1
|
Ghaleno LR, Hajari MA, Choshali MA, Heidari EA, Shahverdi A, Alipour H, Valojerdi MR. Hyaluronic acid-alginate hydrogel stimulates the differentiation of neonatal mouse testicular cells into hepatocyte-like and other cell lineages in three-dimensional culture. Biol Cell 2024; 116:e2400049. [PMID: 39180248 DOI: 10.1111/boc.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/03/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND INFORMATION Extracellular matrix (ECM)-derived hydrogels are frequently used in three-dimensional (3D) cell culture and organoid formation in several tissues. However, in the 3D cultivation of testicular cells, the hyaluronic acid (HA) hydrogel has not received as much attention. This study examined the effects of three distinct composites, including HA-alginate (HA-Alg), HA-alginate-collagen (HA-Alg-Col), and HA-alginate-decellularized ECM (HA-Alg-dECM), on mouse testicular cell culture and in vitro spermatogenesis. METHODS For the creation of composites, the concentration of biomaterials used was 0.5% HA, 1% alginate, 2.5 mg/mL collagen, and 25 mg/mL dECM derived from the testicles of Rams. After 3D culture of 5 days post-partum (dpp) mouse testicular cells for 14 days, HA-Alg was selected as a superior composite due to the greater number and size of the produced organoids. Then, cell culture was rerun by HA-Alg for 14 days, which was later extended for an additional 28 days. In addition, the 3D culture of 10 dpp mouse testicular cells was used to compare with 5 dpp mice on day 14. The morphology and gene expression were analyzed using appropriate techniques. RESULTS On day 14, the HA-Alg hydrogel showed significantly more organoids in terms of size and number than the other two groups (p < 0.05); nevertheless, none of the groups showed the expected signs of testis organoids. Remarkably, on day 14, the histology and immunostaining tests revealed features of hepatocyte-like cells (HLCs) and albumin production as a marker of HLC functionality. Furthermore, the analysis of gene expression verified the significant expression of angiogenesis markers (p < 0.01). After the extended culture to 28 days, 5 dpp testicular cells once more differentiated into erythrocytes and HLCs, while a small number of organoids showed the characteristic of renal cells. Cell culture of 10 dpp mice for 14 days showed a wide range of cell lineages, including renal, glandular, chondrocyte, and hepatocyte-like cells in comparison to the 5 dpp mice. CONCLUSION AND SIGNIFICANCE While the HA-Alg composite did not support spermatogenesis in the 3D culture of mouse testicular cells, it demonstrated an unpredicted potential for promoting the differentiation of neonate mouse testicular cells into HLC, erythrocytes, and other cell lineages.
Collapse
Affiliation(s)
- Leila Rashki Ghaleno
- Department of Reproductive Biology, Faculty of Basic Sciences and Advanced Medical Technologies, Royan Institute, ACECR, Tehran, Iran
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohammad Amin Hajari
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahmoud Alipour Choshali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Elham Abed Heidari
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Hiva Alipour
- Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Mojtaba Rezazadeh Valojerdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
2
|
Alexanian AR. Epigenetic inheritance of acquired traits via stem cells dedifferentiation/differentiation or transdifferentiation cycles. Cells Dev 2024; 179:203928. [PMID: 38768658 DOI: 10.1016/j.cdev.2024.203928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/20/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Inheritance of acquired characteristics is the once widely accepted idea that multiple modifications acquired by an organism during its life, can be inherited by the offspring. This belief is at least as old as Hippocrates and became popular in early 19th century, leading Lamarck to suggest his theory of evolution. Charles Darwin, along with other thinkers of the time attempted to explain the mechanism of acquired traits' inheritance by proposing the theory of pangenesis. While later this and similar theories were rejected because of the lack of hard evidence, the studies aimed at revealing the mechanism by which somatic information can be passed to germ cells have continued up to the present. In this paper, we present a new theory and provide supporting literature to explain this phenomenon. We hypothesize existence of pluripotent adult stem cells that can serve as collectors and carriers of new epigenetic traits by entering different developmentally active organ/tissue compartments through blood circulation and acquiring new epigenetic marks though cycles of differentiation/dedifferentiation or transdifferentiation. During gametogenesis, these epigenetically modified cells are attracted by gonads, transdifferentiate into germ cells, and pass the acquired epigenetic modifications collected from the entire body's somatic cells to the offspring.
Collapse
Affiliation(s)
- Arshak R Alexanian
- Cell Reprogramming & Therapeutics LLC, Wauwatosa (Milwaukee County), WI 53226, USA.
| |
Collapse
|
3
|
Guo X, Jiang C, Zhang Y, Chen Z, Hao D, Zhang H. Spermatogonial stem-cell-derived neural-like cell transplantation enhances the functional recovery of a rat spinal cord injury model: characterization of evoked potentials. Front Neurosci 2023; 17:1289581. [PMID: 37908621 PMCID: PMC10613671 DOI: 10.3389/fnins.2023.1289581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
Severe spinal cord injuries (SCIs) usually result in the temporary or permanent impairment of strength, sensation or autonomic functions below the sites of injuries. To date, a large number of therapeutic approaches have been used to ameliorate SCIs, and subsequent stem cell transplantation appears to be a promising strategy. The aim of this study was to evaluate the therapeutic effect of stem cells by changes in the evoked potentials at different time points after a transplantation of spermatogonial stem cells (SSCs) to differentiate the source neurons in a rat model with SCIs, as well as through histopathology. A modified Plemel spinal cord lateral compression model was used. The experiment was divided into a blank, a control and a SSC transplantation group. Motor activity scores, sensory evoked potentials (SEPs) and motor evoked potentials (MEPs) were assessed through motor resuscitation as well as histologic evaluation on each experimental group to determine the improvement. Consistent with our results, motor scores and evoked potentials were significantly improved in the SSC transplantation group. In addition, a histologic assessment showed that the transplanted stem cells had a significant restorative effect on the reconstruction of tissue cells. 1 week after the stem cell transplantation, the SSC transplantation group showed improvement in spinal cord functions and spinal cord pathologic injuries. After 2 weeks and beyond, the SSC transplantation group showed significant improvement in spinal cord functions and spinal cord pathology compared to the control group, meanwhile the evoked potentials and motor function of the hind limbs of rats in the SSC transplantation group were significantly improved. Therefore, the therapeutic strategies for spermatogonial stem cells will be an effective program in the study on SCIs, and we suggest the somatosensory evoked potentials as a tool to assess the degree of recovery from SCIs after the transplantation of stem cells.
Collapse
Affiliation(s)
- Xinyu Guo
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou, China
- Department of Spine Surgery, Xi'an Honghui Hospital, Xi’an, China
| | - Chao Jiang
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Yongjie Zhang
- Department of Electromyography, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Zhe Chen
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou, China
- Translational Medicine Center, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Dingjun Hao
- Department of Spine Surgery, Xi'an Honghui Hospital, Xi’an, China
| | - Haihong Zhang
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Kyriazis M, Swas L, Orlova T. The Impact of Hormesis, Neuronal Stress Response, and Reproduction, upon Clinical Aging: A Narrative Review. J Clin Med 2023; 12:5433. [PMID: 37629475 PMCID: PMC10455615 DOI: 10.3390/jcm12165433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/05/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
INTRODUCTION The primary objective of researchers in the biology of aging is to gain a comprehensive understanding of the aging process while developing practical solutions that can enhance the quality of life for older individuals. This involves a continuous effort to bridge the gap between fundamental biological research and its real-world applications. PURPOSE In this narrative review, we attempt to link research findings concerning the hormetic relationship between neurons and germ cells, and translate these findings into clinically relevant concepts. METHODS We conducted a literature search using PubMed, Embase, PLOS, Digital Commons Network, Google Scholar and Cochrane Library from 2000 to 2023, analyzing studies dealing with the relationship between hormetic, cognitive, and reproductive aspects of human aging. RESULTS The process of hormesis serves as a bridge between the biology of neuron-germ cell interactions on one hand, and the clinical relevance of these interactions on the other. Details concerning these processes are discussed here, emphasizing new research which strengthens the overall concept. CONCLUSIONS This review presents a scientifically and clinically relevant argument, claiming that maintaining a cognitively active lifestyle may decrease age-related degeneration, and improve overall health in aging. This is a totally novel approach which reflects current developments in several relevant aspects of our biology, technology, and society.
Collapse
|
5
|
Marchal I, Tursun B. Induced Neurons From Germ Cells in Caenorhabditis elegans. Front Neurosci 2021; 15:771687. [PMID: 34924939 PMCID: PMC8678065 DOI: 10.3389/fnins.2021.771687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022] Open
Abstract
Cell fate conversion by the forced overexpression of transcription factors (TFs) is a process known as reprogramming. It leads to de-differentiation or trans-differentiation of mature cells, which could then be used for regenerative medicine applications to replenish patients suffering from, e.g., neurodegenerative diseases, with healthy neurons. However, TF-induced reprogramming is often restricted due to cell fate safeguarding mechanisms, which require a better understanding to increase reprogramming efficiency and achieve higher fidelity. The germline of the nematode Caenorhabditis elegans has been a powerful model to investigate the impediments of generating neurons from germ cells by reprogramming. A number of conserved factors have been identified that act as a barrier for TF-induced direct reprogramming of germ cells to neurons. In this review, we will first summarize our current knowledge regarding cell fate safeguarding mechanisms in the germline. Then, we will focus on the molecular mechanisms underlying neuronal induction from germ cells upon TF-mediated reprogramming. We will shortly discuss the specific characteristics that might make germ cells especially fit to change cellular fate and become neurons. For future perspectives, we will look at the potential of C. elegans research in advancing our knowledge of the mechanisms that regulate cellular identity, and what implications this has for therapeutic approaches such as regenerative medicine.
Collapse
Affiliation(s)
- Iris Marchal
- Berlin Institute for Medical Systems Biology, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Baris Tursun
- Berlin Institute for Medical Systems Biology, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Biology, Institute of Zoology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
6
|
Neves ER, Harley BAC, Pedron S. Microphysiological systems to study tumor-stroma interactions in brain cancer. Brain Res Bull 2021; 174:220-229. [PMID: 34166771 PMCID: PMC8324563 DOI: 10.1016/j.brainresbull.2021.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/17/2021] [Accepted: 06/15/2021] [Indexed: 12/15/2022]
Abstract
Brain tumors still lack effective treatments, and the mechanisms of tumor progression and therapeutic resistance are unclear. Multiple parameters affect cancer prognosis (e.g., type and grade, age, location, size, and genetic mutations) and election of suitable treatments is based on preclinical models and clinical data. However, most candidate drugs fail in human trials due to inefficacy. Cell lines and tissue culture plates do not provide physiologically relevant environments, and animal models are not able to adequately mimic characteristics of disease in humans. Therefore, increasing technological advances are focusing on in vitro and computational modeling to increase the throughput and predicting capabilities of preclinical systems. The extensive use of these therapeutic agents requires a more profound understanding of the tumor-stroma interactions, including neural tissue, extracellular matrix, blood-brain barrier, astrocytes and microglia. Microphysiological brain tumor models offer physiologically relevant vascularized 'minitumors' that can help deciphering disease mechanisms, accelerating the drug discovery and predicting patient's response to anticancer treatments. This article reviews progress in tumor-on-a-chip platforms that are designed to comprehend the particular roles of stromal cells in the brain tumor microenvironment.
Collapse
Affiliation(s)
- Edward R Neves
- Department of Chemical and Biomolecular Engineering, Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Brendan A C Harley
- Department of Chemical and Biomolecular Engineering, Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sara Pedron
- Department of Chemical and Biomolecular Engineering, Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
7
|
Shao A, Tu S, Lu J, Zhang J. Crosstalk between stem cell and spinal cord injury: pathophysiology and treatment strategies. Stem Cell Res Ther 2019; 10:238. [PMID: 31387621 PMCID: PMC6683526 DOI: 10.1186/s13287-019-1357-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The injured spinal cord is difficult to repair and regenerate. Traditional treatments are not effective. Stem cells are a type of cells that have the potential to differentiate into various cells, including neurons. They exert a therapeutic effect by safely and effectively differentiating into neurons or replacing damaged cells, secreting neurotrophic factors, and inhibiting the inflammatory response. Many types of stem cells have been used for transplantation, and each has its own advantages and disadvantages. This review discusses the possible mechanisms of stem cell therapy for spinal cord injury, and the types of stem cells commonly used in experiments, to provide a reference for basic and clinical research on stem cell therapy for spinal cord injury.
Collapse
Affiliation(s)
- Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Sheng Tu
- Department of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jianan Lu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.,Brain Research Institute, Zhejiang University, Hangzhou, 310003, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, 310003, China
| |
Collapse
|
8
|
Yang H, Hao D, Liu C, Huang D, Chen B, Fan H, Liu C, Zhang L, Zhang Q, An J, Zhao J. Generation of functional dopaminergic neurons from human spermatogonial stem cells to rescue parkinsonian phenotypes. Stem Cell Res Ther 2019; 10:195. [PMID: 31248447 PMCID: PMC6598262 DOI: 10.1186/s13287-019-1294-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 01/08/2023] Open
Abstract
Background Recent progress in the induced generation of dopaminergic (DA) neurons from different types of stem cells or reprogrammed somatic cells holds tremendous potential for the treatment of Parkinson’s disease (PD). However, the lack of a reliable source for cell replacement therapy remains a major limitation in the treatment of human neurological disorders. Additionally, the current protocols for in vitro differentiation or cell reprogramming to generate human DA neurons are laborious, time-consuming, and expensive, and efficient conversion of human spermatogonial stem cells (hSSCs) to functional DA neurons has not yet been achieved. Methods Primary hSSCs from testicular tissues of patients were exposed to an improved induction system, which consisted mainly of olfactory ensheathing cell conditioned culture medium (OECCM) and a set of defined cell-extrinsic factors and small molecules. Morphological changes were assessed, along with the expression of various DA neuron phenotypic markers (e.g., Tuj-1, TH, Nurr1, DAT) and several critical pro-DA neurogenesis effectors (e.g., EN-1, Pitx3, Foxa2, Lmx1a, Lmx1b, and OTX2). In addition, transcriptome analysis was used to further evaluate the genetic similarity between the artificially differentiated DA neurons and genuine ones. Concomitantly, the functional properties of converted DA neurons including synapse formation, dopamine release, electrophysiological activity, and neuron-specific Ca2+ signaling images were determined. Finally, hSSCs in the early stage of induction were evaluated for survival, differentiation, migration, tumorigenicity in the mouse striatum, and improvement of functional deficits in MPTP-induced PD animals. Results The hSSC-derived neurons not only acquired neuronal morphological features but also expressed various phenotypic genes and protein characteristic of DA neurons and several effectors critical for pro-DA neurogenesis. Strikingly, as the period of induction was prolonged, expression of the critical molecules for DA neuron epigenetic status gradually increased while hSSC-specific markers sharply decreased. After 3 weeks of induction, the transdifferentiation efficiency reached 21%. In addition, hierarchical clustering analysis showed that the differentiated DA neurons closely resembled genuine ones. Furthermore, the hSSC-derived neurons gained sophisticated functional properties of wild-type DA neurons, and pro-induced hSSCs efficiently survived, migrated, and differentiated into DA neurons without tumorigenesis after transplantation into mouse striatum, leading to improvement of functional deficits in PD animals. Conclusions The results showed that, using the present improved straightforward approach, hSSCs could acquire DA neuron morphological features and functional properties and rescue parkinsonian phenotypes. Our strategy for the conversion of hSSCs into DA neurons is very efficient and thus may provide an alternative approach suitable for clinical cell therapy to treat neurodegenerative diseases including PD.
Collapse
Affiliation(s)
- Hao Yang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| | - Dingjun Hao
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.,Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Cheng Liu
- Department of Foot and Ankle Surge, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Dageng Huang
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Bo Chen
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Hong Fan
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Cuicui Liu
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Lingling Zhang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Qian Zhang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Jing An
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Jingjing Zhao
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| |
Collapse
|
9
|
Biological ageing and clinical consequences of modern technology. Biogerontology 2017; 18:711-715. [DOI: 10.1007/s10522-017-9680-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/18/2017] [Indexed: 10/20/2022]
|
10
|
Abstract
There have been significant breakthroughs over the past decade in the development and use of pluripotent stem cells as a potential source of cells for applications in regenerative medicine. It is likely that this methodology will begin to play an important role in human clinical medicine in the years to come. This review describes the plasticity of one type of pluripotent cell, spermatogonial stem cells (SSCs), and their potential therapeutic applications in regenerative medicine and male infertility. Normally, SSCs give rise to sperm when in the testis. However, both human and murine SSCs can give rise to cells with embryonic stem (ES) cell-like characteristics that can be directed to differentiate into tissues of all three embryonic germ layers when placed in an appropriate inductive microenvironment, which is in contrast to other postnatal stem cells. Previous studies have reported that SSCs expressed an intermediate pluripotent phenotype before differentiating into a specific cell type and that extended culture was necessary for this to occur. However, recent studies from our group using a tissue recombination model demonstrated that SSCs differentiated rapidly into another tissue, in this case, prostatic epithelium, without expression of pluripotent ES cell markers before differentiation. These results suggest that SSCs are capable of directly differentiating into other cell types without going through an intermediate ES cell-like stage. Because SSCs do not require reprogramming to achieve a pluripotent state, they are an attractive source of pluripotent cells for use in regenerative medicine.
Collapse
Affiliation(s)
- Paul S Cooke
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | | | | | | | | |
Collapse
|
11
|
Fagoonee S, Famulari ES, Silengo L, Tolosano E, Altruda F. Long Term Liver Engraftment of Functional Hepatocytes Obtained from Germline Cell-Derived Pluripotent Stem Cells. PLoS One 2015; 10:e0136762. [PMID: 26323094 PMCID: PMC4556379 DOI: 10.1371/journal.pone.0136762] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/08/2015] [Indexed: 12/25/2022] Open
Abstract
One of the major hurdles in liver gene and cell therapy is availability of ex vivo-expanded hepatocytes. Pluripotent stem cells are an attractive alternative. Here, we show that hepatocyte precursors can be isolated from male germline cell-derived pluripotent stem cells (GPSCs) using the hepatoblast marker, Liv2, and induced to differentiate into hepatocytes in vitro. These cells expressed hepatic-specific genes and were functional as demonstrated by their ability to secrete albumin and produce urea. When transplanted in the liver parenchyma of partially hepatectomised mice, Liv2-sorted cells showed regional and heterogeneous engraftment in the injected lobe. Moreover, approximately 50% of Y chromosome-positive, GPSC-derived cells were found in the female livers, in the region of engraftment, even one month after cell injection. This is the first study showing that Liv2-sorted GPSCs-derived hepatocytes can undergo long lasting engraftment in the mouse liver. Thus, GPSCs might offer promise for regenerative medicine.
Collapse
Affiliation(s)
- Sharmila Fagoonee
- Institute for Biostructures and Bioimages (CNR), Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- * E-mail: (SF); (FA)
| | - Elvira Smeralda Famulari
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Lorenzo Silengo
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Emanuela Tolosano
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Fiorella Altruda
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- * E-mail: (SF); (FA)
| |
Collapse
|
12
|
Guo Y, Liu L, Sun M, Hai Y, Li Z, He Z. Expansion and long-term culture of human spermatogonial stem cells via the activation of SMAD3 and AKT pathways. Exp Biol Med (Maywood) 2015; 240:1112-22. [PMID: 26088866 DOI: 10.1177/1535370215590822] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spermatogonial stem cells (SSCs) can differentiate into spermatids, reflecting that they could be used in reproductive medicine for treating male infertility. SSCs are able to become embryonic stem-like cells with the potentials of differentiating into numerous cell types of the three germ layers and they can transdifferentiate to mature and functional cells of other lineages, highlighting significant applications of human SSCs for treating human diseases. However, human SSCs are very rare and a long-term culture system of human SSCs has not yet established. This aim of study was to isolate, identify and culture human SSCs for a long period. We isolated GPR125-positive spermatogonia with high purity and viability from adult human testicular tissues utilizing the two-step enzymatic digestion and magnetic-activated cell sorting with antibody against GPR125. These freshly isolated cells expressed a number of markers for SSCs, including GPR125, PLZF, GFRA1, RET, THY1, UCHL1 and MAGEA4, but not the hallmarks for spermatocytes and spermatozoa, e.g. SYCP1, SYCP3, PRM1, and TNP1. The isolated human SSCs could be cultured for two months with a significant increase of cell number with the defined medium containing growth factors and hydrogel. Notably, the expression of numerous SSC markers was maintained during the cultivation of human SSCs. Furthermore, SMAD3 and AKT phosphorylation was enhanced during the culture of human SSCs. Collectively, these results suggest that human SSCs can be cultivated for a long period and expanded whilst retaining an undifferentiated status via the activation of SMAD3 and AKT pathways. This study could provide sufficient cells of SSCs for their basic research and clinic applications in reproductive and regenerative medicine.
Collapse
Affiliation(s)
- Ying Guo
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| | - Linhong Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| | - Min Sun
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| | - Yanan Hai
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| | - Zheng Li
- Department of Urology, Shanghai Institute of Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Human Sperm Bank, 145 Shangdong Road, Shanghai 200001, China
| | - Zuping He
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China Department of Urology, Shanghai Institute of Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Human Sperm Bank, 145 Shangdong Road, Shanghai 200001, China Shanghai Key Laboratory of Assisted Reproduction and Reproductive Genetics, Shanghai 200127, China Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China
| |
Collapse
|
13
|
Hemmer K, Zhang M, van Wüllen T, Sakalem M, Tapia N, Baumuratov A, Kaltschmidt C, Kaltschmidt B, Schöler HR, Zhang W, Schwamborn JC. Induced neural stem cells achieve long-term survival and functional integration in the adult mouse brain. Stem Cell Reports 2014; 3:423-31. [PMID: 25241741 PMCID: PMC4265999 DOI: 10.1016/j.stemcr.2014.06.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 06/27/2014] [Accepted: 06/27/2014] [Indexed: 01/09/2023] Open
Abstract
Differentiated cells can be converted directly into multipotent neural stem cells (i.e., induced neural stem cells [iNSCs]). iNSCs offer an attractive alternative to induced pluripotent stem cell (iPSC) technology with regard to regenerative therapies. Here, we show an in vivo long-term analysis of transplanted iNSCs in the adult mouse brain. iNSCs showed sound in vivo long-term survival rates without graft overgrowths. The cells displayed a neural multilineage potential with a clear bias toward astrocytes and a permanent downregulation of progenitor and cell-cycle markers, indicating that iNSCs are not predisposed to tumor formation. Furthermore, the formation of synaptic connections as well as neuronal and glial electrophysiological properties demonstrated that differentiated iNSCs migrated, functionally integrated, and interacted with the existing neuronal circuitry. We conclude that iNSC long-term transplantation is a safe procedure; moreover, it might represent an interesting tool for future personalized regenerative applications. In vivo long-term survival of transplanted induced neural stem cells Lack of tumorigenic outgrowth In vivo multilineage differentiation of transplanted iNSCs Functional integration, synapse formation, and electrophysiological activity
Collapse
Affiliation(s)
- Kathrin Hemmer
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; Stem Cell Biology and Regeneration Group, Institute of Cell Biology, ZMBE, Westfälische Wilhelms-University Münster, 48149 Münster, Germany
| | - Mingyue Zhang
- Laboratory for Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Laboratory for Molecular Psychiatry, Westfälische Wilhelms-University of Münster, 48149 Münster, Germany
| | - Thea van Wüllen
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; Stem Cell Biology and Regeneration Group, Institute of Cell Biology, ZMBE, Westfälische Wilhelms-University Münster, 48149 Münster, Germany
| | - Marna Sakalem
- Stem Cell Biology and Regeneration Group, Institute of Cell Biology, ZMBE, Westfälische Wilhelms-University Münster, 48149 Münster, Germany; Laboratory for Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Laboratory for Molecular Psychiatry, Westfälische Wilhelms-University of Münster, 48149 Münster, Germany
| | - Natalia Tapia
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Aidos Baumuratov
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Christian Kaltschmidt
- Molecular Neurobiology, Faculty of Biology, University of Bielefeld, 33501 Bielefeld, Germany
| | - Barbara Kaltschmidt
- Molecular Neurobiology, Faculty of Biology, University of Bielefeld, 33501 Bielefeld, Germany
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Weiqi Zhang
- Laboratory for Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Laboratory for Molecular Psychiatry, Westfälische Wilhelms-University of Münster, 48149 Münster, Germany
| | - Jens C Schwamborn
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; Stem Cell Biology and Regeneration Group, Institute of Cell Biology, ZMBE, Westfälische Wilhelms-University Münster, 48149 Münster, Germany.
| |
Collapse
|
14
|
Streckfuss-Bömeke K, Jende J, Cheng IF, Hasenfuss G, Guan K. Efficient generation of hepatic cells from multipotent adult mouse germ-line stem cells using an OP9 co-culture system. Cell Reprogram 2013; 16:65-76. [PMID: 24380658 DOI: 10.1089/cell.2013.0057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
On the basis of their self-renewal capacity and their ability to differentiate into derivatives of all three germ layers, germ line-derived multipotent adult stem cells (maGSCs) from mouse testis might serve as one of preferable sources for pluripotent stem cells in regenerative medicine. In our study, we aimed for an efficient hepatic differentiation protocol that is applicable for both maGSCs and embryonic stem cells (ESCs). We attempted to accomplish this goal by using a new established co-culture system with OP9 stroma cells for direct differentiation of maGSCs and ESCs into hepatic cells. We found that the hepatic differentiation of maGSCs was induced by the OP9 co-culture system in comparison to the gelatin culture. Furthermore, we showed that the combination of OP9 co-culture with activin A resulted in the increased expression of endodermal and early hepatic markers Gata4, Sox17, Foxa2, Hnf4, Afp, and Ttr compared to differentiated cells on gelatin or on OP9 alone. Moreover, the hepatic progenitors were capable of differentiating further into mature hepatic cells, demonstrated by the expression of liver-specific markers Aat, Alb, Tdo2, Krt18, Krt8, Krt19, Cps1, Sek, Cyp7a1, Otc, and Pah. A high percentage of maGSC-derived hepatic progenitors (51% AFP- and 61% DLK1-positive) and mature hepatic-like cells (26% ALB-positive) were achieved using this OP9 co-culture system. These generated hepatic cells successfully demonstrated in vitro functions associated with mature hepatocytes, including albumin and urea secretion, glycogen storage, and uptake of low-density lipoprotein. The established co-culture system for maGSCs into functional hepatic cells might serve as a suitable model to delineate the differentiation process for the generation of high numbers of mature hepatocytes in humans without genetic manipulations and make germ line-derived stem cells a potential autologous and alternative cell source for hepatic transplants in metabolic liver disorders.
Collapse
Affiliation(s)
- Katrin Streckfuss-Bömeke
- 1 Department of Cardiology and Pneumology, Georg-August-University of Göttingen , 37075, Göttingen, Germany
| | | | | | | | | |
Collapse
|
15
|
Guo Y, Hai Y, Gong Y, Li Z, He Z. Characterization, Isolation, and Culture of Mouse and Human Spermatogonial Stem Cells. J Cell Physiol 2013; 229:407-13. [PMID: 24114612 DOI: 10.1002/jcp.24471] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 09/11/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Ying Guo
- Renji Hospital; Clinic Stem Cell Research Center; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Yanan Hai
- Renji Hospital; Clinic Stem Cell Research Center; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Yuehua Gong
- Renji Hospital; Clinic Stem Cell Research Center; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Zheng Li
- Department of Urology; Shanghai Human Sperm Bank; Renji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Zuping He
- Renji Hospital; Clinic Stem Cell Research Center; Shanghai Jiao Tong University School of Medicine; Shanghai China
- Shanghai Key Laboratory of Reproductive Medicine; Shanghai China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics; Shanghai China
| |
Collapse
|
16
|
Nazm Bojnordi M, Movahedin M, Tiraihi T, Javan M, Ghasemi Hamidabadi H. Oligoprogenitor Cells Derived from Spermatogonia Stem Cells Improve Remyelination in Demyelination Model. Mol Biotechnol 2013; 56:387-93. [DOI: 10.1007/s12033-013-9722-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
De Chiara L, Fagoonee S, Ranghino A, Bruno S, Camussi G, Tolosano E, Silengo L, Altruda F. Renal cells from spermatogonial germline stem cells protect against kidney injury. J Am Soc Nephrol 2013; 25:316-28. [PMID: 24136918 DOI: 10.1681/asn.2013040367] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Spermatogonial stem cells reside in specific niches within seminiferous tubules and continuously generate differentiating daughter cells for production of spermatozoa. Although spermatogonial stem cells are unipotent, these cells are able to spontaneously convert to germline cell-derived pluripotent stem cells (GPSCs) in vitro. GPSCs have many properties of embryonic stem cells and are highly plastic, but their therapeutic potential in tissue regeneration has not been fully explored. Using a novel renal epithelial differentiation protocol, we obtained GPSC-derived tubular-like cells (GTCs) that were functional in vitro, as demonstrated through transepithelial electrical resistance analysis. In mice, GTCs injected after ischemic renal injury homed to the renal parenchyma, and GTC-treated mice showed reduced renal oxidative stress, tubular apoptosis, and cortical damage and upregulated tubular expression of the antioxidant enzyme hemeoxygenase-1. Six weeks after ischemic injury, kidneys of GTC-treated mice had less fibrosis and inflammatory infiltrate than kidneys of vehicle-treated mice. In conclusion, we show that GPSCs can be differentiated into functionally active renal tubular-like cells that therapeutically prevent chronic ischemic damage in vivo, introducing the potential utility of GPSCs in regenerative cell therapy.
Collapse
Affiliation(s)
- Letizia De Chiara
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, and
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Guo J, Wang H, Hu X. Reprogramming and transdifferentiation shift the landscape of regenerative medicine. DNA Cell Biol 2013; 32:565-72. [PMID: 23930590 DOI: 10.1089/dna.2013.2104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Regenerative medicine is a new interdisciplinary field in biomedical science, which aims at the repair or replacement of the defective tissue or organ by congenital defects, age, injury, or disease. Various cell-related techniques such as stem cell-based biotherapy are a hot topic in the current press, and stem cell research can help us to expand our understanding of development as well as the pathogenesis of disease. In addition, new technology such as reprogramming or dedifferentiation and transdifferentiation open a new area for regenerative medicine. Here we review new approaches of these technologies used for cell-based therapy and discuss future directions and challenges in the field of regeneration.
Collapse
Affiliation(s)
- Jingjing Guo
- 1 College of Life and Environmental Sciences, Shanghai Normal University , Shanghai, China
| | | | | |
Collapse
|
19
|
Polarized neural stem cells derived from adult bone marrow stromal cells develop a rosette-like structure. In Vitro Cell Dev Biol Anim 2013; 49:638-52. [DOI: 10.1007/s11626-013-9628-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 04/26/2013] [Indexed: 12/19/2022]
|
20
|
Chuykin I, Stauske M, Guan K. Spermatogonial Stem Cells. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
21
|
Moraveji SF, Attari F, Shahverdi A, Sepehri H, Farrokhi A, Hassani SN, Fonoudi H, Aghdami N, Baharvand H. Inhibition of glycogen synthase kinase-3 promotes efficient derivation of pluripotent stem cells from neonatal mouse testis. Hum Reprod 2012; 27:2312-24. [DOI: 10.1093/humrep/des204] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
22
|
Cheng IF, Kaiser D, Huebscher D, Hasenfuss G, Guan K, Schäfer K. Differentiation of multipotent adult germline stem cells derived from mouse testis into functional endothelial cells. J Vasc Res 2012; 49:207-20. [PMID: 22433575 DOI: 10.1159/000332910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 09/05/2011] [Indexed: 01/22/2023] Open
Abstract
Pluripotent stem cells hold great promise for the treatment of cardiovascular disease. We previously described multipotent adult germline stem cells (maGSCs) from mouse testis with differentiation potential similar to embryonic stem cells. The aim of this work was to differentiate maGSCs into functional endothelial cells and to study their potential for vasculogenesis. MaGSCs were cocultivated with OP9 stromal cells to induce differentiation into cardiovascular progenitors, i.e. fetal liver kinase 1-positive (Flk-1+) cells. Five days later, Flk-1+ cells were separated using fluorescence-activated cell sorting, followed by cultivation on collagen type IV under endothelial differentiation conditions. At different time points, maGSC-derived endothelial-like cells were characterized using RT-PCR, flow cytometry, immunofluorescence and functional assays. Cultivation of Flk-1+ cells resulted in the progressive upregulation of endothelial cell markers, including VE-cadherin, von Willebrand factor and endothelial nitric oxide synthase. Moreover, Flk-1+ maGSC-derived endothelial-like cells were able to branch and form networks in vitro and promoted functional blood vessel formation in vivo. Importantly, Flk-1+ cells retained their potential to proliferate and could be continuously expanded, while the ability of contact inhibition was preserved. Thus, maGSCs may provide a useful source of endothelial-like cells to study the basic mechanisms of vasculogenesis or endothelial differentiation.
Collapse
Affiliation(s)
- I-Fen Cheng
- Department of Cardiology and Pulmonary Medicine, University of Goettingen, Goettingen, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Ning L, Goossens E, Geens M, Saen DV, Tournaye H. Spermatogonial stem cells as a source for regenerative medicine. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2012. [DOI: 10.1016/j.mefs.2011.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
24
|
Singh SR, Burnicka-Turek O, Chauhan C, Hou SX. Spermatogonial stem cells, infertility and testicular cancer. J Cell Mol Med 2011; 15:468-83. [PMID: 21155977 PMCID: PMC3064728 DOI: 10.1111/j.1582-4934.2010.01242.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The spermatogonial stem cells (SSCs) are responsible for the transmission of genetic information from an individual to the next generation. SSCs play critical roles in understanding the basic reproductive biology of gametes and treatments of human infertility. SSCs not only maintain normal spermatogenesis, but also sustain fertility by critically balancing both SSC self-renewal and differentiation. This self-renewal and differentiation in turn is tightly regulated by a combination of intrinsic gene expression within the SSC as well as the extrinsic gene signals from the niche. Increased SSCs self-renewal at the expense of differentiation result in germ cell tumours, on the other hand, higher differentiation at the expense of self-renewal can result in male sterility. Testicular germ cell cancers are the most frequent cancers among young men in industrialized countries. However, understanding the pathogenesis of testis cancer has been difficult because it is formed during foetal development. Recent studies suggest that SSCs can be reprogrammed to become embryonic stem (ES)-like cells to acquire pluripotency. In the present review, we summarize the recent developments in SSCs biology and role of SSC in testicular cancer. We believe that studying the biology of SSCs will not only provide better understanding of stem cell regulation in the testis, but eventually will also be a novel target for male infertility and testicular cancers.
Collapse
Affiliation(s)
- Shree Ram Singh
- Mouse Cancer Genetics Program, National Institutes of Health, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| | | | | | | |
Collapse
|
25
|
Effects of histocompatibility and host immune responses on the tumorigenicity of pluripotent stem cells. Semin Immunopathol 2011; 33:573-91. [PMID: 21461989 PMCID: PMC3204002 DOI: 10.1007/s00281-011-0266-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 03/16/2011] [Indexed: 12/11/2022]
Abstract
Pluripotent stem cells hold great promises for regenerative medicine. They might become useful as a universal source for a battery of new cell replacement therapies. Among the major concerns for the clinical application of stem cell-derived grafts are the risks of immune rejection and tumor formation. Pluripotency and tumorigenicity are closely linked features of pluripotent stem cells. However, the capacity to form teratomas or other tumors is not sufficiently described by inherited features of a stem cell line or a stem cell-derived graft. The tumorigenicity always depends on the inability of the recipient to reject the tumorigenic cells. This review summarizes recent data on the tumorigenicity of pluripotent stem cells in immunodeficient, syngeneic, allogeneic, and xenogeneic hosts. The effects of immunosuppressive treatment and cell differentiation are discussed. Different immune effector mechanisms appear to be involved in the rejection of undifferentiated and differentiated cell populations. Elements of the innate immune system, such as natural killer cells and the complement system, which are active also in syngeneic recipients, appear to preferentially reject undifferentiated cells. This effect could reduce the risk of tumor formation in immunocompetent recipients. Cell differentiation apparently increases susceptibility to rejection by the adaptive immune system in allogeneic hosts. The current data suggest that the immune system of the recipient has a major impact on the outcome of pluripotent stem cell transplantation, whether it is rejection, engraftment, or tumor development. This has to be considered when the results of experimental transplantation models are interpreted and even more when translation into clinics is planned.
Collapse
|
26
|
Fagoonee S, Pellicano R, Silengo L, Altruda F. Potential applications of germline cell-derived pluripotent stem cells in organ regeneration. Organogenesis 2011; 7:116-22. [PMID: 21593601 DOI: 10.4161/org.7.2.16284] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Impressive progress has been made since the turn of the century in the field of stem cells. Different types of stem cells have now been isolated from different types of tissues. Pluripotent stem cells are the most promising cell source for organ regeneration. One such cell type is the germline cell-derived pluripotent cell, which is derived from adult spermatogonial stem cells. The germline cell-derived pluripotent stem cells have been obtained from both human and mouse and, importantly, are adult stem cells with embryonic stem cell-like properties that do not require specific manipulations for pluripotency acquisition, hence bypassing problems related to induced pluripotent stem cells and embryonic stem cells. The germline cell-derived pluripotent stem cells have been induced to differentiate into cells deriving from the three germ layers and shown to be functional in vitro. This review will discuss the plasticity of the germline cell-derived pluripotent stem cells and their potential applications in human organ regeneration, with special emphasis on liver regeneration. Potential problems related to their use are also highlighted.
Collapse
|
27
|
Fagoonee S, Hobbs RM, De Chiara L, Cantarella D, Piro RM, Tolosano E, Medico E, Provero P, Pandolfi PP, Silengo L, Altruda F. Generation of functional hepatocytes from mouse germ line cell-derived pluripotent stem cells in vitro. Stem Cells Dev 2011; 19:1183-94. [PMID: 20331356 DOI: 10.1089/scd.2009.0496] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Germ line cell-derived pluripotent stem cells (GPSCs) are similar to embryonic stem (ES) cells in that they can proliferate intensively and differentiate into a variety of cell types. Previous studies have revealed some inherent differences in gene expression between undifferentiated mouse ES cells and GPSCs. Our aims were to generate functional hepatocytes from mouse GPSCs in vitro and to investigate whether the differences in gene expression may impact on the hepatocyte differentiation capacity of the GPSCs compared with ES cells. Mouse GPSCs and ES cells were induced to differentiate into hepatocytes through embryoid body formation, with very high efficiency. These hepatocytes were characterized at cellular, molecular, and functional levels. The GPSC-derived hepatocytes expressed hepatic markers and were metabolically active as shown by albumin and haptoglobin secretion, urea synthesis, glycogen storage, and indocyanine green uptake. We also performed an unprecedented DNA microarray analysis comparing different stages of hepatocyte differentiation. Gene expression profiling demonstrated a strong similarity between GPSC and ES cells at different stages of induced hepatic differentiation. Moreover, Pearson correlation analysis of the microarray datasets suggested that, at late hepatic differentiation stages, the in vitro-derived cells were closer to fetal mouse primary hepatocytes than to those obtained from neonates. We have shown for the first time that adult GPSCs can be induced to differentiate into functional hepatocytes in vitro. These GPSC-derived hepatocytes offer great potential for cell replacement therapy for a wide variety of liver diseases.
Collapse
Affiliation(s)
- Sharmila Fagoonee
- Department of Genetics, Biology and Biochemistry and Molecular Biotechnology Center, University of Turin, Turin, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kokkinaki M, Djourabtchi A, Golestaneh N. Long-term Culture of Human SSEA-4 Positive Spermatogonial Stem Cells (SSCs). ACTA ACUST UNITED AC 2011; 2. [PMID: 24466499 DOI: 10.4172/2157-7633.s2-003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recently we and two other groups have shown that human spermatogonial stem cells (SSCs) have the potential to become pluripotent in vitro in defined culture conditions and to differentiate into cells of the three embryonic germ layers. This discovery could open new avenues for autologous cell-based therapy in degenerative diseases, bypassing the ethical and immunological problems related to the human embryonic stem cells. In addition, human SSCs could be used to treat infertility in cancer survival children. However, in order to reprogram SSCs into pluripotency, or to preserve them for repopulation of infertile testes, the first and limiting step is to have access to a highly purified human SSC population that could be multiplied and efficiently cultured in vitro maintaining their molecular and cellular characteristics. Although various studies have attempted to identify molecular markers of human SSCs, to date there is still limited information related to the specific markers that could be used for their isolation and optimized purification that allows long-term in vitro culture of isolated human SSCs. Here using SSEA-4 as an optimal marker for isolation of a subpopulation of SSCs, we show that SSEA-4 positive cells express the highest level of SSC genes compared to other subpopulations isolated with different markers, and can be maintained in culture for over 14 passages which we were unable to obtain with other SSCs markers including GPR125 and ITGA6. In addition, we have established a new technology for cell sorting and long-term culture of human SSC-SSEA-4 positive cells that maximizes the purity and viability of the sorted cells. Our findings are crucial and could be used for the most efficient isolation, purification and long-term culture of SSCs for clinical applications in regenerative medicine, or for preparation of human SSCs for autologous treatment of infertility in cancer survival children.
Collapse
Affiliation(s)
- Maria Kokkinaki
- Georgetown University School of Medicine, Department of Biochemistry and Molecular & Cellular Biology ; Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine
| | - Ardalan Djourabtchi
- Georgetown University School of Medicine, Department of Biochemistry and Molecular & Cellular Biology
| | - Nady Golestaneh
- Georgetown University School of Medicine, Department of Biochemistry and Molecular & Cellular Biology ; Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine
| |
Collapse
|
29
|
Ning L, Goossens E, Geens M, Van Saen D, Van Riet I, He D, Tournaye H. Mouse spermatogonial stem cells obtain morphologic and functional characteristics of hematopoietic cells in vivo. Hum Reprod 2010; 25:3101-9. [PMID: 20940138 DOI: 10.1093/humrep/deq269] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The aim of this study was to explore the plasticity and transdifferentiation potential of murine spermatogonial stem cells (SSCs) into hematopoietic cells. METHODS GFP(+)CD49f(+)H-2K(b-) SSCs of male donor mice were isolated and injected into the bone marrow (BM) of Busulfan-treated GFP(-) female mice. Twelve weeks post-transplantation, the recipients were sacrificed and their BM, peripheral blood (PB) and spleen (SL) cells were collected and evaluated by phenotypical methods, i.e. fluorescence-activated cell sorting, immunohistochemistry and fluorescence in situ hybridization, and functional assays, i.e. colony-forming units assay and intra-BM transplantation. RESULTS Green fluorescent protein (GFP)- and Y chromosome-positive cells were observed in the BM, PB and SL of transplanted female mice. These cells presented phenotypical and functional characteristics of hematopoietic cells in vitro and in vivo. CONCLUSIONS Our results indicate that SSCs have the potential to transdifferentiate into hematopoietic cells in vivo.
Collapse
Affiliation(s)
- Liang Ning
- Research Group Biology of the Testis (BITE), Department of Embryology and Genetics (EMGE), Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
30
|
Simon L, Hess RA, Cooke PS. Spermatogonial stem cells, in vivo transdifferentiation and human regenerative medicine. Expert Opin Biol Ther 2010; 10:519-30. [PMID: 20146635 DOI: 10.1517/14712591003614731] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
IMPORTANCE OF THE FIELD Embryonic stem (ES) cells have potential for use in regenerative medicine, but use of these cells is hindered by moral, legal and ethical issues. Induced pluripotent cells have promise in regenerative medicine. However, since generation of these cells involves genetic manipulation, it also faces significant hurdles before clinical use. This review discusses spermatogonial stem cells (SSCs) as a potential alternative source of pluripotent cells for use in human regenerative medicine. AREAS COVERED IN THE REVIEW The potential of SSCs to give rise to a wide range of other cell types either directly, when recombined with instructive inducers, or indirectly, after being converted to ES-like cells. Current understanding of the differentiation potential of murine SSCs and recent progress in isolating and culturing human SSCs and demonstrating their properties is also discussed. WHAT THE READER WILL GAIN Insight into the plasticity of SSCs and the unique properties of these cells for regenerative applications, the limitations of SSCs for stem-cell-based therapy and the potential alternatives available. TAKE HOME MESSAGE If methodologies for isolation and conversion of adult human SSCs directly into other cell types can be effectively developed, SSCs could represent an important alternate source of pluripotent cells that can be used in human tissue repair and/or regeneration.
Collapse
Affiliation(s)
- Liz Simon
- University of Illinois at Urbana Champaign, Veterinary Biosciences, VMBSB, 2001, S. Lincoln Avenue, Urbana, IL 61802, USA
| | | | | |
Collapse
|
31
|
Li B, Wang XY, Tian Z, Xiao XJ, Xu Q, Wei CX, Y F, Sun HC, Chen GH. Directional differentiation of chicken spermatogonial stem cells in vitro. Cytotherapy 2010; 12:326-31. [PMID: 20078389 DOI: 10.3109/14653240903518155] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Mammalian spermatogonial stem cells (SSC) are able to differentiate into different cell types in vitro, which are valuable sources for regenerative medicine and gene transfer studies. We investigated the differentiation potential of chicken SSC into osteoblasts, neuron-like cells and adipocytes in vitro. METHODS Chicken SSC from the testes of 18- and 20-day-old chicken embryos were cultured in different induction media for three passages in vitro. For differentiation into osteoblasts, SSC were cultured in Dulbecco's modified Eagle medium (DMEM) supplemented with 1 x 10(-4) micromol/mL desamethasone, 10 micromol/mL (beta-sodium glycerophosphate and 0.05 mg/mL vitamin C, and examined by microscopy after Von Kossa's, cytochemical and immunohistochemical staining. For differentiation into neuron-like cells, SSC were cultured in DMEM supplemented with 1 x 10(-3) micromol/mL retinoic acid (RA), 5.0 micromol/mL 3-isobutyl-1-methylxanthine (IBMX) and examined by microscopy after toluidine blue or immunohistochemical staining. For differentiation into adipocytes, SSC were cultured in DMEM supplemented with 1 x 10(-3) micromol/mL dexamethasone, 0.01 mg/mL insulin, 0.5 micromol/mL IBMX and examined by microscopy after Oil red O staining and reverse transcriptase-polymerase chain reaction (RT-PCR) for gene expression of peroxisome proliferation activation receptor-gamma (PPAR-gamma). RESULTS After 15 and 21 days of culture in the induction medium for osteoblast differentiation, 75% and 80% chicken SSC differentiated into osteoblasts, as confirmed by Von Kossa's, calcium-cobalt and collagen I antibody staining. After 3 and 7 days of culture in the induction medium for neuron-like cell differentiation, 78% and 85% SSC became neuron-like cells, as confirmed by staining with toluidine blue and the monoclonal antibody against neuron-specific enolase, nestin and glial fibrillary acidic protein. After 7 days of culture in the induction for adipocyte differentiation, 85% SSC differentiated into adipocytes, as confirmed by Oil red O staining and RT-PCT for PPAR-gamma gene expression. DISCUSSION Our results show that chicken SSC can differentiate into osteoblasts, neuron-like cells and adipocytes under similar conditions as for directional differentiation of mammalian SSC in vitro. The findings show the feasibility of using SSC-derived cells for developmental biology and gene transfer studies in chickens.
Collapse
Affiliation(s)
- Bichun Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Dressel R, Nolte J, Elsner L, Novota P, Guan K, Streckfuss-Bömeke K, Hasenfuss G, Jaenisch R, Engel W. Pluripotent stem cells are highly susceptible targets for syngeneic, allogeneic, and xenogeneic natural killer cells. FASEB J 2010; 24:2164-77. [PMID: 20145206 DOI: 10.1096/fj.09-134957] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multipotent adult germ-line stem cells (maGSCs) and induced pluripotent stem cells (iPSCs) could be used to generate autologous cells for therapeutic purposes, which are expected to be tolerated by the recipient. However, effects of the immune system on these cells have not been investigated. We have compared the susceptibility of maGSC lines to IL-2-activated natural killer (NK) cells with embryonic stem cell (ESC) lines, iPSCs, and F9 teratocarcinoma cells. The killing of pluripotent cell lines by syngeneic, allogeneic, and xenogeneic killer cells ranged between 48 and 265% in chromium release assays when compared to YAC-1 cells, which served as highly susceptible reference cells. With the exception of 2 maGSC lines, they expressed ligands for the activating NK receptor NKG2D that belong to the RAE-1 family, and killing could be inhibited by soluble NKG2D, demonstrating a functional role of these molecules. Furthermore, ligands of the activating receptor DNAM-1 were frequently expressed. The susceptibility to NK cells might constitute a common feature of pluripotent cells. It could result in rejection after transplantation, as suggested by a reduced teratoma growth after NK cell activation in vivo, but it might also offer a strategy to deplete contaminating pluripotent cells before grafting of differentiated cells.
Collapse
Affiliation(s)
- Ralf Dressel
- Department of Cellular and Molecular Immunology, University of Göttingen, Humboldtallee 34, 37073 Göttingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Dressel R, Guan K, Nolte J, Elsner L, Monecke S, Nayernia K, Hasenfuss G, Engel W. Multipotent adult germ-line stem cells, like other pluripotent stem cells, can be killed by cytotoxic T lymphocytes despite low expression of major histocompatibility complex class I molecules. Biol Direct 2009; 4:31. [PMID: 19715575 PMCID: PMC2745366 DOI: 10.1186/1745-6150-4-31] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 08/28/2009] [Indexed: 01/09/2023] Open
Abstract
Background Multipotent adult germ-line stem cells (maGSCs) represent a new pluripotent cell type that can be derived without genetic manipulation from spermatogonial stem cells (SSCs) present in adult testis. Similarly to induced pluripotent stem cells (iPSCs), they could provide a source of cellular grafts for new transplantation therapies of a broad variety of diseases. To test whether these stem cells can be rejected by the recipients, we have analyzed whether maGSCs and iPSCs can become targets for cytotoxic T lymphocytes (CTL) or whether they are protected, as previously proposed for embryonic stem cells (ESCs). Results We have observed that maGSCs can be maintained in prolonged culture with or without leukemia inhibitory factor and/or feeder cells and still retain the capacity to form teratomas in immunodeficient recipients. They were, however, rejected in immunocompetent allogeneic recipients, and the immune response controlled teratoma growth. We analyzed the susceptibility of three maGSC lines to CTL in comparison to ESCs, iPSCs, and F9 teratocarcinoma cells. Major histocompatibility complex (MHC) class I molecules were not detectable by flow cytometry on these stem cell lines, apart from low levels on one maGSC line (maGSC Stra8 SSC5). However, using a quantitative real time PCR analysis H2K and B2m transcripts were detected in all pluripotent stem cell lines. All pluripotent stem cell lines were killed in a peptide-dependent manner by activated CTLs derived from T cell receptor transgenic OT-I mice after pulsing of the targets with the SIINFEKL peptide. Conclusion Pluripotent stem cells, including maGSCs, ESCs, and iPSCs can become targets for CTLs, even if the expression level of MHC class I molecules is below the detection limit of flow cytometry. Thus they are not protected against CTL-mediated cytotoxicity. Therefore, pluripotent cells might be rejected after transplantation by this mechanism if specific antigens are presented and if specific activated CTLs are present. Our results show that the adaptive immune system has in principle the capacity to kill pluripotent and teratoma forming stem cells. This finding might help to develop new strategies to increase the safety of future transplantations of in vitro differentiated cells by exploiting a selective immune response against contaminating undifferentiated cells. Reviewers This article was reviewed by Bhagirath Singh, Etienne Joly and Lutz Walter.
Collapse
Affiliation(s)
- Ralf Dressel
- Department of Cellular and Molecular Immunology, University of Göttingen, Heinrich-Düker-Weg 12, 37073 Göttingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|