1
|
Ye J, Wu J, Shi T, Chen C, Li J, Wang P, Song Y, Yu Q, Zhu Z. New magnetic proxies to reveal source and bioavailability of heavy metals in contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135665. [PMID: 39217926 DOI: 10.1016/j.jhazmat.2024.135665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/21/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Environmental magnetism plays an important role in monitoring heavy metal pollution, but most studies are confined to indicating only the levels of heavy metals using magnetic parameters. This study established new magnetic proxies for accurately depicting the sources and bioavailability of heavy metals in contaminated soils. We observed different relationships between χ and SIRM in the soils contaminated by non-ferrous metal smelting compared to those polluted by coal combustion and steel smelting. Furthermore, we found that the soft magnetic components (IRMsoft) in the soils were mainly controlled by the non-ferrous metal smelting activities, while the hard magnetic components (HIRM) might be affected by the iron erosion. These new magnetic proxies enriched the source composition spectrum and improved the accuracy of the source apportionment analyses (principal component analysis and positive matrix factorization), yielding a result that was comparable to that by Pb isotope fingerprinting. We also found strong relationships between magnetic parameters (especially IRMsoft) and bioavailable fractions of heavy metals, indicating that magnetic measurement may be a powerful tool for monitoring the bioavailability of heavy metals. This study expands the application fields of magnetism in environmental science research.
Collapse
Affiliation(s)
- Jiaxin Ye
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Jin Wu
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Taiheng Shi
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Canzhi Chen
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Junjie Li
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Pengcong Wang
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Youpeng Song
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Qianqian Yu
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Zongmin Zhu
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
2
|
Wang G, Yang F, Wang Y, Ren F, Hou Y, Su S, Li W. Magnetic response and bioaccessibility of toxic metal pollution in outdoor dustfall in Shanghai, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125115. [PMID: 39401559 DOI: 10.1016/j.envpol.2024.125115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/28/2024] [Accepted: 10/11/2024] [Indexed: 10/17/2024]
Abstract
Toxic metal content testing, environmental magnetic monitoring and in vitro bioaccessibility experiments each have their own advantages and are often used independently for environmental monitoring, but there are few studies that combine the three to evaluate the hazards of toxic metals to humans. This paper investigated the total content, magnetic properties and bioaccessibility of nine potentially toxic metal elements (Zn, Sn, Pb, Cu, Fe, Ni, Cr, Sr, Mn) in dustfall from different functional zones in Shanghai, China, and systematically compared the related results. The results show that these nine metal elements have different degrees of contamination and enrichment in outdoor dustfall, and their content distribution shows the following trend: Zn > Sn > Pb > Cu > Fe > Ni > Cr > Sr > Mn. Magnetic characteristics χlf and SIRM are mostly positively correlated with the metal elements, indicating that the higher the content of magnetic minerals in the sample, the higher the concentration of metal elements. It was also found that χlf, SIRM, and χARM can well reflect the characteristics of dustfall pollution. The magnetic minerals have a certain degree of enrichment, and the particle size of the magnetic minerals is relatively coarse, mainly in the form of coarse multi-domain and pseudo-single-domain particles, which are largely derived from anthropogenic pollution. The χlf and PM10 concentrations in the precipitation show relatively similar spatial trends, so χlf, SIRM, and χARM can be used as air pollution indices to facilitate the evaluation of metal elements pollution in dustfall. The overall trend in gastric bioaccessibility is Pb > Zn > Mn > Cu > Cr. Due to the increase in the pH of digestive fluid, the bioavailability of toxic metals decreases significantly from the gastric stage to the intestinal stage. χlf, SIRM, and χARM/SIRM are all related to the bioaccessibility of toxic metals in the intestinal stage, so they can be used as toxicity indicators to evaluate the bioaccessibility of toxic metals in dustfall.
Collapse
Affiliation(s)
- Guan Wang
- Department of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Fan Yang
- Department of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yangyang Wang
- Department of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Feifan Ren
- Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Department of Geotechnical Engineering, Tongji University, Shanghai, 200092, China; State Key Laboratory of Disaster Reduction in Civil Engineering, College of Civil Engineering, Tongji University, Shanghai, 200092, China.
| | - Yumei Hou
- Department of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Shiguang Su
- Department of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Wenxin Li
- Department of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
3
|
Li J, Song H, Zhang L, Li J, Yang Y, Cui X, Mahfuza A, Cao Y, Hu X, Li C, Zhao Q, Tian S. Interaction of diesel exhaust particulate matter with mucins in simulated saliva fluids: Bioaccessibility of heavy metals and potential health risks. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135811. [PMID: 39298947 DOI: 10.1016/j.jhazmat.2024.135811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Air pollution is one of the major environmental risks threatening human health, diesel exhaust particulate matter (DEPM) is an important source of urban air pollution, and oral ingestion is the primary route of exposure to atmospheric particulate matter. This study examined the bioaccessibility of Cr, Fe, and Zn in DEPM within simulated saliva fluids through in vitro experiments, interactions between the particles and mucins, and the mechanisms underlying the oxidative damage they cause. The results indicated that the interaction between DEPM and mucins altered the dispersibility, surface charge, and wettability of the particles, leading to increased release of heavy metals. Protein adsorption experiments and characterizations revealed that the adsorption of mucin by the particles resulted in a complexation reaction between the metals in the DEPM and the mucins, accompanied by fluorescence quenching of the protein. In addition, free radical assays and correlation analyses revealed that environmentally persistent free radicals generated by DEPM induce the production of reactive oxygen species (O2·-, HOOH, and·OH), which damage the secondary structure of mucins and increase the risk of oral diseases. Our study is the first to reveal the interaction between DEPM and mucins in saliva, elucidating the mechanisms of DEPM-induced oxidative damage. This is significant for understanding the oral health risks posed by the ingestion of atmospheric particulate matter.
Collapse
Affiliation(s)
- Jiao Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Haorang Song
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Linfeng Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yanlin Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Xiangfen Cui
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Anjum Mahfuza
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yan Cao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Xuewei Hu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Chen Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Qun Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| |
Collapse
|
4
|
Menegaki S, Kelepertzis E, Kypritidou Z, Lampropoulou A, Chrastný V, Aidona E, Bourliva A, Komárek M. Characterization of the inhalable fraction (< 10 μm) of soil from highly urbanized and industrial environments: magnetic measurements, bioaccessibility, Pb isotopes and health risk assessment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:230. [PMID: 38849623 PMCID: PMC11161548 DOI: 10.1007/s10653-024-02009-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/22/2024] [Indexed: 06/09/2024]
Abstract
Soil in urban and industrial areas is one of the main sinks of pollutants. It is well known that there is a strong link between metal(loid)s bioaccessibility by inhalation pathway and human health. The critical size fraction is < 10 μm (inhalable fraction) since these particles can approach to the tracheobronchial region. Here, soil samples (< 10 μm) from a highly urbanized area and an industrialized city were characterized by combining magnetic measurements, bioaccessibility of metal(loids) and Pb isotope analyses. Thermomagnetic analysis indicated that the main magnetic mineral is impure magnetite. In vitro inhalation analysis showed that Cd, Mn, Pb and Zn were the elements with the highest bioaccessibility rates (%) for both settings. Anthropogenic sources that are responsible for Pb accumulation in < 10 μm fraction are traffic emissions for the highly urbanized environment, and Pb related to steel emissions and coal combustion in cement plant for the industrial setting. We did not establish differences in the Pb isotope composition between pseudo-total and bioaccessible Pb. The health risk assessment via the inhalation pathway showed limited non-carcinogenic risks for adults and children. The calculated risks based on pseudo-total and lung bioaccessible concentrations were identical for the two areas of contrasting anthropogenic pressures. Carcinogenic risks were under the threshold levels (CR < 10-4), with Ni being the dominant contributor to risk. This research contributes valuable insights into the lung bioaccessibility of metal(loids) in urban and industrial soils, incorporating advanced analytical techniques and health risk assessments for a comprehensive understanding.
Collapse
Affiliation(s)
- Stavroula Menegaki
- Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, 15784, Panepistimiopolis, ZographouAthens, Greece
| | - Efstratios Kelepertzis
- Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, 15784, Panepistimiopolis, ZographouAthens, Greece.
| | - Zacharenia Kypritidou
- Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, 15784, Panepistimiopolis, ZographouAthens, Greece
| | - Anastasia Lampropoulou
- Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, 15784, Panepistimiopolis, ZographouAthens, Greece
| | - Vladislav Chrastný
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague-Suchdol, Czech Republic
| | - Elina Aidona
- Department of Geophysics, Faculty of Geology, School of Geology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anna Bourliva
- Directorate of Secondary Education of Western Thessaloniki, 56430, Thessaloniki, Greece
| | - Michael Komárek
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague-Suchdol, Czech Republic
| |
Collapse
|
5
|
Xiao W, Yang Y, Tang N, Huang X, Zhang Q, Zhao S, Chen D, Guo B, Zhao Z, Jiang Y, Ye X. Innovative accumulative risk assessment of co-exposure to Cd, As, and Pb in contaminated rice based on their in vivo bioavailability and in vitro bioaccessibility. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168922. [PMID: 38030010 DOI: 10.1016/j.scitotenv.2023.168922] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/01/2023]
Abstract
The consumption of cadmium (Cd), arsenic (As), and lead (Pb) co-contaminated rice exposes humans to multiple heavy metals simultaneously, with relative bioavailability (RBA) and bioaccessibility (BAc) being important determinants of potential health risks. This study evaluated the relationship between in vivo RBA and in vitro BAc of Cd, As, and Pb in rice and their cumulative risk to humans. A total of 110 rice samples were collected in Zhejiang Province, China, and 10 subsamples with varying concentration gradients were randomly selected to measure RBA using a mouse model (liver, kidney, femur, blood, and urine as endpoints) and BAc using four in vitro assays (PBET, UBM, SBRC, and IVG). Our results indicated that Cd-RBA varied from 21.2 % to 67.5 %, As-RBA varied from 23.2 % to 69.3 %, and Pb-RBA varied from 22.2 % to 68.9 % based on mouse liver plus kidneys. The BAc values for Cd, As, and Pb in rice varied according to the assay. Compared to Cd and As, Pb exhibited a lower BAc in the gastric (GP) and intestinal (IP) phases. According to the relationship between the BAc and RBA values, IVG-GP (R2 = 0.92), SBRC-IP (R2 = 0.73), and UBM-GP (R2 = 0.80) could be used as predictors of Cd-, As-, and Pb-RBA in rice, respectively. The health risks associated with co-exposure to Cd, As, and Pb in contaminated rice for both adults and children exceeded the acceptable threshold, with Cd and As being the primary risk factors. The noncarcinogenic and carcinogenic risks were markedly reduced when the RBA and BAc values were incorporated into the risk assessment. Due to the risk overestimation inherent in estimating the risk level based on total metal concentration, our study provides a realistic assessment of the cumulative health risks associated with co-exposure to Cd, As, and Pb in contaminated rice using in vivo RBA and in vitro BAc bioassays.
Collapse
Affiliation(s)
- Wendan Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yonggui Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ning Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaolei Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shouping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - De Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Bin Guo
- Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhen Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yugen Jiang
- Hangzhou Fuyang District Agricultural Technology Extension Center, Fuyang 311400, China
| | - Xuezhu Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
6
|
Li L, Cao Y, Ippolito JA, Xing W, Qiu K, Li H, Zhao D, Wang Y, Wang Y. Cadmium and lead bioavailability to poultry fed with contaminated soil-spiked feed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163036. [PMID: 36972887 DOI: 10.1016/j.scitotenv.2023.163036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 05/17/2023]
Abstract
Geophagy is common for free-range chickens, however, the relative bioavailability (RBA) of heavy metals in contaminated soils consumed by chickens has not fully investigated. In this work, chickens were fed diets increasingly spiked with a contaminated soil (Cd = 105, Pb = 4840 mg kg-1; 3, 5, 10, 20 and 30 % of overall feed by weight), or Cd/Pb reagent spikes (from CdCl2 or Pb(Ac)2), for 23 d. After the study period, chicken liver, kidney, femur and gizzard samples were analyzed for Cd and Pb concentrations, and organ/tissue metal concentrations were used to calculate Cd and Pb RBA. Linear dose response curves (DRCs) were established for both Cd/Pb reagents-spiked and soil-spiked treatments. Femur Cd concentrations of soil-spiked treatments were two times of Cd-spiked treatments with similar feed Cd levels, while feed spiked with Cd or Pb also resulted in elevated Pb or Cd concentrations in some organ/tissues. Metal RBA was calculated using three different methods. Most Cd and Pb RBA values were in the range 50-70 %, with the chicken gizzard as a potential endpoint for bioaccessible Cd and Pb. Cadmium and Pb bioavailability values can help with more precise estimation of Cd and Pb accumulation in chicken following heavy metal-contaminated soil ingestion, with overall results helping to protect human health.
Collapse
Affiliation(s)
- Liping Li
- School of the Environment, Henan University of Technology, Zhengzhou, Henan 450001, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, Henan 450001, China.
| | - Yongxin Cao
- School of the Environment, Henan University of Technology, Zhengzhou, Henan 450001, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, Henan 450001, China
| | - James A Ippolito
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523-1170, USA; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, Henan 450001, China
| | - Weiqin Xing
- School of the Environment, Henan University of Technology, Zhengzhou, Henan 450001, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, Henan 450001, China
| | - Kunyan Qiu
- Jiyuan Ecological and Environmental Monitoring Center of Henan Province, Jiyuan, Henan 459000, China
| | - Hongbo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Di Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yali Wang
- School of the Environment, Henan University of Technology, Zhengzhou, Henan 450001, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, Henan 450001, China
| | - Yale Wang
- School of the Environment, Henan University of Technology, Zhengzhou, Henan 450001, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, Henan 450001, China
| |
Collapse
|
7
|
Yang L, Ge S, Liu J, Iqbal Y, Jiang Y, Sun R, Ruan X, Wang Y. Spatial Distribution and Risk Assessment of Heavy Metal(oid)s Contamination in Topsoil around a Lead and Zinc Smelter in Henan Province, Central China. TOXICS 2023; 11:toxics11050427. [PMID: 37235242 DOI: 10.3390/toxics11050427] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/29/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023]
Abstract
A total of 137 farmland soil samples were collected around a lead/zinc smelter within 64 km2. The concentration, spatial distribution, and potential source of nine heavy metal(oid)s (As, Cd, Co, Cr, Cu, Ni, Pb, V, and Zn) in soils and their potential ecological risk were investigated in detail. The results showed that the average concentrations of Cd, Pb, Cr and Zn in these soils were higher than their background value in Henan Province, and the average content of Cd was 2.83 times of the risk screening values in the national standard of China (GB 15618-2018). According to the distribution of different heavy metal(oid)s in soils, Cd and Pb in soil decrease gradually with the increase of distance from the smelter to the surrounding area. This indicates that the Pb and Cd originate from smelters via airborne practices according to the typical air pollution diffusion model. The distribution of Zn, Cu, and As were similar to Cd and Pb. However, Ni, V, Cr, and Co were mainly affected by soil parent materials. The potential ecological risk of Cd was higher than those of other elements, and the risk grade of the other eight elements was mainly low. The polluted soils with significantly high and high potential ecological risk covered 93.84% of all the studied regions. This should be of serious concern to government. The results of a principal component analysis (PCA) and cluster analysis (CA) show that Pb, Cd, Zn, Cu, and As were the elements mainly stemmed from smelter and other types of plants, with a contribution rate of 60.08%, while Co, Cr, Ni, and V are mainly caused by nature, with a contribution rate of 26.26%.
Collapse
Affiliation(s)
- Ling Yang
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng 475004, China
| | - Shiji Ge
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| | - Jinhui Liu
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng 475004, China
| | - Younas Iqbal
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng 475004, China
| | - Yuling Jiang
- School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Ruiling Sun
- Puyang Branch of Municipal Bureau of Ecological Environment, Puyang 457100, China
| | - Xinling Ruan
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng 475004, China
- Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| | - Yangyang Wang
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng 475004, China
- Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| |
Collapse
|
8
|
Li L, Liu Y, Ippolito JA, Xing W, Zuo Q, Wang F. Fermentation affects heavy metal bioaccessibility in Chinese mantou. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:59013-59026. [PMID: 37000393 DOI: 10.1007/s11356-023-26727-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/26/2023] [Indexed: 05/10/2023]
Abstract
Effect of different fermentation methods on heavy metal bioaccessibilities in wheat flour is undetermined. In this work, gastric and gastrointestinal heavy metal bioaccessibility in wheat flour products (control-wheat dough, T1-mantou made with normally fermented dough, T2-mantou made with over-fermented dough and T3-mantou made with over-fermented dough + Na2CO3) made from two wheat flour samples (NX and QD) was assessed via a modified physiologically-based extraction test. Cadmium, Zn and Mn bioaccessibility in the gastric phase (GP) was greater than in the gastrointestinal phase (GIP), yet the opposite was observed for Cu (p < 0.05). Lead bioaccessibility in the GIP of the QD sample was 1.37-4.08 times greater than that in the GP, while only the control had greater bioaccessibility in the GIP than that in the GP (p < 0.05) for the NX sample. Treatments T2 and T3 had greater Cd, Cu, Zn and Mn bioaccessibilities than the control and T1 in the GP (p < 0.05). In the GIP, however, only T3 had greater Mn bioaccessibility than the control for the NX sample. Enhanced degradation of the heavy metal-phytate following over-fermentation may have led to greater heavy metal bioaccessibility. Results should help food processors reduce human absorption of excessive heavy metals present in wheat flour foods.
Collapse
Affiliation(s)
- Liping Li
- School of the Environment, Henan University of Technology, Zhengzhou, 450001, Henan, China.
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Food Quality Security, Zhengzhou, 450001, Henan, China.
| | - Yanqing Liu
- School of the Environment, Henan University of Technology, Zhengzhou, 450001, Henan, China
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Food Quality Security, Zhengzhou, 450001, Henan, China
| | - James A Ippolito
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Food Quality Security, Zhengzhou, 450001, Henan, China
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523-1170, USA
| | - Weiqin Xing
- School of the Environment, Henan University of Technology, Zhengzhou, 450001, Henan, China
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Food Quality Security, Zhengzhou, 450001, Henan, China
| | - Qian Zuo
- School of the Environment, Henan University of Technology, Zhengzhou, 450001, Henan, China
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Food Quality Security, Zhengzhou, 450001, Henan, China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China
| |
Collapse
|