- Division of Basic Biomedical Sciences, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, United States
| |
Collapse
|
17
|
Gentry Z, Zhao L, Faust RA, David RE, Norton J, Xagoraraki I. Wastewater surveillance beyond COVID-19: a ranking system for communicable disease testing in the tri-county Detroit area, Michigan, USA. Front Public Health 2023; 11:1178515. [PMID: 37333521 PMCID: PMC10272568 DOI: 10.3389/fpubh.2023.1178515] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/12/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Throughout the coronavirus disease 2019 (COVID-19) pandemic, wastewater surveillance has been utilized to monitor the disease in the United States through routine national, statewide, and regional monitoring projects. A significant canon of evidence was produced showing that wastewater surveillance is a credible and effective tool for disease monitoring. Hence, the application of wastewater surveillance can extend beyond monitoring SARS-CoV-2 to encompass a diverse range of emerging diseases. This article proposed a ranking system for prioritizing reportable communicable diseases (CDs) in the Tri-County Detroit Area (TCDA), Michigan, for future wastewater surveillance applications at the Great Lakes Water Authority's Water Reclamation Plant (GLWA's WRP). Methods The comprehensive CD wastewater surveillance ranking system (CDWSRank) was developed based on 6 binary and 6 quantitative parameters. The final ranking scores of CDs were computed by summing the multiplication products of weighting factors for each parameter, and then were sorted based on decreasing priority. Disease incidence data from 2014 to 2021 were collected for the TCDA. Disease incidence trends in the TCDA were endowed with higher weights, prioritizing the TCDA over the state of Michigan. Results Disparities in incidences of CDs were identified between the TCDA and state of Michigan, indicating epidemiological differences. Among 96 ranked CDs, some top ranked CDs did not present relatively high incidences but were prioritized, suggesting that such CDs require significant attention by wastewater surveillance practitioners, despite their relatively low incidences in the geographic area of interest. Appropriate wastewater sample concentration methods are summarized for the application of wastewater surveillance as per viral, bacterial, parasitic, and fungal pathogens. Discussion The CDWSRank system is one of the first of its kind to provide an empirical approach to prioritize CDs for wastewater surveillance, specifically in geographies served by centralized wastewater collection in the area of interest. The CDWSRank system provides a methodological tool and critical information that can help public health officials and policymakers allocate resources. It can be used to prioritize disease surveillance efforts and ensure that public health interventions are targeted at the most potentially urgent threats. The CDWSRank system can be easily adopted to geographical locations beyond the TCDA.
Collapse
Affiliation(s)
- Zachary Gentry
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States
| | - Liang Zhao
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States
| | | | - Randy E. David
- Wayne State University School of Medicine, Detroit, MI, United States
| | - John Norton
- Great Lakes Water Authority, Detroit, MI, United States
| | - Irene Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
18
|
Cha G, Graham KE, Zhu KJ, Rao G, Lindner BG, Kocaman K, Woo S, D'amico I, Bingham LR, Fischer JM, Flores CI, Spencer JW, Yathiraj P, Chung H, Biliya S, Djeddar N, Burton LJ, Mascuch SJ, Brown J, Bryksin A, Pinto A, Hatt JK, Konstantinidis KT. Parallel deployment of passive and composite samplers for surveillance and variant profiling of SARS-CoV-2 in sewage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161101. [PMID: 36581284 PMCID: PMC9792180 DOI: 10.1016/j.scitotenv.2022.161101] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 05/12/2023]
Abstract
Wastewater-based epidemiology during the COVID-19 pandemic has proven useful for public health decision-making but is often hampered by sampling methodology constraints, particularly at the building- or neighborhood-level. Time-weighted composite samples are commonly used; however, autosamplers are expensive and can be affected by intermittent flows in sub-sewershed contexts. In this study, we compared time-weighted composite, grab, and passive sampling via Moore swabs, at four locations across a college campus to understand the utility of passive sampling. After optimizing the methods for sample handling and processing for viral RNA extraction, we quantified SARS-CoV-2 N1 and N2, as well as a fecal strength indicator, PMMoV, by ddRT-PCR and applied tiled amplicon sequencing of the SARS-CoV-2 genome. Passive samples compared favorably with composite samples in our study area: for samples collected concurrently, 42 % of the samples agreed between Moore swab and composite samples and 58 % of the samples were positive for SARS-CoV-2 using Moore swabs while composite samples were below the limit of detection. Variant profiles from Moore swabs showed a shift from variant BA.1 to BA.2, consistent with in-person saliva samples. These data have implications for the broader implementation of sewage surveillance without advanced sampling technologies and for the utilization of passive sampling approaches for other emerging pathogens.
Collapse
Affiliation(s)
- Gyuhyon Cha
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Katherine E Graham
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Kevin J Zhu
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| | - Gouthami Rao
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| | - Blake G Lindner
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Kumru Kocaman
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Seongwook Woo
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Isabelle D'amico
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Lilia R Bingham
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jamie M Fischer
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Camryn I Flores
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - John W Spencer
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Pranav Yathiraj
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Hayong Chung
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Shweta Biliya
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30306, USA
| | - Naima Djeddar
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30306, USA
| | - Liza J Burton
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30306, USA
| | - Samantha J Mascuch
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30306, USA
| | - Joe Brown
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| | - Anton Bryksin
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30306, USA
| | - Ameet Pinto
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Janet K Hatt
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | |
Collapse
|
19
|
Lucansky V, Samec M, Burjanivova T, Lukacova E, Kolkova Z, Holubekova V, Turyova E, Hornakova A, Zaborsky T, Podlesniy P, Reizigova L, Dankova Z, Novakova E, Pecova R, Calkovska A, Halasova E. Comparison of the methods for isolation and detection of SARS-CoV-2 RNA in municipal wastewater. Front Public Health 2023; 11:1116636. [PMID: 36960362 PMCID: PMC10028190 DOI: 10.3389/fpubh.2023.1116636] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/17/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction Coronavirus SARS-CoV-2 is a causative agent responsible for the current global pandemic situation known as COVID-19. Clinical manifestations of COVID-19 include a wide range of symptoms from mild (i.e., cough, fever, dyspnea) to severe pneumonia-like respiratory symptoms. SARS-CoV-2 has been demonstrated to be detectable in the stool of COVID-19 patients. Waste-based epidemiology (WBE) has been shown as a promising approach for early detection and monitoring of SARS-CoV-2 in the local population performed via collection, isolation, and detection of viral pathogens from environmental sources. Methods In order to select the optimal protocol for monitoring the COVID-19 epidemiological situation in region Turiec, Slovakia, we (1) compared methods for SARS-CoV-2 separation and isolation, including virus precipitation by polyethylene glycol (PEG), virus purification via ultrafiltration (Vivaspin®) and subsequent isolation by NucleoSpin RNA Virus kit (Macherey-Nagel), and direct isolation from wastewater (Zymo Environ Water RNA Kit); (2) evaluated the impact of water freezing on SARS- CoV-2 separation, isolation, and detection; (3) evaluated the role of wastewater filtration on virus stability; and (4) determined appropriate methods including reverse transcription-droplet digital PCR (RT-ddPCR) and real-time quantitative polymerase chain reaction (RT-qPCR) (targeting the same genes, i.e., RdRp and gene E) for quantitative detection of SARS-CoV-2 in wastewater samples. Results (1) Usage of Zymo Environ Water RNA Kit provided superior quality of isolated RNA in comparison with both ultracentrifugation and PEG precipitation. (2) Freezing of wastewater samples significantly reduces the RNA yield. (3) Filtering is counterproductive when Zymo Environ Water RNA Kit is used. (4) According to the specificity and sensitivity, the RT-ddPCR outperforms RT-qPCR. Discussion The results of our study suggest that WBE is a valuable early warning alert and represents a non-invasive approach to monitor viral pathogens, thus protects public health on a regional and national level. In addition, we have shown that the sensitivity of testing the samples with a nearer detection limit can be improved by selecting the appropriate combination of enrichment, isolation, and detection methods.
Collapse
Affiliation(s)
- Vincent Lucansky
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin (JFMED CU), Comenius University in Bratislava, Martin, Slovakia
| | - Marek Samec
- Department of Pathophysiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Tatiana Burjanivova
- Department of Molecular Biology and Genomics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Eva Lukacova
- Department of Molecular Biology and Genomics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Zuzana Kolkova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin (JFMED CU), Comenius University in Bratislava, Martin, Slovakia
| | - Veronika Holubekova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin (JFMED CU), Comenius University in Bratislava, Martin, Slovakia
| | - Eva Turyova
- Department of Molecular Biology and Genomics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Andrea Hornakova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin (JFMED CU), Comenius University in Bratislava, Martin, Slovakia
| | - Tibor Zaborsky
- RÚVZ (Regional Office of Public Health), Martin, Slovakia
| | - Petar Podlesniy
- Centro Investigacion Biomedica en Red Enfermedades Neurodegenerativas (CiberNed), Madrid, Spain
| | - Lenka Reizigova
- Center for Microbiology and Infection Prevention, Department of Laboratory Medicine, Faculty of Health Care and Social Work, Trnava University, Trnava, Slovakia
| | - Zuzana Dankova
- Biobank for Cancer and Rare Diseases, Jessenius Faculty of Medicine in Martin (JFMED CU), Comenius University in Bratislava, Martin, Slovakia
| | - Elena Novakova
- Department of Microbiology and Immunology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Renata Pecova
- Department of Pathophysiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Andrea Calkovska
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Erika Halasova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin (JFMED CU), Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
20
|
Scott G, Evens N, Porter J, Walker DI. The Inhibition and Variability of Two Different RT-qPCR Assays Used for Quantifying SARS-CoV-2 RNA in Wastewater. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:71-81. [PMID: 36790663 PMCID: PMC9930079 DOI: 10.1007/s12560-022-09542-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/01/2022] [Indexed: 06/18/2023]
Abstract
Faecal shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its subsequent detection in wastewater turned the spotlight onto wastewater-based epidemiology (WBE) for monitoring the coronavirus-disease 2019 (COVID-19) pandemic. WBE for SARS-CoV-2 has been deployed in 70 countries, providing insights into disease prevalence, forecasting and the spatiotemporal tracking and emergence of SARS-CoV-2 variants. Wastewater, however, is a complex sample matrix containing numerous reverse transcription quantitative PCR (RT-qPCR) inhibitors whose concentration and diversity are influenced by factors including population size, surrounding industry and agriculture and climate. Such differences in the RT-qPCR inhibitor profile are likely to impact the quality of data produced by WBE and potentially produce erroneous results.To help determine the possible impact of RT-qPCR assay on data quality, two assays employed by different laboratories within the UK's SARS-CoV-2 wastewater monitoring programme were assessed in the Cefas laboratory in Weymouth, UK. The assays were based on Fast Virus (FV) and qScript (qS) chemistries using the same primers and probes, but at different concentrations and under different cycling conditions. Bovine serum albumin and MgSO4 were also added to the FV assay reaction mixture. Two-hundred and eighty-six samples were analysed, and an external control RNA (EC RNA)-based method was used to measure RT-qPCR inhibition. Compared with qS, FV showed a 40.5% reduction in mean inhibition and a 57.0% reduction in inter-sample inhibition variability. A 4.1-fold increase in SARS-CoV-2 quantification was seen for FV relative to qS; partially due (1.5-fold) to differences in reverse transcription efficiency and the use of a dsDNA standard. Analytical variability was reduced by 51.2% using FV while qS increased the number of SARS-CoV-2 negative samples by 2.6-fold. This study indicates the importance of thorough method optimisation for RT-qPCR-based WBE which should be performed using a selection of samples which are representative of the physiochemical properties of wastewater. Furthermore, RT-qPCR inhibition, analytical variability and reverse transcription efficiency should be key considerations during assay optimisation. A standardised framework for the optimisation and validation of WBE procedures should be formed including concessions for emergency response situations that would allow flexibility in the process to address the difficult balance between the urgency of providing data and the availability of resources.
Collapse
Affiliation(s)
- George Scott
- Centre for Environment, Fisheries and Aquaculture Science, The Nothe, Barrack Road, Weymouth, DT4 8UB, UK.
| | - Nicholas Evens
- Environment Agency, National Monitoring, Starcross, Exeter, EX6 8FD, UK
| | - Jonathan Porter
- Environment Agency, National Monitoring, Starcross, Exeter, EX6 8FD, UK
| | - David I Walker
- Centre for Environment, Fisheries and Aquaculture Science, The Nothe, Barrack Road, Weymouth, DT4 8UB, UK
| |
Collapse
|
21
|
Mercier E, D'Aoust PM, Thakali O, Hegazy N, Jia JJ, Zhang Z, Eid W, Plaza-Diaz J, Kabir MP, Fang W, Cowan A, Stephenson SE, Pisharody L, MacKenzie AE, Graber TE, Wan S, Delatolla R. Municipal and neighbourhood level wastewater surveillance and subtyping of an influenza virus outbreak. Sci Rep 2022; 12:15777. [PMID: 36138059 DOI: 10.1101/2022.06.28.22276884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/08/2022] [Indexed: 05/27/2023] Open
Abstract
Recurrent influenza epidemics and pandemic potential are significant risks to global health. Public health authorities use clinical surveillance to locate and monitor influenza and influenza-like cases and outbreaks to mitigate hospitalizations and deaths. Currently, global integration of clinical surveillance is the only reliable method for reporting influenza types and subtypes to warn of emergent pandemic strains. The utility of wastewater surveillance (WWS) during the COVID-19 pandemic as a less resource intensive replacement or complement for clinical surveillance has been predicated on analyzing viral fragments in wastewater. We show here that influenza virus targets are stable in wastewater and partitions favorably to the solids fraction. By quantifying, typing, and subtyping the virus in municipal wastewater and primary sludge during a community outbreak, we forecasted a citywide flu outbreak with a 17-day lead time and provided population-level viral subtyping in near real-time to show the feasibility of influenza virus WWS at the municipal and neighbourhood levels in near real time using minimal resources and infrastructure.
Collapse
Affiliation(s)
- Elisabeth Mercier
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Patrick M D'Aoust
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Ocean Thakali
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Nada Hegazy
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Jian-Jun Jia
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Zhihao Zhang
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Walaa Eid
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Julio Plaza-Diaz
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Md Pervez Kabir
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Wanting Fang
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Aaron Cowan
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Sean E Stephenson
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Lakshmi Pisharody
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Alex E MacKenzie
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Shen Wan
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada.
| |
Collapse
|
22
|
Mercier E, D'Aoust PM, Thakali O, Hegazy N, Jia JJ, Zhang Z, Eid W, Plaza-Diaz J, Kabir MP, Fang W, Cowan A, Stephenson SE, Pisharody L, MacKenzie AE, Graber TE, Wan S, Delatolla R. Municipal and neighbourhood level wastewater surveillance and subtyping of an influenza virus outbreak. Sci Rep 2022; 12:15777. [PMID: 36138059 PMCID: PMC9493155 DOI: 10.1038/s41598-022-20076-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Recurrent influenza epidemics and pandemic potential are significant risks to global health. Public health authorities use clinical surveillance to locate and monitor influenza and influenza-like cases and outbreaks to mitigate hospitalizations and deaths. Currently, global integration of clinical surveillance is the only reliable method for reporting influenza types and subtypes to warn of emergent pandemic strains. The utility of wastewater surveillance (WWS) during the COVID-19 pandemic as a less resource intensive replacement or complement for clinical surveillance has been predicated on analyzing viral fragments in wastewater. We show here that influenza virus targets are stable in wastewater and partitions favorably to the solids fraction. By quantifying, typing, and subtyping the virus in municipal wastewater and primary sludge during a community outbreak, we forecasted a citywide flu outbreak with a 17-day lead time and provided population-level viral subtyping in near real-time to show the feasibility of influenza virus WWS at the municipal and neighbourhood levels in near real time using minimal resources and infrastructure.
Collapse
Affiliation(s)
- Elisabeth Mercier
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Patrick M D'Aoust
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Ocean Thakali
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Nada Hegazy
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Jian-Jun Jia
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Zhihao Zhang
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Walaa Eid
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Julio Plaza-Diaz
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Md Pervez Kabir
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Wanting Fang
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Aaron Cowan
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Sean E Stephenson
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Lakshmi Pisharody
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Alex E MacKenzie
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Shen Wan
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada.
| |
Collapse
|