1
|
Xuan Y, Shen D, Long Y, Shentu J, Lu L, Zhu M. Enlarging effects of microplastics on adsorption, desorption and bioaccessibility of chlorinated organophosphorus flame retardants in landfill soil particle-size fractions. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135717. [PMID: 39241362 DOI: 10.1016/j.jhazmat.2024.135717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Chlorinated organophosphorus flame retardants (Cl-OPFRs) and microplastics (MPs) are emerging pollutants in landfills, but their synergistic behaviors and triggering risks were rarely focused on, impeding the resource utilization of landfill soils. This study systematically investigated the adsorption/desorption behaviors, bioaccessibility and human health risks of Cl-OPFRs in landfill soil particle-size fractions coexisted with MPs under simulated gastrointestinal conditions. The results showed that the adsorption capacity and bioaccessibility of Cl-OPFRs in humus soil were higher than that in subsoil. MPs promoted the adsorption of tris(1-chloro-2-methylethyl) phosphate (TCPP) and tris(1,3-dichloro-2-propyl) phosphate (TDCPP) in landfill soils by up to 34.6 % and 34.1 % respectively, but inhibited the adsorption of tris(2-chloroethyl) phosphate (TCEP) by up to 43.6 %. The bioaccessibility of Cl-OPFRs in landfill soils was positively correlated with MPs addition ratio but negatively correlated with the KOW of Cl-OPFRs, soil organic matter and particle size. MPs addition increased the residual concentration of Cl-OPFRs and significantly increased the bioaccessibility of TCEP and TDCPP by up to 33.1 % in landfill soils, resulting in higher carcinogenic and noncarcinogenic risks. The study presents the first series of the combined behavior and effects of MPs and Cl-OPFRs in landfill soils, and provides a theoretical reference for landfill risk management.
Collapse
Affiliation(s)
- Yujie Xuan
- School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Dongsheng Shen
- School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yuyang Long
- School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jiali Shentu
- School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Li Lu
- School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Min Zhu
- School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou 310012, China; Key Laboratory of Environment Remediation and Ecological Health (Zhejiang University), Ministry of Education, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, China.
| |
Collapse
|
2
|
Huang F, Chen L, Zhou Y, Huang J, Wu F, Hu Q, Chang N, Qiu T, Zeng Y, He H, White JC, Yang W, Fang L. Exogenous selenium promotes cadmium reduction and selenium enrichment in rice: Evidence, mechanisms, and perspectives. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135043. [PMID: 38941835 DOI: 10.1016/j.jhazmat.2024.135043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Cadmium (Cd) accumulation in rice, a global environmental issue, poses a significant threat to human health due to its widespread presence and potential transfer through the food chain. Selenium (Se), an essential micronutrient for humans and plants, can reduce Cd uptake in rice and alleviate Cd-induced toxicity. However, the effects and mechanisms of Se supplementation on rice performance in Cd-contaminated soil remain largely unknown. Here, a global meta-analysis was conducted to evaluate the existing knowledge on the effects and mechanisms by which Se supplementation impacts rice growth and Cd accumulation. The result showed that Se supplementation has a significant positive impact on rice growth in Cd-contaminated soil. Specifically, Se supplementation decreased Cd accumulation in rice roots by 16.3 % (11.8-20.6 %), shoots by 24.6 % (19.9-29.1 %), and grain by 37.3 % (33.4-40.9 %), respectively. The grain Cd reduction was associated with Se dose and soil Cd contamination level but not Se type or application method. Se influences Cd accumulation in rice by regulating the expression of Cd transporter genes (OSLCT1, OSHMA2, and OSHMA3), enhancing Cd sequestration in the cell walls, and reducing Cd bioavailability in the soil. Importantly, Se treatment promoted Se enrichment in rice and alleviated oxidative damage associated with Cd exposure by stimulating photosynthesis and activating antioxidant enzymes. Overall, Se treatment mitigated the health hazard associated with Cd in rice grains, particularly in lightly contaminated soil. These findings reveal that Se supplementation is a promising strategy for simultaneous Cd reduction and Se enrichment in rice.
Collapse
Affiliation(s)
- Fengyu Huang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Li Chen
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
| | - Ying Zhou
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Jingqiu Huang
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Fang Wu
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Qing Hu
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Nan Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Haoran He
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06511, United States
| | - Wenchao Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Linchuan Fang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
3
|
Ofori-Agyemang F, Burges A, Waterlot C, Lounès-Hadj Sahraoui A, Tisserant B, Mench M, Oustrière N. Phytomanagement of a metal-contaminated agricultural soil with Sorghum bicolor, humic / fulvic acids and arbuscular mycorrhizal fungi near the former Pb/Zn metaleurop Nord smelter. CHEMOSPHERE 2024; 362:142624. [PMID: 38889872 DOI: 10.1016/j.chemosphere.2024.142624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
As many contaminated agricultural soils can no longer be used for food crops, lignocellulosic energy crops matter due to their ability to grow on such soils and to produce biomass for biosourced materials and biofuels, thereby reducing the pressure on the limited arable lands. Sorghum bicolor (L.) Moench, can potentially produce a high biomass suitable for producing bioethanol, renewable gasoline, diesel, and sustainable aircraft fuel, despite adverse environmental conditions (e.g. drought, contaminated soils). A 2-year field trial was carried out for the first time in the northern France for assessing sorghum growth on a Cd, Pb and Zn-contaminated agricultural soil amended with humic/fulvic acid, alone and paired with arbuscular mycorrhizal fungi. Sorghum produced on average (in t DW ha-1): 12.4 in year 1 despite experiencing a severe drought season and 15.3 in year 2. Humic/fulvic acids (Lonite 80SP®) and arbuscular mycorrhizal fungi did not significantly act as biostimulants regarding the shoot DW yield and metal uptake of sorghum. The annual shoot Cd, Pb and Zn removals averaged 0.14, 0.20 and 1.97 kg ha-1, respectively. Sorghum cultivation and its metal uptake induced a significant decrease in 0.01 M Ca(NO3)2-extractable soil Cd, Pb and Zn concentrations by 95%, 73% and 95%, respectively, in year 2. Soluble and exchangeable soil Cd, Pb and Zn would be progressively depleted in subsequent crops, which should result in lower pollutant linkages and enhanced ecosystem services. This evidenced sorghum as a relevant plant species for phytomanaging the large area (750 ha) with metal-contaminated soil near the former Pb/Zn Metaleurop Nord smelter, amidst ongoing climate change. The potential bioethanol yield of the harvested sorghum biomass was 5589 L ha-1. Thus sorghum would be a promising candidate for bioethanol production, even in this northern French region.
Collapse
Affiliation(s)
- Felix Ofori-Agyemang
- Univ. Lille, IMT Nord-Europe, Univ. Artois, JUNIA, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France.
| | - Aritz Burges
- Univ. Lille, IMT Nord-Europe, Univ. Artois, JUNIA, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France.
| | - Christophe Waterlot
- Univ. Lille, IMT Nord-Europe, Univ. Artois, JUNIA, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France.
| | - Anissa Lounès-Hadj Sahraoui
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-UR 4492), Université Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, CS 80699, 62228 Calais, France.
| | - Benoît Tisserant
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-UR 4492), Université Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, CS 80699, 62228 Calais, France.
| | - Michel Mench
- Univ. Bordeaux, INRAE, BIOGECO, 33615 Pessac Cedex, France.
| | - Nadège Oustrière
- Univ. Lille, IMT Nord-Europe, Univ. Artois, JUNIA, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France.
| |
Collapse
|
4
|
Hiller E, Faragó T, Kolesár M, Filová L, Mihaljevič M, Jurkovič Ľ, Demko R, Machlica A, Štefánek J, Vítková M. Metal(loid)s in urban soil from historical municipal solid waste landfill: Geochemistry, source apportionment, bioaccessibility testing and human health risks. CHEMOSPHERE 2024; 362:142677. [PMID: 38908448 DOI: 10.1016/j.chemosphere.2024.142677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Landfills, especially those poorly managed, can negatively affect the environment and human beings through chemical contamination of soils and waters. This study investigates the soils of a historical municipal solid waste (MSW) landfill situated in the heart of a residential zone in the capital of Slovakia, Bratislava, with an emphasis on metal (loid) contamination and its consequences. Regardless of the depth, many of the soils exhibited high metal (loid) concentrations, mainly Cd, Cu, Pb, Sb, Sn and Zn (up to 24, 2620, 2420, 134, 811 and 6220 mg/kg, respectively), classifying them as extremely contaminated based on the geo-accumulation index (Igeo >5). The stable lead isotopic ratios of the landfill topsoil varied widely (1.1679-1.2074 for 206Pb/207Pb and 2.0573-2.1111 for 208Pb/206Pb) and indicated that Pb contained a natural component and an anthropogenic component, likely municipal solid waste incineration (MSWI) ash and construction waste. Oral bioaccessibility of metal (loid)s in the topsoil was variable with Cd (73.2-106%) and Fe (0.98-2.10%) being the most and least bioaccessible, respectively. The variation of metal (loid) bioaccessibility among the soils could be explained by differences in their geochemical fractionation as shown by positive correlations of bioaccessibility values with the first two fractions of BCR (Community Bureau of Reference) sequential extraction for As, Cd, Mn, Ni, Pb, Sn and Zn. The results of geochemical fractionation coupled with the mineralogical characterisation of topsoil showed that the reservoir of bioaccessible metal (loid)s was calcite and Fe (hydr)oxides. Based on aqua regia metal (loid) concentrations, a non-carcinogenic risk was demonstrated for children (HI = 1.59) but no risk taking into account their bioaccessible concentrations (HI = 0.65). This study emphasises the need for detailed research of the geochemistry of wastes deposited in urban soils to assess the potentially hazardous sources and determine the actual bioaccessibility and human health risks of the accumulated metal (loid)s.
Collapse
Affiliation(s)
- Edgar Hiller
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovak Republic.
| | - Tomáš Faragó
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovak Republic.
| | - Martin Kolesár
- DEKONTA Slovensko, Ltd., Odeská 49, 821 06 Bratislava, Slovak Republic.
| | - Lenka Filová
- Department of Applied Mathematics and Statistics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská dolina 1, 842 48 Bratislava, Slovak Republic.
| | - Martin Mihaljevič
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic.
| | - Ľubomír Jurkovič
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovak Republic.
| | - Rastislav Demko
- Department of Older Geological Formations, Division of Geology, State Geological Institute of Dionýz Štúr, Mlynská dolina 1, 817 04 Bratislava 11, Slovak Republic.
| | - Andrej Machlica
- DEKONTA Slovensko, Ltd., Odeská 49, 821 06 Bratislava, Slovak Republic.
| | - Ján Štefánek
- DEKONTA Slovensko, Ltd., Odeská 49, 821 06 Bratislava, Slovak Republic.
| | - Martina Vítková
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha - Suchdol, Czech Republic.
| |
Collapse
|
5
|
Billmann M, Pelfrêne A, Hulot C, Papin A, Pauget B. Toward a more realistic estimate of exposure to chromium and nickel in soils of geogenic and/or anthropogenic origin: importance of oral bioaccessibility. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:273. [PMID: 38958773 DOI: 10.1007/s10653-024-02041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/20/2024] [Indexed: 07/04/2024]
Abstract
To enhance risk assessment for contaminated sites, incorporating bioavailability through bioaccessibility as a corrective factor to total concentration is essential to provide a more realistic estimate of exposure. While the main in vitro tests have been validated for As, Cd, and/or Pb, their potential for assessing the bioaccessibility of additional elements remains underexplored. In this study, the physicochemical parameters, pseudototal Cr and Ni concentrations, soil phase distribution, and oral bioaccessibility of twenty-seven soil samples were analysed using both the ISO 17924 standard and a simplified test based on hydrochloric acid. The results showed wide variability in terms of the concentrations (from 31 to 21,079 mg kg-1 for Cr, and from 26 to 11,663 mg kg-1 for Ni) and generally low bioaccessibility for Cr and Ni, with levels below 20% and 30%, respectively. Bioaccessibility variability was greater for anthropogenic soils, while geogenic enriched soils exhibited low bioaccessibility. The soil parameters had an influence on bioaccessibility, but the effects depended on the soils of interest. Sequential extractions provided the most comprehensive explanation for bioaccessibility. Cr and Ni were mostly associated with the residual fraction, indicating limited bioaccessibility. Ni was distributed in all phases, whereas Cr was absent from the most mobile phase, which may explain the lower bioaccessibility of Cr compared to that of Ni. The study showed promising results for the use of the simplified test to predict Cr and Ni bioaccessibility, and its importance for more accurate human exposure evaluation and effective soil management practices.
Collapse
Affiliation(s)
- Madeleine Billmann
- Laboratoire de Génie Civil et géo⁃Environnement - LGCgE, Univ. Lille, IMT Nord Europe, Univ. Artois, JUNIA, ULR 4515, 48 Boulevard Vauban, 59000, Lille, France.
- Agence de l'Environnement et de la Maîtrise de l'Énergie, 20 Avenue du Grésillé, BP 90406, 49004, Angers Cedex 01, France.
| | - Aurélie Pelfrêne
- Laboratoire de Génie Civil et géo⁃Environnement - LGCgE, Univ. Lille, IMT Nord Europe, Univ. Artois, JUNIA, ULR 4515, 48 Boulevard Vauban, 59000, Lille, France.
| | - Corinne Hulot
- Ineris, Parc Technologique Alata, BP 2, 60550, Verneuil⁃en⁃Halatte, France
| | - Arnaud Papin
- Ineris, Parc Technologique Alata, BP 2, 60550, Verneuil⁃en⁃Halatte, France
| | | |
Collapse
|
6
|
Gaberšek M, Gosar M. Oral bioaccessibility of potentially toxic elements in various urban environmental media. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:259. [PMID: 38900276 PMCID: PMC11190014 DOI: 10.1007/s10653-024-02073-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/08/2024] [Indexed: 06/21/2024]
Abstract
An important aspect of geochemical studies is determining health hazard of potentially toxic elements (PTEs). Key information on PTEs behaviour in the human body in case of their ingestion is provided with the use of in vitro bioaccessibility tests. We analysed and compared oral bioaccessibility of a wide range of PTEs (As, Cd, Ce, Cr, Cu, Hg, La, Li, Ni, Pb, Sb, Sn, Zn), including some that are not often studied but might pose a human health hazard, in soil, attic dust, street dust, and household dust, using Unified BARGE Method (UBM). Additionally, feasibility of usage of scanning electron microscope techniques in analyses of solid residuals of UBM phases was tested. Results show that bioaccessible fractions (BAFs) of PTEs vary significantly between individual samples of the same medium, between different media and between the gastric and gastro-intestinal phases. In soil, attic dust and street dust, bioaccessibility of individual PTE is mostly higher in gastric than in gastro-intestinal phase. The opposite is true for PTEs in household dust. In all four media, with the exception of Pb in household dust, among the most bioaccessible PTEs in gastric phase are Cd, Cu, Pb, and Zn. During the transition from the stomach to small intestine, the mean BAFs of most elements in soil, attic dust, and street dust decreases. The most bioaccessible PTEs in gastro-intestinal phase are Cu, Cd, Ni, and As. Micromorphological and chemical characterisation at individual particle level before and after bioaccessibility test contribute significantly to the understanding of oral bioaccessibility.
Collapse
Affiliation(s)
- Martin Gaberšek
- Geological Survey of Slovenia, Dimičeva Ulica 14, 1000, Ljubljana, Slovenia.
| | - Mateja Gosar
- Geological Survey of Slovenia, Dimičeva Ulica 14, 1000, Ljubljana, Slovenia
| |
Collapse
|
7
|
Menegaki S, Kelepertzis E, Kypritidou Z, Lampropoulou A, Chrastný V, Aidona E, Bourliva A, Komárek M. Characterization of the inhalable fraction (< 10 μm) of soil from highly urbanized and industrial environments: magnetic measurements, bioaccessibility, Pb isotopes and health risk assessment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:230. [PMID: 38849623 PMCID: PMC11161548 DOI: 10.1007/s10653-024-02009-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/22/2024] [Indexed: 06/09/2024]
Abstract
Soil in urban and industrial areas is one of the main sinks of pollutants. It is well known that there is a strong link between metal(loid)s bioaccessibility by inhalation pathway and human health. The critical size fraction is < 10 μm (inhalable fraction) since these particles can approach to the tracheobronchial region. Here, soil samples (< 10 μm) from a highly urbanized area and an industrialized city were characterized by combining magnetic measurements, bioaccessibility of metal(loids) and Pb isotope analyses. Thermomagnetic analysis indicated that the main magnetic mineral is impure magnetite. In vitro inhalation analysis showed that Cd, Mn, Pb and Zn were the elements with the highest bioaccessibility rates (%) for both settings. Anthropogenic sources that are responsible for Pb accumulation in < 10 μm fraction are traffic emissions for the highly urbanized environment, and Pb related to steel emissions and coal combustion in cement plant for the industrial setting. We did not establish differences in the Pb isotope composition between pseudo-total and bioaccessible Pb. The health risk assessment via the inhalation pathway showed limited non-carcinogenic risks for adults and children. The calculated risks based on pseudo-total and lung bioaccessible concentrations were identical for the two areas of contrasting anthropogenic pressures. Carcinogenic risks were under the threshold levels (CR < 10-4), with Ni being the dominant contributor to risk. This research contributes valuable insights into the lung bioaccessibility of metal(loids) in urban and industrial soils, incorporating advanced analytical techniques and health risk assessments for a comprehensive understanding.
Collapse
Affiliation(s)
- Stavroula Menegaki
- Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, 15784, Panepistimiopolis, ZographouAthens, Greece
| | - Efstratios Kelepertzis
- Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, 15784, Panepistimiopolis, ZographouAthens, Greece.
| | - Zacharenia Kypritidou
- Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, 15784, Panepistimiopolis, ZographouAthens, Greece
| | - Anastasia Lampropoulou
- Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, 15784, Panepistimiopolis, ZographouAthens, Greece
| | - Vladislav Chrastný
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague-Suchdol, Czech Republic
| | - Elina Aidona
- Department of Geophysics, Faculty of Geology, School of Geology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anna Bourliva
- Directorate of Secondary Education of Western Thessaloniki, 56430, Thessaloniki, Greece
| | - Michael Komárek
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague-Suchdol, Czech Republic
| |
Collapse
|
8
|
Chen XC, Huang ZJ, Wang A, Yu JY, Zhang JY, Xiao ZJ, Cui XY, Liu XH, Yin NY, Cui YS. Immobilisation remediation of arsenic-contaminated soils with promising CaAl-layered double hydroxide and bioavailability, bioaccessibility, and speciation-based health risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134096. [PMID: 38522195 DOI: 10.1016/j.jhazmat.2024.134096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Arsenic (As)-contaminated soil poses great health risk to human mostly through inadvertent oral exposure. We investigated CaAl-layered double hydroxide (CaAl-LDH), a promising immobilising agent, for the remediation of As-contaminated Chinese soils. The effects on specific soil properties and As fractionation were analyzed, and changes in the health risk of soil As were accurately assessed by means of advanced in vivo mice model and in vitro PBET-SHIME model. Results showed that the application of CaAl-LDH significantly increased soil pH and concentration of Fe and Al oxides, and effectively converted active As fractions into the most stable residual fraction, guaranteeing long-term remediation stability. Based on in vivo test, As relative bioavailability was significantly reduced by 37.75%. Based on in vitro test, As bioaccessibility in small intestinal and colon phases was significantly reduced by 25.65% and 28.57%, respectively. Furthermore, As metabolism (reduction and methylation) by the gut microbiota inhabiting colon was clearly observed. After immobilisation with CaAl-LDH, the concentration of bioaccessible As(Ⅴ) in the colon fluid was significantly reduced by 61.91%, and organic As (least toxic MMA(V) and DMA(V)) became the main species, which further reduced the health risk of soil As. In summary, CaAl-LDH proved to be a feasible option for immobilisation remediation of As-contaminated soils, and considerable progress was made in relevant health risk assessment.
Collapse
Affiliation(s)
- Xiao-Chen Chen
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, 2 Wulongjiangbei Road, Fuzhou 350108, PR China
| | - Zhen-Jia Huang
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, 2 Wulongjiangbei Road, Fuzhou 350108, PR China; Zhongke Tongheng Environmental Technology Co. Ltd.,1300 Jimei Road, Xiamen 361021, PR China
| | - Ao Wang
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, 2 Wulongjiangbei Road, Fuzhou 350108, PR China
| | - Jian-Ying Yu
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, 2 Wulongjiangbei Road, Fuzhou 350108, PR China; The Second Geological Exploration Institute, China Metallurgical Geology Bureau, 1 Kejidong Road, Fuzhou 350108, PR China
| | - Jian-Yu Zhang
- Jiangsu Longchang Chemical Co. Ltd., 1 Qianjiang Road, Rugao 226532, PR China
| | - Zi-Jun Xiao
- Quanzhou Yangyu Soil Technology Co. Ltd., 9 Huize Road, Quanzhou 362100, PR China
| | - Xiao-Yu Cui
- School of Environmental Science and Engineering, Tianjin University, 135 Yaguan Road, Tianjin 300350, PR China
| | - Xian-Hua Liu
- School of Environmental Science and Engineering, Tianjin University, 135 Yaguan Road, Tianjin 300350, PR China
| | - Nai-Yi Yin
- College of Resources and Environment, University of Chinese Academy of Sciences, 380 Huaibeizhuang, Beijing 101408, PR China
| | - Yan-Shan Cui
- College of Resources and Environment, University of Chinese Academy of Sciences, 380 Huaibeizhuang, Beijing 101408, PR China.
| |
Collapse
|
9
|
Lima JZ, Ogura AP, Espíndola ELG, Ferreira da Silva E, Rodrigues VGS. Post-sorption of Cd, Pb, and Zn onto peat, compost, and biochar: Short-term effects of ecotoxicity and bioaccessibility. CHEMOSPHERE 2024; 352:141521. [PMID: 38395370 DOI: 10.1016/j.chemosphere.2024.141521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/01/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Contamination by potentially toxic metals and metalloids (PTMs) has become a significant health and environmental issue worldwide. Sorption has emerged as one of the most prominent strategies for remediating both soil and water contamination. New sorbents are being developed to provide economically viable and environmentally sound alternatives, in alignment with the principles of the Sustainable Development Goals. This research aimed to assess the potential effects on human health and environmental toxicity following the sorption of cadmium (Cd), lead (Pb), and zinc (Zn) using peat, compost, and biochar as sorbents. The peat was collected in Brazil, a country with a tropical climate, while the compost and biochar were produced from the organic fraction of municipal solid waste (OFMSW). In terms of bioaccessibility, the results showed the following order: compost < biochar < peat for Pb, and compost < peat < biochar for Cd and Zn. There was a significant growth inhibition for Eruca sativa and Zea mays exposed to increasing concentrations of PTMs treated with peat and compost. The presence of contaminants played a decisive role on immobilization of neonates of Ceriodaphnia silvestrii after treatments with compost and, especially, peat. However, the biochar addition rate caused a significant influence on the outcomes of ecotoxicity across all tested species. Although the samples treated with biochar exhibited lower residual concentrations of PTMs than those treated with compost and peat, the inherent toxicity of biochar might be attributed to the material itself. The exposure to residual PTM concentrations post-desorption caused ecotoxic effects on tested species, emphasizing the need to assess PTM desorption potential. Peat, compost, and biochar are promising alternatives for the sorption of PTMs, but the addition rates must be properly adjusted to avoid the occurrence of undesirable ecotoxicological effects. This research offers valuable insights for sustainable environmental management and protection by thoroughly investigating the impacts of different sorbents and contaminants on aquatic and terrestrial ecosystems.
Collapse
Affiliation(s)
- Jacqueline Zanin Lima
- Department of Geotechnical Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, 13560-970, Brazil; GeoBioTec, Department of Geoscience, University of Aveiro, Campus of Santiago, Aveiro, 3810-193, Portugal.
| | - Allan Pretti Ogura
- PPG-SEA and NEEA/LPB/SHS, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Evaldo Luiz Gaeta Espíndola
- PPG-SEA and NEEA/LPB/SHS, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Eduardo Ferreira da Silva
- GeoBioTec, Department of Geoscience, University of Aveiro, Campus of Santiago, Aveiro, 3810-193, Portugal
| | | |
Collapse
|
10
|
Wu MW, Dong WJ, Guan DX, Li SW, Ma LQ. Total contents, fractionation and bioaccessibility of nine heavy metals in household dust from 14 cities in China. ENVIRONMENTAL RESEARCH 2024; 243:117842. [PMID: 38065384 DOI: 10.1016/j.envres.2023.117842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 02/06/2024]
Abstract
The potential health risk caused by long-term exposure to heavy metals in household dust is not only depended on their total content, but also bioaccessibility. In this study, twenty-one dust samples were collected from residential buildings, schools, and laboratories in 14 provincial-capital/industrial cities of China, aiming to evaluate the total contents, fractionation, bioaccessibility and health risks of nine heavy metals (As, Cd, Cr, Ni, Pb, Mn, Zn, Fe, and Cu). Results showed that the highest levels of Cd, Cr, Ni and Zn were found in laboratory dust, As, Pb and Mn in school dust, and Fe and Cu in residential dust, indicating different source profiles of the heavy metals. The mean bioaccessibility of the heavy metals across all samples as evaluated using SBRC (Solubility Bioavailability Research Consortium), IVG (In Vitro Gastrointestinal), and PBET (Physiologically Based Extraction Test) assays was 58.4%, 32.4% and 17.2% in gastric phase (GP), and 24.9%, 21.9% and 9.39% in intestinal phase (IP), respectively. Cadmium had the highest content in the fractions of E1+C2 (43.7%), as determined by sequential extraction, and Pb, Mn, and Zn had a higher content in E1+C2+F3 (64.2%, 67.2%, 78.8%), resulting in a higher bioaccessibility of these heavy metals than others. Moreover, the bioaccessibility of most heavy metals was inversely related to dust pH (R = -0.18 in GP; -0.18 in IP; P < 0.01) and particle size, while a positive correlation was observed with total organic carbon (R = 0.40 in GP; 0.38 in IP; P < 0.01). The exposure risk calculated by the highest bioaccessibility was generally lower than that calculated by the total content. However, Pb in one school dust sample had an unacceptable carcinogenic risk (adult risk = 1.19 × 10-4; child risk = 1.08 × 10-4). This study suggests that bioaccessibility of heavy metals in household dust is likely related to geochemical fractions and physical/chemical properties. Further research is needed to explore the sources of bioaccessible heavy metals in household dust.
Collapse
Affiliation(s)
- Ming-Wen Wu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen-Jie Dong
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Shi-Wei Li
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Lena Q Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
11
|
Vandeuren A, Pereira B, Kaba AJ, Titeux H, Delmelle P. Environmental bioavailability of arsenic, nickel and chromium in soils impacted by high geogenic and anthropogenic background contents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166073. [PMID: 37544461 DOI: 10.1016/j.scitotenv.2023.166073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
High arsenic, chromium and nickel in soils can pose a hazard to the ecosystem and/or human health. Large areas can be affected by elevated potentially toxic elements (PTE) background contents, entailing a significant effort for managing the potential risk. Assessing the environmental hazard associated to PTE-contaminated soils requires the determination of soil PTE environmental bioavailability, which reflects the capacity of these elements to be transferred to living organisms. Here we assess the environmental bioavailability of As, Cr and Ni in topsoils from the Liège basin and Belgian Lorraine, two areas in Wallonia, Belgium, affected by elevated As, Cr and Ni background contents. The source of soil As, Cr and Ni differs in Liège and Lorraine: anthropogenic in the former location and geogenic in the latter. The environmental bioavailability of PTE was determined using two complementary approaches: (1) by chemical fractionation with the Community Bureau of Reference (BCR) three-step sequential extraction protocol and (2) by estimating the phytoavailability using a plant-based biotest (Lolium multiflorum as plant model). The results show that total As (6-130 mg·kg-1), Cr (15-268 mg·kg-1), and Ni (8-140 mg·kg-1) contents in the Liège and Lorraine soils frequently exceed the soil clean-up standards. However, no positive correlation was found between the total contents and BCR extraction results or rye-grass contents, except for As in Liège soils. Total As, Cr or Ni contents surpassing soil standards do not necessarily result in elevated mobile, potentially mobilizable and phytoavailable contents. In general, environmental bioavailability of As, Cr and Ni is higher in soils from Liège basin compared to those sampled in Belgian Lorraine. The mobile and potentially mobilizable fractions of As, Cr and Ni account for <30 % of their total contents following the BCR extractions. Our study provides valuable information for sustainable management at the regional scale of soils containing high PTE contents.
Collapse
Affiliation(s)
- Aubry Vandeuren
- Environmental Sciences, Earth and Life Institute, UCLouvain, Croix du Sud 2/L7.05.10, B-1348 Louvain-la-Neuve, Belgium.
| | - Benoît Pereira
- Environmental Sciences, Earth and Life Institute, UCLouvain, Croix du Sud 2/L7.05.10, B-1348 Louvain-la-Neuve, Belgium
| | - Abdoulaye Julien Kaba
- Environmental Sciences, Earth and Life Institute, UCLouvain, Croix du Sud 2/L7.05.10, B-1348 Louvain-la-Neuve, Belgium
| | - Hugues Titeux
- Environmental Sciences, Earth and Life Institute, UCLouvain, Croix du Sud 2/L7.05.10, B-1348 Louvain-la-Neuve, Belgium
| | - Pierre Delmelle
- Environmental Sciences, Earth and Life Institute, UCLouvain, Croix du Sud 2/L7.05.10, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|