1
|
Al-Tarshi M, Husband J, Dobretsov S. Evaluating microplastic contamination in Omani mangrove habitats using large mud snails (Terebralia palustris). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 279:107220. [PMID: 39736165 DOI: 10.1016/j.aquatox.2024.107220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/10/2024] [Accepted: 12/22/2024] [Indexed: 01/01/2025]
Abstract
This study investigated microplastic pollution in the large mud snail Terebralia palustris (Linnaeus, 1767) (Gastropoda: Potamididae) inhabiting the Avicennia marina mangrove ecosystems along the Sea of Oman. A modified digestion protocol, combining two methods, was employed to improve the detection of microplastics within the snail tissue. Results indicated that 50 % of the examined snails contained microplastics, with significant variability observed among different lagoons. Snails from the polluted Shinas lagoon exhibited higher levels of microplastics compared to those from the lowest polluted Al-Qurum Natural Reserve (MPA). The most prevalent type of microplastic in snail tissues was fibers, making up 75.7 % of the total. Fragments constituted about 24.2 %. Using portable Raman spectrometry, Polyurethane (PU) was identified as the predominant polymer, accounting for 50 % of the total. This was followed by Acrylic and Polyethylene, each representing 18.75 %, and Polyethylene Vynil Acetate (PEVA) at 12.50 %. Overall, it is clear that while snails do reflect the presence of microplastics (MPs) in their environment, their physical attributes do not strongly correlate with the levels or types of MPs they contain. Additionally, the significant difference between the abundance of MPs in sediment and in snails illustrates that, while snails may serve as general indicators of microplastic pollution, they may not be reliable as precise bioindicators or sentinel species for quantifying the extent of this pollution. Further studies are needed to explore other potential bioindicators in mangrove habitats.
Collapse
Affiliation(s)
- Muna Al-Tarshi
- Environment Authority, DG of Nature Conservation, Marine Conservation Department P.O.Box: 323, Muscat, Oman; Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoud 123 PO Box 34, Muscat, Oman.
| | - John Husband
- Department of Chemistry, College of Science, Sultan Qaboos University, Al Khoud 123, PO Box 34, Muscat, Oman
| | - Sergey Dobretsov
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoud 123 PO Box 34, Muscat, Oman; UNESCO Chair in Marine Biotechnology, CEMB, Sultan Qaboos University, Al Khoud 123, PO Box 50, Muscat, Oman.
| |
Collapse
|
2
|
Ullah Z, Peng L, Lodhi AF, Kakar MU, Mehboob MZ, Iqbal I. The threat of microplastics and microbial degradation potential; a current perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177045. [PMID: 39447905 DOI: 10.1016/j.scitotenv.2024.177045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Microplastics in marine environments come from various sources, and over the years, their buildup in marine environments suggests an inevitable need for the safe mitigation of plastic pollution. Microplastics are one of the chief and hazardous components of marine pollution, as they are transferred through the food chain to different trophic levels, affecting living organisms. They are also a source of transfer for pathogenic organisms. Upon transfer to humans, several toxic effects can occur. This review aims to assess the accumulation of microplastics in marine environments globally, the threat posed to humans, and the biodegradation potential of bacteria and fungi for future mitigation strategies. The versatility of bacteria and fungi in the biodegradation of different types of plastics has been discussed, with a focus on the microbial majority that has been cultivated in labs from the marine environment. We also propose that the exploration of yet-to-be-cultivated microbial majority can be a way forward for employing future strategies to mitigate microplastics.
Collapse
Affiliation(s)
- Zahid Ullah
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, People's Republic of China; School of Environmental Science and Engineering, Hainan University, Haikou 570228, People's Republic of China
| | - Licheng Peng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, People's Republic of China; School of Environmental Science and Engineering, Hainan University, Haikou 570228, People's Republic of China.
| | - Adil Farooq Lodhi
- Department of Microbiology, Faculty of Biological & Health Sciences, Hazara University, Mansehra, Pakistan
| | - Mohib Ullah Kakar
- Faculty of Marine Sciences, Lasbela University of Agriculture Water and Marine Sciences (LUAWMS), Uthal 90150, Balochistan, Pakistan
| | - Muhammad Zubair Mehboob
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater 74075, OK, USA
| | - Imran Iqbal
- Department of Pathology, NYU Grossman School of Medicine, New York University Langone Health, New York, NY 10016, USA
| |
Collapse
|
3
|
Yang H, Sun F, Liao H, Huang L, Zhao Q, Wu F. Pollution characterization and multi-index ecological risk assessment of microplastics in urban rivers from a Chinese megacity. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136145. [PMID: 39405680 DOI: 10.1016/j.jhazmat.2024.136145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/16/2024] [Accepted: 10/10/2024] [Indexed: 12/01/2024]
Abstract
Currently, a comprehensive understanding of the pollution risks of microplastics (MPs) in urban river ecosystems is still lacking. This study investigated the spatial distribution and morphological characteristics of MPs in surface waters of major rivers in Shenzhen, a megacity in China, using laser direct infrared (LDIR) imaging. A promisingly comprehensive risk assessment method, MultiMP, was first proposed in this study, taking into account the multidimensional characteristics of MPs including abundance, size, shapes, and polymer types. The results showed that MPs were widespread and highly heterogeneous, and the abundance of MPs ranged from 38 to 18380 particles/L, with an average of 2305 particles/L. Morphologically, polyamide (PA) (average 53.7 %), 30-50 µm (73.8 %), and pellet (65.7 %) were the predominant MPs types. Driving factors analyses revealed geographical distance, salinity, water temperature, and total nitrogen had relatively higher impacts on the abundance and morphology of MPs. The MultiMP results indicated that most of the river sampling sites and five major basins in Shenzhen were at moderate to high-risk levels. Polymer type and abundance had a relatively high impact on the environmental risk of MPs in the region. These findings contribute to improving the insights and management of the MPs pollution risks in megacity water bodies.
Collapse
Affiliation(s)
- Hao Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Fuhong Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Haiqing Liao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Lingjie Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Qianyu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
4
|
Wang D, Zhang L, Li W, Chang M, Liu X, Zhang Z, Tian ZQ. The influence of water conservancy project on microplastics distribution in river ecosystem: A case study of Lhasa River Basin in Qinghai-Tibet Plateau. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136472. [PMID: 39547040 DOI: 10.1016/j.jhazmat.2024.136472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
Water conservancy projects affect the migration, suspension, and deposition of microplastic (MP). However, its impact on MP pollution of river ecosystem remains elusive. Herein, we investigated the MP characteristics and the influence of water conservancy projects on MPs in the Lhasa River Basin of the Qinghai-Tibet Plateau, China. The results demonstrated that the MPs concentration in surface water decreased from upstream to downstream, as more MPs in surface water were settling down and stored in reservoir sediments in the midstream. It is postulated that reservoir sedimentation of MPs occurs at a greater rate due to the barrier effect of reservoirs, steady hydrodynamics, and weak salinity-induced buoyancy. To evaluate the ecological risk of the Lhasa River Basin, the pollution load index, the polymer hazard index, and the potential ecological risk index were analyzed. The upstream exhibits elevated polymer hazard index values (>100), and the potential ecological risk index values in the Lhasa River Basin showed ecological risk similar to those of pollution load index values. This research represents the initial exploration of MP distribution within the entire Lhasa River basin, providing a foundational framework for investigating the impact of water conservancy projects on MP migration.
Collapse
Affiliation(s)
- Dan Wang
- Key Laboratory of Biodiversity and Eco-environmental Protection of the Qinghai-Tibetan Plateau (Ministry of Education), Key Laboratory of Environmental Engineering and Pollution Control On Plateau (Tibet Autonomous Region), School of Ecology and Environment, Tibet University, Lhasa 850000, PR China; School of Bioengineering and Health, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China; College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Le Zhang
- Key Laboratory of Biodiversity and Eco-environmental Protection of the Qinghai-Tibetan Plateau (Ministry of Education), Key Laboratory of Environmental Engineering and Pollution Control On Plateau (Tibet Autonomous Region), School of Ecology and Environment, Tibet University, Lhasa 850000, PR China; College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Wangwang Li
- Key Laboratory of Biodiversity and Eco-environmental Protection of the Qinghai-Tibetan Plateau (Ministry of Education), Key Laboratory of Environmental Engineering and Pollution Control On Plateau (Tibet Autonomous Region), School of Ecology and Environment, Tibet University, Lhasa 850000, PR China; College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Meng Chang
- Key Laboratory of Biodiversity and Eco-environmental Protection of the Qinghai-Tibetan Plateau (Ministry of Education), Key Laboratory of Environmental Engineering and Pollution Control On Plateau (Tibet Autonomous Region), School of Ecology and Environment, Tibet University, Lhasa 850000, PR China
| | - Xiaoning Liu
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, PR China.
| | - Zhaowei Zhang
- School of Bioengineering and Health, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China; Hubei Hongshan Laboratory, Wuhan 430062, PR China.
| | - Zhi-Quan Tian
- Key Laboratory of Biodiversity and Eco-environmental Protection of the Qinghai-Tibetan Plateau (Ministry of Education), Key Laboratory of Environmental Engineering and Pollution Control On Plateau (Tibet Autonomous Region), School of Ecology and Environment, Tibet University, Lhasa 850000, PR China; College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
5
|
Fang L, Wang S, Sun X, Wang K. Bioaccumulation and biochemical impact of polyethylene terephthalate microplastics in Cipangopaludina chinensis: Tissue-specific analysis and homeostasis disruption. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 277:107144. [PMID: 39520844 DOI: 10.1016/j.aquatox.2024.107144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/19/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Microplastics are a novel pollutant that adversely affect freshwater benthic organisms. However, few studies have investigated the mechanism underlying the bioaccumulation and the toxicity of microplastics. In this study, microplastics bioaccumulation of wild Cipangopaludina chinensis in the Songhua River were utilized, and a 28-day aquatic toxicity test was performed to determine the effects of exposure to polyethylene terephthalate (PET), the bioaccumulation of PET, and changes in multiple biomarkers in the muscle, gill, and kidney tissues. The concentration pattern of microplastics was as follows: kidney tissue > muscle tissue > gill tissue. Microplastic ingestion caused AChE inhibition led to significant increases in redox and energy metabolism indicators. Furthermore, the IBR analysis presented a "response-resistance-breakdown" process, indicating that Cipangopaludina chinensis possessed resistance with time (D14 and D21) and concentration (0.10 mg/L and 1.00 mg/L) thresholds. Tissue sensitivity to microplastics was ranked as gill > muscle > kidney, which was the opposite order of microplastic accumulation. These findings implied that less sensitive tissues stored a larger amount of pollutants, suggesting a reduction in tissue sensitivity to microplastics with higher microplastic occurrence rates. This study provides new insights into biological resistance to pollutant stress, warranting further investigation into the underlying mechanisms.
Collapse
Affiliation(s)
- Lanjin Fang
- College of Forest, Northeast Forest University, Harbin 150040, China
| | - Shuangshuang Wang
- College of Forest, Northeast Forest University, Harbin 150040, China
| | - Xingbin Sun
- College of Forest, Northeast Forest University, Harbin 150040, China.
| | - Kejing Wang
- Ecological and Environmental Monitoring Centre of Heilongjiang Province, Harbin 150056, China.
| |
Collapse
|
6
|
Graham PM, Pattinson NB, Bakir A, McGoran AR, Nel HA. Determination of microplastics in sediment, water, and fish across the Orange-Senqu River basin. WATER RESEARCH 2024; 266:122394. [PMID: 39265218 DOI: 10.1016/j.watres.2024.122394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024]
Abstract
Microplastics are increasingly recognised as posing a significant environmental threat across systems. Their pervasive presence in freshwater poses a serious concern, given the heavy reliance of both humans and biodiversity on healthy, functioning freshwater ecosystems. Acknowledgment of the potential risks led the transboundary Orange-Senqu River Commission (ORASECOM) to include sampling for microlitter (primarily microplastics) in riverine sediment, surface water, and fishes, across Southern Africa as part of the third Joint Basin Survey (JBS3) in 2021. The aim was to establish a first, basin-wide estimate of microlitter contamination across compartments, setting a baseline for further monitoring. The survey showed that the abundance of microlitter in riverine sediment (0 - 4000 particles.kg-1 dry weight (dw)) and riverine water (1.00 ± 0.71 - 69.75 ± 68.55 SD items.L-1) varied considerably between sample sites, with no correlation between the two. The abundance of microlitter in fishes was low (average of 0.7 ± 0.4 items.individual-1). Course resolution analyses suggested that microlitter concentrations in riverine sediment and riverine water at each site did not correlate with land use directly upstream, though variation in microlitter abundance did isolate some hotspots of contamination. Discharge data collected from nine gauging stations near sampling sites confirmed that low flows prevailed in the system during the study, with high flows occurring approximately 5 months prior during the summer months. There is some variation in river flow across the catchment which is a likely driver of microlitter transport. This was evident in the polymer composition for sediment and water samples. Based on the average discharge at each gauging station and microlitter concentrations measured in riverine water, the estimated microlitter load ranged from ∼889 particles.s-1 to ∼17.9 million particles.s-1, with a substantial amount ending likely up in the mudbelt adjacent to the Orange River mouth. This assessment provides a first insight into the characterisation and distribution of microlitter in multiple compartments across the Orange-Senqu River basin. Overall, the findings highlight the need for continued monitoring across compartments at catchment scales to improve our understanding of microplastic pathways into and within riverine systems.
Collapse
Affiliation(s)
- P M Graham
- GroundTruth, Hilton, Kwa-Zulu Natal 3245, South Africa; University of KwaZulu-Natal, Centre for Water Resources Research, Pietermaritzburg, KwaZulu-Natal 3201, South Africa.
| | - N B Pattinson
- GroundTruth, Hilton, Kwa-Zulu Natal 3245, South Africa
| | - A Bakir
- Centre for Environment, Fisheries and Aquaculture Science, Pakefield Rd, Lowestoft NR33 0HT, UK
| | - A R McGoran
- Centre for Environment, Fisheries and Aquaculture Science, Pakefield Rd, Lowestoft NR33 0HT, UK
| | - H A Nel
- Centre for Environment, Fisheries and Aquaculture Science, Pakefield Rd, Lowestoft NR33 0HT, UK
| |
Collapse
|
7
|
Liu Z, Bai Y, Zhao X, Liu X, Wei H, Wei M, Ma Y. Contributions from typical sources to microplastics in surface water of a semiarid urban river. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135570. [PMID: 39173368 DOI: 10.1016/j.jhazmat.2024.135570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
Urban regions are suggested to be the main source of microplastic pollution in rivers. Thus, we investigated the spatiotemporal distribution of microplastics in the surface water of the Lanzhou section of the Yellow River in a semiarid region and the contributions of typical sources. The average concentration of microplastics in the surface water of the river was 0.98 particles (p) L-1. The daily quantity flux and mass flux were 3.63 × 109 p d-1 and 95.38 kg d-1, respectively. Most of the microplastics in the river were fibers and fragments, composed of polyethylene terephthalate, polyamide, polypropylene and polyethylene. A large quantity and mass of microplastics were found in the high-flow period of the river. The hotspots of microplastic pollution were residential and tourist reaches. The spatial distribution of microplastics was influenced by anthropogenic factors. However, the main factor influencing the temporal distribution of microplastics was precipitation seasonality. Most of the microplastics in the surface water originated from drainage ditches. The direct contribution of microplastics from atmospheric deposition was also considerable. Our results suggest that the contribution of microplastics from atmospheric deposition to urban rivers is worthy of attention.
Collapse
Affiliation(s)
- Zheng Liu
- School of Chemical Engineering, Lanzhou City University, Lanzhou 730070, China; Provincial Key Laboratory of Gansu Higher Education for City Environmental Pollution Control, Lanzhou City University, Lanzhou 730070, China.
| | - Ying Bai
- Northwest Branch of China Academy of Environmental Sciences, Lanzhou 730000, China; Gansu Academy of Eco-environmental Sciences, Lanzhou 730000, China
| | - Xiaojiong Zhao
- Northwest Branch of China Academy of Environmental Sciences, Lanzhou 730000, China; Gansu Academy of Eco-environmental Sciences, Lanzhou 730000, China
| | - Xianyu Liu
- School of Chemical Engineering, Lanzhou City University, Lanzhou 730070, China; Provincial Key Laboratory of Gansu Higher Education for City Environmental Pollution Control, Lanzhou City University, Lanzhou 730070, China
| | - Huijuan Wei
- School of Chemical Engineering, Lanzhou City University, Lanzhou 730070, China; Provincial Key Laboratory of Gansu Higher Education for City Environmental Pollution Control, Lanzhou City University, Lanzhou 730070, China
| | - Mingxia Wei
- School of Chemical Engineering, Lanzhou City University, Lanzhou 730070, China; Provincial Key Laboratory of Gansu Higher Education for City Environmental Pollution Control, Lanzhou City University, Lanzhou 730070, China
| | - Yang Ma
- School of Chemical Engineering, Lanzhou City University, Lanzhou 730070, China; Provincial Key Laboratory of Gansu Higher Education for City Environmental Pollution Control, Lanzhou City University, Lanzhou 730070, China
| |
Collapse
|
8
|
Zhang M, Jin Y, Fan C, Xu Y, Li J, Pan W, Lou Z, Chen H, Jin B. Exploring the trophic transfer and effects of microplastics in freshwater ecosystems: A focus on Bellamya aeruginosa to Mylopharyngodon piceus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124426. [PMID: 38917945 DOI: 10.1016/j.envpol.2024.124426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/01/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
Microplastics (MPs) can enter aquatic food webs through direct ingestion from the environment or indirectly via trophic transfer, but their fate and biological effects within local freshwater food chains remain largely unexplored. In this study, we conducted the first investigation on the trophic transfer and impacts of fluorescently labeled polystyrene microplastics (PS-MPs) (100-nm and 10-μm) in a model freshwater food chain consisting of the snail Bellamya aeruginosa and the commercially important fish Mylopharyngodon piceus, both prevalent in Chinese freshwater ecosystems. Quantitative analysis revealed substantial accumulation of MPs in B. aeruginosa, reaching an equilibrium state within 12 h of exposure. While steady-state was not observed, a pronounced time-dependent bioaccumulation of MPs was evident in M. piceus over a five-week period following dietary exposure through the consumption of contaminated B. aeruginosa. Notably, MPs of both sizes underwent translocation from the gastrointestinal tract to the muscle tissue in M. piceus. High-throughput sequencing of the gut microbiota revealed that exposure to 100-nm MPs significantly altered the microbial community composition in M. piceus, and both particle sizes led to increased relative abundance of potentially pathogenic bacterial genera. Our findings provide novel insights into the trophic transfer, tissue accumulation, and biological impacts of MPs in a model freshwater food chain, highlighting the need for further research to assess the ecological and food safety risks associated with microplastic pollution in freshwater environments.
Collapse
Affiliation(s)
- Ming Zhang
- School of Life and Environmental Science, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, Zhejiang 311121, China
| | - Yijie Jin
- School of Life and Environmental Science, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, Zhejiang 311121, China
| | - Cenyi Fan
- School of Life and Environmental Science, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, Zhejiang 311121, China
| | - Yiwen Xu
- School of Life and Environmental Science, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, Zhejiang 311121, China
| | - Jiateng Li
- School of Life and Environmental Science, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, Zhejiang 311121, China
| | - Wenjing Pan
- School of Life and Environmental Science, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, Zhejiang 311121, China
| | - Ziyang Lou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai 200240, China
| | - Huili Chen
- School of Life and Environmental Science, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, Zhejiang 311121, China
| | - Binsong Jin
- School of Life and Environmental Science, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
9
|
Chandra S, Walsh KB. Microplastics in water: Occurrence, fate and removal. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 264:104360. [PMID: 38729026 DOI: 10.1016/j.jconhyd.2024.104360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
A global study on tap water samples has found that up to 83% of these contained microplastic fibres. These findings raise concerns about their potential health risks. Ingested microplastic particles have already been associated with harmful effects in animals, which raise concerns about similar outcomes in humans. Microplastics are ubiquitous in the environment, commonly found disposed in landfills and waste sites. Within indoor environments, the common sources are synthetic textiles, plastic bottles, and packaging. From the various point sources, they are globally distributed through air and water and can enter humans through various pathways. The finding of microplastics in fresh snow in the Antarctic highlights just how widely they are dispersed. The behaviour and health risks from microplastic particles are strongly influenced by their physicochemical properties, which is why their surfaces are important. Surface interactions are also important in pollutant transport via adsorption onto the microplastic particles. Our review covers the latest findings in microplastics research including the latest statistics in their abundance, their occurrence and fate in the environment, the methods of reducing microplastics exposure and their removal. We conclude by proposing future research directions into more effective remediation methods including new technologies and sustainable green remediation methods that need to be explored to achieve success in microplastics removal from waters at large scale.
Collapse
Affiliation(s)
- Shaneel Chandra
- College of Science and Sustainability, School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton North, QLD 4702, Australia; Coastal Marine Ecosystems Research Centre, Central Queensland University, Gladstone Marina Campus, Bryan Jordan Drive, Gladstone, QLD 4680, Australia.
| | - Kerry B Walsh
- College of Science and Sustainability, School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton North, QLD 4702, Australia
| |
Collapse
|
10
|
Xie J, Gowen A, Xu W, Xu J. Analysing micro- and nanoplastics with cutting-edge infrared spectroscopy techniques: a critical review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2177-2197. [PMID: 38533677 DOI: 10.1039/d3ay01808c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The escalating prominence of micro- and nanoplastics (MNPs) as emerging anthropogenic pollutants has sparked widespread scientific and public interest. These minuscule particles pervade the global environment, permeating drinking water and food sources, prompting concerns regarding their environmental impacts and potential risks to human health. In recent years, the field of MNP research has witnessed the development and application of cutting-edge infrared (IR) spectroscopic instruments. This review focuses on the recent application of advanced IR spectroscopic techniques and relevant instrumentation to analyse MNPs. A comprehensive literature search was conducted, encompassing articles published within the past three years. The findings revealed that Fourier transform infrared (FTIR) spectroscopy stands as the most used technique, with focal plane array FTIR (FPA-FTIR) representing the cutting edge in FTIR spectroscopy. The second most popular technique is quantum cascade laser infrared (QCL-IR) spectroscopy, which has facilitated rapid analysis of plastic particles. Following closely is optical photothermal infrared (O-PTIR) spectroscopy, which can furnish submicron spatial resolution. Subsequently, there is atomic force microscopy-based infrared (AFM-IR) spectroscopy, which has made it feasible to analyse MNPs at the nanoscale level. The most advanced IR instruments identified in articles covered in this review were compared. Comparison metrics encompass substrates/filters, data quality, spatial resolution, data acquisition speed, data processing and cost. The limitations of these IR instruments were identified, and recommendations to address these limitations were proposed. The findings of this review offer valuable guidance to MNP researchers in selecting suitable instrumentation for their research experiments, thereby facilitating advancements in research aimed at enhancing our understanding of the environmental and human health risks associated with MNPs.
Collapse
Affiliation(s)
- Junhao Xie
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Aoife Gowen
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Wei Xu
- Department of Life Sciences, Center for Coastal Studies, College of Sciences, Texas A&M University-Corpus Christi, USA
| | - Junli Xu
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
11
|
Xu J, Wang Z. Intelligent classification and pollution characteristics analysis of microplastics in urban surface waters using YNet. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133694. [PMID: 38330648 DOI: 10.1016/j.jhazmat.2024.133694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Microplastics (MPs, ≤ 5 mm in size) are hazardous contaminants that pose threats to ecosystems and human health. YNet was developed to analyze MPs abundance and shape to gain insights into MPs pollution characteristics in urban surface waters. The study found that YNet achieved an accurate identification and intelligent classification performance, with a dice similarity coefficient (DSC) of 90.78%, precision of 94.17%, and recall of 89.14%. Analysis of initial MPs levels in wetlands and reservoirs revealed 127.3 items/L and 56.0 items/L. Additionally, the MPs in effluents were 27.0 items/L and 26.3 items/L, indicating the ability of wetlands and reservoirs to retain MPs. The concentration of MPs in the lower reaches of the river was higher (45.6 items/L) compared to the upper reaches (22.0 items/L). The majority of MPs detected in this study were fragments, accounting for 51.63%, 54.94%, and 74.74% in the river, wetland, and reservoir. Conversely, granules accounted for the smallest proportion of MPs in the river, wetland, and reservoir, representing only 11.43%, 10.38%, and 6.5%. The study proves that the trained YNet accurately identify and intelligently classify MPs. This tool is essential in comprehending the distribution of MPs in urban surface waters and researching their sources and fate.
Collapse
Affiliation(s)
- Jiongji Xu
- School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou 510641, China.
| | - Zhaoli Wang
- School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou 510641, China; Pazhou Lab, Guangzhou 510335, China.
| |
Collapse
|
12
|
Ribeiro VV, Avelino Soares TM, De-la-Torre GE, Casado-Coy N, Sanz-Lazaro C, Castro ÍB. Microplastics in rocky shore mollusks of different feeding habits: An assessment of sentinel performance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123571. [PMID: 38373623 DOI: 10.1016/j.envpol.2024.123571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
Microplastics (MPs) accumulation in rocky shore organisms has limited knowledge. This study investigated MPs accumulation in filter-feeding oysters, herbivorous limpets and carnivorous snails to assess their performance as sentinel species in the MPs trophic transfer. The samples were obtained along a contamination gradient in the Santos Estuarine System, Brazil. All three studied species showed MPs concentrations related to the contamination gradient, being the oysters the species that showed the highest levels, followed by limpets and snails (average of less and most contaminated sites of 1.06-8.90, 2.28-5.69 and 0.44-2.10 MP g-1, respectively), suggesting that MPs ingestion rates are linked to feeding habits. MPs were mainly polystyrene and polyacetal. The polymer types did not vary among sites nor species. Despite minor differences in percentages and diversity of size, shape, and color classes, the analyzed species were equally able to demonstrate dominance of small, fiber, transparent, black and blue MPs. Thus, oysters, limpets, and snails are proposed as sentinels of MPs in monitoring assessments.
Collapse
Affiliation(s)
| | | | - Gabriel Enrique De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru
| | - Nuria Casado-Coy
- Multidisciplinary Institute for Environmental Studies (MIES), Universidad de Alicante, Spain
| | - Carlos Sanz-Lazaro
- Multidisciplinary Institute for Environmental Studies (MIES), Universidad de Alicante, Spain; Departamento de Ecología, Universidad de Alicante, Alicante, Spain
| | | |
Collapse
|
13
|
Peng M, Wu Q, Gao S, Liu Y, Zeng J, Ruan Y. Distribution and characteristics of microplastics in an urban river: The response to urban waste management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166638. [PMID: 37657545 DOI: 10.1016/j.scitotenv.2023.166638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023]
Abstract
The rivers have been proven to be potential sources and the major transport pathways of microplastic (MP) in natural aquatic eco-systems, yet there is an absence of understanding the provenances and distribution dynamics of MP in fluvial water body of urban regions. The present investigation aimed to characterize the distribution and accumulation of MPs in both surface water and riverine bed sediments in a typical urban river (Nanming River, southwest China), during the dry and wet seasons of 2021. MP were detected throughout the entire sample set, with average surface water abundances of 750 ± 53 n/m3 and 693.3 ± 40 n/m3 in dry and wet seasons, respectively, and 2250 ± 496.7 n/kg (dw) in surface sediments. Furthermore, the composition of 25 polymer types MPs were analyzed. The sediment of the Nanming River is a sink for MPs, recording their long-term accumulation. Multivariate statistical analysis-based results indicated that urban littering and agricultural input were the major contributors of non-point MP in the Nanming River, while the discharged effluent was another factor influencing the distribution of MPs in urban fluvial system. The average abundance of MPs was negatively correlated with purchase power parity (PPP), demonstrating that the poorly waste management results in a higher abundance of MPs in municipal river systems. The present study systematically characterized the distribution of MPs in medium-sized urban rivers systems in Southwest China. These findings can inform policy and management decisions to reduce MPs pollution in urban rivers and protect aquatic ecosystems.
Collapse
Affiliation(s)
- Meixue Peng
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Qixin Wu
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550000, China.
| | - Shilin Gao
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550000, China
| | - Yongxue Liu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550000, China
| | - Jie Zeng
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550000, China
| | - Yunjun Ruan
- Institute of Advanced Optoelectronic Materials and Technology, College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
14
|
Sapkale D, Kurkute P, Mistry A, Pandit SV. Polyethylene Microplastics Affected Survival Rate, Food Intake and Altered Oxidative Stress Parameters in Freshwater Snail Indoplanorbis exustus. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:67. [PMID: 37940785 DOI: 10.1007/s00128-023-03813-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/18/2023] [Indexed: 11/10/2023]
Abstract
Microplastics have a negative impact on aquatic ecosystems. Gastropod mollusks serve as bioindicators and are good model systems for ecotoxicological studies. To assess oxidative damage, we exposed the ram's horn snail, Indoplanorbis exustus, to various concentrations of low-density polyethylene microplastics (size range 8-100 µm). The main objectives were microplastics preparation, characterization, and examination of their effect on the essential organs of I. exustus. Scanning electron microscopy, fourier transform infrared spectroscopy and x-ray diffraction techniques confirmed the polymer type of laboratory prepared polyethylene microplastics. The LC50 value of microplastics for snails was calculated to be 872 mg/L after 96 h of exposure. We observed a significant elevation in superoxide dismutase, catalase and lipid peroxidation levels with increasing concentrations of microplastics. Microplastics exposure also affected protein content, total food intake and total weights. Moreover, snails failed to recover post-treatment. Snails collected from contaminated source of microplastics served as positive control for the study. Hence, we can conclude that microplastics cause overall impairment in the physiological parameters and show adverse effects on the freshwater snail, I. exustus.
Collapse
Affiliation(s)
- Dipak Sapkale
- Department of Zoology, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Pratibha Kurkute
- Department of Zoology, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Anurupa Mistry
- Department of Zoology, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Sangeeta V Pandit
- Department of Zoology, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India.
| |
Collapse
|
15
|
Zhao H, Zhou Y, Lu Z, Ren X, Barcelo D, Zhang Z, Wang Q. Microplastic pollution in organic farming development cannot be ignored in China: Perspective of commercial organic fertilizer. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132478. [PMID: 37688868 DOI: 10.1016/j.jhazmat.2023.132478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/28/2023] [Accepted: 09/02/2023] [Indexed: 09/11/2023]
Abstract
Commercial organic fertilizer, an essential fertilizer for developing organic farming in China, has been identified as a potentially important source of microplastics (MPs) on farmland. However, little is known about the occurrence of MPs in commercial organic fertilizers and their potential ecological risks nationwide. Here, stereoscopy and laser-infrared imaging spectrometry were used to comprehensively investigate the abundance, size, type and morphology of MPs in commercial organic fertilizers collected from mainland China, assess the ecological risks, and predict MP contamination. Commercial organic fertilizers contained many MPs (8.88 ×103 to 2.88 ×105 items/kg), especially rich in small-size MPs (<100 µm), accounting for 76.53%. The highest MP pollution load value was observed in fertilizers collected from East China. Chlorinated polyethylene, polyurethane, polyethylene and polypropylene were the dominant MPs with the shape of film and fragment, concentrated in small sizes (<100 µm). The risk index (H-index) of the MPs was used to quantify the ecological risk of the MPs in the different samples, and most of the fertilizers were at level Ⅲ with high risk. Predictably, 2.32 × 1013 - 2.81 × 1016 MPs will accumulate in orchard soils after five years of fertilization, especially in South, Southwest and East China. This study provides primary scientific data on MP pollution in commercial fertilizer and the health development of organic farming.
Collapse
Affiliation(s)
- Haoran Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Yanting Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Zonghui Lu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Damia Barcelo
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
16
|
Li C, Shi Y, Luo D, Kang M, Li Y, Huang Y, Bai X. Interventions of river network structures on urban aquatic microplastic footprint from a connectivity perspective. WATER RESEARCH 2023; 243:120418. [PMID: 37536245 DOI: 10.1016/j.watres.2023.120418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/02/2023] [Accepted: 07/23/2023] [Indexed: 08/05/2023]
Abstract
Microplastic footprint in urban river networks can be disturbed by multiple urbanization features, and regional river structures are generally overlooked. In this research, we analyzed the distribution of microplastics and potential impact pattern of river structures on it in a typical urban river network in Nanjing, China. Surface waters of the river network were jointly detected by multiple methods, and the Renkonen similarity index was used to study spatial variabilities of microplastics characteristics. Microplastics were ubiquitous and abundant, showing five (>50 μm) and six (20∼50 μm) hotspots, and heterogeneities in the shape and type of microplastics larger than 100 μm were prominent, presumably influenced by river network scale and connectivity. River structure parameters associated with network connectivity were obtained by combining graph theory and an entropy-based set-pair analysis model. Aiming at the action pathway of river structures, by using correlation and partial least squares regression analysis, we found that river node (confluences and sluices) ratio, river frequency, river network density, and water system circularity were significantly positively correlated with microplastic abundance, and confluences with poor connectivity had a greater indirect intervention intensity on the microplastic distribution. The land use characteristics dominated the fitting of microplastic abundance, which was about 1.2 times better than river structures, and the comprehensive land use intensity and river network connectivity were the critical factors, respectively. Potential ecological risks of microplastics were evaluated, resulting in relatively severe levels. This study proposed targeted measures to control urban microplastic pollution by combining the perspective of river network characteristics. To summarize, our exploration of microplastic footprint based on urban river network structures from the perspective of river network connectivity provides new insights into microplastic management.
Collapse
Affiliation(s)
- Chang Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yi Shi
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Dan Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Meng'en Kang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yujian Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yue Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xue Bai
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China.
| |
Collapse
|
17
|
Li YQ, Zhang CM, Yuan QQ, Wu K. New insight into the effect of microplastics on antibiotic resistance and bacterial community of biofilm. CHEMOSPHERE 2023:139151. [PMID: 37290506 DOI: 10.1016/j.chemosphere.2023.139151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
Microplastics (MPs) could serve as substrates for microbial colonization and biofilm formation. However, research on the effects of different types of microplastics and natural substrates on biofilm formation and community structure in the presence of antibiotic-resistant bacteria (ARB) is limited. In this study, we employed by means of microcosm experiments to analyze the situation of biofilms conditions, bacterial resistance patterns, antibiotic resistance genes (ARGs) distribution, and bacterial community on different substrates using microbial cultivation, high throughtput sequencing and PCR. The result showed that biofilms on different substrates markedly increased with time, with MPs surfaces formed more biofilm than stone. Analyses of antibiotic resistant showed negligible differences in the resistance rate to the same antibiotic at 30 d, but tetB would be selectively enriched on PP and PET. The microbial communities associated with biofilms on MPs and stones exhibited variations during different stages of formation. Notably, phylum WPS-2 and Epsilonbacteraeota were identified as the dominant microbiomes of biofilms on MPs and stones at 30 d, respectively. Correlation analysis suggested that WPS-2 could potentially be a tetracycline-resistant bacterium, while Epsilonbacteraeota did not correlate with any detected ARB. Our results emphasized the potential threat posed by MPs as attachment carriers for bacteria, particularly ARB, in aquatic environments.
Collapse
Affiliation(s)
- Yong-Qiang Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Chong-Miao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Qiao-Qiao Yuan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Kai Wu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
18
|
Li H, Zhu L, Ma M, Wu H, An L, Yang Z. Occurrence of microplastics in commercially sold bottled water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161553. [PMID: 36640894 DOI: 10.1016/j.scitotenv.2023.161553] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Microplastics are ubiquitous in all environmental compartments, including food and water. A growing body of evidence suggests the potential health impacts of continuous microplastic ingestion on humans. However, a lack of information on microplastic exposure to humans through drinking water and the high heterogeneity of available data limits advancements in health risk assessments. In the present study, laser direct infrared spectroscopy (LD-IR) was used to determine the occurrence of microplastics in bottled water sold in China. Then, the ingestion level of microplastics through drinking water was estimated. The results showed that the average microplastic abundance in bottled water was 72.32 ± 44.64 items/L, which was higher than that detected in tap water (49.67 ± 17.49 items/L). Overall, the microplastic structures were dominated by films and mainly consisted of cellulose and PVC. Their sizes were concentrated in the range of 10-50 μm, accounting for 67.85 ± 8.40 % of the total microplastics in bottled water and 75.50 % in tap water. The estimated daily intake of microplastics (EDI) by infants through bottled water and tap water was almost twice as high as that by adults, although adults ingested more microplastics. The present results provide valuable data for further assessing human health risks associated with exposure to microplastics.
Collapse
Affiliation(s)
- Huan Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Long Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Mindong Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Haiwen Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lihui An
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Zhanhong Yang
- Environmental Standards Institute of Ministry of Ecology and Environment of the People's Republic of China, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
19
|
Zhu L, Zhu J, Zuo R, Xu Q, Qian Y, An L. Identification of microplastics in human placenta using laser direct infrared spectroscopy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159060. [PMID: 36174702 DOI: 10.1016/j.scitotenv.2022.159060] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Microplastics are ubiquitous in the environment, including in food and drinking water. Consequently, there is growing concern about the human health risks associated with microplastic exposure through diet. However, the occurrence of microplastics in the human body, particularly in mothers and fetuses, is incompletely understood because of the limited amount of data on their presence in the body and the human placenta. This study evaluated the presence and characteristics of microplastics in 17 placentas using laser direct infrared (LD-IR) spectroscopy. Microplastics were detected in all placenta samples, with an average abundance of 2.70 ± 2.65 particles/g and a range of 0.28 to 9.55 particles/g. Among these microplastics, 11 polymer types were identified. The microplastics were mainly composed of polyvinyl chloride (PVC, 43.27 %), polypropylene (PP, 14.55 %), and polybutylene succinate (PBS, 10.90 %). The sizes of these microplastics ranged from 20.34 to 307.29 μm, and most (80.29 %) were smaller than 100 μm. Most of the smaller microplastics were fragments, but fibers dominated the larger microplastics (200-307.29 μm). Interestingly, the majority of PVC and PP were smaller than 200 μm. This study provides a clearer understanding of the shape, size, and nature of microplastics in the human placenta. Importantly, these data also provide crucial information for performing risk assessments of the exposure of fetuses to microplastics in the future.
Collapse
Affiliation(s)
- Long Zhu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jingying Zhu
- Wuxi Center for Disease Control and Prevention, Wuxi 214023, China
| | - Rui Zuo
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Qiujin Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yanhua Qian
- Wuxi No.5 Affiliated Hospital of Jiangnan University, Wuxi 214011, China; Wuxi Center for Disease Control and Prevention, Wuxi 214023, China.
| | - Lihui An
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|