1
|
Battisti L, Potrich M, Abati R, Sampaio AR, Libardoni G, Costa-Maia FM, Berté EA, Dos Reis Martinez CB, Sofia SH. Toxicity of glyphosate herbicides formulated for Africanized Apis mellifera Linnaeus, 1758 (Hymenoptera: Apidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117247. [PMID: 39486248 DOI: 10.1016/j.ecoenv.2024.117247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
Initially, products based on glyphosate (GLY) were considered non-toxic or slightly toxic to bees. Still, recent research has shown that these products can cause mortality or trigger sublethal effects in these insects. Roundup Transorb R® (RT) is one of the GLY-based formulations sold in Brazil. It is used in several crops, and studies are required on its toxicity to honey bees. Thus, the objective of this work was to evaluate, under laboratory conditions, the lethal and sublethal effects of RT for adult workers (foragers) of Africanized A. mellifera. For this, two bioassays were carried out with Africanized honey bees. The experimental design was completely randomized, consisting of five treatments (T0 - control, T25 - 25 % GLY, T50 - 50 % GLY, T75 - 75 % GLY, and T100 GLY - 100 % recommended dose). The bioassays were carried out as follows: (1) Acute oral and topical exposure, evaluating mortality, effects on flight capacity, vertical displacement, and locomotion (in the latter only for oral contamination), consisting of five repetitions and 10 honey bees per repetition; (2) Chronic exposure via the oral route and spraying, assessing mortality, for both contamination routes and damage to the midgut epithelium thickness when contaminated via the oral route, composed of five replicates and 20 honey bees per replicate. The results showed that chronic oral exposure to RT can increase honeybee mortality and damage the thickness of their midgut epithelium. In addition, when acutely exposed orally, the honey bees had reduced walking ability. RT did not affect the other evaluated parameters. Thus, it is concluded that the RT-formulated GLY can affect the survival, midgut morphology, and behavior of A. mellifera.
Collapse
Affiliation(s)
- Lucas Battisti
- Universidade Tecnológica Federal do Paraná, Campus Dois Vizinhos (Federal University of Technology - Paraná) - LABCON (Laboratório de Controle Biológico), Estrada para Boa Esperança, Km 04, Comunidade São Cristóvão, Dois Vizinhos, PR 86660-000, Brazil
| | - Michele Potrich
- Universidade Tecnológica Federal do Paraná, Campus Dois Vizinhos (Federal University of Technology - Paraná) - LABCON (Laboratório de Controle Biológico), Estrada para Boa Esperança, Km 04, Comunidade São Cristóvão, Dois Vizinhos, PR 86660-000, Brazil.
| | - Raiza Abati
- Programa de Pós-Graduação em Ciências Biológicas (Entomologia), Universidade Federal do Paraná, Curitiba, PR 81530-001, Brazil
| | - Amanda Roberta Sampaio
- Universidade Tecnológica Federal do Paraná, Campus Dois Vizinhos (Federal University of Technology - Paraná) - LABCON (Laboratório de Controle Biológico), Estrada para Boa Esperança, Km 04, Comunidade São Cristóvão, Dois Vizinhos, PR 86660-000, Brazil
| | - Gabriela Libardoni
- Programa de Pós-Graduação em Agronomia, Universidade Estadual de Londrina (UEL), Londrina, PR, Brazil
| | - Fabiana Martins Costa-Maia
- Universidade Tecnológica Federal do Paraná, Campus Dois Vizinhos (Federal University of Technology - Paraná) - Unepe Apicultura, Estrada para Boa Esperança, Km 04,Comunidade São Cristóvão, Dois Vizinhos, PR 86660-000, Brazil
| | - Elizabete Artus Berté
- Universidade Estadual de Londrina (UEL) - Programa de Pós-Graduação em Ciências Biológicas, Rodovia Celso Garcia Cid | PR 445 Km 380 | Campus Universitário Cx, Postal 10.011, Londrina, PR CEP 86.057-970, Brazil
| | - Claudia Bueno Dos Reis Martinez
- Universidade Estadual de Londrina (UEL) - Programa de Pós-Graduação em Ciências Biológicas, Rodovia Celso Garcia Cid | PR 445 Km 380 | Campus Universitário Cx, Postal 10.011, Londrina, PR CEP 86.057-970, Brazil
| | - Silvia Helena Sofia
- Universidade Estadual de Londrina (UEL) - Programa de Pós-Graduação em Ciências Biológicas, Rodovia Celso Garcia Cid | PR 445 Km 380 | Campus Universitário Cx, Postal 10.011, Londrina, PR CEP 86.057-970, Brazil
| |
Collapse
|
2
|
Zhang Y, Xu H, Tu C, Han R, Luo J, Xu L. Enhanced capacity of a leaf beetle to combat dual stress from entomopathogens and herbicides mediated by associated microbiota. Integr Zool 2024; 19:1092-1104. [PMID: 38379126 DOI: 10.1111/1749-4877.12812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Herbicides have demonstrated their impact on insect fitness by affecting their associated microbiota or altering the virulence of entomopathogenic fungi toward insects. However, limited research has explored the implications of herbicide stress on the intricate tripartite interaction among insects, associated bacterial communities, and entomopathogens. In this study, we initially demonstrated that associated bacteria confer a leaf beetle, Plagiodera versicolora, with the capability to resist the entomopathogenic fungus Aspergillus nomius infection, a capability sustained even under herbicide glyphosate stress. Further analysis of the associated microbiota revealed a significant alteration in abundance and composition due to glyphosate treatment. The dominant bacterium, post A. nomius infection or following a combination of glyphosate treatments, exhibited strong suppressive effects on fungal growth. Additionally, glyphosate markedly inhibited the pathogenic associated bacterium Pseudomonas though it inhibited P. versicolora's immunity, ultimately enhancing the beetle's tolerance to A. nomius. In summary, our findings suggest that the leaf beetle's associated microbiota bestow an augmented resilience against the dual stressors of both the entomopathogen and glyphosate. These results provide insight into the effects of herbicide residues on interactions among insects, associated bacteria, and entomopathogenic fungi, holding significant implications for pest control and ecosystem assessment.
Collapse
Affiliation(s)
- Yuxin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Handan Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Chengjie Tu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Runhua Han
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jing Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
3
|
de Lima E Silva C, Pelosi C. Effects of glyphosate on earthworms: From fears to facts. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1330-1336. [PMID: 38035873 DOI: 10.1002/ieam.4873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
Glyphosate is the most widely applied herbicide worldwide, contaminating water, soils, and living organisms. Earthworms are emblematic soil organisms used as indicators of soil quality, but knowledge about the impacts of glyphosate and glyphosate-based herbicides (GBH) on these key soil organisms is scattered. Here, we examine this knowledge in detail to answer four questions: (1) Which endpoint is the most sensitive when assessing the effects of glyphosate or GBH in earthworms? (2) Which is most toxic to earthworms: glyphosate or GBH? (3) Are glyphosate and GBH harmful to earthworms when used at the recommended application dose? (4) What are the interactions between glyphosate or GBH and other chemicals in earthworms? The results indicate that a weak legislation led to improper assessment of the ecotoxicity of glyphosate during the last renewal in 2017. Our findings also highlighted that negative effects can occur in earthworms at the recommended application rate, although not after only a single application or when considering only the mortality of adult individuals. However, under more realistic conditions, that is, when assessing sensitive endpoints (e.g., reproduction, growth) and using species present in the field, after several applications per year, the negative effects of glyphosate or GBH on earthworms were observed at the subindividual, individual, population, and community levels, as well as on earthworm-mediated functions. Our recommendations are as follows: (i) competent agencies should collect more information on the toxicity of these compounds to earthworms before the next renewal deadline, with emphasis on the use of the updated legislation on the topic, and (ii) scientists should increase research on the effects of these herbicides on soil invertebrate species, with emphasis on earthworms, using guideline tests and obtain data from long-term field testing. Integr Environ Assess Manag 2024;20:1330-1336. © 2023 SETAC.
Collapse
Affiliation(s)
| | - Céline Pelosi
- INRAE, Avignon Université, UMR EMMAH, Avignon, France
| |
Collapse
|
4
|
Hotchkiss MZ, Forrest JRK, Poulain AJ. Changes in bumblebee queen gut microbiotas during and after overwintering diapause. INSECT MOLECULAR BIOLOGY 2024. [PMID: 39175129 DOI: 10.1111/imb.12957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/10/2024] [Indexed: 08/24/2024]
Abstract
Bumblebees are key pollinators with gut microbiotas that support host health. After bumblebee queens undergo winter diapause, which occurs before spring colony establishment, their gut microbiotas are disturbed, but little is known about community dynamics during diapause itself. Queen gut microbiotas also help seed worker microbiotas, so it is important that they recover post-diapause to a typical community structure, a process that may be impeded by pesticide exposure. We examined how bumblebee queen gut microbiota community structure and metabolic potential shift during and after winter diapause, and whether post-diapause recovery is affected by pesticide exposure. To do so, we placed commercial Bombus impatiens queens into diapause, euthanizing them at 0, 2 and 4 months of diapause. Additionally, we allowed some queens to recover from diapause for 1 week before euthanasia, exposing half to the common herbicide glyphosate. Using whole-community, shotgun metagenomic sequencing, we found that core bee gut phylotypes dominated queen gut microbiotas before, during and after diapause, but that two phylotypes, Schmidhempelia and Snodgrassella, ceased to be detected during late diapause and recovery. Despite fluctuations in taxonomic community structure, metabolic potential remained constant through diapause and recovery. Also, glyphosate exposure did not affect post-diapause microbiota recovery. However, metagenomic assembly quality and our ability to detect microbial taxa and metabolic pathways declined alongside microbial abundance, which was substantially reduced during diapause. Our study offers new insights into how bumblebee queen gut microbiotas change taxonomically and functionally during a key life stage and provides guidance for future microbiota studies in diapausing bumblebees.
Collapse
|
5
|
Motta EVS, de Jong TK, Gage A, Edwards JA, Moran NA. Glyphosate effects on growth and biofilm formation in bee gut symbionts and diverse associated bacteria. Appl Environ Microbiol 2024; 90:e0051524. [PMID: 39012136 PMCID: PMC11337805 DOI: 10.1128/aem.00515-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/22/2024] [Indexed: 07/17/2024] Open
Abstract
Biofilm formation is a common adaptation enabling bacteria to thrive in various environments and withstand external pressures. In the context of host-microbe interactions, biofilms play vital roles in establishing microbiomes associated with animals and plants and are used by opportunistic microbes to facilitate survival within hosts. Investigating biofilm dynamics, composition, and responses to environmental stressors is crucial for understanding microbial community assembly and biofilm regulation in health and disease. In this study, we explore in vivo colonization and in vitro biofilm formation abilities of core members of the honey bee (Apis mellifera) gut microbiota. Additionally, we assess the impact of glyphosate, a widely used herbicide with antimicrobial properties, and a glyphosate-based herbicide formulation on growth and biofilm formation in bee gut symbionts as well as in other biofilm-forming bacteria associated with diverse animals and plants. Our results demonstrate that several strains of core bee gut bacterial species can colonize the bee gut, which probably depends on their ability to form biofilms. Furthermore, glyphosate exposure elicits variable effects on bacterial growth and biofilm formation. In some instances, the effects correlate with the bacteria's ability to encode a susceptible or tolerant version of the enzyme inhibited by glyphosate in the shikimate pathway. However, in other instances, no such correlation is observed. Testing the herbicide formulation further complicates comparisons, as results often diverge from glyphosate exposure alone, suggesting that co-formulants influence bacterial growth and biofilm formation. These findings highlight the nuanced impacts of environmental stressors on microbial biofilms, with both ecological and host health-related implications. IMPORTANCE Biofilms are essential for microbial communities to establish and thrive in diverse environments. In the honey bee gut, the core microbiota member Snodgrassella alvi forms biofilms, potentially aiding the establishment of other members and promoting interactions with the host. In this study, we show that specific strains of other core members, including Bifidobacterium, Bombilactobacillus, Gilliamella, and Lactobacillus, also form biofilms in vitro. We then examine the impact of glyphosate, a widely used herbicide that can disrupt the bee microbiota, on bacterial growth and biofilm formation. Our findings demonstrate the diverse effects of glyphosate on biofilm formation, ranging from inhibition to enhancement, reflecting observations in other beneficial or pathogenic bacteria associated with animals and plants. Thus, glyphosate exposure may influence bacterial growth and biofilm formation, potentially shaping microbial establishment on host surfaces and impacting health outcomes.
Collapse
Affiliation(s)
- Erick V. S. Motta
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Tyler K. de Jong
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Alejandra Gage
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Joseph A. Edwards
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
| | - Nancy A. Moran
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
6
|
Lima YS, de Castro Lippi IC, da Luz Scheffer J, Lunardi JS, Alvarez MVN, Kadri SM, de Oliveira Orsi R. Food contamination with fipronil alters gene expression associated with foraging in Africanized honey bees. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52267-52278. [PMID: 39145909 DOI: 10.1007/s11356-024-34695-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
Taking into consideration that bees can be contaminated by pesticides through the ingestion of contaminated floral resources, we can utilize genetic techniques to assess effects that are scarcely observed in behavioral studies. This study aimed to investigate the genetic effects of ingesting lethal and sublethal doses of the insecticide fipronil in foraging honey bees during two periods of acute exposure. Bees were exposed to fipronil through contaminated honey syrup at two dosages (LD50 = 0.19 µg/bee; LD50/100 = 0.0019 µg/bee) and for two durations (1 and 4 h). Following exposure, we measured syrup consumption per bee, analyzed the transcriptome of bee brain tissue, and identified differentially expressed genes (DEGs), categorizing them functionally based on gene ontology (GO). The results revealed a significant genetic response in honey bees after exposure to fipronil, regardless of the dosage used. Fipronil affected various metabolic, transport, and cellular regulation pathways, as well as detoxification processes and xenobiotic substance detection. Additionally, the downregulation of several DEGs belonging to the olfactory-binding protein (OBP) family was observed, suggesting potential physiological alterations in bees that may lead to disoriented behaviors and reduced foraging efficiency.
Collapse
Affiliation(s)
- Yan Souza Lima
- Center of Education, Science and Technology in Rational Beekeeping (NECTAR), College of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Isabella Cristina de Castro Lippi
- Center of Education, Science and Technology in Rational Beekeeping (NECTAR), College of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Jaine da Luz Scheffer
- Center of Education, Science and Technology in Rational Beekeeping (NECTAR), College of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Juliana Sartori Lunardi
- Center of Education, Science and Technology in Rational Beekeeping (NECTAR), College of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, São Paulo, Brazil
| | | | - Samir Moura Kadri
- Center of Education, Science and Technology in Rational Beekeeping (NECTAR), College of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Ricardo de Oliveira Orsi
- Center of Education, Science and Technology in Rational Beekeeping (NECTAR), College of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, São Paulo, Brazil.
| |
Collapse
|
7
|
Maya-Aguirre CA, Torres A, Gutiérrez-Castañeda LD, Salazar LM, Abreu-Villaça Y, Manhães AC, Arenas NE. Changes in the proteome of Apis mellifera acutely exposed to sublethal dosage of glyphosate and imidacloprid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45954-45969. [PMID: 38980489 PMCID: PMC11269427 DOI: 10.1007/s11356-024-34185-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
Uncontrolled use of pesticides has caused a dramatic reduction in the number of pollinators, including bees. Studies on the effects of pesticides on bees have reported effects on both metabolic and neurological levels under chronic exposure. In this study, variations in the differential expression of head and thorax-abdomen proteins in Africanized A. mellifera bees treated acutely with sublethal doses of glyphosate and imidacloprid were studied using a proteomic approach. A total of 92 proteins were detected, 49 of which were differentially expressed compared to those in the control group (47 downregulated and 2 upregulated). Protein interaction networks with differential protein expression ratios suggested that acute exposure of A. mellifera to sublethal doses of glyphosate could cause head damage, which is mainly associated with behavior and metabolism. Simultaneously, imidacloprid can cause damage associated with metabolism as well as, neuronal damage, cellular stress, and impairment of the detoxification system. Regarding the thorax-abdomen fractions, glyphosate could lead to cytoskeleton reorganization and a reduction in defense mechanisms, whereas imidacloprid could affect the coordination and impairment of the oxidative stress response.
Collapse
Affiliation(s)
- Carlos Andrés Maya-Aguirre
- Instituto de Biotecnología, Facultad de Ciencias, Universidad Nacional de Colombia, Ciudad Universitaria, Avenida Carrera 30 N° 45-03, Bogota, D.C, Colombia
- Grupo Ciencias Básicas en Salud-CBS-FUCS, Fundación Universitaria de Ciencias de La Salud, Hospital Infanti L Universitario de San José, Carrera 54 No.67A-80, Bogota, D.C., Colombia
| | - Angela Torres
- Departmento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Ciudad Universitaria, Avenida Carrera 30 N° 45-03, Bogota, D.C., Colombia
| | - Luz Dary Gutiérrez-Castañeda
- Grupo Ciencias Básicas en Salud-CBS-FUCS, Fundación Universitaria de Ciencias de La Salud, Hospital Infanti L Universitario de San José, Carrera 54 No.67A-80, Bogota, D.C., Colombia
| | - Luz Mary Salazar
- Departmento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Ciudad Universitaria, Avenida Carrera 30 N° 45-03, Bogota, D.C., Colombia
| | - Yael Abreu-Villaça
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade Do Estado Do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20550-170, Brazil
| | - Alex Christian Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade Do Estado Do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20550-170, Brazil
| | - Nelson Enrique Arenas
- Facultad de Medicina, Universidad de Cartagena, Campus Zaragocilla, Barrio Zaragocilla, Carrera 50a #24-63, Cartagena de Indias, Bolivar, Colombia.
| |
Collapse
|
8
|
Liu L, Shi M, Wu Y, Xie X, Li S, Dai P, Gao J. Interactive effects of dinotefuran and Nosema ceranae on the survival status and gut microbial community of honey bees. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105808. [PMID: 38582580 DOI: 10.1016/j.pestbp.2024.105808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 04/08/2024]
Abstract
Growing evidences have shown that the decline in honey bee populations is mainly caused by the combination of multiple stressors. However, the impacts of parasitic Nosema ceranae to host fitness during long-term pesticide exposure-induced stress is largely unknown. In this study, the effects of chronic exposure to a sublethal dose of dinotefuran, in the presence or absence of N. ceranae, was examined in terms of survival, food consumption, detoxification enzyme activities and gut microbial community. The interaction between dinotefuran and Nosema ceranae on the survival of honey bee was synergistic. Co-exposure to dinotefuran and N. ceranae led to less food consumption and greater changes of enzyme activities involved in defenses against oxidative stress. Particularly, N. ceranae and dinotefuran-N. ceranae co-exposure significantly impacted the gut microbiota structure and richness in adult honey bees, while dinotefuran alone did not show significant alternation of core gut microbiota compared to the control group. We herein demonstrated that chronical exposure to dinotefuran decreases honey bee's survival but is not steadily associated with the gut microbiota dysbiosis; by contrast, N. ceranae parasitism plays a dominant role in the combination in influencing the gut microbial community of the host honey bee. Our findings provide a comprehensive understanding of combinatorial effects between biotic and abiotic stressors on one of the most important pollinators, honey bees.
Collapse
Affiliation(s)
- Linlin Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China
| | - Min Shi
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 201418, China
| | - Yanyan Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xianbing Xie
- Department of Laboratory Animal Science, Nanchang University, Nanchang 330031, China
| | - Shanshan Li
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China.
| | - Pingli Dai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jing Gao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
9
|
Motta EVS, Moran NA. The honeybee microbiota and its impact on health and disease. Nat Rev Microbiol 2024; 22:122-137. [PMID: 38049554 PMCID: PMC10998682 DOI: 10.1038/s41579-023-00990-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 12/06/2023]
Abstract
Honeybees (Apis mellifera) are key pollinators that support global agriculture and are long-established models for developmental and behavioural research. Recently, they have emerged as models for studying gut microbial communities. Earlier research established that hindguts of adult worker bees harbour a conserved set of host-restricted bacterial species, each showing extensive strain variation. These bacteria can be cultured axenically and introduced to gnotobiotic hosts, and some have basic genetic tools available. In this Review, we explore the most recent research showing how the microbiota establishes itself in the gut and impacts bee biology and health. Microbiota members occupy specific niches within the gut where they interact with each other and the host. They engage in cross-feeding and antagonistic interactions, which likely contribute to the stability of the community and prevent pathogen invasion. An intact gut microbiota provides protection against diverse pathogens and parasites and contributes to the processing of refractory components of the pollen coat and dietary toxins. Absence or disruption of the microbiota results in altered expression of genes that underlie immunity, metabolism, behaviour and development. In the field, such disruption by agrochemicals may negatively impact bees. These findings demonstrate a key developmental and protective role of the microbiota, with broad implications for bee health.
Collapse
Affiliation(s)
- Erick V S Motta
- Department of Integrative Biology, University of Texas, Austin, TX, USA
| | - Nancy A Moran
- Department of Integrative Biology, University of Texas, Austin, TX, USA.
| |
Collapse
|
10
|
Tassin de Montaigu C, Goulson D. Factors influencing butterfly and bumblebee richness and abundance in gardens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:167995. [PMID: 37939959 DOI: 10.1016/j.scitotenv.2023.167995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023]
Abstract
Gardens are often depicted as green sanctuaries, providing refuges for wildlife displaced from the countryside due to intensive farming. While gardens have been recognized for their positive impact on biodiversity conservation, few studies have investigated the impact of pesticide usage in domestic gardens. In this study, we explored how butterfly and bumblebee populations in gardens across the UK are influenced by habitat quality, urbanisation level and pesticide use. To achieve this, we engaged with participants in Garden BirdWatch, a weekly garden wildlife recording scheme operated by the British Trust for Ornithology. Participants in the study provided data on the attributes of their garden and surrounding area and were asked to complete a questionnaire about their pesticide practices. Of the 417 gardens from which we obtained useful data, we found that 32.6 % had pesticides applied to. Urbanisation and garden quality were the main factors influencing insect populations. Butterfly richness was lower in suburban and urban gardens and butterfly abundance lower only in suburban gardens when compared to rural gardens, but this relationship did not hold for bumblebees. Abundance of butterflies and bumblebees, but not their species richness, increased with the habitat quality of gardens. Butterflies were lower in abundance and richness in more northerly gardens, which was not the case for bumblebees. Effects of pesticides were relatively weak, but butterfly richness was 7 % lower in gardens applying any pesticide. Overall, our study shows that garden butterfly and bumblebee abundance and richness are strongly influenced by both extrinsic and intrinsic factors, and that garden management can have an important positive effect on insect population.
Collapse
Affiliation(s)
- Cannelle Tassin de Montaigu
- School of Life Sciences, Department of Evolution, Behaviour & Environment, University of Sussex, Falmer, East Sussex, United Kingdom.
| | - Dave Goulson
- School of Life Sciences, Department of Evolution, Behaviour & Environment, University of Sussex, Falmer, East Sussex, United Kingdom
| |
Collapse
|
11
|
Nouvian M, Foster JJ, Weidenmüller A. Glyphosate impairs aversive learning in bumblebees. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165527. [PMID: 37451452 DOI: 10.1016/j.scitotenv.2023.165527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Agrochemicals represent prominent anthropogenic stressors contributing to the ongoing global insect decline. While their impact is generally assessed in terms of mortality rates, non-lethal effects on fitness are equally important to insect conservation. Glyphosate, a commonly used herbicide, is toxic to many animal species, and thought to impact a range of physiological functions. In this study, we investigate the impact of long-term exposure to glyphosate on locomotion, phototaxis and learning abilities in bumblebees, using a fully automated high-throughput assay. We find that glyphosate exposure had a very slight and transient impact on locomotion, while leaving the phototactic drive unaffected. Glyphosate exposure also reduced attraction towards UV light when blue was given as an alternative and, most strikingly, impaired learning of aversive stimuli. Thus, glyphosate had specific actions on sensory and cognitive processes. These non-lethal perceptual and cognitive impairments likely represent a significant obstacle to foraging and predator avoidance for wild bumblebees exposed to glyphosate. Similar effects in other species could contribute to a widespread reduction in foraging efficiency across ecosystems, driven by the large-scale application of this herbicide. The high-throughput paradigm presented in this study can be adapted to investigate sublethal effects of other agrochemicals on bumblebees or other important pollinator species, opening up a critical new avenue for the study of anthropogenic stressors.
Collapse
Affiliation(s)
- Morgane Nouvian
- Department of Biology, University of Konstanz, Konstanz, Germany; Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany; Zukunftskolleg, University of Konstanz, Konstanz, Germany.
| | - James J Foster
- Department of Biology, University of Konstanz, Konstanz, Germany; Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Anja Weidenmüller
- Department of Biology, University of Konstanz, Konstanz, Germany; Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| |
Collapse
|
12
|
Lazarova S, Lozanova L, Neov B, Shumkova R, Balkanska R, Palova N, Salkova D, Radoslavov G, Hristov P. Composition and diversity of bacterial communities associated with honey bee foragers from two contrasting environments. BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:693-702. [PMID: 37545319 DOI: 10.1017/s0007485323000378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The honey bee is associated with a diverse community of microbes (viruses, bacteria, fungi, and protists), commonly known as the microbiome. Here, we present data on honey bee microbiota from two localities having different surrounding landscapes - mountain (the Rhodope Mountains) and lowland (the Danube plain). The bacterial communities of abdomen of adult bees were studied using amplicon sequencing of the 16S rRNA gene. The composition and dominance structure and their variability within and between localities, alpha and beta diversity, and core and differential taxa were compared at different hierarchical levels (operational taxonomic units to phylum). Seven genera (Lactobacillus, Gilliamella, Bifidobacterium, Commensalibacter, Bartonella, Snodgrassella, and Frischella), known to include core gut-associated phylotypes or species clusters, dominated (92-100%) the bacterial assemblages. Significant variations were found in taxa distribution across both geographical regions and within each apiary. Lactobacillus (Firmicutes) prevailed significantly in the mountain locality followed by Gilliamella and Bartonella (Proteobacteria). Bacteria of four genera, core (Bartonella and Lactobacillus) and non-core (Pseudomonas and Morganella), dominated the bee-associated assemblages of the Danube plain locality. Several ubiquitous bacterial genera (e.g., Klebsiella, Serratia, and Providencia), some species known also as potential and opportunistic bee pathogens, had been found in the lowland locality. Beta diversity analyses confirmed the observed differences in the bacterial communities from both localities. The occurrence of non-core taxa contributes substantially to higher microbial richness and diversity in bees from the Danube plain locality. We assume that the observed differences in the microbiota of honey bees from both apiaries are due to a combination of factors specific for each region. The surrounding landscape features of both localities and related vegetation, anthropogenic impact and land use intensity, the beekeeping management practices, and bee health status might all contribute to observed differences in bee microbiota traits.
Collapse
Affiliation(s)
- Stela Lazarova
- Department of Animal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Lyudmila Lozanova
- Department of Ecosystem Research, Environmental Risk Assessment and Conservation Biology, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Boyko Neov
- Department of Animal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Rositsa Shumkova
- Research Centre of Stockbreeding and Agriculture, Agricultural Academy, 4700 Smolyan, Bulgaria
| | - Ralitsa Balkanska
- Department 'Special Branches', Institute of Animal Science, Agricultural Academy, 2230 Kostinbrod, Bulgaria
| | - Nadezhda Palova
- Scientific Center of Agriculture, Agricultural Academy, Sredets 8300, Bulgaria
| | - Delka Salkova
- Department of Experimental Parasitology, Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Georgi Radoslavov
- Department of Animal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Peter Hristov
- Department of Animal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
13
|
Rutkowski D, Weston M, Vannette RL. Bees just wanna have fungi: a review of bee associations with nonpathogenic fungi. FEMS Microbiol Ecol 2023; 99:fiad077. [PMID: 37422442 PMCID: PMC10370288 DOI: 10.1093/femsec/fiad077] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/15/2023] [Accepted: 07/06/2023] [Indexed: 07/10/2023] Open
Abstract
Bee-fungus associations are common, and while most studies focus on entomopathogens, emerging evidence suggests that bees associate with a variety of symbiotic fungi that can influence bee behavior and health. Here, we review nonpathogenic fungal taxa associated with different bee species and bee-related habitats. We synthesize results of studies examining fungal effects on bee behavior, development, survival, and fitness. We find that fungal communities differ across habitats, with some groups restricted mostly to flowers (Metschnikowia), while others are present almost exclusively in stored provisions (Zygosaccharomyces). Starmerella yeasts are found in multiple habitats in association with many bee species. Bee species differ widely in the abundance and identity of fungi hosted. Functional studies suggest that yeasts affect bee foraging, development, and pathogen interactions, though few bee and fungal taxa have been examined in this context. Rarely, fungi are obligately beneficial symbionts of bees, whereas most are facultative bee associates with unknown or ecologically contextual effects. Fungicides can reduce fungal abundance and alter fungal communities associated with bees, potentially disrupting bee-fungi associations. We recommend that future study focus on fungi associated with non-honeybee species and examine multiple bee life stages to document fungal composition, abundance, and mechanistic effects on bees.
Collapse
Affiliation(s)
- Danielle Rutkowski
- 367 Briggs Hall, Department of Entomology and Nematology, University of California Davis, Davis, CA 95616, United States
| | - Makena Weston
- 367 Briggs Hall, Department of Entomology and Nematology, University of California Davis, Davis, CA 95616, United States
| | - Rachel L Vannette
- 367 Briggs Hall, Department of Entomology and Nematology, University of California Davis, Davis, CA 95616, United States
| |
Collapse
|
14
|
Zioga E, White B, Stout JC. Pesticide mixtures detected in crop and non-target wild plant pollen and nectar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162971. [PMID: 36958551 DOI: 10.1016/j.scitotenv.2023.162971] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 05/17/2023]
Abstract
Cultivation of mass flowering entomophilous crops benefits from the presence of managed and wild pollinators, who visit flowers to forage on pollen and nectar. However, management of these crops typically includes application of pesticides, the presence of which may pose a hazard for pollinators foraging in an agricultural environment. To determine the levels of potential exposure to pesticides, their presence and concentration in pollen and nectar need assessing, both within and beyond the target crop plants. We selected ten pesticide compounds and one metabolite and analysed their occurrence in a crop (Brassica napus) and a wild plant (Rubus fruticosus agg.), which was flowering in field edges. Nectar and pollen from both plants were collected from five spring and five winter sown B. napus fields in Ireland, and were tested for pesticide residues, using QuEChERS and Liquid Chromatography tandem mass spectrometry (LC-MS/MS). Pesticide residues were detected in plant pollen and nectar of both plants. Most detections were from fields with no recorded application of the respective compounds in that year, but higher concentrations were observed in recently treated fields. Overall, more residues were detected in B. napus pollen and nectar than in the wild plant, and B. napus pollen had the highest mean concentration of residues. All matrices were contaminated with at least three compounds, and the most frequently detected compounds were fungicides. The most common compound mixture was comprised of the fungicides azoxystrobin, boscalid, and the neonicotinoid insecticide clothianidin, which was not recently applied on the fields. Our results indicate that persistent compounds like the neonicotinoids, should be continuously monitored for their presence and fate in the field environment. The toxicological evaluation of the compound mixtures identified in the present study should be performed, to determine their impacts on foraging insects that may be exposed to them.
Collapse
Affiliation(s)
- Elena Zioga
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland.
| | - Blánaid White
- School of Chemical Sciences, DCU Water Institute, Dublin City University, Dublin 9, Ireland
| | - Jane C Stout
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
15
|
Martín-Blázquez R, Calhoun AC, Sadd BM, Cameron SA. Gene expression in bumble bee larvae differs qualitatively between high and low concentration imidacloprid exposure levels. Sci Rep 2023; 13:9415. [PMID: 37296299 PMCID: PMC10256756 DOI: 10.1038/s41598-023-36232-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Neonicotinoid pesticides negatively impact bumble bee health, even at sublethal concentrations. Responses to the neonicotinoid imidacloprid have been studied largely at individual adult and colony levels, focusing mostly on behavioral and physiological effects. Data from developing larvae, whose health is critical for colony success, are deficient, particularly at the molecular level where transcriptomes can reveal disruption of fundamental biological pathways. We investigated gene expression of Bombus impatiens larvae exposed through food provisions to two field-realistic imidacloprid concentrations (0.7 and 7.0 ppb). We hypothesized both concentrations would alter gene expression, but the higher concentration would have greater qualitative and quantitative effects. We found 678 genes differentially expressed under both imidacloprid exposures relative to controls, including mitochondrial activity, development, and DNA replication genes. However, more genes were differentially expressed with higher imidacloprid exposure; uniquely differentially expressed genes included starvation response and cuticle genes. The former may partially result from reduced pollen use, monitored to verify food provision use and provide additional context to results. A smaller differentially expressed set only in lower concentration larvae, included neural development and cell growth genes. Our findings show varying molecular consequences under different field-realistic neonicotinoid concentrations, and that even low concentrations may affect fundamental biological processes.
Collapse
Affiliation(s)
- Rubén Martín-Blázquez
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Evolutionary Ecology, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Isla de la Cartuja, Seville, Spain.
| | - Austin C Calhoun
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Ben M Sadd
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Sydney A Cameron
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
16
|
Straw EA, Mesnage R, Brown MJF, Antoniou MN. No impacts of glyphosate or Crithidia bombi, or their combination, on the bumblebee microbiome. Sci Rep 2023; 13:8949. [PMID: 37268667 PMCID: PMC10238469 DOI: 10.1038/s41598-023-35304-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/16/2023] [Indexed: 06/04/2023] Open
Abstract
Pesticides are recognised as a key threat to pollinators, impacting their health in many ways. One route through which pesticides can affect pollinators like bumblebees is through the gut microbiome, with knock-on effects on their immune system and parasite resistance. We tested the impacts of a high acute oral dose of glyphosate on the gut microbiome of the buff tailed bumblebee (Bombus terrestris), and glyphosate's interaction with the gut parasite (Crithidia bombi). We used a fully crossed design measuring bee mortality, parasite intensity and the bacterial composition in the gut microbiome estimated from the relative abundance of 16S rRNA amplicons. We found no impact of either glyphosate, C. bombi, or their combination on any metric, including bacterial composition. This result differs from studies on honeybees, which have consistently found an impact of glyphosate on gut bacterial composition. This is potentially explained by the use of an acute exposure, rather than a chronic exposure, and the difference in test species. Since A. mellifera is used as a model species to represent pollinators more broadly in risk assessment, our results highlight that caution is needed in extrapolating gut microbiome results from A. mellifera to other bee species.
Collapse
Affiliation(s)
- Edward A Straw
- Department of Botany, Trinity College Dublin, Dublin, Ireland.
- Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, UK.
| | - Robin Mesnage
- Buchinger Wilhelmi Clinic, Wilhelmi-Beck-Straße 27, 88662, Überlingen, Germany.
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences and Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, SE1 9RT, UK.
| | - Mark J F Brown
- Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, UK
| | - Michael N Antoniou
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences and Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, SE1 9RT, UK
| |
Collapse
|
17
|
Thompson LJ, Stout JC, Stanley DA. Contrasting effects of fungicide and herbicide active ingredients and their formulations on bumblebee learning and behaviour. J Exp Biol 2023; 226:297167. [PMID: 36861783 PMCID: PMC10112909 DOI: 10.1242/jeb.245180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023]
Abstract
Fungicides and herbicides are two of the most heavily applied pesticide classes in the world, but receive little research attention with regards to their potential impacts on bees. As they are not designed to target insects, the mechanisms behind potential impacts of these pesticides are unclear. It is therefore important to understand their influence at a range of levels, including sublethal impacts on behaviours such as learning. We used the proboscis extension reflex (PER) paradigm to assess how the herbicide glyphosate and the fungicide prothioconazole affect bumblebee olfactory learning. We also assessed responsiveness, and compared the impacts of these active ingredients and their respective commercial formulations (Roundup Biactive and Proline). We found that learning was not impaired by either formulation but, of the bees that displayed evidence of learning, exposure to prothioconazole active ingredient increased learning level in some situations, while exposure to glyphosate active ingredient resulted in bumblebees being less likely to respond to antennal stimulation with sucrose. Our data suggest that fungicides and herbicides may not negatively impact olfactory learning ability when bumblebees are exposed orally to field-realistic doses in a lab setting, but that glyphosate has the potential to cause changes in responsiveness in bees. As we found impacts of active ingredients and not commercial formulations, this suggests that co-formulants may modify impacts of active ingredients in the products tested on olfactory learning without being toxic themselves. More research is needed to understand the mechanisms behind potential impacts of fungicides and herbicides on bees, and to evaluate the implications of behavioural changes caused by glyphosate and prothioconazole for bumblebee fitness.
Collapse
Affiliation(s)
- Linzi J Thompson
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland.,Earth Institute, University College Dublin, Dublin 4, Ireland
| | - Jane C Stout
- School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Dara A Stanley
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland.,Earth Institute, University College Dublin, Dublin 4, Ireland
| |
Collapse
|