1
|
Wang Z, Gong W, Yao Z, Jin K, Niu Y, Li B, Zuo Q. Mechanisms of Embryonic Stem Cell Pluripotency Maintenance and Their Application in Livestock and Poultry Breeding. Animals (Basel) 2024; 14:1742. [PMID: 38929361 PMCID: PMC11201147 DOI: 10.3390/ani14121742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Embryonic stem cells (ESCs) are remarkably undifferentiated cells that originate from the inner cell mass of the blastocyst. They possess the ability to self-renew and differentiate into multiple cell types, making them invaluable in diverse applications such as disease modeling and the creation of transgenic animals. In recent years, as agricultural practices have evolved from traditional to biological breeding, it has become clear that pluripotent stem cells (PSCs), either ESCs or induced pluripotent stem cells (iPSCs), are optimal for continually screening suitable cellular materials. However, the technologies for long-term in vitro culture or establishment of cell lines for PSCs in livestock are still immature, and research progress is uneven, which poses challenges for the application of PSCs in various fields. The establishment of a robust in vitro system for these cells is critically dependent on understanding their pluripotency maintenance mechanisms. It is believed that the combined effects of pluripotent transcription factors, pivotal signaling pathways, and epigenetic regulation contribute to maintaining their pluripotent state, forming a comprehensive regulatory network. This article will delve into the primary mechanisms underlying the maintenance of pluripotency in PSCs and elaborate on the applications of PSCs in the field of livestock.
Collapse
Affiliation(s)
- Ziyu Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Wei Gong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zeling Yao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Kai Jin
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Niu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Bichun Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qisheng Zuo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Indu S, Devi AN, Sahadevan M, Sengottaiyan J, Basu A, K SR, Kumar PG. Expression profiling of stemness markers in testicular germline stem cells from neonatal and adult Swiss albino mice during their transdifferentiation in vitro. Stem Cell Res Ther 2024; 15:93. [PMID: 38561834 PMCID: PMC10985951 DOI: 10.1186/s13287-024-03701-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Spermatogonial stem cells (SSCs) were considered to be stem cells with limited potencies due to their existence in adult organisms. However, the production of spermatogonial stem cell colonies with broader differentiation capabilities in primary germ cell cultures from mice of select genetic backgrounds (C57BL6/Tg14, ddY, FVB and 129/Ola) indicated that SSCs from these strains were pluripotent. METHODS We established primary cultures of SSCs from neonatal and adult Swiss 3T3 Albino mice. Stemness of SSC colonies were evaluated by performing real-time PCR and immunofluorescence analysis for a panel of chosen stemness markers. Differentiation potentials of SSCs were examined by attempting the generation of embryoid bodies and evaluating the expression of ectodermal, mesodermal and endodermal markers using immunofluorescence and real-time PCR analysis. RESULTS Spermatogonial stem cells from neonatal and mature mice testes colonised in vitro and formed compact spermatogonial stem cell colonies in culture. The presence of stem cell markers ALPL, ITGA6 and CD9 indicated stemness in these colonies. The differentiation potential of these SSC colonies was demonstrated by their transformation into embryoid bodies upon withdrawal of growth factors from the culture medium. SSC colonies and embryoid bodies formed were evaluated using immunofluorescence and real-time PCR analysis. Embryoid body like structures derived from both neonatal and adult mouse testis were quite similar in terms of the expression of germ layer markers. CONCLUSION These results strongly suggest that SSC-derived EB-like structures could be used for further differentiation into cells of interest in cell-based therapeutics.
Collapse
Affiliation(s)
- Sivankutty Indu
- Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, 695 014, Kerala, India
| | - Anandavally N Devi
- Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, 695 014, Kerala, India
| | - Mahitha Sahadevan
- Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, 695 014, Kerala, India
| | - Jeeva Sengottaiyan
- Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, 695 014, Kerala, India
- Department of Biotechnology, University of Kerala, Karyavattom Campus, Thiruvananthapuram, 695581, Kerala, India
| | - Asmita Basu
- Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, 695 014, Kerala, India
- Department of Biotechnology, University of Kerala, Karyavattom Campus, Thiruvananthapuram, 695581, Kerala, India
| | - Shabith Raj K
- Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, 695 014, Kerala, India
- Department of Biotechnology, University of Kerala, Karyavattom Campus, Thiruvananthapuram, 695581, Kerala, India
| | - Pradeep G Kumar
- Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, 695 014, Kerala, India.
- Department of Biotechnology, University of Kerala, Karyavattom Campus, Thiruvananthapuram, 695581, Kerala, India.
| |
Collapse
|
3
|
Ghasemi D, Ebrahimi-Barough S, Nekoofar MH, Mohamadnia A, Lotfibakhshaiesh N, Bahrami N, Karimi R, Taghdiri Nooshabadi V, Azami M, Hasanzadeh E, Ai J. Differentiation of human endometrial stem cells encapsulated in alginate hydrogel into oocyte-like cells. BIOIMPACTS : BI 2022; 13:229-240. [PMID: 37431484 PMCID: PMC10329755 DOI: 10.34172/bi.2022.23960] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/02/2021] [Accepted: 12/04/2021] [Indexed: 08/25/2023]
Abstract
INTRODUCTION Human endometrial mesenchymal stem cells (hEnMSCs) are a rich source of mesenchymal stem cells (MSCs) with multi-lineage differentiation potential, making them an intriguing tool in regenerative medicine, particularly for the treatment of reproductive and infertility issues. The specific process of germline cell-derived stem cell differentiation remains unknown, the aim is to study novel ways to achieve an effective differentiation method that produces adequate and functioning human gamete cells. METHODS We adjusted the optimum retinoic acid (RA) concentration for enhancement of germ cell-derived hEnSCs generation in 2D cell culture after 7 days in this study. Subsequently, we developed a suitable oocyte-like cell induction media including RA and bone morphogenetic protein 4 (BMP4), and studied their effects on oocyte-like cell differentiation in 2D and 3D cell culture media utilizing cells encapsulated in alginate hydrogel. RESULTS Our results from microscopy analysis, real-time PCR, and immunofluorescence tests revealed that 10 µM RA concentration was the optimal dose for inducing germ-like cells after 7 days. We examined the alginate hydrogel structural characteristics and integrity by rheology analysis and SEM microscope. We also demonstrated encapsulated cell viability and adhesion in the manufactured hydrogel. We propose that in 3D cell cultures in alginate hydrogel, an induction medium containing 10 µM RA and 50 ng/mL BMP4 can enhance hEnSC differentiation into oocyte-like cells. CONCLUSION The production of oocyte-like cells using 3D alginate hydrogel may be viable in vitro approach for replacing gonad tissues and cells.
Collapse
Affiliation(s)
- Diba Ghasemi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Nekoofar
- Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Abdolreza Mohamadnia
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasrin Lotfibakhshaiesh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Naghmeh Bahrami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Craniomaxillofacial Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Roya Karimi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Vajihe Taghdiri Nooshabadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Hasanzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Narimanpour Z, Bojnordi MN, Hamidabadi HG. Spermatogenic differentiation of spermatogonial stem cells on three-dimensional silk nanofiber scaffold. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2022. [DOI: 10.1186/s43043-022-00107-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Nano-fibrous scaffolds provide a three-dimensional matrix that guides sufficient orientation of seeded cells similar to a natural niche. In this research, we designed a silk scaffold to improve the differention of mouse spermatogonial stem cells to spermatogenic cell lines. Spermatogonial stem cells were collected from neonatal mouse (2–6 days) testes (n=60) using a two steps mechanical and enzymatic method. Cells were seeded on a silk scaffold and were cultured in Dulbecco’s modified Eagle’s medium, supplemented with 15 % fetal bovine serum and 1000 units/ml leukemia inhibitory factor, and incubated at 32°C in a humidified atmosphere of 5% CO2 in air. SEM technique was done for confirmation of seeding cells.
In this study two major groups (i.e., 2D and 3D culture groups) of 30 mice each. Isolated testicular cells from each group were cultured in the absence of silk scaffold or the presence of silk scaffold.
For induction of differentiation, seeded cells on a scaffold were exposed to 1 μM and 50 ng/ml BMP-4. The specific spermatogenic genes, e.g.; VASA, DAZL, PLZF, and Piwil2, were assessed via real-time PCR and immunocytochemistry techniques. P values less than 0.05 were assumed significant. All experiments were performed at least three times.
Results
SEM analysis confirmed the homogeneity of fabricated silk scaffold and average diameter of 450 nm for nanofibers fibers. Silk scaffold induces attachment of SSCs in comparison to the monolayer group. Spermatogonia stem cell colonies were observed gradually after 1 week of culture. Electrospun scaffold supports the differentiation of SSCs to spermatogenic lines. Dates of real-time PCR showed that the expression of meiotic markers, VASA, DAZL, and Piwil2 as related to specific spermatogenic genes, had a significant upregulation in cell-seeded silk scaffold compared to the control group (P < 0.05).
Immunocytochemistry founding approved the expression of specific spermatogenic markers; DAZL and PLZF were higher in the experiment group compared to the control (P < 0.05).
Conclusion
It is concluded silk scaffold induces spermatogenic differentiation of mouse spermatogonial stem cells in vitro.
Collapse
|
5
|
Eshghifar N, Dehghan BK, Do AA, Koukhaloo SZ, Habibi M, Pouresmaeili F. Infertility cell therapy and epigenetic insights. Hum Antibodies 2021; 29:17-26. [PMID: 33554898 DOI: 10.3233/hab-200438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Recent advances in assisted reproductive technology (ART) have allowed couples with severe infertility to conceive, but the methods are not effective for all cases. Stem cells as undifferentiated cells which are found in different stages of embryonic, fetal and adult life are known to be capable of forming different cell types, tissues, and organs. Due to their unlimited resources and the incredible power of differentiation are considered as potential new therapeutic biological tools for treatment of infertility. For reproductive medicine, stem cells are stimulated in vitro to develop various specialized functional cells including male and female gametes. The epigenetic patterns can be modified in the genome under certain drugs exposure or lifestyle alterations. Therefore, epigenetics-related disorders may be treated if the nature of the modifications is completely admissible. It is proved that our understanding of epigenetic processes and its association with infertility would help us not only to understand the etiological factors but also to treat some type of male infertilities. Exploration of both genetic and epigenetic variations in the disease development could help in the identification of the interaction patterns between these two phenomena and possible improvement of therapeutic methods.
Collapse
Affiliation(s)
- Nahal Eshghifar
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Behnam Kamali Dehghan
- Department of Medical Genetics, National Institute of Medical Engineering and Biotechnology (NIGEB), Tehran, Iran.,Medical Genetics, Jiroft University of Medical Sciences and Health Services, Jiroft, Kerman, Iran.,Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Atieh Abedin Do
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Quebec, Canada
| | | | - Mohsen Habibi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farkhondeh Pouresmaeili
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Pieri NCG, de Souza AF, Botigelli RC, Pessôa LVDF, Recchia K, Machado LS, Glória MH, de Castro RVG, Leal DF, Fantinato Neto P, Martins SMMK, Dos Santos Martins D, Bressan FF, de Andrade AFC. Porcine Primordial Germ Cell-Like Cells Generated from Induced Pluripotent Stem Cells Under Different Culture Conditions. Stem Cell Rev Rep 2021; 18:1639-1656. [PMID: 34115317 DOI: 10.1007/s12015-021-10198-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 12/15/2022]
Abstract
Culture conditions regulate the process of pluripotency acquisition and self-renewal. This study aimed to analyse the influence of the in vitro environment on the induction of porcine induced pluripotent stem cell (piPSCs) differentiation into primordial germ cell-like cells (pPGCLCs). piPSC culture with different supplementation strategies (LIF, bFGF, or LIF plus bFGF) promoted heterogeneous phenotypic profiles. Continuous bFGF supplementation during piPSCs culture was beneficial to support a pluripotent state and the differentiation of piPSCs into pPGCLCs. The pPGCLCs were positive for the gene and protein expression of pluripotent and germinative markers. This study can provide a suitable in vitro model for use in translational studies and to help answer numerous remaining questions about germ cells.
Collapse
Affiliation(s)
- Naira Caroline Godoy Pieri
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, SP, Brazil.
| | - Aline Fernanda de Souza
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, SP, Pirassununga, Brazil
| | - Ramon Cesar Botigelli
- Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | | | - Kaiana Recchia
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo, SP, Brazil
| | - Lucas Simões Machado
- Department of Biochemistry, Paulista School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo/SP, Brazil
| | - Mayra Hirakawa Glória
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, SP, Pirassununga, Brazil
| | - Raquel Vasconcelos Guimarães de Castro
- Department of Preventive Veterinary Medicine and Animal Reproduction, Faculty of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Diego Feitosa Leal
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, SP, Brazil
| | - Paulo Fantinato Neto
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, SP, Pirassununga, Brazil
| | | | - Daniele Dos Santos Martins
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Fabiana Fernandes Bressan
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, SP, Pirassununga, Brazil
| | - André Furugen Cesar de Andrade
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, SP, Brazil
| |
Collapse
|
7
|
Kumar D, Talluri TR, Selokar NL, Hyder I, Kues WA. Perspectives of pluripotent stem cells in livestock. World J Stem Cells 2021; 13:1-29. [PMID: 33584977 PMCID: PMC7859985 DOI: 10.4252/wjsc.v13.i1.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/28/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The recent progress in derivation of pluripotent stem cells (PSCs) from farm animals opens new approaches not only for reproduction, genetic engineering, treatment and conservation of these species, but also for screening novel drugs for their efficacy and toxicity, and modelling of human diseases. Initial attempts to derive PSCs from the inner cell mass of blastocyst stages in farm animals were largely unsuccessful as either the cells survived for only a few passages, or lost their cellular potency; indicating that the protocols which allowed the derivation of murine or human embryonic stem (ES) cells were not sufficient to support the maintenance of ES cells from farm animals. This scenario changed by the innovation of induced pluripotency and by the development of the 3 inhibitor culture conditions to support naïve pluripotency in ES cells from livestock species. However, the long-term culture of livestock PSCs while maintaining the full pluripotency is still challenging, and requires further refinements. Here, we review the current achievements in the derivation of PSCs from farm animals, and discuss the potential application areas.
Collapse
Affiliation(s)
- Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, India.
| | - Thirumala R Talluri
- Equine Production Campus, ICAR-National Research Centre on Equines, Bikaner 334001, India
| | - Naresh L Selokar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, India
| | - Iqbal Hyder
- Department of Physiology, NTR College of Veterinary Science, Gannavaram 521102, India
| | - Wilfried A Kues
- Department of Biotechnology, Friedrich-Loeffler-Institute, Federal Institute of Animal Health, Neustadt 31535, Germany
| |
Collapse
|
8
|
Goszczynski DE, Cheng H, Demyda-Peyrás S, Medrano JF, Wu J, Ross PJ. In vitro breeding: application of embryonic stem cells to animal production†. Biol Reprod 2020; 100:885-895. [PMID: 30551176 DOI: 10.1093/biolre/ioy256] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/12/2018] [Accepted: 12/13/2018] [Indexed: 12/12/2022] Open
Abstract
Embryonic stem cells (ESCs) are derived from the inner cell mass of preimplantation blastocysts. For decades, attempts to efficiently derive ESCs in animal livestock species have been unsuccessful, but this goal has recently been achieved in cattle. Together with the recent reconstitution of the germ cell differentiation processes from ESCs in mice, these achievements open new avenues for the development of promising technologies oriented toward improving health, animal production, and the environment. In this article, we present a strategy that will notably accelerate genetic improvement in livestock populations by reducing the generational interval, namely in vitro breeding (IVB). IVB combines genomic selection, a widely used strategy for genetically improving livestock, with ESC derivation and in vitro differentiation of germ cells from pluripotent stem cells. We also review the most recent findings in the fields on which IVB is based. Evidence suggests this strategy will be soon within reach.
Collapse
Affiliation(s)
| | - Hao Cheng
- Department of Animal Science, University of California, Davis, California, USA
| | - Sebastian Demyda-Peyrás
- Instituto de Genetica Veterinaria, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - Juan F Medrano
- Department of Animal Science, University of California, Davis, California, USA
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Pablo J Ross
- Department of Animal Science, University of California, Davis, California, USA
| |
Collapse
|
9
|
Ziloochi Kashani M, Bagher Z, Asgari HR, Najafi M, Koruji M, Mehraein F. Differentiation of neonate mouse spermatogonial stem cells on three-dimensional agar/polyvinyl alcohol nanofiber scaffold. Syst Biol Reprod Med 2020; 66:202-215. [PMID: 32138551 DOI: 10.1080/19396368.2020.1725927] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Electrospun nanofiber matrices sufficiently mimic the structural morphology of natural extracellular matrix. In this study, we aimed to examine the effects of agar/polyvinyl alcohol nanofiber (PVA) scaffold on the proliferation efficiency and differentiation potential of neonate mouse spermatogonial stem cells (SCCs). Testicular cells were isolated from testes of 40 mouse pups and were seeded in: 1) 2D cell culture plates in the absence (2D/-GF) or presence (2D/+GF) of growth factors and 2) onto agar/PVA scaffold in the absence (3D/-GF) or presence (3D/+GF) of growth factors. The cells were subsequently cultured for 4 weeks. First 2 weeks were dedicated to proliferative phase, whereas the next 2 weeks emphasized the differentiation phase. The identity of the SCCs was investigated at different time-points by flow cytometry and quantitative reverse transcription PCR (qRT-PCR) analyses against the germ cell markers, including PLZF, Id-4, Gfrα-1, Tekt-1, and Sycp-3. After 2 weeks of culture, the 3D/+GF group showed the highest percentage of PLZF-positive cells among culture systems (P < 0.05). The expression levels of pre-meiotic markers (Id-4 and Gfrα-1) decreased significantly in all groups, particularly in 3D/+GF group after 28 days of culture. Additionally, the cells in the 3D/+GF group displayed the highest expression of meiotic (Sycp-3) and post-meiotic markers (Tekt-1) 14 days after differentiation induction. Seemingly, the combination of the agar/PVA scaffold and growth factor-supplemented medium synergistically increased the differentiation rate of mouse SSCs into meiotic and post-meiotic cells. Thus, agar/PVA nanofiber scaffolds may have the potential for applications in the restoration of infertility, especially in azoospermic males. ABBREVIATIONS 2D: two dimentional; 3D: three dimentional; bFGF: basic fibroblast growth factor; BMP-4: bone morphogenetic protein 4; DMEM: Dulbecco's modified Eagle's medium; ECM: extracellular matrix; FCS: fetal calf serum; FTIR: Fourier-transform infrared spectroscopy; GDNF: glial cell line-derived neurotrophic factor; GF: growth factors; Gfrα-1, GDNF family co-receptor α1; Id-4, Inhibitor of DNA Binding 4; MTT: methylthiazoltetrazolium; PLZF: promyelocytic leukemia zinc finger; PVA: polyvinyl alcohol; qRT-PCR: quantitative reverse transcription PCR; RA: retinoic acid; SACS: soft agar culture system; SD: standard deviation; SEM: scanning electron microscope; SSCs: spermatogonial stem cells; Sycp-3, Synaptonemal complex protein 3; Tekt-1, Tektin 1.
Collapse
Affiliation(s)
- Marzieh Ziloochi Kashani
- Cellular and Molecular Research Center, Iran University of Medical Sciences , Tehran, Iran.,Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences , Tehran, Iran
| | - Zohreh Bagher
- ENT and Head & Neck Research Center and Department, the Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences , Tehran, Iran
| | - Hamid Reza Asgari
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences , Tehran, Iran
| | - Mohammad Najafi
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences , Tehran, Iran
| | - Morteza Koruji
- Cellular and Molecular Research Center, Iran University of Medical Sciences , Tehran, Iran.,Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences , Tehran, Iran
| | - Fereshteh Mehraein
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences , Tehran, Iran.,Minimally Invasive Surgery Research Center, Iran University of Medical Sciences , Tehran, Iran
| |
Collapse
|
10
|
Amini Mahabadi J, Karimian M, Aghighi F, Enderami SE, Seyyed Hosseini E, Talaei SA, Gheibi Hayat SM, Nikzad H. Retinoic acid and 17β-estradiol improve male germ cell differentiation from mouse-induced pluripotent stem cells. Andrologia 2019; 52:e13466. [PMID: 31736115 DOI: 10.1111/and.13466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/04/2019] [Accepted: 09/12/2019] [Indexed: 12/16/2022] Open
Abstract
This research aimed to explore the impacts of retinoic acid (RA)/17β-estradiol (E) induction and embryoid body formation to enhance differentiation of mouse-induced pluripotent stem cells (miPSCs) into male germ cells in vitro. Flow cytometry and qPCR were conducted to describe miPSCs differentiation process. Various temporal expression profiles of germ cell-related genes were traced. Stra8 gene expression increased in the RA group on the 4th day compared to other groups. The RA group experienced a more significant increase than E group. The expression of Sycp3 increased in RA + E group on 4th day compared with other groups. Expression of AKAP3 enhanced in the RA + E group than other groups on day 4. Moreover, miPSCs showed that this gene expression in the RA + E group was increased in comparison to RA and E groups on day 7. AKAP3 gene expression on day 7 of miPSCs decreased in RA and E groups. Flow cytometry data indicated that 3%-8% of the cells in sub-G1 stage were haploid after RA and E induction compared to other groups on day 4. This study showed that miPSCs possess the power for differentiating into male germ cells in vitro via formation of embryoid body by RA with/or E induction.
Collapse
Affiliation(s)
- Javad Amini Mahabadi
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Karimian
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran.,Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Fatemeh Aghighi
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Ehsan Enderami
- Department of Medical Biotechnology, Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Sayyed Alireza Talaei
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Gheibi Hayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Nikzad
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
11
|
Mahabadi JA, Tameh AA, Talaei SA, Karimian M, Rahiminia T, Enderami SE, Gheibi Hayat SM, Nikzad H. Retinoic acid and/or progesterone differentiate mouse induced pluripotent stem cells into male germ cells in vitro. J Cell Biochem 2019; 121:2159-2169. [PMID: 31646671 DOI: 10.1002/jcb.29439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/08/2019] [Indexed: 12/11/2022]
Abstract
Numerous reagents were employed for differentiating induced pluripotent stem cells (iPSCs) into male germ cells; however, the induction procedure was ineffective. The aim of this study was to improve the in vitro differentiation of mice iPSCs (miPSCs) into male germ cells with retinoic acid (RA) and progesterone (P). miPSCs were differentiated to embryoid bodies (EBs) in suspension with RA with or without progesterone for 0, 4, and 7 days. Then, the expression of certain genes at different stages of male germ cell development including Ddx4 (pre meiosis), Stra8 (meiosis), AKAP3 (post meiosis), and Mvh protein was examined in RNA and/or protein levels by real-time polymerase chain reaction or flow cytometry, respectively. The Stra8 gene expression increased in the RA groups on all days. But, expression of this gene declined in RA + P groups. In addition, an increased expression of Ddx4 gene was observed on day 0 in the P group. Also, a significant upregulation was observed in the expression of AKAP3 gene in the RA + P group on days 0 and 4. However, gene expression decreased in P and RA groups on day 7. The expression of Mvh protein significantly increased in the RA group on day 7. The Mvh expression was also enhanced in the P group on day 4, but it decreased on day 7, while this protein upregulated on day 0 and 7 in the RA + P group. The miPSCs have the capacity for in vitro differentiation into male germ cells by RA and/or progesterone. However, the effects of these inducers depend on the type of combination and an effective time.
Collapse
Affiliation(s)
- Javad Amini Mahabadi
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Abolfazl Aazami Tameh
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Mohammad Karimian
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Tahereh Rahiminia
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Ehsan Enderami
- Department of Medical Biotechnology, Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Mohammad Gheibi Hayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Nikzad
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
12
|
Zhang YL, Li PZ, Pang J, Wan YJ, Zhang GM, Fan YX, Wang ZY, Tao NH, Wang F. Induction of goat bone marrow mesenchymal stem cells into putative male germ cells using mRNA for STRA8, BOULE and DAZL. Cytotechnology 2019; 71:563-572. [PMID: 30767091 DOI: 10.1007/s10616-019-00304-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/06/2019] [Indexed: 12/24/2022] Open
Abstract
Bone mesenchymal stem cells (BMSCs) have the capacity to differentiate into germ cells (GCs). This study was conducted to develop a non-integrated method of using RNA transfection to derive putative male GCs from goat BMSCs (gBMSCs) in vitro by overexpressing STRA8, BOULE and DAZL. The gBMSCs were induced by co-transfection these three mRNAs together (mi-SBD group) or sequential transfection according to their expression time order in vivo (mi-S + BD group). After transfection, a small population of gBMSCs transdifferentiated into early germ cell-like cells and had the potential to enter meiosis. These cells expressed primordial germ cell specific genes STELLA, C-KIT and MVH, as well as premeiotic genes DAZL, BOULE, STRA8, PIWIL2 and RNF17. Importantly, the expression level of meiotic marker synaptonemal complex protein 3 significantly increased in these transfected two groups compared with control cells by qRT-PCR, immunofluorescence and western blot analysis (P < 0.05). Moreover, the protein expression of MVH was significantly higher in mi-S + BD group than that in mi-SBD group (P < 0.05). In addition, compared with control group, the methylation rate of imprinted gene H19 decreased in these two transfected group (P < 0.05), and the rate was significantly lower in mi-S + BD group compared with mi-SBD group (P < 0.05). This study helps to understand the mechanisms of action of key genes in GCs differentiation and also provides a novel system for in vitro induction of male GCs from stem cells.
Collapse
Affiliation(s)
- Yan-Li Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, No. 1 Weigang, Nanjing, China
| | - Pei-Zhen Li
- Jiangsu Provincial Station of Animal Husbandry, Nanjing, China
| | - Jing Pang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, No. 1 Weigang, Nanjing, China
| | - Yong-Jie Wan
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, No. 1 Weigang, Nanjing, China
| | - Guo-Min Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, No. 1 Weigang, Nanjing, China
| | - Yi-Xuan Fan
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, No. 1 Weigang, Nanjing, China
| | - Zi-Yu Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, No. 1 Weigang, Nanjing, China
| | - Nie-Hai Tao
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, No. 1 Weigang, Nanjing, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, No. 1 Weigang, Nanjing, China.
| |
Collapse
|
13
|
Fang F, Li Z, Zhao Q, Li H, Xiong C. Human induced pluripotent stem cells and male infertility: an overview of current progress and perspectives. Hum Reprod 2019; 33:188-195. [PMID: 29315416 PMCID: PMC5850345 DOI: 10.1093/humrep/dex369] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Indexed: 01/30/2023] Open
Abstract
Recently, significant progress has been made in ART for the treatment of male infertility. However, current ART has failed to help infertile patients with non-obstructive azoospermia, unless donor sperm is used. In fact, most couples wish to have their own genetically related child. Human induced pluripotent stem cells (hiPSCs) can be generated from patients’ somatic cells and in vitro derivation of functional germ cells from patient-specific iPSCs may provide new therapeutic strategies for infertile couples. The overall developmental dynamics of human primordial germ cells are similar to that in mice, but accumulating evidence suggests that there are crucial differences between human and mouse PGC specification. Unlike mouse iPSCs (miPSCs) in naive state, hiPSCs exhibit a primed pluripotency which possess less potential for the germ cell fate. Based on research in mice, male germ cells at different stages have been derived from hiPSCs with different protocols, including spontaneous differentiation, overexpression of germ cell regulators, addition of cytokines, co-culture with gonadal cells in vitro and xeno-transplantation. The aim of this review is to summarize the current advances in derivation of male germ cells from hiPSCs and raise the perspectives of hiPSCs in medical application for male infertility, as well as in basic research for male germ cell development.
Collapse
Affiliation(s)
- Fang Fang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Zili Li
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.,Center for Reproductive Medicine, Wuhan Tongji Reproductive Medicine Hospital, 128 Sanyang Road, Wuhan 430013, China
| | - Qian Zhao
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Honggang Li
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Chengliang Xiong
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.,Center for Reproductive Medicine, Wuhan Tongji Reproductive Medicine Hospital, 128 Sanyang Road, Wuhan 430013, China
| |
Collapse
|
14
|
Mahabadi JA, Sabzalipoor H, Nikzad H, Seyedhosseini E, Enderami SE, Gheibi Hayat SM, Sahebkar A. The role of microRNAs in embryonic stem cell and induced pluripotent stem cell differentiation in male germ cells. J Cell Physiol 2018; 234:12278-12289. [PMID: 30536380 DOI: 10.1002/jcp.27990] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022]
Abstract
New perspectives have been opened by advances in stem cell research for reproductive and regenerative medicine. Several different cell types can be differentiated from stem cells (SCs) under suitable in vitro and in vivo conditions. The differentiation of SCs into male germ cells has been reported by many groups. Due to their unlimited pluripotency and self-renewal, embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) can be used as valuable tools for drug delivery, disease modeling, developmental studies, and cell-based therapies in regenerative medicine. The unique features of SCs are controlled by a dynamic interplay between extrinsic signaling pathways, and regulations at epigenetic, transcriptional and posttranscriptional levels. In recent years, significant progress has been made toward better understanding of the functions and expression of specific microRNAs (miRNAs) in the maintenance of SC pluripotency. miRNAs are short noncoding molecules, which play a functional role in the regulation of gene expression. In addition, the important regulatory role of miRNAs in differentiation and dedifferentiation has been recently demonstrated. A balance between differentiation and pluripotency is maintained by miRNAs in the embryo and stem cells. This review summarizes the recent findings about the role of miRNAs in the regulation of self-renewal and pluripotency of iPSCs and ESCs, as well as their impact on cellular reprogramming and stem cell differentiation into male germ cells.
Collapse
Affiliation(s)
- Javad Amini Mahabadi
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Sabzalipoor
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Nikzad
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Elahe Seyedhosseini
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Ehsan Enderami
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyed Mohammad Gheibi Hayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amirhosein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Eskandari N, Hassani Moghaddam M, Atlasi MA, Amini Mahabadi J, Taherian A, Nikzad H. The combination of retinoic acid and estrogen can increase germ cells genes expression in mouse embryonic stem cells derived primordial germ cells. Biologicals 2018; 56:39-44. [DOI: 10.1016/j.biologicals.2018.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/16/2018] [Accepted: 10/01/2018] [Indexed: 12/16/2022] Open
|
16
|
Feng Y, Ning Y, Lin X, Zhang D, Liao S, Zheng C, Chen J, Wang Y, Ma L, Xie D, Han C. Reprogramming p53-Deficient Germline Stem Cells Into Pluripotent State by Nanog. Stem Cells Dev 2018; 27:692-703. [PMID: 29631477 DOI: 10.1089/scd.2018.0047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cultured mouse spermatogonial stem cells (SSCs), also known as germline stem cells (GSCs), revert back to pluripotent state either spontaneously or upon being modified genetically. However, the reprogramming efficiencies are low, and the underlying mechanism remains poorly understood. In the present study, we conducted transcriptomic analysis and found that many transcription factors and epigenetic modifiers were differentially expressed between GSCs and embryonic stem cells. We failed in reprogramming GSCs to pluripotent state using the Yamanaka 4 Factors, but succeeded when Nanog and Tet1 were included. More importantly, reprogramming was also achieved with Nanog alone in a p53-deficient GSC line with an efficiency of 0.02‰. These GSC-derived-induced pluripotent stem cells possessed in vitro and in vivo differentiation abilities despite the low rate of chimera formation, which might be caused by abnormal methylation in certain paternally imprinted genes. Together, these results show that GSCs can be reprogrammed to pluripotent state via multiple avenues and contribute to our understanding of the mechanisms of GSC reprogramming.
Collapse
Affiliation(s)
- Yanmin Feng
- 1 State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences, Beijing, China .,2 University of Chinese Academy of Sciences , Beijing, China
| | - Yan Ning
- 1 State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences, Beijing, China .,2 University of Chinese Academy of Sciences , Beijing, China
| | - Xiwen Lin
- 1 State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences, Beijing, China
| | - Daoqin Zhang
- 1 State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences, Beijing, China .,2 University of Chinese Academy of Sciences , Beijing, China
| | - Shangying Liao
- 1 State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences, Beijing, China
| | - Chunwei Zheng
- 1 State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences, Beijing, China .,2 University of Chinese Academy of Sciences , Beijing, China
| | - Jian Chen
- 1 State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences, Beijing, China .,2 University of Chinese Academy of Sciences , Beijing, China
| | - Yang Wang
- 1 State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences, Beijing, China .,2 University of Chinese Academy of Sciences , Beijing, China
| | - Longfei Ma
- 1 State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences, Beijing, China .,2 University of Chinese Academy of Sciences , Beijing, China
| | - Dan Xie
- 1 State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences, Beijing, China .,2 University of Chinese Academy of Sciences , Beijing, China
| | - Chunsheng Han
- 1 State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Amini Mahabadi J, Sabzalipoor H, Kehtari M, Enderami SE, Soleimani M, Nikzad H. Derivation of male germ cells from induced pluripotent stem cells by inducers: A review. Cytotherapy 2018; 20:279-290. [PMID: 29397308 DOI: 10.1016/j.jcyt.2018.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 11/15/2017] [Accepted: 01/01/2018] [Indexed: 12/29/2022]
Abstract
Induced pluripotent stem cells (iPSCs) refer to stem cells that are artificially produced using a new technology known as cellular reprogramming, which can use gene transduction in somatic cells. There are numerous potential applications for iPSCs in the field of stem cell biology becauase they are able to give rise to several different cell features of lineages such as three-germ layers. Primordial germ cells, generated via in vitro differentiation of iPSCs, have been demonstrated to produce functional gametes. Therefore, in this review we discussed past and recent advances in the in vitro differentiation of germ cells using pluripotent stem cells with an emphasis on iPSCs. Although this domain of research is still in its infancy, exploring development mechanisms of germ cells is promising, especially in humans, to promote future reproductive and developmental engineering technologies. While few studies have evaluated the ability and efficiency of iPSCs to differentiate toward male germ cells in vitro by different inducers, the given effect was investigated in this review.
Collapse
Affiliation(s)
- Javad Amini Mahabadi
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Sabzalipoor
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mousa Kehtari
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Seyed Ehsan Enderami
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Masoud Soleimani
- Hematology Department, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Nikzad
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
18
|
Shirzeyli MH, Khanlarkhani N, Amidi F, Shirzeyli FH, Aval FS, Sobhani A. Bones Morphogenic Protein-4 and retinoic acid combined treatment comparative analysis for in vitro differentiation potential of murine mesenchymal stem cells derived from bone marrow and adipose tissue into germ cells. Microsc Res Tech 2017; 80:1151-1160. [PMID: 28921810 DOI: 10.1002/jemt.22880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/16/2017] [Accepted: 03/29/2017] [Indexed: 01/08/2023]
Abstract
Nowadays, infertility is no longer considered as an unsolvable disorder due to progresses in germ cells derived from stem lineage with diverse origins. Technical and ethical challenges push researchers to investigate various tissue sources to approach more efficient gametes. The purpose of the current study is to investigate the efficacy of a combined medium, retinoic acid (RA) together with Bone Morphogenic Protein-4 (BMP4), on differentiation of Bone Marrow Mesenchymal Stem Cells (BMMSCs) and adipose-derived mesenchymal stem cells (ADMSCs) into germ cells. Murine MSCs were obtained from both Bone Marrow (BM) and Adipose Tissue (AT) samples and were analyzed for surface markers to get further verification of their nature. BMMSCs and ADMSCs were induced into osteogenic and adipogenic lineage cells respectively, to examine their multipotency. They were finally differentiated into germ cells using media enriched with BMP4 for 4 days followed by addition of RA for 7 days (11 days in total). Analyzing of differentiation potential of BMMSCs- and ADMSCs were performed via Immunofluorescence, Flowcytometry and Real time-PCR techniques for germ cell-specific markers (Mvh, Dazl, Stra8 and Scp3). Mesenchymal surface markers (CD90 and CD44) were expressed on both BMMSCs and ADMSCs, while endothelial and hematopoietic cell markers (CD31 and CD45) had no expression. Finally, all germ-specific markers were expressed in both BM and AT. Although germ cells differentiated from ADMSCs showed faster growth and proliferation as well as easy collection, they significantly expressed germ-specific markers lower than BMMSCs. This suggests stronger differentiation potential of murine BMMSCs than ADMSCs.
Collapse
Affiliation(s)
- Maryam H Shirzeyli
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Khanlarkhani
- Department of Anatomical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshad H Shirzeyli
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Fereydoon S Aval
- Department of Anatomical Sciences, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Aligholi Sobhani
- Department of Anatomical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Abstract
Is medicine losing its way? This question may seem to imply a serious warning, one needing a further explanation. What I mean to say by the title of this paper is that we can detect an undeniable shift in medicine in the last forty to fifty years. Medicine used to focus on what we call "health care" in a classical sense, that is, the treatment of people suffering from diseases, injuries or handicaps, or the alleviation of pain and other symptoms. In addition to this, in the last half century, it has begun to offer more and more treatments aiming to perfect the qualities of people who are otherwise healthy. SUMMARY Due to the rapid progress of research in the biomedical field, medicine is already and will ever more be able not only to cure diseases, but also to improve the characteristics of healthy human persons. This seems to be justifiable from the point of view of the contemporary view of man. This considers the mind as the actual human person and the body as an object of which he may dispose as he likes. However, serious and convincing objections exist against this view, because it does not do justice to the fact that we experience ourselves as a unity. Aristotelian-Thomist anthropology explains man as a substantial unity of a spiritual and a material dimension, of body and soul, which implies that the body is an essential dimension of man, participates in his intrinsic dignity and is never to be instrumentalized in order to improve the characteristics of healthy people. Medicine should apply all new medical techniques availed, but remain true health care.
Collapse
|
20
|
Fattahi A, Latifi Z, Ghasemnejad T, Nejabati HR, Nouri M. Insights into in vitro spermatogenesis in mammals: Past, present, future. Mol Reprod Dev 2017; 84:560-575. [DOI: 10.1002/mrd.22819] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 04/03/2017] [Accepted: 04/17/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Amir Fattahi
- Institute for Stem Cell and Regenerative Medicine; Tabriz University of Medical Sciences; Tabriz Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
| | - Zeinab Latifi
- Department of Clinical Biochemistry, Faculty of Medicine; Tabriz University of Medical Sciences; Tabriz Iran
| | - Tohid Ghasemnejad
- Women's Reproductive Health Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Hamid Reza Nejabati
- Women's Reproductive Health Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
21
|
Mouka A, Tachdjian G, Dupont J, Drévillon L, Tosca L. In Vitro Gamete Differentiation from Pluripotent Stem Cells as a Promising Therapy for Infertility. Stem Cells Dev 2016; 25:509-21. [PMID: 26873432 DOI: 10.1089/scd.2015.0230] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Generation of gametes derived in vitro from pluripotent stem cells holds promising prospects for future reproductive applications. Indeed, it provides information on molecular and cellular mechanisms underlying germ cell (GC) development and could offer a new potential treatment for infertility. Great progress has been made in derivation of gametes from embryonic stem cells, despite ethical issues. Induced pluripotent stem cells (iPSCs) technology allows the reprogramming of a differentiated somatic cell, possibly emanating from the patient, into a pluripotent state. With the emergence of iPSCs, several studies created primordial GC stage to mature gamete-like cells in vitro in mice and humans. Recent findings in GC derivation suggest that in mice, functional gametes can be generated in vitro. This strengthens the idea that it might be possible in the future to generate functional human sperm and oocytes from pluripotent stem cells in culture.
Collapse
Affiliation(s)
- Aurélie Mouka
- 1 AP-HP, Service d'Histologie, Embryologie et Cytogénétique, Hôpitaux Universitaires Paris-Sud , Clamart, France .,2 Université Paris-Sud , Le Kremlin-Bicêtre Cedex, France
| | - Gérard Tachdjian
- 1 AP-HP, Service d'Histologie, Embryologie et Cytogénétique, Hôpitaux Universitaires Paris-Sud , Clamart, France .,2 Université Paris-Sud , Le Kremlin-Bicêtre Cedex, France
| | - Joëlle Dupont
- 3 Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique , Nouzilly, France
| | - Loïc Drévillon
- 1 AP-HP, Service d'Histologie, Embryologie et Cytogénétique, Hôpitaux Universitaires Paris-Sud , Clamart, France
| | - Lucie Tosca
- 1 AP-HP, Service d'Histologie, Embryologie et Cytogénétique, Hôpitaux Universitaires Paris-Sud , Clamart, France .,2 Université Paris-Sud , Le Kremlin-Bicêtre Cedex, France
| |
Collapse
|
22
|
Li PZ, Yan GY, Han L, Pang J, Zhong BS, Zhang GM, Wang F, Zhang YL. Overexpression of STRA8, BOULE, and DAZL Genes Promotes Goat Bone Marrow–Derived Mesenchymal Stem Cells In Vitro Transdifferentiation Toward Putative Male Germ Cells. Reprod Sci 2016; 24:300-312. [DOI: 10.1177/1933719116654990] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Pei-zhen Li
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Guang-yao Yan
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Le Han
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jing Pang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Bu-shuai Zhong
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Guo-min Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yan-li Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
23
|
Wei Y, Fang J, Cai S, Lv C, Zhang S, Hua J. Primordial germ cell-like cells derived from canine adipose mesenchymal stem cells. Cell Prolif 2016; 49:503-11. [PMID: 27374854 PMCID: PMC6496567 DOI: 10.1111/cpr.12271] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/30/2016] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Previous studies have shown that adipose mesenchymal stem cells (AMSCs) share the potency of typical bone marrow mesenchymal stem cells (MSCs); however, there is little information concerning characteristics of canine AMSCs (CAMSCs); it has not previously been made clear whether CAMSCs would be able to differentiate into other cell types. MATERIALS AND METHODS In this study, typical AMSC lines were established, and their characteristics including morphology, typical markers and differentiation potentiality were tested. RESULTS The cells exhibited typical MSC morphology and were positive for CD90, CD44 and CD166, considered to be MSCs surface markers. They were negative for CD34 and CD45. The CAMSCs also exhibited embryonic stem cell (ESC) markers, including Oct4 and Sox2, at passage 2. In an appropriate microenvironment, CAMSCs differentiated into EBs and were able to produce cells of the three germ layers. These results indicate that established cells were putative adipocyte-derived MSCs, which also displayed properties of ESCs. Moreover, when the CAMSCs were induced by bone morphogenetic protein 4 (BMP4), they differentiated into PGC-like cells (PGCLCs) and male germ-like cells, which were positive for PR domain-containing 1 (Prdm1), PR domain-containing 14 (Prdm14), doublesex and mab-3 related transcription factor (Dmrt1), as well as for promyelocytic leukaemia zinc finger (Plzf). Quantitative real-time PCR (qRT-PCR) and western blotting analysis verified higher expression levels of these markers. CONCLUSION This study provides an efficient approach to study germ cell development using CAMSCs.
Collapse
Affiliation(s)
- Yudong Wei
- College of Veterinary MedicineShaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYangling Shaanxi 712100China
| | - Jia Fang
- College of Veterinary MedicineShaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYangling Shaanxi 712100China
| | - Shufang Cai
- College of Veterinary MedicineShaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYangling Shaanxi 712100China
| | - Changrong Lv
- College of Veterinary MedicineShaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYangling Shaanxi 712100China
| | - Shiqiang Zhang
- College of Veterinary MedicineShaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYangling Shaanxi 712100China
| | - Jinlian Hua
- College of Veterinary MedicineShaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYangling Shaanxi 712100China
| |
Collapse
|
24
|
Wang H, Xiang J, Zhang W, Li J, Wei Q, Zhong L, Ouyang H, Han J. Induction of Germ Cell-like Cells from Porcine Induced Pluripotent Stem Cells. Sci Rep 2016; 6:27256. [PMID: 27264660 PMCID: PMC4893677 DOI: 10.1038/srep27256] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/17/2016] [Indexed: 12/15/2022] Open
Abstract
The ability to generate germ cells from pluripotent stem cells (PSCs) is valuable for human regenerative medicine and animal breeding. Germ cell-like cells (GCLCs) have been differentiated from mouse and human PSCs, but not from porcine PSCs, which are considered an ideal model for stem cell applications. Here, we developed a defined culture system for the induction of primordial germ cell-like cells (PGCLCs) from porcine induced PSCs (piPSCs). The identity of the PGCLCs was characterized by observing cell morphology, detecting germ cell marker gene expression and evaluating epigenetic properties. PGCLCs could further differentiate into spermatogonial stem cell-like cells (SSCLCs) in vitro. Importantly, meiosis occurred during SSCLC induction. Xenotransplantation of GCLCs into seminiferous tubules of infertile immunodeficient mice resulted in immunohistochemically identifiable germ cells in vivo. Overall, our study provides a feasible strategy for directing piPSCs to the germ cell fate and lays a foundation for exploring germ cell development mechanisms.
Collapse
Affiliation(s)
- Hanning Wang
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jinzhu Xiang
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wei Zhang
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Junhong Li
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qingqing Wei
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Liang Zhong
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Hongsheng Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Jianyong Han
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
25
|
Habas K, Anderson D, Brinkworth M. Detection of phase specificity of in vivo germ cell mutagens in an in vitro germ cell system. Toxicology 2016; 353-354:1-10. [PMID: 27059372 DOI: 10.1016/j.tox.2016.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/24/2016] [Accepted: 04/04/2016] [Indexed: 10/22/2022]
Abstract
In vivo tests for male reproductive genotoxicity are time consuming, resource-intensive and their use should be minimised according to the principles of the 3Rs. Accordingly, we investigated the effects in vitro, of a variety of known, phase-specific germ cell mutagens, i.e., pre-meiotic, meiotic, and post-meiotic genotoxins, on rat spermatogenic cell types separated using Staput unit-gravity velocity sedimentation, evaluating DNA damage using the Comet assay. N-ethyl-N-nitrosourea (ENU), N-methyl-N-nitrosourea (MNU) (spermatogenic phase), 6-mercaptopurine (6-MP) and 5-bromo-2'-deoxy-uridine (5-BrdU) (meiotic phase), methyl methanesulphonate (MMS) and ethyl methanesulphonate (EMS) (post-meiotic phase) were selected for use as they are potent male rodent, germ cell mutagens in vivo. DNA damage was detected directly using the Comet assay and indirectly using the TUNEL assay. Treatment of the isolated cells with ENU and MNU produced the greatest concentration-related increase in DNA damage in spermatogonia. Spermatocytes were most sensitive to 6-MP and 5-BrdU while spermatids were particularly susceptible to MMS and EMS. Increases were found when measuring both Olive tail moment (OTM) and% tail DNA, but the greatest changes were in OTM. Parallel results were found with the TUNEL assay, which showed highly significant, concentration dependent effects of all these genotoxins on spermatogonia, spermatocytes and spermatids in the same way as for DNA damage. The specific effects of these chemicals on different germ cell types matches those produced in vivo. This approach therefore shows potential for use in the detection of male germ cell genotoxicity and could contribute to the reduction of the use of animals in such toxicity assays.
Collapse
Affiliation(s)
- Khaled Habas
- Division of Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, Richmond Road, West Yorkshire BD7 1DP, UK
| | - Diana Anderson
- Division of Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, Richmond Road, West Yorkshire BD7 1DP, UK
| | - Martin Brinkworth
- Division of Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, Richmond Road, West Yorkshire BD7 1DP, UK.
| |
Collapse
|
26
|
Nikolic A, Volarevic V, Armstrong L, Lako M, Stojkovic M. Primordial Germ Cells: Current Knowledge and Perspectives. Stem Cells Int 2015; 2016:1741072. [PMID: 26635880 PMCID: PMC4655300 DOI: 10.1155/2016/1741072] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/17/2015] [Indexed: 01/11/2023] Open
Abstract
Infertility is a condition that occurs very frequently and understanding what defines normal fertility is crucial to helping patients. Causes of infertility are numerous and the treatment often does not lead to desired pregnancy especially when there is a lack of functional gametes. In humans, the primordial germ cell (PGC) is the primary undifferentiated stem cell type that will differentiate towards gametes: spermatozoa or oocytes. With the development of stem cell biology and differentiation protocols, PGC can be obtained from pluripotent stem cells providing a new therapeutic possibility to treat infertile couples. Recent studies demonstrated that viable mouse pups could be obtained from in vitro differentiated stem cells suggesting that translation of these results to human is closer. Therefore, the aim of this review is to summarize current knowledge about PGC indicating the perspective of their use in both research and medical application for the treatment of infertility.
Collapse
Affiliation(s)
- Aleksandar Nikolic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia
| | - Vladislav Volarevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia
| | - Lyle Armstrong
- Institute of Genetic Medicine, Newcastle University, The International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, The International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Miodrag Stojkovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia
- Spebo Medical, Norvezanska 16, 16 000 Leskovac, Serbia
| |
Collapse
|
27
|
Ge W, Chen C, De Felici M, Shen W. In vitro differentiation of germ cells from stem cells: a comparison between primordial germ cells and in vitro derived primordial germ cell-like cells. Cell Death Dis 2015; 6:e1906. [PMID: 26469955 PMCID: PMC4632295 DOI: 10.1038/cddis.2015.265] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/01/2015] [Accepted: 08/04/2015] [Indexed: 01/15/2023]
Abstract
Stem cells are unique cell types capable to proliferate, some of them indefinitely, while maintaining the ability to differentiate into a few or any cell lineages. In 2003, a group headed by Hans R. Schöler reported that oocyte-like cells could be produced from mouse embryonic stem (ES) cells in vitro. After more than 10 years, where have these researches reached? Which are the major successes achieved and the problems still remaining to be solved? Although during the last years, many reviews have been published about these topics, in the present work, we will focus on an aspect that has been little considered so far, namely a strict comparison between the in vitro and in vivo developmental capabilities of the primordial germ cells (PGCs) isolated from the embryo and the PGC-like cells (PGC-LCs) produced in vitro from different types of stem cells in the mouse, the species in which most investigation has been carried out. Actually, the formation and differentiation of PGCs are crucial for both male and female gametogenesis, and the faithful production of PGCs in vitro represents the basis for obtaining functional germ cells.
Collapse
Affiliation(s)
- W Ge
- Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - C Chen
- Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - M De Felici
- Department of Biomedicine and Prevention, University of Rome ‘Tor Vergata', Rome 00133, Italy
| | - W Shen
- Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
28
|
Zeng F, Huang F, Guo J, Hu X, Liu C, Wang H. Emerging methods to generate artificial germ cells from stem cells. Biol Reprod 2015; 92:89. [PMID: 25715792 DOI: 10.1095/biolreprod.114.124800] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 02/16/2015] [Indexed: 12/29/2022] Open
Abstract
Germ cells are responsible for the transmission of genetic and epigenetic information across generations. At present, the number of infertile couples is increasing worldwide; these infertility problems can be traced to environmental pollutions, infectious diseases, cancer, psychological or work-related stress, and other factors, such as lifestyle and genetics. Notably, lack of germ cells and germ cell loss present real obstacles in infertility treatment. Recent research aimed at producing gametes through artificial germ cell generation from stem cells may offer great hope for affected couples to treat infertility in the future. Therefore, this rapidly emerging area of artificial germ cell generation from nongermline cells has gained considerable attention from basic and clinical research in the fields of stem cell biology, developmental biology, and reproductive biology. Here, we review the state of the art in artificial germ cell generation.
Collapse
Affiliation(s)
- Fanhui Zeng
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Fajun Huang
- School of Medical Science, Hubei University for Nationalities, Enshi, China
| | - Jingjing Guo
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Xingchang Hu
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Changbai Liu
- The Institute of Molecular Biology, China Three Gorges University, Yichang, China
| | - Hu Wang
- Medical School, China Three Gorges University, Yichang, China
| |
Collapse
|
29
|
Abstract
During the past decade, advances in cancer treatment have increased survival rates of both boys and men. However, cancer treatment itself can compromise fertility, especially exposure to alkylating agents and whole body irradiation, which cause substantial germ cell loss. Children and adolescents with testicular cancer, leukaemia, and Ewing sarcomas are at the highest risk of developing permanent sterility from cancer treatment. Consequently, various strategies to preserve fertility are necessary. Sperm cryopreservation is an effective but underused method to safeguard spermatozoa. In the past few years, large advances have been made in prepubertal germ cell storage aimed at subsequent transplantation of testicular tissue and associated stem cells. Although still experimental, these approaches offer hope to many men in whom germ cell loss is associated with sterility. The derivation of male gametes from stem cells also holds much promise; however, data are only available in animals, and the use of this method in human beings is probably many years away.
Collapse
Affiliation(s)
- Herman Tournaye
- Centre for Reproductive Medicine, University Hospital of the Free University Brussels, Brussels, Belgium.
| | - Gert R Dohle
- Andrology Unit, Department of Urology, Erasmus MC, Rotterdam, Netherlands
| | - Christopher L R Barratt
- Reproductive and Developmental Biology, Medical School, Ninewells Hospital, University of Dundee, Dundee, UK
| |
Collapse
|
30
|
Stuart D. Sorting out meiosis. Cytometry A 2014; 85:474-6. [PMID: 24664871 DOI: 10.1002/cyto.a.22468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 03/06/2014] [Accepted: 03/12/2014] [Indexed: 01/06/2023]
Affiliation(s)
- David Stuart
- University of Alberta, Department of Biochemistry, Edmonton, Alberta, Canada
| |
Collapse
|