1
|
Domingo A, Yadav R, Shah S, Hendriks WT, Erdin S, Gao D, O'Keefe K, Currall B, Gusella JF, Sharma N, Ozelius LJ, Ehrlich ME, Talkowski ME, Bragg DC. Dystonia-specific mutations in THAP1 alter transcription of genes associated with neurodevelopment and myelin. Am J Hum Genet 2021; 108:2145-2158. [PMID: 34672987 PMCID: PMC8595948 DOI: 10.1016/j.ajhg.2021.09.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/27/2021] [Indexed: 12/28/2022] Open
Abstract
Dystonia is a neurologic disorder associated with an increasingly large number of genetic variants in many genes, resulting in characteristic disturbances in volitional movement. Dissecting the relationships between these mutations and their functional outcomes is critical in understanding the pathways that drive dystonia pathogenesis. Here we established a pipeline for characterizing an allelic series of dystonia-specific mutations. We used this strategy to investigate the molecular consequences of genetic variation in THAP1, which encodes a transcription factor linked to neural differentiation. Multiple pathogenic mutations associated with dystonia cluster within distinct THAP1 functional domains and are predicted to alter DNA-binding properties and/or protein interactions differently, yet the relative impact of these varied changes on molecular signatures and neural deficits is unclear. To determine the effects of these mutations on THAP1 transcriptional activity, we engineered an allelic series of eight alterations in a common induced pluripotent stem cell background and differentiated these lines into a panel of near-isogenic neural stem cells (n = 94 lines). Transcriptome profiling followed by joint analysis of the most robust signatures across mutations identified a convergent pattern of dysregulated genes functionally related to neurodevelopment, lysosomal lipid metabolism, and myelin. On the basis of these observations, we examined mice bearing Thap1-disruptive alleles and detected significant changes in myelin gene expression and reduction of myelin structural integrity relative to control mice. These results suggest that deficits in neurodevelopment and myelination are common consequences of dystonia-associated THAP1 mutations and highlight the potential role of neuron-glial interactions in the pathogenesis of dystonia.
Collapse
Affiliation(s)
- Aloysius Domingo
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rachita Yadav
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shivangi Shah
- The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - William T Hendriks
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Serkan Erdin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dadi Gao
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kathryn O'Keefe
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Benjamin Currall
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - James F Gusella
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Laurie J Ozelius
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Michelle E Ehrlich
- Departments of Neurology, Pediatrics, and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - D Cristopher Bragg
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; The Collaborative Center for X-Linked Dystonia-Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA.
| |
Collapse
|
2
|
Pérez-Palacios R, Climent M, Santiago-Arcos J, Macías-Redondo S, Klar M, Muniesa P, Schoorlemmer J. YY2 in Mouse Preimplantation Embryos and in Embryonic Stem Cells. Cells 2021; 10:cells10051123. [PMID: 34066930 PMCID: PMC8148602 DOI: 10.3390/cells10051123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
Yin Yang 2 encodes a mammalian-specific transcription factor (YY2) that shares high homology in the zinc finger region with both YY1 and REX1/ZFP42, encoded by the Yin Yang 1 and Reduced Expression Protein 1/Zinc Finger Protein 42 gene, respectively. In contrast to the well-established roles of the latter two in gene regulation, X chromosome inactivation and binding to specific transposable elements (TEs), much less is known about YY2, and its presence during mouse preimplantation development has not been described. As it has been reported that mouse embryonic stem cells (mESC) cannot be propagated in the absence of Yy2, the mechanistic understanding of how Yy2 contributes to mESC maintenance remains only very partially characterized. We describe Yy2 expression studies using RT-PCR and staining with a high-affinity polyclonal serum in mouse embryos and mESC. Although YY2 is expressed during preimplantation development, its presence appears dispensable for developmental progress in vitro until formation of the blastocyst. Attenuation of Yy2 levels failed to alter either Zscan4 levels in two-cell embryos or IAP and MERVL levels at later preimplantation stages. In contrast to previous claims that constitutively expressed shRNA against Yy2 in mESC prohibited the propagation of mESC in culture, we obtained colonies generated from mESC with attenuated Yy2 levels. Concomitant with a decreased number of undifferentiated colonies, Yy2-depleted mESC expressed higher levels of Zscan4 but no differences in the expression of TEs or other pluripotency markers including Sox2, Oct4, Nanog and Esrrb were observed. These results confirm the contribution of Yy2 to the maintenance of mouse embryonic stem cells and show the preimplantation expression of YY2. These functions are discussed in relation to mammalian-specific functions of YY1 and REX1.
Collapse
Affiliation(s)
- Raquel Pérez-Palacios
- Regenerative Medicine Program, Instituto Aragonés de Ciencias de la Salud, CIBA, Avenida San Juan Bosco 13, 50009 Zaragoza, Spain; (R.P.-P.); (S.M.-R.)
- Departamento de Anatomía, Embriología y Genética Animal, Facultad de Veterinaria, Universidad de Zaragoza, C/Miguel Servet 177, 50013 Zaragoza, Spain; (M.C.); (J.S.-A.); (P.M.)
| | - María Climent
- Departamento de Anatomía, Embriología y Genética Animal, Facultad de Veterinaria, Universidad de Zaragoza, C/Miguel Servet 177, 50013 Zaragoza, Spain; (M.C.); (J.S.-A.); (P.M.)
- Placental Pathophysiology and Fetal Programming Group, Fundación IISA, Avenida San Juan Bosco 13, 50009 Zaragoza, Spain
| | - Javier Santiago-Arcos
- Departamento de Anatomía, Embriología y Genética Animal, Facultad de Veterinaria, Universidad de Zaragoza, C/Miguel Servet 177, 50013 Zaragoza, Spain; (M.C.); (J.S.-A.); (P.M.)
| | - Sofía Macías-Redondo
- Regenerative Medicine Program, Instituto Aragonés de Ciencias de la Salud, CIBA, Avenida San Juan Bosco 13, 50009 Zaragoza, Spain; (R.P.-P.); (S.M.-R.)
| | - Martin Klar
- Department of Neonatology, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany;
| | - Pedro Muniesa
- Departamento de Anatomía, Embriología y Genética Animal, Facultad de Veterinaria, Universidad de Zaragoza, C/Miguel Servet 177, 50013 Zaragoza, Spain; (M.C.); (J.S.-A.); (P.M.)
- Placental Pathophysiology and Fetal Programming Group, Fundación IISA, Avenida San Juan Bosco 13, 50009 Zaragoza, Spain
| | - Jon Schoorlemmer
- Regenerative Medicine Program, Instituto Aragonés de Ciencias de la Salud, CIBA, Avenida San Juan Bosco 13, 50009 Zaragoza, Spain; (R.P.-P.); (S.M.-R.)
- Placental Pathophysiology and Fetal Programming Group, Fundación IISA, Avenida San Juan Bosco 13, 50009 Zaragoza, Spain
- Fundación “Agencia Aragonesa para la Investigación y el Desarrollo” (ARAID), 50018 Zaragoza, Spain
- Correspondence: ; Tel.: +34-976-715-412 or +34-672-022-215
| |
Collapse
|
3
|
Zhang S, Zhang X, Guan X, Ma X, Chen H, Huang B, Chen D. YAF2 exerts anti-apoptotic effect in human tumor cells in a FANK1- and phosphorylation-dependent manner. Biochem Biophys Res Commun 2021; 554:99-106. [PMID: 33784512 DOI: 10.1016/j.bbrc.2021.03.105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
YY1-associated factor 2 (YAF2) was frequently reported to modulate target gene transcription through both epigenetic and non-epigenetic means. However, other mechanisms were also utilized by YAF2 to carry out its biological functions. Here, we demonstrated that YAF2 from human tumor and non-tumor cells were mainly expressed as Serine 167 phosphorylated form. Further studies showed that the phosphorylated YAF2 up-regulated while its knockdown by specific siRNAs reduced fibronectin type III and ankyrin repeat domains 1 (FANK1) protein level. Mechanistic exploration disclosed that phosphorylated YAF2 inhibit proteasomal degradation of polyubiquitinated FANK1, leading to its increased stability. We then validated their interaction, and displayed that the FN3 domain of FANK1 binds to amino-terminal of YAF2. Functional studies showed that phosphorylated YAF2 inhibits tumor cell apoptosis in a FANK1-dependent manner. Taken together, our current findings demonstrated that phosphorylated YAF2 exhibits anti-apoptotic activity through targeting FANK1 expression in human tumor cells.
Collapse
Affiliation(s)
- Shiqiang Zhang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Xuan Zhang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China; Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xin Guan
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Xiaoli Ma
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Hong Chen
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Bingren Huang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Deng Chen
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
4
|
Meek S, Wei J, Oh T, Watson T, Olavarrieta J, Sutherland L, Carlson DF, Salzano A, Chandra T, Joshi A, Burdon T. A Stem Cell Reporter for Investigating Pluripotency and Self-Renewal in the Rat. Stem Cell Reports 2020; 14:154-166. [PMID: 31902707 PMCID: PMC6962659 DOI: 10.1016/j.stemcr.2019.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 12/02/2022] Open
Abstract
Rat embryonic stem cells (rESCs) are capable of contributing to all differentiated tissues, including the germ line in chimeric animals, and represent a unique, authentic alternative to mouse embryonic stem cells for studying stem cell pluripotency and self-renewal. Here, we describe an EGFP reporter transgene that tracks expression of the benchmark naive pluripotency marker gene Rex1 (Zfp42) in the rat. Insertion of the EGFP reporter gene downstream of the Rex1 promoter disrupted Rex1 expression, but REX1-deficient rESCs and rats were viable and apparently normal, validating this targeted knockin transgene as a neutral reporter. The Rex1-EGFP gene responded to self-renewal/differentiation factors and validated the critical role of β-catenin/LEF1 signaling. The stem cell reporter also allowed the identification of functionally distinct sub-populations of cells within rESC cultures, thus demonstrating its utility in discriminating between cell states in rat stem cell cultures, as well as providing a tool for tracking Rex1 expression in the rat. Rex1-EGFP transgene is a neutral reporter of pluripotency and self-renewal in the rat Rex1-EGFP transgene responds appropriately to self-renewal and differentiation signaling Rex1-EGFP transgene allows the discrimination between rat ESC pluripotent states
Collapse
Affiliation(s)
- Stephen Meek
- The Roslin Institute and R(D)VS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Jun Wei
- The Roslin Institute and R(D)VS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK; iRegene Therapeutics, C6-522, 666 Gaoxin Avenue, Wuhan, 430070, China
| | - Taeho Oh
- The Roslin Institute and R(D)VS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Tom Watson
- The Roslin Institute and R(D)VS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Jaime Olavarrieta
- The Roslin Institute and R(D)VS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Linda Sutherland
- The Roslin Institute and R(D)VS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Daniel F Carlson
- Recombinetics Inc., 1246 University Avenue W, St. Paul, MN 55125, USA
| | - Angela Salzano
- MRC Unit for Human Genetics, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Tamir Chandra
- MRC Unit for Human Genetics, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Anagha Joshi
- The Roslin Institute and R(D)VS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Tom Burdon
- The Roslin Institute and R(D)VS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| |
Collapse
|
5
|
Zeng YT, Liu XF, Yang WT, Zheng PS. REX1 promotes EMT-induced cell metastasis by activating the JAK2/STAT3-signaling pathway by targeting SOCS1 in cervical cancer. Oncogene 2019; 38:6940-6957. [PMID: 31409905 DOI: 10.1038/s41388-019-0906-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 12/24/2022]
Abstract
ZFP42 zinc finger protein (REX1), a pluripotency marker in mouse pluripotent stem cells, has been identified as a tumor suppressor in several human cancers. However, the function of REX1 in cervical cancer remains unknown. Both IHC and western blot assays demonstrated that the expression of REX1 protein in cervical cancer tissue was much higher than that in normal cervical tissue. A xenograft assay showed that REX1 overexpression in SiHa and HeLa cells facilitated distant metastasis but did not significantly affect tumor formation in vivo. In addition, in vitro cell migration and invasion capabilities were also promoted by REX1. Mechanistically, REX1 overexpression induced epithelial-to-mesenchymal transition (EMT) by upregulating VIMENTIN and downregulating E-CADHERIN. Furthermore, the JAK2/STAT3-signaling pathway was activated in REX1-overexpressing cells, which also exhibited increased levels of p-STAT3 and p-JAK2, as well as downregulated expression of SOCS1, which is an inhibitor of the JAK2/STAT3-signaling pathway, at both the transcriptional and translational levels. A dual-luciferase reporter assay and qChIP assays confirmed that REX1 trans-suppressed the expression of SOCS1 by binding to two specific regions of the SOCS1 promoter. Therefore, all our data suggest that REX1 overexpression could play a crucial role in the metastasis and invasion of cervical cancer by upregulating the activity of the JAK2/STAT3 pathway by trans-suppressing SOCS1 expression.
Collapse
Affiliation(s)
- Yu-Ting Zeng
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, PR China
| | - Xiao-Fang Liu
- Section of Cancer Stem Cell Research, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of the People's Republic of China, Xi'an, 710061, Shaanxi, PR China
| | - Wen-Ting Yang
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, PR China.
| | - Peng-Sheng Zheng
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, PR China. .,Section of Cancer Stem Cell Research, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of the People's Republic of China, Xi'an, 710061, Shaanxi, PR China.
| |
Collapse
|
6
|
Figiel M, Łakomska J, Miłek P, Dziedzicka‐Wasylewska M, Górecki A. The transcription factor
YY
2 has less momentous properties of an intrinsically disordered protein than its paralog
YY
1. FEBS Lett 2019; 593:1787-1798. [DOI: 10.1002/1873-3468.13457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Małgorzata Figiel
- Department of Physical Biochemistry Faculty of Biochemistry, Biophysics and Biotechnology Jagiellonian University Kraków Poland
| | - Julia Łakomska
- Department of Physical Biochemistry Faculty of Biochemistry, Biophysics and Biotechnology Jagiellonian University Kraków Poland
| | - Piotr Miłek
- Department of Physical Biochemistry Faculty of Biochemistry, Biophysics and Biotechnology Jagiellonian University Kraków Poland
| | - Marta Dziedzicka‐Wasylewska
- Department of Physical Biochemistry Faculty of Biochemistry, Biophysics and Biotechnology Jagiellonian University Kraków Poland
| | - Andrzej Górecki
- Department of Physical Biochemistry Faculty of Biochemistry, Biophysics and Biotechnology Jagiellonian University Kraków Poland
| |
Collapse
|
7
|
Epigenetic and non-epigenetic functions of the RYBP protein in development and disease. Mech Ageing Dev 2018; 174:111-120. [DOI: 10.1016/j.mad.2018.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 03/22/2018] [Accepted: 03/26/2018] [Indexed: 12/30/2022]
|
8
|
Glanzner WG, Komninou ER, Mahendran A, Rissi VB, Gutierrez K, Bohrer RC, Collares T, Gonçalves PBD, Bordignon V. Exposure of Somatic Cells to Cytoplasm Extracts of Porcine Oocytes Induces Stem Cell-Like Colony Formation and Alters Expression of Pluripotency and Chromatin-Modifying Genes. Cell Reprogram 2016; 18:137-46. [PMID: 27253625 DOI: 10.1089/cell.2016.0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cell permeabilization followed by exposure to cytoplasmic extracts of oocytes has been proposed as an alternative to transduction of transcription factors for inducing pluripotency in cultured somatic cells. The main goal in this study was to investigate the effect of treating porcine fibroblast cells with cytoplasmic extracts of GV-stage oocyte (OEx) followed by inhibition of histone deacetylases with Scriptaid (Scrip) on the formation of stem cell-like colonies and expression of genes encoding pluripotency and chromatin-modifying enzymes. Stem cell-like colonies start developing ∼2 weeks after treatment in cells exposed to OEx or OEx + Scrip. The number of cell colonies at the first day of appearance and 48 hours later was also similar between OEx and OEx + Scrip treatments. Transcripts for Nanog, Rex1, and c-Myc genes were detected in most cell samples that were analyzed on different days after OEx treatment. However, Sox2 transcripts were not detected and only a small proportion of samples had detectable levels of Oct4 mRNA after OEx treatment. A similar pattern of transcripts for pluripotency genes was observed in cells treated with OEx alone or OEx + Scrip. Transcript levels for Dnmt1 and Ezh2 were reduced at Day 3 after treatment in cells exposed to OEx. These findings revealed that: (a) exposure to OEx can induce a partial reprogramming of fibroblast cells toward pluripotency, characterized by colony formation and activation of pluripotency genes; and (b) inhibition of histone deacetylases does not improve the reprogramming effect of OEx treatment.
Collapse
Affiliation(s)
- Werner Giehl Glanzner
- 1 Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria (UFSM) , Santa Maria, Brazil
| | - Eliza R Komninou
- 2 Postgraduate Program in Biotechnology, Laboratory of Molecular Embryology and Transgenesis, Technology Development Center, Federal University of Pelotas (UFPEL) , Pelotas, Brazil
| | - Ashwini Mahendran
- 3 Department of Animal Science, McGill University , Ste-Anne-De-Bellevue, Canada
| | - Vitor B Rissi
- 1 Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria (UFSM) , Santa Maria, Brazil
| | - Karina Gutierrez
- 3 Department of Animal Science, McGill University , Ste-Anne-De-Bellevue, Canada
| | - Rodrigo C Bohrer
- 3 Department of Animal Science, McGill University , Ste-Anne-De-Bellevue, Canada
| | - Tiago Collares
- 2 Postgraduate Program in Biotechnology, Laboratory of Molecular Embryology and Transgenesis, Technology Development Center, Federal University of Pelotas (UFPEL) , Pelotas, Brazil
| | - Paulo B D Gonçalves
- 1 Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria (UFSM) , Santa Maria, Brazil
| | - Vilceu Bordignon
- 3 Department of Animal Science, McGill University , Ste-Anne-De-Bellevue, Canada
| |
Collapse
|
9
|
Pérez-Palacios R, Macías-Redondo S, Climent M, Contreras-Moreira B, Muniesa P, Schoorlemmer J. In Vivo Chromatin Targets of the Transcription Factor Yin Yang 2 in Trophoblast Stem Cells. PLoS One 2016; 11:e0154268. [PMID: 27191592 PMCID: PMC4871433 DOI: 10.1371/journal.pone.0154268] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 04/11/2016] [Indexed: 12/27/2022] Open
Abstract
Background Yin Yang 2 (YY2) is a zinc finger protein closely related to the well-characterized Yin Yang 1 (YY1). YY1 is a DNA-binding transcription factor, with defined functions in multiple developmental processes, such as implantation, cell differentiation, X inactivation, imprinting and organogenesis. Yy2 has been treated as a largely immaterial duplication of Yy1, as they share high homology in the Zinc Finger-region and similar if not identical in vitro binding sites. In contrast to these similarities, gene expression alterations in HeLa cells with attenuated levels of either Yy1 or Yy2 were to some extent gene-specific. Moreover, the chromatin binding sites for YY2, except for its association with transposable retroviral elements (RE) and Endogenous Retroviral Elements (ERVs), remain to be identified. As a first step towards defining potential Yy2 functions matching or complementary to Yy1, we considered in vivo DNA binding sites of YY2 in trophoblast stem (TS) cells. Results We report the presence of YY2 protein in mouse-derived embryonic stem (ES) and TS cell lines. Following up on our previous report on ERV binding by YY2 in TS cells, we investigated the tissue-specificity of REX1 and YY2 binding and confirm binding to RE/ERV targets in both ES cells and TS cells. Because of the higher levels of expression, we chose TS cells to understand the role of Yy2 in gene and chromatin regulation. We used in vivo YY2 association as a measure to identify potential target genes. Sequencing of chromatin obtained in chromatin-immunoprecipitation (ChIP) assays carried out with αYY2 serum allowed us to identify a limited number of chromatin targets for YY2. Some putative binding sites were validated in regular ChIP assays and gene expression of genes nearby was altered in the absence of Yy2. Conclusions YY2 binding to ERVs is not confined to TS cells. In vivo binding sites share the presence of a consensus binding motif. Selected sites were uniquely bound by YY2 as opposed to YY1, suggesting that YY2 exerts unique contributions to gene regulation. YY2 binding was not generally associated with gene promoters. However, several YY2 binding sites are linked to long noncoding RNA (lncRNA) genes and we show that the expression levels of a few of those are Yy2-dependent.
Collapse
Affiliation(s)
- Raquel Pérez-Palacios
- Instituto Aragonés de Ciencias de la Salud and Instituto de Investigación Sanitaria de Aragón (IIS-Aragón), Zaragoza, Spain
| | - Sofía Macías-Redondo
- Instituto Aragonés de Ciencias de la Salud and Instituto de Investigación Sanitaria de Aragón (IIS-Aragón), Zaragoza, Spain
| | - María Climent
- Departamento de Anatomía, Embriología y Genética Animal, Facultad de Veterinaria, Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain
| | - Bruno Contreras-Moreira
- ARAID Foundation, Zaragoza, Spain
- Estación Experimental de Aula Dei /CSIC, Av. Montañana 1.005, 50059 Zaragoza, Spain
| | - Pedro Muniesa
- Departamento de Anatomía, Embriología y Genética Animal, Facultad de Veterinaria, Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain
| | - Jon Schoorlemmer
- Instituto Aragonés de Ciencias de la Salud and Instituto de Investigación Sanitaria de Aragón (IIS-Aragón), Zaragoza, Spain
- ARAID Foundation, Zaragoza, Spain
- * E-mail:
| |
Collapse
|
10
|
Klar M, Fenske P, Vega FR, Dame C, Bräuer AU. Transcription factor Yin-Yang 2 alters neuronal outgrowth in vitro. Cell Tissue Res 2015; 362:453-60. [PMID: 26350623 PMCID: PMC4657790 DOI: 10.1007/s00441-015-2268-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 08/06/2015] [Indexed: 01/05/2023]
Abstract
The Yin-Yang 2 (YY2) protein is the most recently described member of the family of YY transcription factors. Despite its high structural and functional homology with the well-characterized YY1, less is known about its role in biological processes. In previous studies, we have found differential yy2 mRNA expression levels in various cell types of the murine brain. To investigate the functional implication of yy2 in neurons, we have examined the influence of altered cellular yy2 concentrations during neuronal differentiation. Our results indicate that both the up- and down-regulation of yy2 significantly impairs the outgrowth of the major neurite of primary hippocampal neurons and the numbers of neuronal processes in proximate extensions. Moreover, enhanced expression of wild-type yy2 results in increased cell death, whereas elevated expression levels of a yy2 DNA-binding mutant have no effect on cell viability. Therefore, stringent regulation of the cellular yy2 content might be needed to ensure proper neurite outgrowth and cell vitality.
Collapse
Affiliation(s)
- Martin Klar
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Pascal Fenske
- Institute of Cell Biology and Neurobiology, Center for Anatomy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Fanny Rezza Vega
- Institute of Cell Biology and Neurobiology, Center for Anatomy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Christof Dame
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Anja U Bräuer
- Institute of Cell Biology and Neurobiology, Center for Anatomy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany. .,Institute of Anatomy, Universitätsmedizin Rostock, Gertrudenstraße 9, 18055, Rostock, Germany.
| |
Collapse
|
11
|
Schoorlemmer J, Pérez-Palacios R, Climent M, Guallar D, Muniesa P. Regulation of Mouse Retroelement MuERV-L/MERVL Expression by REX1 and Epigenetic Control of Stem Cell Potency. Front Oncol 2014; 4:14. [PMID: 24567914 PMCID: PMC3915180 DOI: 10.3389/fonc.2014.00014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/21/2014] [Indexed: 11/17/2022] Open
Abstract
About half of the mammalian genome is occupied by DNA sequences that originate from transposable elements. Retrotransposons can modulate gene expression in different ways and, particularly retrotransposon-derived long terminal repeats, profoundly shape expression of both surrounding and distant genomic loci. This is especially important in pre-implantation development, during which extensive reprograming of the genome takes place and cells pass through totipotent and pluripotent states. At this stage, the main mechanism responsible for retrotransposon silencing, i.e., DNA methylation, is inoperative. A particular retrotransposon called muERV-L/MERVL is expressed during pre-implantation stages and contributes to the plasticity of mouse embryonic stem cells. This review will focus on the role of MERVL-derived sequences as controlling elements of gene expression specific for pre-implantation development, two-cell stage-specific gene expression, and stem cell pluripotency, the epigenetic mechanisms that control their expression, and the contributions of the pluripotency marker REX1 and the related Yin Yang 1 family of transcription factors to this regulation process.
Collapse
Affiliation(s)
- Jon Schoorlemmer
- Regenerative Medicine Program, Instituto Aragonés de Ciencias de la Salud , Zaragoza , Spain ; ARAID Foundation , Zaragoza , Spain
| | - Raquel Pérez-Palacios
- Regenerative Medicine Program, Instituto Aragonés de Ciencias de la Salud , Zaragoza , Spain
| | - María Climent
- Departamento de Anatomía, Embriología y Genética Animal, Facultad de Veterinaria, Universidad de Zaragoza , Zaragoza , Spain
| | - Diana Guallar
- Regenerative Medicine Program, Instituto Aragonés de Ciencias de la Salud , Zaragoza , Spain
| | - Pedro Muniesa
- Departamento de Anatomía, Embriología y Genética Animal, Facultad de Veterinaria, Universidad de Zaragoza , Zaragoza , Spain
| |
Collapse
|
12
|
Kim J, Kim H. Recruitment and biological consequences of histone modification of H3K27me3 and H3K9me3. ILAR J 2014; 53:232-9. [PMID: 23744963 DOI: 10.1093/ilar.53.3-4.232] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Two histone marks, H3K27me3 and H3K9me3, are well known for their repressive roles in the genic and nongenic regions of metazoan genomes. Several protein complexes are known to be responsible for generating these marks, including polycomb repression complex 2 and several H3K9 methylases. Recent studies have shown that the targeting of these histone-modifying complexes within mammalian genomes may be mediated through several DNA-binding proteins, including AEBP2, JARID2, and YY1. In this review, we discuss the potential targeting mechanisms in light of the recent results that have been derived from genome-wide chromatin immunoprecipitation sequencing data and the in vivo functions of these two histone marks in light of the results derived from mouse and human genetic studies.
Collapse
Affiliation(s)
- Joomyeong Kim
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | |
Collapse
|
13
|
Basu A, Wilkinson FH, Colavita K, Fennelly C, Atchison ML. YY1 DNA binding and interaction with YAF2 is essential for Polycomb recruitment. Nucleic Acids Res 2013; 42:2208-23. [PMID: 24285299 PMCID: PMC3936737 DOI: 10.1093/nar/gkt1187] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Polycomb Group (PcG) proteins are crucial for epigenetic inheritance of cell identity and are functionally conserved from Drosophila to humans. PcG proteins regulate expression of homeotic genes and are essential for axial body patterning during development. Earlier we showed that transcription factor YY1 functions as a PcG protein. YY1 also physically interacts with YAF2, a homolog of RYBP. Here we characterize the mechanism and physiologic relevance of this interaction. We found phenotypic and biochemical correction of dRYBP mutant flies by mouse YAF2 demonstrating functional conservation across species. Further biochemical analysis revealed that YAF2 bridges interaction between YY1 and the PRC1 complex. ChIP assays in HeLa cells showed that YAF2 is responsible for PcG recruitment to DNA, which is mediated by YY1 DNA binding. Knock-down of YY1 abrogated PcG recruitment, which was not compensated by exogenous YAF2 demonstrating that YY1 DNA binding is a priori necessary for Polycomb assembly on chromatin. Finally, we found that although YAF2 and RYBP regulate a similar number of Polycomb target genes, there are very few genes that are regulated by both implying functional distinction between the two proteins. We present a model of YAF2-dependent and independent PcG DNA recruitment by YY1.
Collapse
Affiliation(s)
- Arindam Basu
- Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA and College of Science Health and Liberal Arts, Philadelphia University, 4201 Henry Avenue, Philadelphia, PA 19144, USA
| | | | | | | | | |
Collapse
|
14
|
Demarcation of stable subpopulations within the pluripotent hESC compartment. PLoS One 2013; 8:e57276. [PMID: 23437358 PMCID: PMC3578859 DOI: 10.1371/journal.pone.0057276] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 01/20/2013] [Indexed: 11/19/2022] Open
Abstract
Heterogeneity is a feature of stem cell populations, resulting from innate cellular hierarchies that govern differentiation capability. How heterogeneity impacts human pluripotent stem cell populations is directly relevant to their efficacious use in regenerative medicine applications. The control of pluripotency is asserted by a core transcription factor network, of which Oct4 is a necessary member. In mouse embryonic stem cells (ESCs), the zinc finger transcription factor Rex1 (Zfp42) closely tracks the undifferentiated state and is capable of segregating Oct4 positive mESCs into metastable populations expressing or lacking Rex1 that are inter-convertible. However, little is currently understood about the extent or function of heterogeneous populations in the human pluripotent compartment. Human ESCs express REX1 transcripts but the distribution and properties of REX1 expressing cells have yet to be described. To address these questions, we used gene targeting in human ESCs to insert the fluorescent protein Venus and an antibiotic selection marker under the control of the endogenous REX1 transcription regulatory elements, generating a sensitive, selectable reporter of pluripotency. REX1 is co-expressed in OCT4 and TRA-1-60 positive hESCs and rapidly lost upon differentiation. Importantly, REX1 expression reveals significant heterogeneity within seemingly homogenous populations of OCT4 and TRA-1-60 hESCs. REX1 expression is extinguished before OCT4 during differentiation, but, in contrast to the mouse, loss of REX1 expression demarcates a stable, OCT4 positive lineage-primed state in pluripotent hESCs that does not revert back to REX1 positivity under normal conditions. We show that loss of REX1 expression correlates with altered patterns of DNA methylation at the REX1 locus, implying that epigenetic mechanisms may interfere with the metastable phenotype commonly found in murine pluripotency.
Collapse
|
15
|
Climent M, Alonso-Martin S, Pérez-Palacios R, Guallar D, Benito AA, Larraga A, Fernández-Juan M, Sanz M, de Diego A, Seisdedos MT, Muniesa P, Schoorlemmer J. Functional analysis of Rex1 during preimplantation development. Stem Cells Dev 2012; 22:459-72. [PMID: 22897771 DOI: 10.1089/scd.2012.0211] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Rex1/Zfp42 is a nuclear protein that is highly conserved in mammals, and widely used as an embryonic stem (ES) cell marker. Although Rex1 expression is associated with enhanced pluripotency, loss-of-function models recently described do not exhibit major phenotypes, and both preimplantation development and ES cell derivation appear normal in the absence of Rex1. To better understand the functional role of Rex1, we examined the expression and localization of Rex1 during preimplantation development. Our studies indicated that REX1 is expressed at all stages during mouse preimplantation development, with a mixed pattern of nuclear, perinuclear, and cytoplasmic localization. Chromatin association seemed to be altered in 8-cell embryos, and in the blastocyst, we found REX1 localized almost exclusively in the nucleus. A functional role for Rex1 in vivo was assessed by gain- and loss-of-function approaches. Embryos with attenuated levels of Rex1 after injection of zygotes with siRNAs did not exhibit defects in preimplantation development in vitro. In contrast, overexpression of Rex1 interfered with cleavage divisions and with proper blastocyst development, although we failed to detect alterations in the expression of lineage and pluripotency markers. Rex1 gain- and loss-of-function did alter the expression levels of Zscan4, an important regulator of preimplantation development and pluripotency. Our results suggest that Rex1 plays a role during preimplantation development. They are compatible with a role for Rex1 during acquisition of pluripotency in the blastocyst.
Collapse
Affiliation(s)
- María Climent
- Departamento de Anatomía, Embriología y Genética Animal, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Guallar D, Pérez-Palacios R, Climent M, Martínez-Abadía I, Larraga A, Fernández-Juan M, Vallejo C, Muniesa P, Schoorlemmer J. Expression of endogenous retroviruses is negatively regulated by the pluripotency marker Rex1/Zfp42. Nucleic Acids Res 2012; 40:8993-9007. [PMID: 22844087 PMCID: PMC3467079 DOI: 10.1093/nar/gks686] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Rex1/Zfp42 is a Yy1-related zinc-finger protein whose expression is frequently used to identify pluripotent stem cells. We show that depletion of Rex1 levels notably affected self-renewal of mouse embryonic stem (ES) cells in clonal assays, in the absence of evident differences in expression of marker genes for pluripotency or differentiation. By contrast, marked differences in expression of several endogenous retroviral elements (ERVs) were evident upon Rex1 depletion. We demonstrate association of REX1 to specific elements in chromatin-immunoprecipitation assays, most strongly to muERV-L and to a lower extent to IAP and musD elements. Rex1 regulates muERV-L expression in vivo, as we show altered levels upon transient gain-and-loss of Rex1 function in pre-implantation embryos. We also find REX1 can associate with the lysine-demethylase LSD1/KDM1A, suggesting they act in concert. Similar to REX1 binding to retrotransposable elements (REs) in ES cells, we also detected binding of the REX1 related proteins YY1 and YY2 to REs, although the binding preferences of the two proteins were slightly different. Altogether, we show that Rex1 regulates ERV expression in mouse ES cells and during pre-implantation development and suggest that Rex1 and its relatives have evolved as regulators of endogenous retroviral transcription.
Collapse
Affiliation(s)
- D Guallar
- Regenerative Medicine Programme, IIS Aragón, Instituto Aragonés de Ciencias de Salud, Zaragoza, Avda. Gómez Laguna, 50009 Zaragoza, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
RYBP represses endogenous retroviruses and preimplantation- and germ line-specific genes in mouse embryonic stem cells. Mol Cell Biol 2012; 32:1139-49. [PMID: 22269950 DOI: 10.1128/mcb.06441-11] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Polycomb repressive complexes (PRCs) are important chromatin regulators of embryonic stem (ES) cell function. RYBP binds Polycomb H2A monoubiquitin ligases Ring1A and Ring1B and has been suggested to assist PRC localization to their targets. Moreover, constitutive inactivation of RYBP precludes ES cell formation. Using ES cells conditionally deficient in RYBP, we found that RYBP is not required for maintenance of the ES cell state, although mutant cells differentiate abnormally. Genome-wide chromatin association studies showed RYBP binding to promoters of Polycomb targets, although its presence is dispensable for gene repression. We discovered, using Eed-knockout (KO) ES cells, that RYBP binding to promoters was independent of H3K27me3. However, recruiting of PRC1 subunits Ring1B and Mel18 to their targets was not altered in the absence of RYBP. In contrast, we have found that RYBP efficiently represses endogenous retroviruses (murine endogenous retrovirus [MuERV] class) and preimplantation (including zygotic genome activation stage)- and germ line-specific genes. These observations support a selective repressor activity for RYBP that is dispensable for Polycomb function in the ES cell state. Also, they suggest a role for RYBP in epigenetic resetting during preimplantation development through repression of germ line genes and PcG targets before formation of pluripotent epiblast cells.
Collapse
|