1
|
Cheung HL, Wong YH, Li YY, Yang X, Ko LH, Tan Kabigting JE, Chan KC, Leung AYH, Chan BP. Microenvironment matters: In vitro 3D bone marrow niches differentially modulate survival, phenotype and drug responses of acute myeloid leukemia (AML) cells. Biomaterials 2025; 312:122719. [PMID: 39088912 DOI: 10.1016/j.biomaterials.2024.122719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/14/2024] [Accepted: 07/26/2024] [Indexed: 08/03/2024]
Abstract
Acute myeloid leukemia (AML) is a deadly form of leukemia with ineffective traditional treatment and frequent chemoresistance-associated relapse. Personalized drug screening holds promise in identifying optimal regimen, nevertheless, primary AML cells undergo spontaneous apoptosis during cultures, invalidating the drug screening results. Here, we reconstitute a 3D osteogenic niche (3DON) mimicking that in bone marrow to support primary AML cell survival and phenotype maintenance in cultures. Specifically, 3DON derived from osteogenically differentiated mesenchymal stem cells (MSC) from healthy and AML donors are co-cultured with primary AML cells. The AML cells under the AML_3DON niche showed enhanced viability, reduced apoptosis and maintained CD33+ CD34-phenotype, associating with elevated secretion of anti-apoptotic cytokines in the AML_3DON niche. Moreover, AML cells under the AML_3DON niche exhibited low sensitivity to two FDA-approved chemotherapeutic drugs, further suggesting the physiological resemblance of the AML_3DON niche. Most interestingly, AML cells co-cultured with the healthy_3DON niche are highly sensitive to the same sample drugs. This study demonstrates the differential responses of AML cells towards leukemic and healthy bone marrow niches, suggesting the impact of native cancer cell niche in drug screening, and the potential of re-engineering healthy bone marrow niche in AML patients as chemotherapeutic adjuvants overcoming chemoresistance, respectively.
Collapse
Affiliation(s)
- Hoi Lam Cheung
- School of Biomedical Science, Institute of Tissue Engineering and Regenerative Medicine, And Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China; Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
| | - Yu Hin Wong
- School of Biomedical Science, Institute of Tissue Engineering and Regenerative Medicine, And Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China; Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
| | - Yuk Yin Li
- School of Biomedical Science, Institute of Tissue Engineering and Regenerative Medicine, And Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China; Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China
| | - Xingxing Yang
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China
| | - Lok Him Ko
- School of Biomedical Science, Institute of Tissue Engineering and Regenerative Medicine, And Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Jessica Evangeline Tan Kabigting
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China
| | - Koon Chuen Chan
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Anskar Yu Hung Leung
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Barbara Pui Chan
- School of Biomedical Science, Institute of Tissue Engineering and Regenerative Medicine, And Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China; Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
2
|
Farahzadi R, Fathi E, Vandghanooni S, Valipour B. Cytokines secreted from bone marrow-derived mesenchymal stem cells promote apoptosis of CD34 + leukemic stem cells as anti-cancer therapy. Regen Ther 2024; 26:646-653. [PMID: 39281104 PMCID: PMC11401101 DOI: 10.1016/j.reth.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/08/2024] [Accepted: 08/18/2024] [Indexed: 09/18/2024] Open
Abstract
Objective The effect of mesenchymal stem cells (MSCs) on the immortal characteristics of malignant cells, particularly hematologic cancer cells, remains a topic of debate, with the underlying mechanisms still requiring further elucidation. We explored the in vitro effect of the bone marrow-derived MSCs (BM-MSCs) on CD34+ leukemic stem cells (LSCs) enriched from the KG1-a cell line by assessing apoptosis, measuring cytokine levels, and examining TERT protein expression. Additionally, the potential signaling pathways implicated in this process, such as P53, PTEN, NF-κB, ERK1/2, Raf-1, and H-RAS, were also investigated. Methods CD34+ LSCs were enriched from the KG1-a cell line with the magnetic activated cell sorting (MACS) method. Two cell populations (BM-MSCs and CD34+ LSCs) were co-cultured on trans well plates for seven days. Next, CD34+ LSCs were collected and subjected to Annexin V/PI assay, cytokine measurement, and western blotting. Results BM-MSCs caused a significant increase in early and late apoptosis in the CD34+LSCs. The significant presence of interleukin (IL)-2 and IL-4 was evident in the co-cultured media. In addition, BM-MSCs significantly increased the protein expression of P53, PTEN, NF-κB, and significantly decreased p-ERK1/2, Raf-1, H-RAS, and TERT. Conclusion The mentioned effects of IL-2 and IL-4 cytokines released from BM-MSCs on CD34+ LSCs as therapeutic agents were applied by the components of P53, PTEN, NF-κB, p-ERK1/2, Raf-1, and H-RAS signaling pathways.
Collapse
Affiliation(s)
- Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Valipour
- Department of Basic Sciences and Health, Sarab Faculty of Medical Sciences, Sarab, East Azerbaijan, Iran
| |
Collapse
|
3
|
Alhattab DM, Isaioglou I, Alshehri S, Khan ZN, Susapto HH, Li Y, Marghani Y, Alghuneim AA, Díaz-Rúa R, Abdelrahman S, Al-Bihani S, Ahmed F, Felimban RI, Alkhatabi H, Alserihi R, Abedalthagafi M, AlFadel A, Awidi A, Chaudhary AG, Merzaban J, Hauser CAE. Fabrication of a three-dimensional bone marrow niche-like acute myeloid Leukemia disease model by an automated and controlled process using a robotic multicellular bioprinting system. Biomater Res 2023; 27:111. [PMID: 37932837 PMCID: PMC10626721 DOI: 10.1186/s40824-023-00457-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a hematological malignancy that remains a therapeutic challenge due to the high incidence of disease relapse. To better understand resistance mechanisms and identify novel therapies, robust preclinical models mimicking the bone marrow (BM) microenvironment are needed. This study aimed to achieve an automated fabrication process of a three-dimensional (3D) AML disease model that recapitulates the 3D spatial structure of the BM microenvironment and applies to drug screening and investigational studies. METHODS To build this model, we investigated a unique class of tetramer peptides with an innate ability to self-assemble into stable hydrogel. An automated robotic bioprinting process was established to fabricate a 3D BM (niche-like) multicellular AML disease model comprised of leukemia cells and the BM's stromal and endothelial cellular fractions. In addition, monoculture and dual-culture models were also fabricated. Leukemia cell compatibility, functionalities (in vitro and in vivo), and drug assessment studies using our model were performed. In addition, RNAseq and gene expression analysis using TaqMan arrays were also performed on 3D cultured stromal cells and primary leukemia cells. RESULTS The selected peptide hydrogel formed a highly porous network of nanofibers with mechanical properties similar to the BM extracellular matrix. The robotic bioprinter and the novel quadruple coaxial nozzle enabled the automated fabrication of a 3D BM niche-like AML disease model with controlled deposition of multiple cell types into the model. This model supported the viability and growth of primary leukemic, endothelial, and stromal cells and recapitulated cell-cell and cell-ECM interactions. In addition, AML cells in our model possessed quiescent characteristics with improved chemoresistance attributes, resembling more the native conditions as indicated by our in vivo results. Moreover, the whole transcriptome data demonstrated the effect of 3D culture on enhancing BM niche cell characteristics. We identified molecular pathways upregulated in AML cells in our 3D model that might contribute to AML drug resistance and disease relapse. CONCLUSIONS Our results demonstrate the importance of developing 3D biomimicry models that closely recapitulate the in vivo conditions to gain deeper insights into drug resistance mechanisms and novel therapy development. These models can also improve personalized medicine by testing patient-specific treatments.
Collapse
Affiliation(s)
- Dana M Alhattab
- Laboratory for Nanomedicine, Bioengineering Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- KAUST Smart Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Ioannis Isaioglou
- Cell Migration and Signaling Laboratory, Bioscience Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Salwa Alshehri
- Laboratory for Nanomedicine, Bioengineering Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Zainab N Khan
- Laboratory for Nanomedicine, Bioengineering Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Hepi H Susapto
- Laboratory for Nanomedicine, Bioengineering Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yanyan Li
- Cell Migration and Signaling Laboratory, Bioscience Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yara Marghani
- Laboratory for Nanomedicine, Bioengineering Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Arwa A Alghuneim
- Cell Migration and Signaling Laboratory, Bioscience Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Rubén Díaz-Rúa
- Core Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sherin Abdelrahman
- Laboratory for Nanomedicine, Bioengineering Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Shuroug Al-Bihani
- Core Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Farid Ahmed
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Raed I Felimban
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Heba Alkhatabi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Hematology Research Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Raed Alserihi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Malak Abedalthagafi
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Atlanta, USA
| | - AlShaibani AlFadel
- Division of Hematology, Stem Cell Transplantation & Cellular Therapy, Oncology Center, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, Amman, Jordan
- Medical School, The University of Jordan, Amman, Jordan
- Jordan University Hospital, Amman, Jordan
| | - Adeel Gulzar Chaudhary
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Jasmeen Merzaban
- Cell Migration and Signaling Laboratory, Bioscience Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Charlotte A E Hauser
- Laboratory for Nanomedicine, Bioengineering Program, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- KAUST Smart Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
4
|
Pendse S, Chavan S, Kale V, Vaidya A. A comprehensive analysis of cell-autonomous and non-cell-autonomous regulation of myeloid leukemic cells: The prospect of developing novel niche-targeting therapies. Cell Biol Int 2023; 47:1667-1683. [PMID: 37554060 DOI: 10.1002/cbin.12078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/12/2023] [Accepted: 07/21/2023] [Indexed: 08/10/2023]
Abstract
Leukemic cells (LCs) arise from the hematopoietic stem/and progenitor cells (HSCs/HSPCs) and utilize cues from the bone marrow microenvironment (BMM) for their regulation in the same way as their normal HSC counterparts. Mesenchymal stromal cells (MSCs), a vital component of the BMM promote leukemogenesis by creating a protective and immune-tolerant microenvironment that can support the survival of LCs, helping them escape chemotherapy, thereby resulting in the relapse of leukemia. Conversely, MSCs also induce apoptosis in the LCs and inhibit their proliferation by interfering with their self-renewal potential. This review discusses the work done so far on cell-autonomous (intrinsic) and MSCs-mediated non-cell-autonomous (extrinsic) regulation of myeloid leukemia with a special focus on the need to investigate the extrinsic regulation of myeloid leukemia to understand the contrasting role of MSCs in leukemogenesis. These mechanisms could be exploited to formulate novel therapeutic strategies that specifically target the leukemic microenvironment.
Collapse
Affiliation(s)
- Shalmali Pendse
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, Maharashtra, India
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, Maharashtra, India
| | - Sayali Chavan
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, Maharashtra, India
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, Maharashtra, India
| | - Vaijayanti Kale
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, Maharashtra, India
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, Maharashtra, India
| | - Anuradha Vaidya
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, Maharashtra, India
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, Maharashtra, India
| |
Collapse
|
5
|
Salazar-Terreros MJ, Vernot JP. In Vitro and In Vivo Modeling of Normal and Leukemic Bone Marrow Niches: Cellular Senescence Contribution to Leukemia Induction and Progression. Int J Mol Sci 2022; 23:7350. [PMID: 35806354 PMCID: PMC9266537 DOI: 10.3390/ijms23137350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/16/2022] Open
Abstract
Cellular senescence is recognized as a dynamic process in which cells evolve and adapt in a context dependent manner; consequently, senescent cells can exert both beneficial and deleterious effects on their surroundings. Specifically, senescent mesenchymal stromal cells (MSC) in the bone marrow (BM) have been linked to the generation of a supporting microenvironment that enhances malignant cell survival. However, the study of MSC's senescence role in leukemia development has been straitened not only by the availability of suitable models that faithfully reflect the structural complexity and biological diversity of the events triggered in the BM, but also by the lack of a universal, standardized method to measure senescence. Despite these constraints, two- and three dimensional in vitro models have been continuously improved in terms of cell culture techniques, support materials and analysis methods; in addition, research on animal models tends to focus on the development of techniques that allow tracking leukemic and senescent cells in the living organism, as well as to modify the available mice strains to generate individuals that mimic human BM characteristics. Here, we present the main advances in leukemic niche modeling, discussing advantages and limitations of the different systems, focusing on the contribution of senescent MSC to leukemia progression.
Collapse
Affiliation(s)
- Myriam Janeth Salazar-Terreros
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111321, Colombia;
| | - Jean-Paul Vernot
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111321, Colombia;
- Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111321, Colombia
| |
Collapse
|
6
|
Cai H, Kondo M, Sandhow L, Xiao P, Johansson AS, Sasaki T, Zawacka-Pankau J, Tryggvason K, Ungerstedt J, Walfridsson J, Ekblom M, Qian H. Critical role of Lama4 for hematopoiesis regeneration and acute myeloid leukemia progression. Blood 2022; 139:3040-3057. [PMID: 34958665 PMCID: PMC11022969 DOI: 10.1182/blood.2021011510] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 12/11/2021] [Indexed: 11/20/2022] Open
Abstract
Impairment of normal hematopoiesis and leukemia progression are 2 well-linked processes during leukemia development and are controlled by the bone marrow (BM) niche. Extracellular matrix proteins, including laminin, are important BM niche components. However, their role in hematopoiesis regeneration and leukemia is unknown. Laminin α4 (Lama4), a major receptor-binding chain of several laminins, is altered in BM niches in mice with acute myeloid leukemia (AML). So far, the impact of Lama4 on leukemia progression remains unknown. We here report that Lama4 deletion in mice resulted in impaired hematopoiesis regeneration following irradiation-induced stress, which is accompanied by altered BM niche composition and inflammation. Importantly, in a transplantation-induced MLL-AF9 AML mouse model, we demonstrate accelerated AML progression and relapse in Lama4-/- mice. Upon AML exposure, Lama4-/- mesenchymal stem cells (MSCs) exhibited dramatic molecular alterations, including upregulation of inflammatory cytokines that favor AML growth. Lama4-/- MSCs displayed increased antioxidant activities and promoted AML stem cell proliferation and chemoresistance to cytarabine, which was accompanied by increased mitochondrial transfer from the MSCs to AML cells and reduced reactive oxygen species in AML cells in vitro. Similarly, we detected lower levels of reactive oxygen species in AML cells from Lama4-/- mice post-cytarabine treatment. Notably, LAMA4 inhibition or knockdown in human MSCs promoted human AML cell proliferation and chemoprotection. Together, our study for the first time demonstrates the critical role of Lama4 in impeding AML progression and chemoresistance. Targeting Lama4 signaling pathways may offer potential new therapeutic options for AML.
Collapse
Affiliation(s)
- Huan Cai
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Makoto Kondo
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Lakshmi Sandhow
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Pingnan Xiao
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Anne-Sofie Johansson
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Takako Sasaki
- Department of Matrix Medicine, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Joanna Zawacka-Pankau
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Karl Tryggvason
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Johanna Ungerstedt
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Julian Walfridsson
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Marja Ekblom
- Division of Molecular Hematology, Lund University, Lund, Sweden
- Department of Hematology, Skåne University Hospital, Lund, Sweden
| | - Hong Qian
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
7
|
Bastin DJ, Quizi J, Kennedy MA, Kekre N, Auer RC. Current challenges in the manufacture of clinical-grade autologous whole cell vaccines for hematological malignancies. Cytotherapy 2022; 24:979-989. [PMID: 35562303 DOI: 10.1016/j.jcyt.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 11/03/2022]
Abstract
Autologous whole cell vaccines use a patient's own tumor cells as a source of antigen to elicit an anti-tumor immune response in vivo. Recently, the authors conducted a systematic review of clinical trials employing these products in hematological cancers that showed a favorable safety profile and trend toward efficacy. However, it was noted that manufacturing challenges limit both the efficacy and clinical implementation of these vaccine products. In the current literature review, the authors sought to define the issues surrounding the manufacture of autologous whole cell products for hematological cancers. The authors describe key factors, including the acquisition, culture, cryopreservation and transduction of malignant cells, that require optimization for further advancement of the field. Furthermore, the authors provide a summary of pre-clinical work that informs how the identified challenges may be overcome. The authors also highlight areas in which future basic research would be of benefit to the field. The goal of this review is to provide a roadmap for investigators seeking to advance the field of autologous cell vaccines as it applies to hematological malignancies.
Collapse
Affiliation(s)
- Donald J Bastin
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada; Schulich School of Medicine, Western University, London, Canada
| | - Jennifer Quizi
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Michael A Kennedy
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Natasha Kekre
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada; Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Rebecca C Auer
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada; Faculty of Medicine, University of Ottawa, Ottawa, Canada; Department of Surgery, University of Ottawa, Ottawa, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
8
|
Mayer IM, Hoelbl-Kovacic A, Sexl V, Doma E. Isolation, Maintenance and Expansion of Adult Hematopoietic Stem/Progenitor Cells and Leukemic Stem Cells. Cancers (Basel) 2022; 14:1723. [PMID: 35406494 PMCID: PMC8996967 DOI: 10.3390/cancers14071723] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are rare, self-renewing cells that perch on top of the hematopoietic tree. The HSCs ensure the constant supply of mature blood cells in a tightly regulated process producing peripheral blood cells. Intense efforts are ongoing to optimize HSC engraftment as therapeutic strategy to treat patients suffering from hematopoietic diseases. Preclinical research paves the way by developing methods to maintain, manipulate and expand HSCs ex vivo to understand their regulation and molecular make-up. The generation of a sufficient number of transplantable HSCs is the Holy Grail for clinical therapy. Leukemia stem cells (LSCs) are characterized by their acquired stem cell characteristics and are responsible for disease initiation, progression, and relapse. We summarize efforts, that have been undertaken to increase the number of long-term (LT)-HSCs and to prevent differentiation towards committed progenitors in ex vivo culture. We provide an overview and compare methods currently available to isolate, maintain and enrich HSC subsets, progenitors and LSCs and discuss their individual advantages and drawbacks.
Collapse
Affiliation(s)
| | | | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (I.M.M.); (A.H.-K.); (E.D.)
| | | |
Collapse
|
9
|
Goodarzi A, Valikhani M, Amiri F, Safari A. The mechanisms of mutual relationship between malignant hematologic cells and mesenchymal stem cells: Does it contradict the nursing role of mesenchymal stem cells? Cell Commun Signal 2022; 20:21. [PMID: 35236376 PMCID: PMC8889655 DOI: 10.1186/s12964-022-00822-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/18/2021] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are known as the issue in biology because of some unpredictable characteristics in the different microenvironments especially in their bone marrow niche. MSCs are used in the regenerative medicine because of their unique potentials for trans-differentiation, immunomodulation, and paracrine capacity. But, their pathogenic and pro-survival effects in tumors/cancers including hematologic malignancies are indisputable. MSCs and/or their derivatives might be involved in tumor growth, metastasis and drug resistance in the leukemias. One of important relationship is MSCs and hematologic malignancy-derived cells which affects markedly the outcome of disease. The communication between these two cells may be contact-dependent and/or contact-independent. In this review, we studied the crosstalk between MSCs and malignant hematologic cells which results the final feedback either the progression or suppression of blood cell malignancy. Video abstract.
Collapse
Affiliation(s)
- Alireza Goodarzi
- Department of Medical Laboratory Sciences, School of Paramedicine, Hamadan University of Medical Sciences, Shahid Fahmideh Blvd., The Opposite Side of Mardom Park, Hamadan, 6517838741, Iran
| | - Mohsen Valikhani
- Hematology Department, School of Allied Medical Science, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Amiri
- Department of Medical Laboratory Sciences, School of Paramedicine, Hamadan University of Medical Sciences, Shahid Fahmideh Blvd., The Opposite Side of Mardom Park, Hamadan, 6517838741, Iran.
| | - Armita Safari
- Student Research Committee, Hamadan University of Medical Science, Hamadan, Iran
| |
Collapse
|
10
|
Culturing patient-derived malignant hematopoietic stem cells in engineered and fully humanized 3D niches. Proc Natl Acad Sci U S A 2021; 118:2114227118. [PMID: 34580200 DOI: 10.1073/pnas.2114227118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2021] [Indexed: 01/13/2023] Open
Abstract
Human malignant hematopoietic stem and progenitor cells (HSPCs) reside in bone marrow (BM) niches, which remain challenging to explore due to limited in vivo accessibility and constraints with humanized animal models. Several in vitro systems have been established to culture patient-derived HSPCs in specific microenvironments, but they do not fully recapitulate the complex features of native bone marrow. Our group previously reported that human osteoblastic BM niches (O-N), engineered by culturing mesenchymal stromal cells within three-dimensional (3D) porous scaffolds under perfusion flow in a bioreactor system, are capable of maintaining, expanding, and functionally regulating healthy human cord blood-derived HSPCs. Here, we first demonstrate that this 3D O-N can sustain malignant CD34+ cells from acute myeloid leukemia (AML) and myeloproliferative neoplasm patients for up to 3 wk. Human malignant cells distributed in the bioreactor system mimicking the spatial distribution found in native BM tissue, where most HSPCs remain linked to the niches and mature cells are released to the circulation. Using human adipose tissue-derived stromal vascular fraction cells, we then generated a stromal-vascular niche and demonstrated that O-N and stromal-vascular niche differentially regulate leukemic UCSD-AML1 cell expansion, immunophenotype, and response to chemotherapy. The developed system offers a unique platform to investigate human leukemogenesis and response to drugs in customized environments, mimicking defined features of native hematopoietic niches and compatible with the establishment of personalized settings.
Collapse
|
11
|
Lyu T, Zhang B, Li M, Jiao X, Song Y. Research progress on exosomes derived from mesenchymal stem cells in hematological malignancies. Hematol Oncol 2021; 39:162-169. [PMID: 32869900 PMCID: PMC8246925 DOI: 10.1002/hon.2793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSCs) are a subset of multifunctional stem cells with self-renewal and multidirectional differentiation properties that play a pivotal role in tumor progression. MSCs are reported to exert biological functions by secreting specialized vesicles, known as exosomes, with tumor cells. Exosomes participate in material and information exchange between cells and are crucial in multiple physiological and pathological processes. This study provides a comprehensive overview of the roles, mechanisms of action and sources of MSC exosomes in hematological malignancies, and different tumor types.
Collapse
Affiliation(s)
- Tianxin Lyu
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Binglei Zhang
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Mengjia Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xueli Jiao
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Khaldoyanidi S, Nagorsen D, Stein A, Ossenkoppele G, Subklewe M. Immune Biology of Acute Myeloid Leukemia: Implications for Immunotherapy. J Clin Oncol 2021; 39:419-432. [PMID: 33434043 PMCID: PMC8078464 DOI: 10.1200/jco.20.00475] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
| | | | - Anthony Stein
- City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Gerrit Ossenkoppele
- Amsterdam University Medical Center, Location VU University Medical Center, Amsterdam, the Netherlands
| | - Marion Subklewe
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
13
|
Takam Kamga P, Bazzoni R, Dal Collo G, Cassaro A, Tanasi I, Russignan A, Tecchio C, Krampera M. The Role of Notch and Wnt Signaling in MSC Communication in Normal and Leukemic Bone Marrow Niche. Front Cell Dev Biol 2021; 8:599276. [PMID: 33490067 PMCID: PMC7820188 DOI: 10.3389/fcell.2020.599276] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022] Open
Abstract
Notch and Wnt signaling are highly conserved intercellular communication pathways involved in developmental processes, such as hematopoiesis. Even though data from literature support a role for these two pathways in both physiological hematopoiesis and leukemia, there are still many controversies concerning the nature of their contribution. Early studies, strengthened by findings from T-cell acute lymphoblastic leukemia (T-ALL), have focused their investigation on the mutations in genes encoding for components of the pathways, with limited results except for B-cell chronic lymphocytic leukemia (CLL); in because in other leukemia the two pathways could be hyper-expressed without genetic abnormalities. As normal and malignant hematopoiesis require close and complex interactions between hematopoietic cells and specialized bone marrow (BM) niche cells, recent studies have focused on the role of Notch and Wnt signaling in the context of normal crosstalk between hematopoietic/leukemia cells and stromal components. Amongst the latter, mesenchymal stromal/stem cells (MSCs) play a pivotal role as multipotent non-hematopoietic cells capable of giving rise to most of the BM niche stromal cells, including fibroblasts, adipocytes, and osteocytes. Indeed, MSCs express and secrete a broad pattern of bioactive molecules, including Notch and Wnt molecules, that support all the phases of the hematopoiesis, including self-renewal, proliferation and differentiation. Herein, we provide an overview on recent advances on the contribution of MSC-derived Notch and Wnt signaling to hematopoiesis and leukemia development.
Collapse
Affiliation(s)
- Paul Takam Kamga
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
- EA4340-BCOH, Biomarker in Cancerology and Onco-Haematology, UVSQ, Université Paris Saclay, Boulogne-Billancourt, France
| | - Riccardo Bazzoni
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Giada Dal Collo
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Adriana Cassaro
- Hematology Unit, Department of Oncology, Niguarda Hospital, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Ilaria Tanasi
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Anna Russignan
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Cristina Tecchio
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Mauro Krampera
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
14
|
Cucchi DGJ, Groen RWJ, Janssen JJWM, Cloos J. Ex vivo cultures and drug testing of primary acute myeloid leukemia samples: Current techniques and implications for experimental design and outcome. Drug Resist Updat 2020; 53:100730. [PMID: 33096284 DOI: 10.1016/j.drup.2020.100730] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/03/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022]
Abstract
New treatment options of acute myeloid leukemia (AML) are rapidly emerging. Pre-clinical models such as ex vivo cultures are extensively used towards the development of novel drugs and to study synergistic drug combinations, as well as to discover biomarkers for both drug response and anti-cancer drug resistance. Although these approaches empower efficient investigation of multiple drugs in a multitude of primary AML samples, their translational value and reproducibility are hampered by the lack of standardized methodologies and by culture system-specific behavior of AML cells and chemotherapeutic drugs. Moreover, distinct research questions require specific methods which rely on specific technical knowledge and skills. To address these aspects, we herein review commonly used culture techniques in light of diverse research questions. In addition, culture-dependent effects on drug resistance towards commonly used drugs in the treatment of AML are summarized including several pitfalls that may arise because of culture technique artifacts. The primary aim of the current review is to provide practical guidelines for ex vivo primary AML culture experimental design.
Collapse
Affiliation(s)
- D G J Cucchi
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - R W J Groen
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - J J W M Janssen
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - J Cloos
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands.
| |
Collapse
|
15
|
Lin H, Damen JE, Walasek MA, Szilvassy SJ, Turhan AG, Louis SA, Eaves AC, Wognum AW. Feeder-free and serum-free in vitro assay for measuring the effect of drugs on acute and chronic myeloid leukemia stem/progenitor cells. Exp Hematol 2020; 90:52-64.e11. [PMID: 32798646 DOI: 10.1016/j.exphem.2020.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/17/2022]
Abstract
Research on chronic and acute myeloid leukemia (CML/AML) is focused on the development of novel therapeutic strategies to eliminate leukemic stem/progenitor cells that are responsible for drug resistance and disease relapse. Methods to culture hematopoietic stem/progenitor cells (HSPCs) from blood or bone marrow samples are indispensable for investigating disease pathogenesis and delineating drug responses in individual patients. A key challenge in this area is that primary leukemic cells grow poorly in culture or rapidly differentiate and lose their hematopoietic potential. Access to patient samples can also be limiting or cell numbers too low to enable large-scale assays and/or to obtain reproducible quantitative data. Here we describe a feeder cell-free and serum-free liquid culture system for the expansion of CD34+ HSPCs from CML/AML samples and healthy control tissues. Following 7 or 14 days of culture, CD34+ cells are expanded 30- to 65-fold or 400- to 800-fold, yielding a purity of ∼80% and ∼60% CD34+ cells, respectively. This system was adapted to a 96-well format to measure the sensitivity of leukemic and normal HSPCs to cytotoxic drugs after only 7 days. The assay requires only 103 cells per well to determine drug IC50 values and can be performed with uncultured and culture-expanded cells. Importantly, resulting IC50 values strongly correlate with those obtained in the classic colony-forming unit (CFU) assay. Compared with the CFU assay, this novel 96-well liquid-based assay designed specifically for leukemic and normal HSPCs is faster and simpler, with more flexible readout methods for selecting candidates for further drug development.
Collapse
Affiliation(s)
- Hanyang Lin
- STEMCELL Technologies Inc., Vancouver, BC, Canada
| | | | | | | | - Ali G Turhan
- Department of Hematology, APHP-Paris Saclay, Gif-sur-Yvette, France; INSERM U935/UA9 Villejuif, France
| | | | - Allen C Eaves
- STEMCELL Technologies Inc., Vancouver, BC, Canada; Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
| | | |
Collapse
|
16
|
Pievani A, Biondi M, Tomasoni C, Biondi A, Serafini M. Location First: Targeting Acute Myeloid Leukemia Within Its Niche. J Clin Med 2020; 9:E1513. [PMID: 32443460 PMCID: PMC7290711 DOI: 10.3390/jcm9051513] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
Despite extensive research and development of new treatments, acute myeloid leukemia (AML)-backbone therapy has remained essentially unchanged over the last decades and is frequently associated with poor outcomes. Eradicating the leukemic stem cells (LSCs) is the ultimate challenge in the treatment of AML. Emerging evidence suggests that AML remodels the bone marrow (BM) niche into a leukemia-permissive microenvironment while suppressing normal hematopoiesis. The mechanism of stromal-mediated protection of leukemic cells in the BM is complex and involves many adhesion molecules, chemokines, and cytokines. Targeting these factors may represent a valuable approach to complement existing therapies and overcome microenvironment-mediated drug resistance. Some strategies for dislodging LSCs and leukemic blasts from their protective niche have already been tested in patients and are in different phases of the process of clinical development. Other strategies, such as targeting the stromal cells remodeling processes, remain at pre-clinical stages. Development of humanized xenograft mouse models, which overcome the mismatch between human leukemia cells and the mouse BM niche, is required to generate physiologically relevant, patient-specific human niches in mice that can be used to unravel the role of human AML microenvironment and to carry out preclinical studies for the development of new targeted therapies.
Collapse
Affiliation(s)
- Alice Pievani
- Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, 20900 Monza, Italy; (A.P.); (M.B.); (C.T.)
| | - Marta Biondi
- Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, 20900 Monza, Italy; (A.P.); (M.B.); (C.T.)
| | - Chiara Tomasoni
- Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, 20900 Monza, Italy; (A.P.); (M.B.); (C.T.)
| | - Andrea Biondi
- Department of Pediatrics, Pediatric Hematology-Oncology Unit, Fondazione MBBM/San Gerardo Hospital, 20900 Monza, Italy;
| | - Marta Serafini
- Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, 20900 Monza, Italy; (A.P.); (M.B.); (C.T.)
| |
Collapse
|
17
|
Saki N, Farshchi N, Azandeh S, Jalali M. Biologic profile evaluation of mesenchymal stem cells in co-culture with K562 cells. CLINICAL CANCER INVESTIGATION JOURNAL 2020. [DOI: 10.4103/ccij.ccij_24_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
18
|
Chen L, Wan Y, Liu Y, Li T. Propofol inhibits biological functions of leukaemia stem and differentiated cells through suppressing Wnt/β-catenin and Akt/mTOR. Clin Exp Pharmacol Physiol 2019; 47:127-134. [PMID: 31429973 DOI: 10.1111/1440-1681.13167] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 07/15/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022]
Abstract
The biological roles of intravenous anaesthetic propofol in cancer have been shown by various studies using cancer cell lines that represent differentiated cancer cells. However, the activities of propofol in cancer stem cells have not been elucidated. In this work, we examined the effects and mechanisms of propofol on acute myeloid leukaemia (AML) differentiated and CD34+ CD38- stem cells. We found that propofol inhibited growth, differentiation and self-renewal capabilities of AML stem cells regardless of cellular origin and genetic profiling. In addition, propofol inhibited the growth of AML differentiated cells. Propofol significantly induced apoptosis of AML differentiated but not CD34+ CD38- stem cells. We further found that propofol significantly augmented the efficacy of AML standard therapeutic drugs. Consistent with the previous findings, we showed that propofol suppressed the Akt/mTOR pathway in AML cells. We also found that propofol inhibited pathways important for stem cell maintenance and self-renewal, such as Wnt/β-catenin. Overexpression of constitutively active Akt partially reversed the inhibitory effects of propofol in AML differentiated cells. Stabilization of β-catenin using genetic and pharmacological approaches also partially rescued the inhibitory effects of propofol in AML differentiated and stem cells. Our work shows that propofol targets leukaemia cells at all stages of development, in a cell type-specific manner. Inhibition of both Akt/mTOR and Wnt/β-catenin is required for the action of propofol in AML. Our findings also highlight the activities of propofol on cancer stem cells.
Collapse
Affiliation(s)
- Liufang Chen
- Department of Anesthesiology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yingchun Wan
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Youtan Liu
- Department of Anesthesiology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Tao Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
19
|
Chopra M, Bohlander SK. The cell of origin and the leukemia stem cell in acute myeloid leukemia. Genes Chromosomes Cancer 2019; 58:850-858. [PMID: 31471945 DOI: 10.1002/gcc.22805] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 12/19/2022] Open
Abstract
There is experimental and observational evidence that the cells of the leukemic clone in acute myeloid leukemia (AML) have different phenotypes even though they share the same somatic mutations. The organization of the malignant clone in AML has many similarities to normal hematopoiesis, with leukemia stem cells (LSCs) that sustain leukemia and give rise to more differentiated cells. LSCs, similar to normal hematopoietic stem cells (HSCs), are those cells that are able to give rise to a new leukemic clone when transplanted into a recipient. The cell of origin of leukemia (COL) is defined as the normal cell that is able to transform into a leukemia cell. Current evidence suggests that the COL is distinct from the LSC. Here, we will review the current knowledge about LSCs and the COL in AML.
Collapse
Affiliation(s)
- Martin Chopra
- Leukaemia & Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Stefan K Bohlander
- Leukaemia & Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
20
|
Almosailleakh M, Schwaller J. Murine Models of Acute Myeloid Leukaemia. Int J Mol Sci 2019; 20:E453. [PMID: 30669675 PMCID: PMC6358780 DOI: 10.3390/ijms20020453] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 01/08/2023] Open
Abstract
Acute myeloid leukaemia (AML) is a rare but severe form of human cancer that results from a limited number of functionally cooperating genetic abnormalities leading to uncontrolled proliferation and impaired differentiation of hematopoietic stem and progenitor cells. Before the identification of genetic driver lesions, chemically, irradiation or viral infection-induced mouse leukaemia models provided platforms to test novel chemotherapeutics. Later, transgenic mouse models were established to test the in vivo transforming potential of newly cloned fusion genes and genetic aberrations detected in patients' genomes. Hereby researchers constitutively or conditionally expressed the respective gene in the germline of the mouse or reconstituted the hematopoietic system of lethally irradiated mice with bone marrow virally expressing the mutation of interest. More recently, immune deficient mice have been explored to study patient-derived human AML cells in vivo. Unfortunately, although complementary to each other, none of the currently available strategies faithfully model the initiation and progression of the human disease. Nevertheless, fast advances in the fields of next generation sequencing, molecular technology and bioengineering are continuously contributing to the generation of better mouse models. Here we review the most important AML mouse models of each category, briefly describe their advantages and limitations and show how they have contributed to our understanding of the biology and to the development of novel therapies.
Collapse
MESH Headings
- Animals
- Bone Marrow Transplantation
- Carcinogens/administration & dosage
- Cell Transformation, Viral
- Disease Models, Animal
- Gene Editing
- Heterografts
- Humans
- Immunocompromised Host
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mice, Transgenic
- Radiation, Ionizing
Collapse
Affiliation(s)
- Marwa Almosailleakh
- Department of Biomedicine, University Children's Hospital beider Basel (UKBB), University of Basel, 4031 Basel, Switzerland.
| | - Juerg Schwaller
- Department of Biomedicine, University Children's Hospital beider Basel (UKBB), University of Basel, 4031 Basel, Switzerland.
| |
Collapse
|
21
|
Proteomic Profiling of Primary Human Acute Myeloid Leukemia Cells Does Not Reflect Their Constitutive Release of Soluble Mediators. Proteomes 2018; 7:proteomes7010001. [PMID: 30577422 PMCID: PMC6473519 DOI: 10.3390/proteomes7010001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/15/2018] [Accepted: 12/18/2018] [Indexed: 01/08/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease, and communication between leukemic cells and their neighboring leukemia-supporting normal cells is involved in leukemogenesis. The bone marrow cytokine network is therefore important, and the mediator release profile seems more important than single mediators. It is not known whether the characterization of primary AML cell proteomes reflects the heterogeneity of the broad and dynamic constitutive mediator release profile by these cells. To address this, we compared the intracellular levels of 41 proteins in 19 AML patients with the constitutive extracellular release during in vitro culture, including chemokines, growth factors, proteases, and protease regulators. The constitutive release of most mediators showed a wide variation (up to 2000-fold differences) between patients. Detectable intracellular levels were seen for 10 of 41 mediators, but for most of these 10 mediators we could not detect significant correlations between the constitutive release during in vitro culture and their intracellular levels. Intracellular protein levels in primary human AML cells do not reflect the dynamics, capacity, and variation between patients in constitutive mediator release profiles. Measurements of these profiles thus add complementary information to proteomic detection/quantification regarding the heterogeneity of the AML cell contributions to the bone marrow cytokine network.
Collapse
|
22
|
Corradi G, Baldazzi C, Očadlíková D, Marconi G, Parisi S, Testoni N, Finelli C, Cavo M, Curti A, Ciciarello M. Mesenchymal stromal cells from myelodysplastic and acute myeloid leukemia patients display in vitro reduced proliferative potential and similar capacity to support leukemia cell survival. Stem Cell Res Ther 2018; 9:271. [PMID: 30359303 PMCID: PMC6202844 DOI: 10.1186/s13287-018-1013-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/11/2018] [Accepted: 09/20/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) are an essential element of the bone marrow (BM) microenvironment, playing a crucial function in regulating hematopoietic stem cell proliferation and differentiation. Recent findings have outlined a putative role for MSCs in hematological malignancy development. So far, conflicting results have been collected concerning MSC abnormalities in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). In particular, a considerable amount of evidence has been accumulated strongly supporting a permissive role of MSCs in malignancy evolution to MDS, while a potentially causative or promoting function performed by MSCs in AML has not yet been fully clarified. Here, we compared MSCs isolated from healthy, MDS, and AML subjects to investigate MSC alterations and to emphasize putative common and/or diverse features. METHODS We isolated and expanded MSCs from AML patients (AML-MSCs) and MDS patients (MDS-MSCs), and we analyzed and compared their phenotypic and functional properties with respect to each other and versus healthy donor-derived MSCs (HD-MSCs). RESULTS We found that stable MSC cultures could be easily established from HD and MDS mononuclear BM-derived cells, while a substantial fraction (25%) of AML patients failed to yield MSCs. Nevertheless, isolated MDS-MSCs and AML-MSCs, as well as HD-MSCs, contained the basic features of MSCs. Indeed, they displayed similar surface marker expression and efficient capacity to differentiate versus osteogenic and adipogenic lineage in vitro. We also proved that MDS-MSCs and AML-MSCs, analyzed by fluorescence in-situ hybridization, did not harbor leukemic cell cytogenetic abnormalities. Moreover, MDS-MSCs and AML-MSCs were similar in terms of ability to sustain AML cell viability and immune-regulatory capacity. However, we were also able to detect some differences between AML-MSCs and MDS-MSCs. Indeed, we found that the frequency of rescued MSCs was lower in the AML group than in the HD and MDS groups, suggesting that a reduced number of MSC precursors could inhabit AML BM. Instead, MDS-MSCs showed the lowest proliferative capacity, reflecting some intrinsic and particular defect. CONCLUSIONS Overall, our results elucidated that MDS-MSCs and AML-MSCs did not show macroscopic and/or tumor-related defects, but both displayed functional features potentially contributing to favor a leukemia-protective milieu.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Case-Control Studies
- Cell Differentiation
- Cell Proliferation
- Cell Survival
- Female
- Gene Expression
- Humans
- In Situ Hybridization, Fluorescence
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Male
- Mesenchymal Stem Cells/metabolism
- Mesenchymal Stem Cells/pathology
- Middle Aged
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/metabolism
- Myelodysplastic Syndromes/pathology
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Primary Cell Culture
- Risk
Collapse
Affiliation(s)
- Giulia Corradi
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology “L. & A. Seràgnoli”, University of Bologna, Azienda Ospedaliero—Universitaria Policlinico S. Orsola-Malpighi Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Carmen Baldazzi
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology “L. & A. Seràgnoli”, University of Bologna, Azienda Ospedaliero—Universitaria Policlinico S. Orsola-Malpighi Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Darina Očadlíková
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology “L. & A. Seràgnoli”, University of Bologna, Azienda Ospedaliero—Universitaria Policlinico S. Orsola-Malpighi Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Giovanni Marconi
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology “L. & A. Seràgnoli”, University of Bologna, Azienda Ospedaliero—Universitaria Policlinico S. Orsola-Malpighi Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Sarah Parisi
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology “L. & A. Seràgnoli”, University of Bologna, Azienda Ospedaliero—Universitaria Policlinico S. Orsola-Malpighi Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Nicoletta Testoni
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology “L. & A. Seràgnoli”, University of Bologna, Azienda Ospedaliero—Universitaria Policlinico S. Orsola-Malpighi Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Carlo Finelli
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology “L. & A. Seràgnoli”, University of Bologna, Azienda Ospedaliero—Universitaria Policlinico S. Orsola-Malpighi Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Michele Cavo
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology “L. & A. Seràgnoli”, University of Bologna, Azienda Ospedaliero—Universitaria Policlinico S. Orsola-Malpighi Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Antonio Curti
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology “L. & A. Seràgnoli”, University of Bologna, Azienda Ospedaliero—Universitaria Policlinico S. Orsola-Malpighi Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Marilena Ciciarello
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology “L. & A. Seràgnoli”, University of Bologna, Azienda Ospedaliero—Universitaria Policlinico S. Orsola-Malpighi Bologna, Via Massarenti 9, 40138 Bologna, Italy
| |
Collapse
|
23
|
de la Guardia RD, Lopez-Millan B, Roca-Ho H, Bueno C, Gutiérrez-Agüera F, Fuster JL, Anguita E, Zanetti SR, Vives S, Nomdedeu J, Sackstein R, Lavoie J, Gónzalez-Rey E, Delgado M, Rosu-Myles M, Menendez P. Bone marrow mesenchymal stem/stromal cells from risk-stratified acute myeloid leukemia patients are anti-inflammatory in in vivo preclinical models of hematopoietic reconstitution and severe colitis. Haematologica 2018; 104:e54-e58. [PMID: 30237260 DOI: 10.3324/haematol.2018.196568] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Rafael Diaz de la Guardia
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Spain
| | - Belen Lopez-Millan
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Spain
| | - Heleia Roca-Ho
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Spain
| | - Clara Bueno
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Spain
| | - Francisco Gutiérrez-Agüera
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Spain
| | - Jose Luis Fuster
- Sección de Oncohematología Pediátrica, Hospital Virgen de Arrixaca, Murcia, Spain
| | - Eduardo Anguita
- Servicio de Hematología, Hospital Clínico San Carlos, IdISSC, Medicina UCM, Madrid, Spain
| | - Samanta Romina Zanetti
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Spain
| | - Susana Vives
- Hematology Department, ICO-Hospital Germans Trias i Pujol and Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Josep Nomdedeu
- Servicio de Hematología, Hospital de la Santa Creu i Sant Pau and Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Robert Sackstein
- Department of Medicine and Program of Excellence in Glycosciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jessie Lavoie
- Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | - Elena Gónzalez-Rey
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Granada, Spain
| | - Mario Delgado
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Granada, Spain
| | - Michael Rosu-Myles
- Biologics and Genetic Therapies Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | - Pablo Menendez
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Spain .,Instituciò Catalana de Reserca i EstudisAvançats (ICREA), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cancer (CIBER-ONC), Barcelona, Spain
| |
Collapse
|
24
|
Qin X, Peterson MR, Haller SE, Cao L, Thomas DP, He G. Caspase recruitment domain-containing protein 9 (CARD9) knockout reduces regional ischemia/reperfusion injury through an attenuated inflammatory response. PLoS One 2018; 13:e0199711. [PMID: 29940016 PMCID: PMC6016916 DOI: 10.1371/journal.pone.0199711] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/12/2018] [Indexed: 11/18/2022] Open
Abstract
Ischemic heart disease remains a leading cause of morbidity and mortality in the United States. Interventional reperfusion induces further damage to the ischemic myocardium through neutrophil infiltration and acute inflammation. As caspase recruitment domain-containing protein 9 (CARD9) plays a critical role in innate immune response and inflammation, we hypothesized that CARD9 knockout would provide protection against ischemia and reperfusion (I/R) injury through attenuation of acute inflammatory responses. C57BL/6 wild-type (WT) and CARD9-/- mice were subjected to 45 min left anterior descending (LAD) coronary artery occlusion followed by 24-h reperfusion. Area at risk (AAR) and infarct size were measured by Evans blue and triphenyltetrazolium chloride (TTC) staining. Frozen heart sections were stained with anti-mouse GR-1 antibody to detect infiltrated neutrophils. Concentrations of cytokines/chemokines TNF-α, IL-6, CXCL-1 and MCP-1 were determined in heart tissue homogenate and serum by ELISA assay. Western immunoblotting analyses were performed to measure the phosphorylation of p38 MAPK. Our results indicate that following I/R, infarct size was significantly smaller in CARD9-/- mice compared to WT. The number of infiltrated neutrophils was significantly lower in CARD9-/- mice compared to WT. Levels of TNF-α, IL-6, CXCL-1 and MCP-1 were significantly reduced in heart tissue and serum from CARD9-/- mice compared to WT. CARD9-/- mice also exhibited significantly lower levels of phosphorylated p38 MAPK. Taken together, our results suggest that CARD9 knockout protects the heart from ischemia/reperfusion (I/R) injury, possibly through reduction of neutrophil infiltration and attenuation of CARD9-associated acute inflammatory signaling.
Collapse
Affiliation(s)
- Xing Qin
- School of Pharmacy, College of Health Sciences, University of Wyoming, Laramie, Wyoming, United States of America
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, PR China
| | - Matthew R. Peterson
- School of Pharmacy, College of Health Sciences, University of Wyoming, Laramie, Wyoming, United States of America
| | - Samantha E. Haller
- School of Pharmacy, College of Health Sciences, University of Wyoming, Laramie, Wyoming, United States of America
| | - Li Cao
- School of Pharmacy, College of Health Sciences, University of Wyoming, Laramie, Wyoming, United States of America
- College of Pharmaceutical Sciences, Soochow University, Soochow, Jiangsu, PR China
| | - D. Paul Thomas
- Division of Kinesiology & Health, College of Health Sciences, University of Wyoming, Laramie, Wyoming, United States of America
| | - Guanglong He
- School of Pharmacy, College of Health Sciences, University of Wyoming, Laramie, Wyoming, United States of America
- * E-mail:
| |
Collapse
|
25
|
Nepstad I, Hatfield KJ, Aasebø E, Hernandez-Valladares M, Brenner AK, Bartaula-Brevik S, Berven F, Selheim F, Skavland J, Gjertsen BT, Reikvam H, Bruserud Ø. Two acute myeloid leukemia patient subsets are identified based on the constitutive PI3K-Akt-mTOR signaling of their leukemic cells; a functional, proteomic, and transcriptomic comparison. Expert Opin Ther Targets 2018; 22:639-653. [DOI: 10.1080/14728222.2018.1487401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ina Nepstad
- Section for Hematology, Department of Clinical Science, University of Bergen, Norway
| | - Kimberley J. Hatfield
- Section for Hematology, Department of Clinical Science, University of Bergen, Norway
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Elise Aasebø
- Department of Biomedicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | | | - Annette K. Brenner
- Section for Hematology, Department of Clinical Science, University of Bergen, Norway
| | | | - Frode Berven
- Department of Biomedicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Frode Selheim
- Department of Biomedicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Jørn Skavland
- Section for Hematology, Department of Clinical Science, University of Bergen, Norway
| | - Bjørn Tore Gjertsen
- Section for Hematology, Department of Clinical Science, University of Bergen, Norway
| | - Håkon Reikvam
- Section for Hematology, Department of Clinical Science, University of Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Øystein Bruserud
- Section for Hematology, Department of Clinical Science, University of Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
26
|
Extracellular Vesicles: A New Prospective in Crosstalk between Microenvironment and Stem Cells in Hematological Malignancies. Stem Cells Int 2018; 2018:9863194. [PMID: 29977309 PMCID: PMC5994264 DOI: 10.1155/2018/9863194] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/31/2018] [Indexed: 02/06/2023] Open
Abstract
The bone marrow (BM) microenvironment in hematological malignancies (HMs) comprises heterogeneous populations of neoplastic and nonneoplastic cells. Cancer stem cells (CSCs), neoplastic cells, hematopoietic stem cells (HSCs), and mesenchymal stromal/stem cells (MSCs) are all components of this microenvironment. CSCs are the HM initiators and are associated with neoplastic growth and drug resistance, while HSCs are able to reconstitute the entire hematopoietic system; finally, MSCs actively support hematopoiesis. In some HMs, CSCs and neoplastic cells compromise the normal development of HSCs and perturb BM-MSCs. In response, "reprogrammed" MSCs generate a favorable environment to support neoplastic cells. Extracellular vesicles (EVs) are an important cell-to-cell communication type in physiological and pathological conditions. In particular, in HMs, EV secretion participates to unidirectional and bidirectional interactions between neoplastic cells and BM cells. The transfer of EV molecular cargo triggers different responses in target cells; in particular, malignant EVs modify the BM environment in favor of neoplastic cells at the expense of normal HSCs, by interfering with antineoplastic immunity and participating in resistance to treatment. Here, we review the role of EVs in BM cell communication in physiological conditions and in HMs, focusing on the effects of BM niche EVs on HSCs and MSCs.
Collapse
|
27
|
Bartaula-Brevik S, Lindstad Brattås MK, Tvedt THA, Reikvam H, Bruserud Ø. Splenic tyrosine kinase (SYK) inhibitors and their possible use in acute myeloid leukemia. Expert Opin Investig Drugs 2018; 27:377-387. [DOI: 10.1080/13543784.2018.1459562] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Sushma Bartaula-Brevik
- Section for Hematology, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Tor Henrik Anderson Tvedt
- Section for Hematology, Department of Clinical Science, University of Bergen, Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Håkon Reikvam
- Section for Hematology, Department of Clinical Science, University of Bergen, Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Øystein Bruserud
- Section for Hematology, Department of Clinical Science, University of Bergen, Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
28
|
Goulard M, Dosquet C, Bonnet D. Role of the microenvironment in myeloid malignancies. Cell Mol Life Sci 2018; 75:1377-1391. [PMID: 29222645 PMCID: PMC5852194 DOI: 10.1007/s00018-017-2725-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/01/2017] [Accepted: 12/05/2017] [Indexed: 12/28/2022]
Abstract
The bone marrow microenvironment (BMM) regulates the fate of hematopoietic stem cells (HSCs) in homeostatic and pathologic conditions. In myeloid malignancies, new insights into the role of the BMM and its cellular and molecular actors in the progression of the diseases have started to emerge. In this review, we will focus on describing the major players of the HSC niche and the role of the altered niche function in myeloid malignancies, more specifically focusing on the mesenchymal stroma cell compartment.
Collapse
Affiliation(s)
- Marie Goulard
- INSERM, UMRS1131-Paris Diderot University, Saint Louis Hospital, Paris, France
| | - Christine Dosquet
- INSERM, UMRS1131-Paris Diderot University, Saint Louis Hospital, Paris, France
- Cell Biology Department, APHP, Saint Louis Hospital, Paris, France
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1, Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
29
|
Chung SS, Eng WS, Hu W, Khalaj M, Garrett-Bakelman FE, Tavakkoli M, Levine RL, Carroll M, Klimek VM, Melnick AM, Park CY. CD99 is a therapeutic target on disease stem cells in myeloid malignancies. Sci Transl Med 2018; 9:9/374/eaaj2025. [PMID: 28123069 DOI: 10.1126/scitranslmed.aaj2025] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 09/12/2016] [Accepted: 11/22/2016] [Indexed: 12/16/2022]
Abstract
Acute myeloid leukemia (AML) and the myelodysplastic syndromes (MDS) are initiated and sustained by self-renewing malignant stem cells; thus, eradication of AML and MDS stem cells is required for cure. We identified CD99 as a cell surface protein frequently overexpressed on AML and MDS stem cells. Expression of CD99 allows for prospective separation of leukemic stem cells (LSCs) from functionally normal hematopoietic stem cells in AML, and high CD99 expression on AML blasts enriches for functional LSCs as demonstrated by limiting dilution xenotransplant studies. Monoclonal antibodies (mAbs) targeting CD99 induce the death of AML and MDS cells in a SARC family kinase-dependent manner in the absence of immune effector cells or complement, and anti-CD99 mAbs exhibit antileukemic activity in AML xenografts. These data establish CD99 as a marker of AML and MDS stem cells, as well as a promising therapeutic target in these disorders.
Collapse
Affiliation(s)
- Stephen S Chung
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - William S Eng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Wenhuo Hu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mona Khalaj
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Francine E Garrett-Bakelman
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell School of Medicine, New York, NY 10065, USA
| | - Montreh Tavakkoli
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Martin Carroll
- Division of Hematology and Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Virginia M Klimek
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ari M Melnick
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell School of Medicine, New York, NY 10065, USA
| | - Christopher Y Park
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. .,Departments of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
30
|
Johansen S, Brenner AK, Bartaula-Brevik S, Reikvam H, Bruserud Ø. The Possible Importance of β3 Integrins for Leukemogenesis and Chemoresistance in Acute Myeloid Leukemia. Int J Mol Sci 2018; 19:ijms19010251. [PMID: 29342970 PMCID: PMC5796198 DOI: 10.3390/ijms19010251] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/20/2017] [Accepted: 01/08/2018] [Indexed: 12/25/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive bone marrow malignancy where the immature leukemia cells communicate with neighboring cells through constitutive cytokine release and through their cell surface adhesion molecules. The primary AML cells express various integrins. These heterodimeric molecules containing an α and a β chain are cell surface molecules that bind extracellular matrix molecules, cell surface molecules and soluble mediators. The β3 integrin (ITGB3) chain can form heterodimers only with the two α chains αIIb and αV. These integrins are among the most promiscuous and bind to a large number of ligands, including extracellular matrix molecules, cell surface molecules and soluble mediators. Recent studies suggest that the two β3 integrins are important for leukemogenesis and chemosensitivity in human AML. Firstly, αIIb and β3 are both important for adhesion of AML cells to vitronectin and fibronectin. Secondly, β3 is important for the development of murine AML and also for the homing and maintenance of the proliferation for xenografted primary human AML cells, and for maintaining a stem cell transcriptional program. These last effects seem to be mediated through Syk kinase. The β3 expression seems to be regulated by HomeboxA9 (HoxA9) and HoxA10, and the increased β3 expression then activates spleen tyrosine kinase (Syk) and thereby contributes to cytokine hypersensitivity and activation of β2 integrins. Finally, high integrin αV/β3 expression is associated with an adverse prognosis in AML and decreased sensitivity to the kinase inhibitor sorafenib; this integrin can also be essential for osteopontin-induced sorafenib resistance in AML. In the present article, we review the experimental and clinical evidence for a role of β3 integrins for leukemogenesis and chemosensitivity in AML.
Collapse
MESH Headings
- Animals
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Disease Models, Animal
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic
- Humans
- Integrin beta3/chemistry
- Integrin beta3/genetics
- Integrin beta3/metabolism
- Integrins/chemistry
- Integrins/genetics
- Integrins/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Ligands
- Multigene Family
- Prognosis
- Protein Binding
- Signal Transduction
Collapse
Affiliation(s)
- Silje Johansen
- Section for Hematology, Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway.
| | - Annette K Brenner
- Section for Hematology, Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway.
- Section for Hematology, Institute of Clinical Science, University of Bergen, 5007 Bergen, Norway.
| | - Sushma Bartaula-Brevik
- Section for Hematology, Institute of Clinical Science, University of Bergen, 5007 Bergen, Norway.
| | - Håkon Reikvam
- Section for Hematology, Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway.
- Section for Hematology, Institute of Clinical Science, University of Bergen, 5007 Bergen, Norway.
| | - Øystein Bruserud
- Section for Hematology, Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway.
- Section for Hematology, Institute of Clinical Science, University of Bergen, 5007 Bergen, Norway.
| |
Collapse
|
31
|
Si M, Jiao X, Li Y, Chen H, He P, Jiang F. The role of cytokines and chemokines in the microenvironment of the blood-brain barrier in leukemia central nervous system metastasis. Cancer Manag Res 2018; 10:305-313. [PMID: 29483784 PMCID: PMC5815469 DOI: 10.2147/cmar.s152419] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
AIM Central nervous system (CNS) metastasis is a major obstacle in the treatment of leukemia, and the underlying mechanisms of leukemia CNS metastasis are not fully understood. The present study is an investigation of the role of the CNS microenvironment in leukemia CNS metastasis. METHODS Analog blood-brain barrier (BBB) was set by coculturing human brain microvascular endothelial cells (HBMVECs) and leukemia cells (U937 and IL-60), as well as HBMVECs and sera from leukemia patients, in vitro. The permeability of the HBMVEC monolayer and the levels of tight junction proteins, cytokines and chemokines (C&Ckines) were measured. RESULTS The permeability of HBMVECs increased when cocultured with leukemia sera. The expression of C&Ckines was significantly upregulated in HBMVECs cocultured with leukemia sera or leukemia cells, compared to the normal sera (P<0.05, respectively). Specifically, significantly higher levels of vascular endothelial growth factor A (VEGF-A) and matrix metalloprotease 9 (MMP-9) were found in HBMVECs and leukemia cells/sera coculturing systems. CONCLUSION Both leukemia cells and the molecules in leukemia sera play an important role in leukemia CNS metastasis. VEGF-A and MMPs may be the main factors resulting in the degradation of the BBB and inducing the CNS migration of leukemia cells.
Collapse
Affiliation(s)
- Mengya Si
- The First Affiliated Hospital of Shantou University Medical College
| | - Xiaoyang Jiao
- Cell Biology and Genetics Department, Shantou University Medical College, Shantou, People’s Republic of China
| | - Yazhen Li
- Cell Biology and Genetics Department, Shantou University Medical College, Shantou, People’s Republic of China
| | - Huanzhu Chen
- Cell Biology and Genetics Department, Shantou University Medical College, Shantou, People’s Republic of China
| | - Ping He
- Cell Biology and Genetics Department, Shantou University Medical College, Shantou, People’s Republic of China
| | - Fang Jiang
- The First Affiliated Hospital of Shantou University Medical College
- Correspondence Fang Jiang, The First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, Guangdong 515041, People’s Republic of China, Email
| |
Collapse
|
32
|
Doron B, Handu M, Kurre P. Concise Review: Adaptation of the Bone Marrow Stroma in Hematopoietic Malignancies: Current Concepts and Models. Stem Cells 2018; 36:304-312. [DOI: 10.1002/stem.2761] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/28/2017] [Accepted: 12/04/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Ben Doron
- OHSU Department of Pediatrics; Portland Oregon USA
- Pediatric Blood and Cancer Biology; Portland Oregon USA
- Papé Family Pediatric Research Institute; Portland Oregon USA
- Oregon Health and Science University; Portland Oregon USA
| | - Mithila Handu
- OHSU Department of Pediatrics; Portland Oregon USA
- Pediatric Blood and Cancer Biology; Portland Oregon USA
- Papé Family Pediatric Research Institute; Portland Oregon USA
- Oregon Health and Science University; Portland Oregon USA
| | - Peter Kurre
- OHSU Department of Pediatrics; Portland Oregon USA
- Pediatric Blood and Cancer Biology; Portland Oregon USA
- Papé Family Pediatric Research Institute; Portland Oregon USA
- Oregon Health and Science University; Portland Oregon USA
- OHSU Knight Cancer Institute; Portland Oregon USA
| |
Collapse
|
33
|
Takam Kamga P, Bassi G, Cassaro A, Midolo M, Di Trapani M, Gatti A, Carusone R, Resci F, Perbellini O, Gottardi M, Bonifacio M, Nwabo Kamdje AH, Ambrosetti A, Krampera M. Notch signalling drives bone marrow stromal cell-mediated chemoresistance in acute myeloid leukemia. Oncotarget 2017; 7:21713-27. [PMID: 26967055 PMCID: PMC5008317 DOI: 10.18632/oncotarget.7964] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 02/25/2016] [Indexed: 12/12/2022] Open
Abstract
Both preclinical and clinical investigations suggest that Notch signalling is critical for the development of many cancers and for their response to chemotherapy. We previously showed that Notch inhibition abrogates stromal-induced chemoresistance in lymphoid neoplasms. However, the role of Notch in acute myeloid leukemia (AML) and its contribution to the crosstalk between leukemia cells and bone marrow stromal cells remain controversial. Thus, we evaluated the role of the Notch pathway in the proliferation, survival and chemoresistance of AML cells in co-culture with bone marrow mesenchymal stromal cells expanded from both healthy donors (hBM-MSCs) and AML patients (hBM-MSCs*). As compared to hBM-MSCs, hBM-MSCs* showed higher level of Notch1, Jagged1 as well as the main Notch target gene HES1. Notably, hBM-MSCs* induced expression and activation of Notch signalling in AML cells, supporting AML proliferation and being more efficientin inducing AML chemoresistance than hBM-MSCs*. Pharmacological inhibition of Notch using combinations of Notch receptor-blocking antibodies or gamma-secretase inhibitors (GSIs), in presence of chemotherapeutic agents, significant lowered the supportive effect of hBM-MSCs and hBM-MSCs* towards AML cells, by activating apoptotic cascade and reducing protein level of STAT3, AKT and NF-κB.These results suggest that Notch signalling inhibition, by overcoming the stromal-mediated promotion of chemoresistance,may represent a potential therapeutic targetnot only for lymphoid neoplasms, but also for AML.
Collapse
Affiliation(s)
- Paul Takam Kamga
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Giulio Bassi
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Adriana Cassaro
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Martina Midolo
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Mariano Di Trapani
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Alessandro Gatti
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Roberta Carusone
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Federica Resci
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Omar Perbellini
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | | | - Massimiliano Bonifacio
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | | | - Achille Ambrosetti
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Mauro Krampera
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
34
|
Schelker RC, Iberl S, Müller G, Hart C, Herr W, Grassinger J. TGF-β1 and CXCL12 modulate proliferation and chemotherapy sensitivity of acute myeloid leukemia cells co-cultured with multipotent mesenchymal stromal cells. Hematology 2017; 23:337-345. [DOI: 10.1080/10245332.2017.1402455] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Roland Christian Schelker
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Sabine Iberl
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Gunnar Müller
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Christina Hart
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Jochen Grassinger
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| |
Collapse
|
35
|
Wang W, Bochtler T, Wuchter P, Manta L, He H, Eckstein V, Ho AD, Lutz C. Mesenchymal stromal cells contribute to quiescence of therapy-resistant leukemic cells in acute myeloid leukemia. Eur J Haematol 2017; 99:392-398. [PMID: 28800175 DOI: 10.1111/ejh.12934] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2017] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Persistence of leukemic cells after induction therapy has been shown to correlate with poor survival in acute myeloid leukemia (AML). In this study, we tested if human mesenchymal stromal cells (hMSCs) have protective effects on leukemic cells undergoing chemotherapy. METHODS Persistent disease was used as marker to identify cases with therapy-resistant leukemic cells in 95 patients with AML. Immunophenotyping, cell cycle, and apoptosis assays were assessed by flow cytometry. AML coculture studies were performed with hMSC of healthy donors. RESULTS Samples from patients with persistent disease had increased fractions of CD34+ CD38- and quiescent leukemic cells. Comparison of sample series collected at time points of diagnosis and blast persistence showed a relative therapy resistance of quiescent leukemic cells. Consistent with these observations, relapsed disease always displayed higher proportions of quiescent cells compared to samples of first diagnosis suggesting that quiescence is an important therapy escape mechanism of resistant cells. Co-culture studies demonstrated that hMSC protect leukemic cells from the effect of AraC treatment by enriching for quiescent cells, mimicking the effects observed in patients. This effect was even detectable when no direct stromal contact was established. CONCLUSIONS Our data suggest that hMSC contribute to quiescence and therapy resistance of persistent AML cells.
Collapse
Affiliation(s)
- Wenwen Wang
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Tilmann Bochtler
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Molecular Hematology/Oncology, Department of Internal Medicine V, German Cancer Research Center (DKFZ), University of Heidelberg, Heidelberg, Germany
| | - Patrick Wuchter
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Linda Manta
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Haiju He
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Volker Eckstein
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Anthony D Ho
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Christoph Lutz
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
36
|
Bruserud Ø, Aasebø E, Hernandez-Valladares M, Tsykunova G, Reikvam H. Therapeutic targeting of leukemic stem cells in acute myeloid leukemia - the biological background for possible strategies. Expert Opin Drug Discov 2017; 12:1053-1065. [PMID: 28748730 DOI: 10.1080/17460441.2017.1356818] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is an aggressive malignancy, caused by the accumulation of immature leukemic blasts in blood and bone marrow. There is a relatively high risk of chemoresistant relapse even for the younger patients who can receive the most intensive antileukemic treatment. Treatment directed against the remaining leukemic and preleukemic stem cells will most likely reduce the risk of later relapse. Areas covered: Relevant publications were identified through literature searches. The authors searched for original articles and recent reviews describing (i) the characteristics of leukemic/preleukemic stem cells; (ii) the importance of the bone marrow stem cell niches in leukemogenesis; and (iii) possible therapeutic strategies to target the preleukemic/leukemic stem cells. Expert opinion: Leukemia relapse/progression seems to be derived from residual chemoresistant leukemic or preleukemic stem cells, and a more effective treatment directed against these cells will likely be important to improve survival both for patients receiving intensive treatment and leukemia-stabilizing therapy. Several possible strategies are now considered, including the targeting of the epigenetic regulation of gene expression, proapoptotic intracellular signaling, cell metabolism, telomere activity and the AML-supporting effects by neighboring stromal cells. Due to disease heterogeneity, the most effective stem cell-directed therapy will probably differ between individual patients.
Collapse
Affiliation(s)
- Øystein Bruserud
- a Division of Hematology, Institute of Clinical Science , University of Bergen , Bergen , Norway.,b Section of Hematology, Department of Medicine , Haukeland University Hospital , Bergen , Norway
| | - Elise Aasebø
- a Division of Hematology, Institute of Clinical Science , University of Bergen , Bergen , Norway.,c Proteomics Unit (PROBE), Department of Biomedicine , University of Bergen , Bergen , Norway
| | - Maria Hernandez-Valladares
- a Division of Hematology, Institute of Clinical Science , University of Bergen , Bergen , Norway.,c Proteomics Unit (PROBE), Department of Biomedicine , University of Bergen , Bergen , Norway
| | - Galina Tsykunova
- b Section of Hematology, Department of Medicine , Haukeland University Hospital , Bergen , Norway
| | - Håkon Reikvam
- b Section of Hematology, Department of Medicine , Haukeland University Hospital , Bergen , Norway
| |
Collapse
|
37
|
The Role of PI3K Isoforms in Regulating Bone Marrow Microenvironment Signaling Focusing on Acute Myeloid Leukemia and Multiple Myeloma. Cancers (Basel) 2017; 9:cancers9040029. [PMID: 28350342 PMCID: PMC5406704 DOI: 10.3390/cancers9040029] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 01/22/2023] Open
Abstract
Despite the development of novel treatments in the past 15 years, many blood cancers still remain ultimately fatal and difficult to treat, particularly acute myeloid leukaemia (AML) and multiple myeloma (MM). While significant progress has been made characterising small-scale genetic mutations and larger-scale chromosomal translocations that contribute to the development of various blood cancers, less is understood about the complex microenvironment of the bone marrow (BM), which is known to be a key player in the pathogenesis of chronic lymphocytic leukaemia (CLL), AML and MM. This niche acts as a sanctuary for the cancerous cells, protecting them from chemotherapeutics and encouraging clonal cell survival. It does this by upregulating a plethora of signalling cascades within the malignant cell, with the phosphatidylinositol-3-kinase (PI3K) pathway taking a critical role. This review will focus on how the PI3K pathway influences disease progression and the individualised role of the PI3K subunits. We will also summarise the current clinical trials for PI3K inhibitors and how these trials impact the treatment of blood cancers.
Collapse
|
38
|
Brenner AK, Nepstad I, Bruserud Ø. Mesenchymal Stem Cells Support Survival and Proliferation of Primary Human Acute Myeloid Leukemia Cells through Heterogeneous Molecular Mechanisms. Front Immunol 2017; 8:106. [PMID: 28232835 PMCID: PMC5299032 DOI: 10.3389/fimmu.2017.00106] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 01/23/2017] [Indexed: 12/25/2022] Open
Abstract
Acute myeloid leukemia (AML) is a bone marrow malignancy, and various bone marrow stromal cells seem to support leukemogenesis, including osteoblasts and endothelial cells. We have investigated how normal bone marrow mesenchymal stem cells (MSCs) support the in vitro proliferation of primary human AML cells. Both MSCs and primary AML cells show constitutive release of several soluble mediators, and the mediator repertoires of the two cell types are partly overlapping. The two cell populations were cocultured on transwell plates, and MSC effects on AML cells mediated through the local cytokine/soluble mediator network could thus be evaluated. The presence of normal MSCs had an antiapoptotic and growth-enhancing effect on primary human AML cells when investigating a group of 51 unselected AML patients; this was associated with increased phosphorylation of mTOR and its downstream targets, and the effect was independent of cytogenetic or molecular-genetic abnormalities. The MSCs also supported the long-term proliferation of the AML cells. A subset of the patients also showed an altered cytokine network with supra-additive levels for several cytokines. The presence of cytokine-neutralizing antibodies or receptor inhibitors demonstrated that AML cells derived from different patients were heterogeneous with regard to effects of various cytokines on AML cell proliferation or regulation of apoptosis. We conclude that even though the effects of single cytokines derived from bone marrow MSCs on human AML cells differ among patients, the final cytokine-mediated effects of the MSCs during coculture is growth enhancement and inhibition of apoptosis.
Collapse
Affiliation(s)
- Annette K Brenner
- Department of Clinical Science, Section for Hematology, University of Bergen , Bergen , Norway
| | - Ina Nepstad
- Department of Clinical Science, Section for Hematology, University of Bergen , Bergen , Norway
| | - Øystein Bruserud
- Department of Clinical Science, Section for Hematology, University of Bergen, Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
39
|
Houshmand M, Soleimani M, Atashi A, Saglio G, Abdollahi M, Nikougoftar Zarif M. Mimicking the Acute Myeloid Leukemia Niche for Molecular Study and Drug Screening. Tissue Eng Part C Methods 2017; 23:72-85. [PMID: 28007011 DOI: 10.1089/ten.tec.2016.0404] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bone marrow niche is a major contributing factor in leukemia development and drug resistance in acute myeloid leukemia (AML) patients. Although mimicking leukemic bone marrow niche relies on two-dimensional (2D) culture conditions, it cannot recapitulate complex bone marrow structure that causes introduction of different three-dimensional (3D) scaffolds. Simultaneously, microfluidic platform by perfusing medium culture mimic interstitial fluid flow, along with 3D scaffold would help for mimicking bone marrow microenvironment. In this study TF-1 cells were cocultured with bone marrow mesenchymal stem cells (BM-MSCs) in 2D and 3D microfluidic devices. Phenotype maintenance during cell culture and proliferation rate was assayed and confirmed by cell cycle analysis. Morphology of cells in 2D and 3D culture conditions was demonstrated by scanning electron microscopy. After these experiments, drug screening was performed by applying azacitidine and cytarabine and cytotoxicity assay and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) for B cell lymphoma 2 (BCL2) were done to compare drug resistance in 2D and 3D culture conditions. Our result shows leukemic cells in 3D microfluidic device retaining their phenotype and proliferation rate was significantly higher in 3D culture condition in comparison to 2D culture condition (p < 0.05), which was confirmed by cell cycle analysis. Cytotoxicity assay also illustrated drug resistance in 3D culture condition and qRT-PCR demonstrated higher BCL2 expression in 3D microfluidic device in contrast to 2D microfluidic device (p < 0.05). On balance, mimicking bone marrow niche would help the target therapy and specify the role of niche in development of leukemia in AML patients.
Collapse
Affiliation(s)
- Mohammad Houshmand
- 1 Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine , Tehran, Iran
| | - Masoud Soleimani
- 2 Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University , Tehran, Iran
| | - Amir Atashi
- 3 Stem cell and Tissue Engineering Research Center, Shahroud University of Medical Sciences , Shahroud, Iran
| | - Giuseppe Saglio
- 4 Department of Clinical and Biological Sciences, "S. Luigi Gonzaga" Hospital, University of Turin , Orbassano, Italy
| | - Mohammad Abdollahi
- 2 Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University , Tehran, Iran
| | - Mahin Nikougoftar Zarif
- 1 Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine , Tehran, Iran
| |
Collapse
|
40
|
Tvedt TH, Nepstad I, Bruserud Ø. Antileukemic effects of midostaurin in acute myeloid leukemia - the possible importance of multikinase inhibition in leukemic as well as nonleukemic stromal cells. Expert Opin Investig Drugs 2016; 26:343-355. [PMID: 28001095 DOI: 10.1080/13543784.2017.1275564] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Midostaurin is a multikinase inhibitor that inhibits receptor tyrosine kinases (Flt3, CD117/c-kit, platelet-derived growth factor receptor, vascular endothelial growth factor receptor 2) as well as non-receptor tyrosine kinases (Frg, Src, Syk, Protein kinase C). Combination of midostaurin with conventional intensive chemotherapy followed by one year maintenance monotherapy was recently reported to improve the survival of acute myeloid leukemia (AML) patients with Flt3 mutations. Areas covered: Relevant publications were identified through literature searches in the PubMed database. We searched for (i) original articles describing the results from clinical studies; (ii) published articles describing the importance of midostaurin-inhibited kinases for leukemogenesis and chemosensitivity. Expert opinion: Midostaurin monotherapy is well tolerated, combined with conventional chemotherapy gastrointestinal toxicity increases significantly. Midostaurin alters anthracycline pharmacokinetics. Furthermore, its antileukemic effects may not only be mediated through Flt3 inhibition alone; the inhibition of other kinases may also be important for the overall antileukemic effect. Midostaurin may then have direct effects on the leukemic cells but also indirect antileukemic effects through inhibition of the AML-supporting effects of neighboring stromal cells in the bone marrow microenvironment. Midostaurin may thus be used in combination with intensive chemotherapy, as maintenance treatment or as disease-stabilizing treatment for elderly unfit patients.
Collapse
Affiliation(s)
- Tor Henrik Tvedt
- a Section for Hematology, Department of Medicine , Haukeland University Hospital , Bergen , Norway
| | - Ina Nepstad
- b Section for Hematology , Institute of Clinical Science, University of Bergen , Bergen , Norway
| | - Øystein Bruserud
- a Section for Hematology, Department of Medicine , Haukeland University Hospital , Bergen , Norway.,b Section for Hematology , Institute of Clinical Science, University of Bergen , Bergen , Norway
| |
Collapse
|
41
|
Generating Peripheral Blood Derived Lymphocytes Reacting Against Autologous Primary AML Blasts. J Immunother 2016; 39:71-80. [PMID: 26849076 DOI: 10.1097/cji.0000000000000107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Expanding on our prior studies with cord blood T cells, we hypothesized that primary acute myeloid leukemia (AML)-reactive autologous T cells could be generated ex vivo under immunomodulatory conditions. We purified AML and T cells from 8 newly diagnosed high-risk patients. After 2 weeks expansion, T cells were stimulated with interferon-γ-treated autologous AML weekly × 3, interleukin-15, and agonistic anti-CD28 antibody. Cytotoxic T cells and ELISpot assays tested functionality; reverse transcriptase quantitative polymerase chain reaction tested AML and T-cell gene expression profiles. On the basis of combined positive ELIspot and cytotoxic T cells assays, T cells reactive against AML were generated in 5 of 8 patients. Treg proportion declined after cocultures in reactive T-cell samples. AML-reactive T cells displayed an activated gene expression profile. "Resistant" AML blasts displayed genes associated with immunosuppressive myeloid-derived suppressor cells. We discuss our approach to creating primary AML-reactive autologous T cell and limitations that require further work. Our study provides a platform for future research targeting on generating autologous leukemia-reactive T cells.
Collapse
|
42
|
Morita Y, Kawase N, Ju Y, Yamauchi T. Mesenchymal stem cell-induced 3D displacement field of cell-adhesion matrices with differing elasticities. J Mech Behav Biomed Mater 2016; 60:394-400. [DOI: 10.1016/j.jmbbm.2016.02.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/15/2016] [Accepted: 02/18/2016] [Indexed: 01/01/2023]
|
43
|
Pleyer L, Valent P, Greil R. Mesenchymal Stem and Progenitor Cells in Normal and Dysplastic Hematopoiesis-Masters of Survival and Clonality? Int J Mol Sci 2016; 17:ijms17071009. [PMID: 27355944 PMCID: PMC4964385 DOI: 10.3390/ijms17071009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/20/2016] [Accepted: 06/08/2016] [Indexed: 02/07/2023] Open
Abstract
Myelodysplastic syndromes (MDS) are malignant hematopoietic stem cell disorders that have the capacity to progress to acute myeloid leukemia (AML). Accumulating evidence suggests that the altered bone marrow (BM) microenvironment in general, and in particular the components of the stem cell niche, including mesenchymal stem cells (MSCs) and their progeny, play a pivotal role in the evolution and propagation of MDS. We here present an overview of the role of MSCs in the pathogenesis of MDS, with emphasis on cellular interactions in the BM microenvironment and related stem cell niche concepts. MSCs have potent immunomodulatory capacities and communicate with diverse immune cells, but also interact with various other cellular components of the microenvironment as well as with normal and leukemic stem and progenitor cells. Moreover, compared to normal MSCs, MSCs in MDS and AML often exhibit altered gene expression profiles, an aberrant phenotype, and abnormal functional properties. These alterations supposedly contribute to the “reprogramming” of the stem cell niche into a disease-permissive microenvironment where an altered immune system, abnormal stem cell niche interactions, and an impaired growth control lead to disease progression. The current article also reviews molecular targets that play a role in such cellular interactions and possibilities to interfere with abnormal stem cell niche interactions by using specific targeted drugs.
Collapse
Affiliation(s)
- Lisa Pleyer
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria.
- Center for Clinical Cancer and Immunology Trials at Salzburg Cancer Research Institute, 5020 Salzburg, Austria.
- 3rd Medical Department, Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology & Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Richard Greil
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria.
- Center for Clinical Cancer and Immunology Trials at Salzburg Cancer Research Institute, 5020 Salzburg, Austria.
- 3rd Medical Department, Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| |
Collapse
|
44
|
Dhami SPS, Kappala SS, Thompson A, Szegezdi E. Three-dimensional ex vivo co-culture models of the leukaemic bone marrow niche for functional drug testing. Drug Discov Today 2016; 21:1464-1471. [PMID: 27130156 DOI: 10.1016/j.drudis.2016.04.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/04/2016] [Accepted: 04/20/2016] [Indexed: 10/21/2022]
Abstract
Acute myeloid leukaemia (AML) is a hierarchically structured malignancy in which aberrant leukemic stem cells drive the production of leukaemic blast cell clones. AML cells strictly depend on the bone marrow microenvironment (BMM) in which they reside. Classical AML cell cultures fail to mimic the BMM and, therefore, drug discovery studies are dominated by in vivo models. However, animal models are time consuming, labour intensive, provide limited mechanistic insight, and are unsuited for high-throughput studies, necessitating the development of novel AML models. The evolving ex vivo BMM-mimicking culture systems aim to fill this gap, with increasing success. Here, we discuss how AML-microenvironment co-culture models advance our understanding of this disease, and highlight their future potential for translational AML research.
Collapse
Affiliation(s)
- Sukhraj Pal S Dhami
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Shanthi S Kappala
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Alexander Thompson
- Centre for Cancer Research and Cell Biology, Queen's University, Belfast, United Kingdom
| | - Eva Szegezdi
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland.
| |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Hematopoietic stem and progenitor cell (HSPC) transplantation is frequently used in the treatment of hematological diseases. The outcome of the procedure is strongly influenced by the quantity of injected cells, especially if low cell numbers are infused as frequently encountered with cord blood transplants. Ex-vivo expansion of cord blood HSPCs would increase cell numbers, thus accelerating engraftment and reducing infectious complications and transplant-related mortality. In addition, expansion would maximize accessibility to better HLA-matched units, further improving patients' outcome. Similarly, in-vitro maintenance or expansion of leukemic stem cells (LSCs) would enable research into the much awaited targeted therapies that spare normal hematopoietic stem cells (HSCs). Here, we review recent findings on small molecules (excluding biologicals) regulating the activity of normal and leukemic stem cells and provide insights into basic science and clinical implications. RECENT FINDINGS High-throughput screening of small molecules active on primary hematopoietic cells has led to the identification of two potent series of chemical compounds, best exemplified by StemRegenin1 and UM171, that both expand HSPCs. Current data suggest that the aryl hydrocarbon receptor antagonist StemRegenin1 is most active on primitive normal hematopoietic progenitors and LSCs and that UM171 expands long-term normal HSCs. SUMMARY Small molecules are clinically useful and powerful tools for expanding HSPCs. They are also of potential value for dissecting the still elusive regulatory networks that govern self-renewal of human HSCs.
Collapse
|
46
|
Kallekleiv M, Larun L, Bruserud Ø, Hatfield KJ. Co-transplantation of multipotent mesenchymal stromal cells in allogeneic hematopoietic stem cell transplantation: A systematic review and meta-analysis. Cytotherapy 2016; 18:172-85. [PMID: 26794711 DOI: 10.1016/j.jcyt.2015.11.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/23/2015] [Accepted: 11/10/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND AIMS Allogeneic hematopoietic stem cell transplantation (HSCT) is a potentially curative treatment option for patients with hematological malignancies. Co-transplantation of multipotent mesenchymal stromal cells (MSCs) during allogeneic HSCT has been explored to enhance engraftment and decrease the risk of graft-versus-host disease (GVHD). We aimed to identify, evaluate and summarize the findings of all relevant controlled clinical studies to determine the potential benefits of MSC infusion during allogeneic HSCT, with regard to the outcomes engraftment, GVHD, post-transplant relapse and survival. METHODS We conducted a systematic search of electronic databases for relevant controlled clinical studies. Studies included patients of all ages with hematological malignancies receiving allogeneic HSCT with or without infusion of MSCs within a 24-h time frame of transplantation. RESULTS Nine studies met our inclusion criteria, including three randomized, one non-randomized and five historically controlled trials, representing a total of 309 patients. Our meta-analyses did not reveal any statistically significant differences in donor engraftment or GVHD. A review of data regarding relapse and overall survival may result in a positive attitude toward intervention with MSCs, but due to heterogeneous reporting, it is difficult to draw any strict conclusions. None of the studies had overall serious risks of bias, but the quality of the evidence is low. CONCLUSIONS Meta-analysis did not reveal any statistically significant effects of MSC co-transplantation, but the results must be interpreted with caution because of the weak study design and small study populations. We discuss further needs to explore the potential effects of MSCs in a HSCT setting.
Collapse
Affiliation(s)
- Merete Kallekleiv
- Department for immunology and transfusion medicine, Section for Cell Therapy, Haukeland University Hospital, Bergen, Norway; Bergen University College, Centre for Evidence Based Practice
| | - Lillebeth Larun
- Norwegian Knowledge Centre for the Health Services, Oslo, Norway
| | - Øystein Bruserud
- Department of Medicine, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway
| | | |
Collapse
|
47
|
Stem Cell Modeling of Core Binding Factor Acute Myeloid Leukemia. Stem Cells Int 2016; 2016:7625827. [PMID: 26880987 PMCID: PMC4737463 DOI: 10.1155/2016/7625827] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 10/15/2015] [Indexed: 12/19/2022] Open
Abstract
Even though clonally originated from a single cell, acute leukemia loses its homogeneity soon and presents at clinical diagnosis as a hierarchy of cells endowed with different functions, of which only a minority possesses the ability to recapitulate the disease. Due to their analogy to hematopoietic stem cells, these cells have been named “leukemia stem cells,” and are thought to be chiefly responsible for disease relapse and ultimate survival after chemotherapy. Core Binding Factor (CBF) Acute Myeloid Leukemia (AML) is cytogenetically characterized by either the t(8;21) or the inv(16)/t(16;16) chromosomal abnormalities, which, although being pathognomonic, are not sufficient per se to induce overt leukemia but rather determine a preclinical phase of disease when preleukemic subclones compete until the acquisition of clonal dominance by one of them. In this review we summarize the concepts regarding the application of the “leukemia stem cell” theory to the development of CBF AML; we will analyze the studies investigating the leukemogenetic role of t(8;21) and inv(16)/t(16;16), the proposed theories of its clonal evolution, and the role played by the hematopoietic niches in preserving the disease. Finally, we will discuss the clinical implications of stem cell modeling of CBF AML for the therapy of the disease.
Collapse
|
48
|
Reikvam H, Brenner AK, Hagen KM, Liseth K, Skrede S, Hatfield KJ, Bruserud Ø. The cytokine-mediated crosstalk between primary human acute myeloid cells and mesenchymal stem cells alters the local cytokine network and the global gene expression profile of the mesenchymal cells. Stem Cell Res 2015; 15:530-541. [DOI: 10.1016/j.scr.2015.09.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 08/25/2015] [Accepted: 09/21/2015] [Indexed: 02/02/2023] Open
|