1
|
Rahman FA, Hian-Cheong DJ, Boonstra K, Ma A, Thoms JP, Zago AS, Quadrilatero J. Augmented mitochondrial apoptotic signaling impairs C2C12 myoblast differentiation following cellular aging through sequential passaging. J Cell Physiol 2024; 239:e31155. [PMID: 38212955 DOI: 10.1002/jcp.31155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 01/13/2024]
Abstract
Aging is associated with the steady decline of several cellular processes. The loss of skeletal muscle mass, termed sarcopenia, is one of the major hallmarks of aging. Aged skeletal muscle exhibits a robust reduction in its regenerative capacity due to dysfunction (i.e., senescence, lack of self-renewal, and impaired differentiation) of resident muscle stem cells, called satellite cells. To replicate aging in vitro, immortalized skeletal muscle cells (myoblasts) can be treated with various agents to mimic age-related dysfunction; however, these come with their own set of limitations. In the present study, we used sequential passaging of mouse myoblasts to mimic impaired differentiation that is observed in aged skeletal muscle. Further, we investigated mitochondrial apoptotic mechanisms to better understand the impaired differentiation in these "aged" cells. Our data shows that sequential passaging (>20 passages) of myoblasts is accompanied with significant reductions in differentiation and elevated cell death. Furthermore, high-passage (HP) myoblasts exhibit greater mitochondrial-mediated apoptotic signaling through mitochondrial BAX translocation, CYCS and AIFM1 release, and caspase-9 activation. Finally, we show that inhibition of mitochondrial outer membrane permeability partly recovered differentiation in HP myoblasts. Together, our findings suggests that mitochondrial apoptotic signaling is a contributing factor to the diminished differentiation that is observed in aged myoblasts.
Collapse
Affiliation(s)
- Fasih A Rahman
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Dylan J Hian-Cheong
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Kristen Boonstra
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Andrew Ma
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - James P Thoms
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Anderson S Zago
- Department of Physical Education, School of Sciences, Sao Paulo State University, Bauru, Brazil
| | - Joe Quadrilatero
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
2
|
Mehrotra P, Jablonski J, Toftegaard J, Zhang Y, Shahini S, Wang J, Hung CW, Ellis R, Kayal G, Rajabian N, Liu S, Roballo KCS, Udin SB, Andreadis ST, Personius KE. Skeletal muscle reprogramming enhances reinnervation after peripheral nerve injury. Nat Commun 2024; 15:9218. [PMID: 39455585 PMCID: PMC11511891 DOI: 10.1038/s41467-024-53276-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Peripheral Nerve Injuries (PNI) affect more than 20 million Americans and severely impact quality of life by causing long-term disability. PNI is characterized by nerve degeneration distal to the site of nerve injury resulting in long periods of skeletal muscle denervation. During this period, muscle fibers atrophy and frequently become incapable of "accepting" innervation because of the slow speed of axon regeneration post injury. We hypothesize that reprogramming the skeletal muscle to an embryonic-like state may preserve its reinnervation capability following PNI. To this end, we generate a mouse model in which NANOG, a pluripotency-associated transcription factor is expressed locally upon delivery of doxycycline (Dox) in a polymeric vehicle. NANOG expression in the muscle upregulates the percentage of Pax7+ nuclei and expression of eMYHC along with other genes that are involved in muscle development. In a sciatic nerve transection model, NANOG expression leads to upregulation of key genes associated with myogenesis, neurogenesis and neuromuscular junction (NMJ) formation. Further, NANOG mice demonstrate extensive overlap between synaptic vesicles and NMJ acetylcholine receptors (AChRs) indicating restored innervation. Indeed, NANOG mice show greater improvement in motor function as compared to wild-type (WT) animals, as evidenced by improved toe-spread reflex, EMG responses and isometric force production. In conclusion, we demonstrate that reprogramming muscle can be an effective strategy to improve reinnervation and functional outcomes after PNI.
Collapse
Affiliation(s)
- Pihu Mehrotra
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY, 14260, USA
| | - James Jablonski
- Department of Department of Rehabilitation Science, University at Buffalo, Buffalo, NY, 14214, USA
| | - John Toftegaard
- Department of Biomedical Engineering, University at Buffalo, NY, Buffalo, NY, 14260, USA
| | - Yali Zhang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Shahryar Shahini
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY, 14260, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Carey W Hung
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Blacksburg, VA, 24060, USA
| | - Reilly Ellis
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Blacksburg, VA, 24060, USA
| | - Gabriella Kayal
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Blacksburg, VA, 24060, USA
| | - Nika Rajabian
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY, 14260, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Kelly C S Roballo
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Blacksburg, VA, 24060, USA
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary, Medicine, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Susan B Udin
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY, 14260, USA.
- Department of Biomedical Engineering, University at Buffalo, NY, Buffalo, NY, 14260, USA.
- Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, 14203, USA.
- Center for Cell, Gene and Tissue Engineering (CGTE), University at Buffalo, Buffalo, NY, 14260, USA.
| | - Kirkwood E Personius
- Department of Department of Rehabilitation Science, University at Buffalo, Buffalo, NY, 14214, USA.
- Center for Cell, Gene and Tissue Engineering (CGTE), University at Buffalo, Buffalo, NY, 14260, USA.
| |
Collapse
|
3
|
Akagi K, Baba S, Fujita H, Fuseya Y, Yoshinaga D, Kubota H, Kume E, Fukumura F, Matsuda K, Tanaka T, Hirata T, Saito MK, Iwai K, Takita J. HOIL-1L deficiency induces cell cycle alteration which causes immaturity of skeletal muscle and cardiomyocytes. Sci Rep 2024; 14:8871. [PMID: 38632277 PMCID: PMC11024103 DOI: 10.1038/s41598-024-57504-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
HOIL-1L deficiency was recently reported to be one of the causes of myopathy and dilated cardiomyopathy (DCM). However, the mechanisms by which myopathy and DCM develop have not been clearly elucidated. Here, we sought to elucidate these mechanisms using the murine myoblast cell line C2C12 and disease-specific human induced pluripotent stem cells (hiPSCs). Myotubes differentiated from HOIL-1L-KO C2C12 cells exhibited deteriorated differentiation and mitotic cell accumulation. CMs differentiated from patient-derived hiPSCs had an abnormal morphology with a larger size and were excessively multinucleated compared with CMs differentiated from control hiPSCs. Further analysis of hiPSC-derived CMs showed that HOIL-1L deficiency caused cell cycle alteration and mitotic cell accumulation. These results demonstrate that abnormal cell maturation possibly contribute to the development of myopathy and DCM. In conclusion, HOIL-1L is an important intrinsic regulator of cell cycle-related myotube and CM maturation and cell proliferation.
Collapse
Affiliation(s)
- Kentaro Akagi
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto City, Kyoto, 606-8507, Japan
| | - Shiro Baba
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto City, Kyoto, 606-8507, Japan.
| | - Hiroaki Fujita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto City, Kyoto, 606-8501, Japan
| | - Yasuhiro Fuseya
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto City, Kyoto, 606-8501, Japan
| | - Daisuke Yoshinaga
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto City, Kyoto, 606-8507, Japan
| | - Hirohito Kubota
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto City, Kyoto, 606-8501, Japan
| | - Eitaro Kume
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto City, Kyoto, 606-8507, Japan
| | - Fumiaki Fukumura
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto City, Kyoto, 606-8507, Japan
| | - Koichi Matsuda
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto City, Kyoto, 606-8507, Japan
| | - Takayuki Tanaka
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto City, Kyoto, 606-8507, Japan
| | - Takuya Hirata
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto City, Kyoto, 606-8507, Japan
| | - Megumu K Saito
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto City, Kyoto, 606-8507, Japan
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto City, Kyoto, 606-8501, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto City, Kyoto, 606-8507, Japan
| |
Collapse
|
4
|
Shin DI, Jin YJ, Noh S, Yun HW, Park DY, Min BH. Exosomes Secreted During Myogenic Differentiation of Human Fetal Cartilage-Derived Progenitor Cells Promote Skeletal Muscle Regeneration through miR-145-5p. Tissue Eng Regen Med 2024; 21:487-497. [PMID: 38294592 PMCID: PMC10987463 DOI: 10.1007/s13770-023-00618-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Currently, there is no apparent treatment for sarcopenia, which is characterized by diminished myoblast function. We aimed to manufacture exosomes that retain the myogenic differentiation capacity of human fetal cartilage-derived progenitor cells (hFCPCs) and investigate their muscle regenerative efficacy in myoblasts and a sarcopenia rat model. METHODS The muscle regeneration potential of exosomes (F-Exo) secreted during myogenic differentiation of hFCPCs was compared to human bone marrow mesenchymal stem cells-derived (hBMSCs) exosomes (B-Exo) in myoblasts and sarcopenia rat model. The effect of F-Exo was analyzed through known microRNAs (miRNAs) analysis. The mechanism of action of F-Exo was confirmed by measuring the expression of proteins involved in the Wnt signaling pathway. RESULTS F-Exo and B-Exo showed similar exosome characteristics. However, F-Exo induced the expression of muscle markers (MyoD, MyoG, and MyHC) and myotube formation in myoblasts more effectively than B-Exo. Moreover, F-Exo induced greater increases in muscle fiber cross-sectional area and muscle mass compared to B-Exo in a sarcopenia rat. The miR-145-5p, relevant to muscle regeneration, was found in high concentrations in the F-Exo, and RNase pretreatment reduced the efficacy of exosomes. The effects of F-Exo on the expression of myogenic markers in myoblasts were paralleled by the miR-145-5p mimics, while the inhibitor partially negated this effect. F-Exo was involved in the Wnt signaling pathway by enhancing the expression of Wnt5a and β-catenin. CONCLUSION F-Exo improved muscle regeneration by activating the Wnt signaling pathway via abundant miR-145-5p, mimicking the remarkable myogenic differentiation potential of hFCPCs.
Collapse
Affiliation(s)
- Dong Il Shin
- Department of Molecular Science and Technology, Ajou University Graduate School, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
- Cell Therapy Center, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
| | - Yong Jun Jin
- Cell Therapy Center, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
- Department of Orthopedic Surgery, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
| | - Sujin Noh
- Cell Therapy Center, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
| | - Hee-Woong Yun
- Cell Therapy Center, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
- Department of Orthopedic Surgery, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
| | - Do Young Park
- Cell Therapy Center, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
- Department of Orthopedic Surgery, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
| | - Byoung-Hyun Min
- Department of Molecular Science and Technology, Ajou University Graduate School, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea.
- Cell Therapy Center, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea.
- Department of Orthopedic Surgery, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea.
| |
Collapse
|
5
|
Tipbunjong C, Thitiphatphuvanon T, Pholpramool C, Surinlert P. Bisphenol-A Abrogates Proliferation and Differentiation of C2C12 Mouse Myoblasts via Downregulation of Phospho-P65 NF- κB Signaling Pathway. J Toxicol 2024; 2024:3840950. [PMID: 38449520 PMCID: PMC10917485 DOI: 10.1155/2024/3840950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 03/08/2024] Open
Abstract
Previous studies showed that bisphenol-A (BPA), a monomer of polycarbonate plastic, is leached out and contaminated in foods and beverages. This study aimed to investigate the effects of BPA on the myogenesis of adult muscle stem cells. C2C12 myoblasts were treated with BPA in both proliferation and differentiation conditions. Cytotoxicity, cell proliferation and differentiation, antioxidant activity, apoptosis, myogenic regulatory factors (MRFs) gene expression, and mechanism of BPA on myogenesis were examined. C2C12 myoblasts exposed to 25-50 µM BPA showed abnormal morphology, expressing numerous and long cytoplasmic extensions. Cell proliferation was inhibited and was accumulated in subG1 and S phases of the cell cycle, subsequently leading to apoptosis confirmed by nuclear condensation and the expression of apoptosis markers, cleaved caspase-9 and caspase-3. In addition, the activity of antioxidant enzymes, catalase, superoxide dismutase, and glutathione peroxidase was significantly decreased. Meanwhile, BPA suppressed myoblast differentiation by decreasing the number and size of multinucleated myotubes via the modulation of MRF gene expression. Moreover, BPA significantly inhibited the phosphorylation of P65 NF-κB in both proliferation and differentiation conditions. Altogether, the results revealed the adverse effects of BPA on myogenesis leading to abnormal growth and development via the inhibition of phospho-P65 NF-κB.
Collapse
Affiliation(s)
- Chittipong Tipbunjong
- Department of Anatomy, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | | | - Chumpol Pholpramool
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Piyaporn Surinlert
- Chulabhorn International College of Medicine, Thammasat University, Bangkok, Pathum-Thani 12120, Thailand
- Thammasat University Research Unit in Synthesis and Applications of Graphene, Thammasat University, Pathum-Thani 12120, Thailand
| |
Collapse
|
6
|
Choudhury D, Rong N, Senthil Kumar HV, Swedick S, Samuel RZ, Mehrotra P, Toftegaard J, Rajabian N, Thiyagarajan R, Podder AK, Wu Y, Shahini S, Seldeen KL, Troen B, Lei P, Andreadis ST. Proline restores mitochondrial function and reverses aging hallmarks in senescent cells. Cell Rep 2024; 43:113738. [PMID: 38354087 DOI: 10.1016/j.celrep.2024.113738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/04/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024] Open
Abstract
Mitochondrial dysfunction is a hallmark of cellular senescence, with the loss of mitochondrial function identified as a potential causal factor contributing to senescence-associated decline in cellular functions. Our recent findings revealed that ectopic expression of the pluripotency transcription factor NANOG rejuvenates dysfunctional mitochondria of senescent cells by rewiring metabolic pathways. In this study, we report that NANOG restores the expression of key enzymes, PYCR1 and PYCR2, in the proline biosynthesis pathway. Additionally, senescent mesenchymal stem cells manifest severe mitochondrial respiratory impairment, which is alleviated through proline supplementation. Proline induces mitophagy by activating AMP-activated protein kinase α and upregulating Parkin expression, enhancing mitochondrial clearance and ultimately restoring cell metabolism. Notably, proline treatment also mitigates several aging hallmarks, including DNA damage, senescence-associated β-galactosidase, inflammatory cytokine expressions, and impaired myogenic differentiation capacity. Overall, this study highlights the role of proline in mitophagy and its potential in reversing senescence-associated mitochondrial dysfunction and aging hallmarks.
Collapse
Affiliation(s)
- Debanik Choudhury
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Na Rong
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | | | - Sydney Swedick
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Ronel Z Samuel
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Pihu Mehrotra
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - John Toftegaard
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Nika Rajabian
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Ramkumar Thiyagarajan
- Department of Medicine, Division of Geriatrics and Palliative Medicine, Buffalo, NY 14203, USA
| | - Ashis K Podder
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Yulun Wu
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Shahryar Shahini
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Kenneth L Seldeen
- Department of Medicine, Division of Geriatrics and Palliative Medicine, Buffalo, NY 14203, USA
| | - Bruce Troen
- Department of Medicine, Division of Geriatrics and Palliative Medicine, Buffalo, NY 14203, USA
| | - Pedro Lei
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260, USA; Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14260, USA; Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY 14263, USA; Center for Cell, Gene and Tissue Engineering (CGTE), University at Buffalo, Buffalo, NY 14260, USA.
| |
Collapse
|
7
|
Jara TC, Park K, Vahmani P, Van Eenennaam AL, Smith LR, Denicol AC. Stem cell-based strategies and challenges for production of cultivated meat. NATURE FOOD 2023; 4:841-853. [PMID: 37845547 DOI: 10.1038/s43016-023-00857-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/05/2023] [Indexed: 10/18/2023]
Abstract
Cultivated meat scale-up and industrial production will require multiple stable cell lines from different species to recreate the organoleptic and nutritional properties of meat from livestock. In this Review, we explore the potential of stem cells to create the major cellular components of cultivated meat. By using developments in the fields of tissue engineering and biomedicine, we explore the advantages and disadvantages of strategies involving primary adult and pluripotent stem cells for generating cell sources that can be grown at scale. These myogenic, adipogenic or extracellular matrix-producing adult stem cells as well as embryonic or inducible pluripotent stem cells are discussed for their proliferative and differentiation capacity, necessary for cultivated meat. We examine the challenges for industrial scale-up, including differentiation and culture protocols, as well as genetic modification options for stem cell immortalization and controlled differentiation. Finally, we discuss stem cell-related safety and regulatory challenges for bringing cultivated meat to the marketplace.
Collapse
Affiliation(s)
- T C Jara
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - K Park
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - P Vahmani
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - A L Van Eenennaam
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - L R Smith
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, USA.
| | - A C Denicol
- Department of Animal Science, University of California Davis, Davis, CA, USA
| |
Collapse
|
8
|
Chen M, Liu X, Liu Q, Shi D, Li H. 3D genomics and its applications in precision medicine. Cell Mol Biol Lett 2023; 28:19. [PMID: 36879202 PMCID: PMC9987123 DOI: 10.1186/s11658-023-00428-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/06/2023] [Indexed: 03/08/2023] Open
Abstract
Three-dimensional (3D) genomics is an emerging discipline that studies the three-dimensional structure of chromatin and the three-dimensional and functions of genomes. It mainly studies the three-dimensional conformation and functional regulation of intranuclear genomes, such as DNA replication, DNA recombination, genome folding, gene expression regulation, transcription factor regulation mechanism, and the maintenance of three-dimensional conformation of genomes. Self-chromosomal conformation capture (3C) technology has been developed, and 3D genomics and related fields have developed rapidly. In addition, chromatin interaction analysis techniques developed by 3C technologies, such as paired-end tag sequencing (ChIA-PET) and whole-genome chromosome conformation capture (Hi-C), enable scientists to further study the relationship between chromatin conformation and gene regulation in different species. Thus, the spatial conformation of plant, animal, and microbial genomes, transcriptional regulation mechanisms, interaction patterns of chromosomes, and the formation mechanism of spatiotemporal specificity of genomes are revealed. With the help of new experimental technologies, the identification of key genes and signal pathways related to life activities and diseases is sustaining the rapid development of life science, agriculture, and medicine. In this paper, the concept and development of 3D genomics and its application in agricultural science, life science, and medicine are introduced, which provides a theoretical basis for the study of biological life processes.
Collapse
Affiliation(s)
- Mengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Province, China
| | - Xingyu Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Province, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Province, China.,Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Province, China.
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Province, China.
| |
Collapse
|
9
|
Rajabian N, Ikhapoh I, Shahini S, Choudhury D, Thiyagarajan R, Shahini A, Kulczyk J, Breed K, Saha S, Mohamed MA, Udin SB, Stablewski A, Seldeen K, Troen BR, Personius K, Andreadis ST. Methionine adenosyltransferase2A inhibition restores metabolism to improve regenerative capacity and strength of aged skeletal muscle. Nat Commun 2023; 14:886. [PMID: 36797255 PMCID: PMC9935517 DOI: 10.1038/s41467-023-36483-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
We investigate the age-related metabolic changes that occur in aged and rejuvenated myoblasts using in vitro and in vivo models of aging. Metabolic and signaling experiments reveal that human senescent myoblasts and myoblasts from a mouse model of premature aging suffer from impaired glycolysis, insulin resistance, and generate Adenosine triphosphate by catabolizing methionine via a methionine adenosyl-transferase 2A-dependant mechanism, producing significant levels of ammonium that may further contribute to cellular senescence. Expression of the pluripotency factor NANOG downregulates methionine adenosyltransferase 2 A, decreases ammonium, restores insulin sensitivity, increases glucose uptake, and enhances muscle regeneration post-injury. Similarly, selective inhibition of methionine adenosyltransferase 2 A activates Akt2 signaling, repairs pyruvate kinase, restores glycolysis, and enhances regeneration, which leads to significant enhancement of muscle strength in a mouse model of premature aging. Collectively, our investigation indicates that inhibiting methionine metabolism may restore age-associated impairments with significant gain in muscle function.
Collapse
Affiliation(s)
- Nika Rajabian
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Izuagie Ikhapoh
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Shahryar Shahini
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Debanik Choudhury
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Ramkumar Thiyagarajan
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA
| | - Aref Shahini
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Joseph Kulczyk
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Kendall Breed
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Shilpashree Saha
- Department of Biomedical Engineering, University at Buffalo, Amherst, NY, USA
| | - Mohamed Alaa Mohamed
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Susan B Udin
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Aimee Stablewski
- Gene Targeting and Transgenic Shared Resource, Roswell Park Comprehensive Cancer Institute, Buffalo, NY, USA
| | - Kenneth Seldeen
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA
| | - Bruce R Troen
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA
| | - Kirkwood Personius
- Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA.
- Department of Biomedical Engineering, University at Buffalo, Amherst, NY, USA.
- Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA.
- Cell, Gene and Tissue Engineering (CGTE) Center, School of Engineering and Applied Sciences, University at Buffalo, Amherst, NY, USA.
| |
Collapse
|
10
|
Shintani-Ishida K, Tsurumi R, Ikegaya H. Decrease in the expression of muscle-specific miRNAs, miR-133a and miR-1, in myoblasts with replicative senescence. PLoS One 2023; 18:e0280527. [PMID: 36649291 PMCID: PMC9844915 DOI: 10.1371/journal.pone.0280527] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
Muscles that are injured or atrophied by aging undergo myogenic regeneration. Although myoblasts play a pivotal role in myogenic regeneration, their function is impaired with aging. MicroRNAs (miRNAs) are also involved in myogenic regeneration. MiRNA (miR)-1 and miR-133a are muscle-specific miRNAs that control the proliferation and differentiation of myoblasts. In this study, we determined whether miR-1 and miR-133a expression in myoblasts is altered with cellular senescence and involved in senescence-impaired myogenic differentiation. C2C12 murine skeletal myoblasts were converted to a replicative senescent state by culturing to a high passage number. Although miR-1 and miR-133a expression was largely induced during myogenic differentiation, expression was suppressed in cells at high passage numbers (passage 10 and/or passage 20). Although the senescent myoblasts exhibited a deterioration of myogenic differentiation, transfection of miR-1 or miR-133a into myoblasts ameliorated cell fusion. Treatment with the glutaminase 1 inhibitor, BPTES, removed senescent cells from C2C12 myoblasts with a high passage number, whereas myotube formation and miR-133a expression was increased. In addition, primary cultured myoblasts prepared from aged C57BL/6J male mice (20 months old) exhibited a decrease in miR-1 and miR-133a levels compared with younger mice (3 months old). The results suggest that replicative senescence suppresses muscle-specific miRNA expression in myoblasts, which contributes to the senescence-related dysfunction of myogenic regeneration.
Collapse
Affiliation(s)
- Kaori Shintani-Ishida
- Department of Forensic Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Riko Tsurumi
- Department of Forensic Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroshi Ikegaya
- Department of Forensic Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
11
|
Choudhury D, Rong N, Ikhapoh I, Rajabian N, Tseropoulos G, Wu Y, Mehrotra P, Thiyagarajan R, Shahini A, Seldeen KL, Troen B, Lei P, Andreadis ST. Inhibition of glutaminolysis restores mitochondrial function in senescent stem cells. Cell Rep 2022; 41:111744. [PMID: 36450260 PMCID: PMC9809151 DOI: 10.1016/j.celrep.2022.111744] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/07/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
Mitochondrial dysfunction, a hallmark of aging, has been associated with the onset of aging phenotypes and age-related diseases. Here, we report that impaired mitochondrial function is associated with increased glutamine catabolism in senescent human mesenchymal stem cells (MSCs) and myofibroblasts derived from patients suffering from Hutchinson-Gilford progeria syndrome. Increased glutaminase (GLS1) activity accompanied by loss of urea transporter SLC14A1 induces urea accumulation, mitochondrial dysfunction, and DNA damage. Conversely, blocking GLS1 activity restores mitochondrial function and leads to amelioration of aging hallmarks. Interestingly, GLS1 expression is regulated through the JNK pathway, as demonstrated by chemical and genetic inhibition. In agreement with our in vitro findings, tissues isolated from aged or progeria mice display increased urea accumulation and GLS1 activity, concomitant with declined mitochondrial function. Inhibition of glutaminolysis in progeria mice improves mitochondrial respiratory chain activity, suggesting that targeting glutaminolysis may be a promising strategy for restoring age-associated loss of mitochondrial function.
Collapse
Affiliation(s)
- Debanik Choudhury
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260
| | - Na Rong
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260
| | - Izuagie Ikhapoh
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260
| | - Nika Rajabian
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260
| | - Georgios Tseropoulos
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260
| | - Yulun Wu
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260
| | - Pihu Mehrotra
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260
| | - Ramkumar Thiyagarajan
- Department of Medicine, Division of Geriatrics and Palliative medicine, Buffalo, NY 14203
| | - Aref Shahini
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260
| | - Kenneth L. Seldeen
- Department of Medicine, Division of Geriatrics and Palliative medicine, Buffalo, NY 14203
| | - Bruce Troen
- Department of Medicine, Division of Geriatrics and Palliative medicine, Buffalo, NY 14203
| | - Pedro Lei
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260
| | - Stelios T. Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260,Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14260,Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY 14263,Center for Cell, Gene and Tissue Engineering (CGTE), University at Buffalo, Buffalo, NY 14260,Address for all Correspondence: Stelios T. Andreadis, Ph.D., SUNY Distinguished Professor, Bioengineering Laboratory, 908 Furnas Hall, Department of Chemical and Biological Engineering, Department of Biomedical Engineering, and Center of Excellence in Bioinformatics and Life Sciences, Center for Cell, Gene and Tissue Engineering (CGTE), University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA, Tel: (716) 645-1202, Fax: (716) 645-3822,
| |
Collapse
|
12
|
Sanchez MM, Bagdasarian IA, Darch W, Morgan JT. Organotypic cultures as aging associated disease models. Aging (Albany NY) 2022; 14:9338-9383. [PMID: 36435511 PMCID: PMC9740367 DOI: 10.18632/aging.204361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/21/2022] [Indexed: 11/24/2022]
Abstract
Aging remains a primary risk factor for a host of diseases, including leading causes of death. Aging and associated diseases are inherently multifactorial, with numerous contributing factors and phenotypes at the molecular, cellular, tissue, and organismal scales. Despite the complexity of aging phenomena, models currently used in aging research possess limitations. Frequently used in vivo models often have important physiological differences, age at different rates, or are genetically engineered to match late disease phenotypes rather than early causes. Conversely, routinely used in vitro models lack the complex tissue-scale and systemic cues that are disrupted in aging. To fill in gaps between in vivo and traditional in vitro models, researchers have increasingly been turning to organotypic models, which provide increased physiological relevance with the accessibility and control of in vitro context. While powerful tools, the development of these models is a field of its own, and many aging researchers may be unaware of recent progress in organotypic models, or hesitant to include these models in their own work. In this review, we describe recent progress in tissue engineering applied to organotypic models, highlighting examples explicitly linked to aging and associated disease, as well as examples of models that are relevant to aging. We specifically highlight progress made in skin, gut, and skeletal muscle, and describe how recently demonstrated models have been used for aging studies or similar phenotypes. Throughout, this review emphasizes the accessibility of these models and aims to provide a resource for researchers seeking to leverage these powerful tools.
Collapse
Affiliation(s)
- Martina M. Sanchez
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | | | - William Darch
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | - Joshua T. Morgan
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| |
Collapse
|
13
|
Shahini A, Rajabian N, Choudhury D, Shahini S, Vydiam K, Nguyen T, Kulczyk J, Santarelli T, Ikhapoh I, Zhang Y, Wang J, Liu S, Stablewski A, Thiyagarajan R, Seldeen K, Troen BR, Peirick J, Lei P, Andreadis ST. Ameliorating the hallmarks of cellular senescence in skeletal muscle myogenic progenitors in vitro and in vivo. SCIENCE ADVANCES 2021; 7:eabe5671. [PMID: 34516892 PMCID: PMC8442867 DOI: 10.1126/sciadv.abe5671] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Senescence of myogenic progenitors impedes skeletal muscle regeneration. Here, we show that overexpression of the transcription factor NANOG in senescent myoblasts can overcome the effects of cellular senescence and confer a youthful phenotype to senescent cells. NANOG ameliorated primary hallmarks of cellular senescence including genomic instability, loss of proteostasis, and mitochondrial dysfunction. The rejuvenating effects of NANOG included restoration of DNA damage response via up-regulation of DNA repair proteins, recovery of heterochromatin marks via up-regulation of histones, and reactivation of autophagy and mitochondrial energetics via up-regulation of AMP-activated protein kinase (AMPK). Expression of NANOG in the skeletal muscle of a mouse model of premature aging restored the number of myogenic progenitors and induced formation of eMyHC+ myofibers. This work demonstrates the feasibility of reversing the effects of cellular senescence in vitro and in vivo, with no need for reprogramming to the pluripotent state.
Collapse
Affiliation(s)
- Aref Shahini
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Nika Rajabian
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Debanik Choudhury
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Shahryar Shahini
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Kalyan Vydiam
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Thy Nguyen
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Joseph Kulczyk
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Tyler Santarelli
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Izuagie Ikhapoh
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Yali Zhang
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY 14260, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY 14260, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY 14260, USA
| | - Aimee Stablewski
- Gene Targeting and Transgenic Shared Resource, Roswell Park Comprehensive Cancer Center
| | - Ramkumar Thiyagarajan
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Kenneth Seldeen
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Bruce R. Troen
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- Research Service, VA Western New York Healthcare System, Buffalo, NY 14260, USA
| | - Jennifer Peirick
- Laboratory Animal Facilities, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Pedro Lei
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Stelios T. Andreadis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- Center for Cell Gene and Tissue Engineering (CGTE), University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
14
|
MYOC Promotes the Differentiation of C2C12 Cells by Regulation of the TGF-β Signaling Pathways via CAV1. BIOLOGY 2021; 10:biology10070686. [PMID: 34356541 PMCID: PMC8301362 DOI: 10.3390/biology10070686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary MYOC is a secreted glycoprotein and it expresses at high levels in skeletal muscle cells. However, the function of MYOC in muscle is still unclear. Accordingly, in this study, we examined that MYOC expression increased gradually during C2C12 differentiation and it could promote the differentiation of C2C12. Furthermore, we demonstrated that MYOC could bind to CAV1. We further confirmed that CAV1 could positively regulate C2C12 differentiation through the TGF-β pathway. At last, we determined the relationship among MYOC, CAV1 and TGF-β. We found that MYOC promoted the differentiation of C2C12 cells by regulation of the TGF-β signaling pathways via CAV1. The present study is the first to demonstrate the mechanism of action of MYOC in C2C12 cells. It provides a novel method of exploring the mechanism of muscle differentiation and represents a potential novel method for the treatment of muscle diseases. Abstract Myocilin (MYOC) is a glycoprotein encoded by a gene associated with glaucoma pathology. In addition to the eyes, it also expresses at high transcription levels in the heart and skeletal muscle. MYOC affects the formation of the murine gastrocnemius muscle and is associated with the differentiation of mouse osteoblasts, but its role in the differentiation of C2C12 cells has not yet been reported. Here, MYOC expression was found to increase gradually during the differentiation of C2C12 cells. Overexpression of MYOC resulted in enhanced differentiation of C2C12 cells while its inhibition caused reduced differentiation. Furthermore, immunoprecipitation indicated that MYOC binds to Caveolin-1 (CAV1), a protein that influences the TGF-β pathway. Laser confocal microscopy also revealed the common sites of action of the two during the differentiation of C2C12 cells. Additionally, CAV1 was upregulated significantly as C2C12 cells differentiated, with CAV1 able to influence the differentiation of the cells. Furthermore, the Western blotting analysis demonstrated that the expression of MYOC affected the TGF-β pathway. Finally, MYOC was overexpressed while CAV1 was inhibited. The results indicate that reduced CAV1 expression blocked the promotion of C2C12 cell differentiation by MYOC. In conclusion, the results demonstrated that MYOC regulates TGF-β by influencing CAV1 to promote the differentiation of C2C12 cells.
Collapse
|
15
|
Rajabian N, Shahini A, Asmani M, Vydiam K, Choudhury D, Nguyen T, Ikhapoh I, Zhao R, Lei P, Andreadis ST. Bioengineered Skeletal Muscle as a Model of Muscle Aging and Regeneration. Tissue Eng Part A 2020; 27:74-86. [PMID: 32364045 DOI: 10.1089/ten.tea.2020.0005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
With age, adult skeletal muscle (SkM) is known to decrease in muscle mass, strength, and functional capacity, a state known as sarcopenia. Here we developed an in vitro three-dimensional (3D) bioengineered senescent SkM tissue using primary human myoblasts. These tissues exhibited the characteristics of atrophied muscle, including expression of senescent genes, decreased number of satellite cells, reduced number and size of myofibers, and compromised metabolism and calcium flux. As a result, senescent SkM tissues showed impaired ability to generate force in response to electrical stimulation compared with young tissues. Furthermore, in contrast to young SkM tissues, senescent tissues failed to regenerate in response to injury, possibly as a result of persistent apoptosis and failure to initiate a proliferation program. Our findings suggest that 3D senescent SkM may provide a powerful model for studying aging and a platform for drug testing and discovery of therapeutic compounds to improve the function of sarcopenic muscle. Impact statement Skeletal muscle (SkM) plays important physiological roles and has significant regenerative capacity. However, aged SkM lose their functionality and regeneration ability. In this article, we present a senescent human bioengineering SkM tissue model that can be used to investigate senescence, metabolic or genetic diseases that inflict SkM, and to test various strategies including novel small molecules that restore muscle function and promote regeneration. One key limitation of two-dimensional cell culture system is the detachment of contractile myotubes from the surface over time, thereby limiting the evaluation of myogenic function. Here we use primary human myoblasts, which exhibit all major hallmarks of aging to mimic the organization and function of native muscle. Using this system, we were able to measure the contractile function, calcium transients, and regeneration capacity of SkM tissues. We also evaluated the response of senescent SkM tissues to injury and their ability to regenerate and recover, compared with "young" tissues. Our results suggest that three-dimensional constructs enable organization of contractile units including myosin and actin filaments, thereby providing a powerful platform for the quantitative assessment of muscle myotubes in response to injury, genetic or metabolic disorders, or pharmacological testing.
Collapse
Affiliation(s)
- Nika Rajabian
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Aref Shahini
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Mohammadnabi Asmani
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Kalyan Vydiam
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Debanik Choudhury
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Thy Nguyen
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Izuagie Ikhapoh
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Ruogang Zhao
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Pedro Lei
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, USA.,Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York, USA.,Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York, USA
| |
Collapse
|
16
|
Liu F, Shi J, Zhang Y, Lian A, Han X, Zuo K, Liu M, Zheng T, Zou F, Liu X, Jin M, Mu Y, Li G, Su G, Liu J. NANOG Attenuates Hair Follicle-Derived Mesenchymal Stem Cell Senescence by Upregulating PBX1 and Activating AKT Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4286213. [PMID: 31885790 PMCID: PMC6914946 DOI: 10.1155/2019/4286213] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/24/2019] [Accepted: 10/12/2019] [Indexed: 02/06/2023]
Abstract
Stem cells derived from elderly donors or harvested by repeated subculture exhibit a marked decrease in proliferative capacity and multipotency, which not only compromises their therapeutic potential but also raises safety concerns for regenerative medicine. NANOG-a well-known core transcription factor-plays an important role in maintaining the self-renewal and pluripotency of stem cells. Unfortunately, the mechanism that NANOG delays mesenchymal stem cell (MSC) senescence is not well-known until now. In our study, we showed that both ectopic NANOG expression and PBX1 overexpression (i) significantly upregulated phosphorylated AKT (p-AKT) and PARP1; (ii) promoted cell proliferation, cell cycle progression, and osteogenesis; (iii) reduced the number of senescence-associated-β-galactosidase- (SA-β-gal-) positive cells; and (iv) downregulated the expression of p16, p53, and p21. Western blotting and dual-luciferase activity assays showed that ectopic NANOG expression significantly upregulated PBX1 expression and increased PBX1 promoter activity. In contrast, PBX1 knockdown by RNA interference in hair follicle- (HF-) derived MSCs that were ectopically expressing NANOG resulted in the significant downregulation of p-AKT and the upregulation of p16 and p21. Moreover, blocking AKT with the PI3K/AKT inhibitor LY294002 or knocking down AKT via RNA interference significantly decreased PBX1 expression, while increasing p16 and p21 expression and the number of SA-β-gal-positive cells. In conclusion, our findings show that NANOG delays HF-MSC senescence by upregulating PBX1 and activating AKT signaling and that a feedback loop likely exists between PBX1 and AKT signaling.
Collapse
Affiliation(s)
- Feilin Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Jiahong Shi
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
- Department of Ultrasound, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yingyao Zhang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Aobo Lian
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Xing Han
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Kuiyang Zuo
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Mingsheng Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Tong Zheng
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Fei Zou
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Xiaomei Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Minghua Jin
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Ying Mu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, China
| | - Gang Li
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Guanfang Su
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Jinyu Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
17
|
Vajanthri KY, Sidu RK, Poddar S, Singh AK, Mahto SK. Combined substrate micropatterning and FFT analysis reveals myotube size control and alignment by contact guidance. Cytoskeleton (Hoboken) 2019; 76:269-285. [DOI: 10.1002/cm.21527] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/23/2019] [Accepted: 05/02/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Kiran Yellappa Vajanthri
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical EngineeringIndian Institute of Technology (Banaras Hindu University) Varanasi Uttar Pradesh India
| | - Rakesh Kumar Sidu
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical EngineeringIndian Institute of Technology (Banaras Hindu University) Varanasi Uttar Pradesh India
| | - Suruchi Poddar
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical EngineeringIndian Institute of Technology (Banaras Hindu University) Varanasi Uttar Pradesh India
| | - Ashish Kumar Singh
- School of Biochemical EngineeringIndian Institute of Technology (Banaras Hindu University) Varanasi Uttar Pradesh India
| | - Sanjeev Kumar Mahto
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical EngineeringIndian Institute of Technology (Banaras Hindu University) Varanasi Uttar Pradesh India
- Center for Advanced Biomaterials and Tissue EngineeringIndian Institute of Technology (Banaras Hindu University) Varanasi Uttar Pradesh India
| |
Collapse
|
18
|
Ge Y, Li S, Hu XY, Tong HL, Li SF, Yan YQ. TCEA3 promotes differentiation of C2C12 cells via an Annexin A1-mediated transforming growth factor-β signaling pathway. J Cell Physiol 2019; 234:10554-10565. [PMID: 30623413 DOI: 10.1002/jcp.27726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 10/18/2018] [Indexed: 12/13/2022]
Abstract
TCEA3 is a member of the transcription elongation factor family that not only promotes transcription but may also participate in other cytoplasmic processes. However, its mechanisms of action remain unclear. Our previous study indicated that TCEA3 may affect muscle differentiation. In this study, we investigated the expression and localization of TCEA3 in C2C12 cells and examined the role of TCEA3 in differentiation, its interaction with other cell proteins, and mechanisms of action. We found that the expression of TCEA3 increased gradually with an increase in the number of differentiation days and that it is mainly expressed in the cytoplasm of C2C12 cells, of which it promotes differentiation. Coimmunoprecipitation experiments and western blot analysis revealed that TCEA3 interacts with Annexin A1 (ANXA1), which is located in the cytoplasm and also promotes cell differentiation. Collectively, our results indicate that TCEA3 promotes cell differentiation by interacting with ANXA1 and affecting transforming growth factor-β signaling pathways.
Collapse
Affiliation(s)
- Yao Ge
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, China
| | - Shuang Li
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, China
| | - Xiao-Yang Hu
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, China
| | - Hui-Li Tong
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, China
| | - Shu-Feng Li
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, China
| | - Yun-Qin Yan
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, China
| |
Collapse
|
19
|
Turner DC, Kasper AM, Seaborne RA, Brown AD, Close GL, Murphy M, Stewart CE, Martin NRW, Sharples AP. Exercising Bioengineered Skeletal Muscle In Vitro: Biopsy to Bioreactor. Methods Mol Biol 2019; 1889:55-79. [PMID: 30367409 DOI: 10.1007/978-1-4939-8897-6_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The bioengineering of skeletal muscle tissue in-vitro has enabled researchers to more closely mimic the in-vivo skeletal muscle niche. The three-dimensional (3-D) structure of the tissue engineered systems employed to date enable the generation of highly aligned and differentiated myofibers within a representative biological matrix. The use of electrical stimulation to model concentric contraction, via innervation of the myofibers, and the use of mechanical loading to model passive lengthening or stretch has begun to provide a manipulable environment to investigate the cellular and molecular responses following exercise mimicking stimuli in-vitro. Currently available bioreactor systems allow either electrical stimulation or mechanical loading to be utilized at any given time. In the present manuscript, we describe in detail the methodological procedures to create 3-D bioengineered skeletal muscle using both cell lines and/or primary human muscle derived cells from a tissue biopsy, through to modeling exercising stimuli using a bioreactor that can provide both electrical stimulation and mechanical loading simultaneously within the same in-vitro system.
Collapse
Affiliation(s)
- Daniel C Turner
- Institute for Science and Technology in Medicine (ISTM), Keele University School of Medicine, Keele University, Staffordshire, UK
| | - Andreas M Kasper
- Exercise Metabolism and Adaptation Research Group (EMARG), Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, UK
| | - Robert A Seaborne
- Institute for Science and Technology in Medicine (ISTM), Keele University School of Medicine, Keele University, Staffordshire, UK
- Exercise Metabolism and Adaptation Research Group (EMARG), Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, UK
| | - Alexander D Brown
- Exercise Metabolism and Adaptation Research Group (EMARG), Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, UK
| | - Graeme L Close
- Exercise Metabolism and Adaptation Research Group (EMARG), Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, UK
| | - Mark Murphy
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Claire E Stewart
- Exercise Metabolism and Adaptation Research Group (EMARG), Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, UK
| | - Neil R W Martin
- Musculoskeletal Biology Research Group, School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, UK
| | - Adam P Sharples
- Institute for Science and Technology in Medicine (ISTM), Keele University School of Medicine, Keele University, Staffordshire, UK.
- Exercise Metabolism and Adaptation Research Group (EMARG), Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, UK.
| |
Collapse
|
20
|
Frudinger A, Marksteiner R, Pfeifer J, Margreiter E, Paede J, Thurner M. Skeletal muscle-derived cell implantation for the treatment of sphincter-related faecal incontinence. Stem Cell Res Ther 2018; 9:233. [PMID: 30213273 PMCID: PMC6136163 DOI: 10.1186/s13287-018-0978-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 07/31/2018] [Accepted: 08/09/2018] [Indexed: 12/21/2022] Open
Abstract
Background In an earlier pilot study with 10 women, we investigated a new approach for therapy of faecal incontinence (FI) due to obstetric trauma, involving ultrasound-guided injection of autologous skeletal muscle-derived cells (SMDC) into the external anal sphincter (EAS), and observed significant improvement. In the current study, we tested this therapeutic approach in an extended patient group: male and female patients suffering from FI due to EAS damage and/or atrophy. Furthermore, feasibility of lower cell counts and cryo-preserved SMDC was assessed. Methods In this single-centre, explorative, baseline-controlled clinical trial, each patient (n = 39; mean age 60.6 ± 13.81 years) received 79.4 ± 22.5 × 106 cryo-preserved autologous SMDC. Changes in FI parameters, Fecal Incontinence Quality of Life (FIQL), anorectal manometry and safety from baseline to 1, 6 and 12 months post implantation were evaluated. Results SMDC used in this trial contained a high percentage of myogenic-expressing (CD56+) and muscle stem cell marker-expressing (Pax7+, Myf5+) cells. Intervention was well tolerated without any serious adverse events. After 12 months, the number of weekly incontinence episodes (WIE, primary variable), FIQL and patient condition had improved significantly. In 80.6% of males and 78.4% of females, the WIE frequency decreased by at least 50%; Wexner scores and severity of FI complaints decreased significantly, independent of gender and cause of FI. Conclusions Injection of SMDCs into the EAS effectively improved sphincter-related FI due to EAS damage and/or atrophy in males and females. When confirmed in a larger, placebo-controlled trial, this minimal invasive procedure has the potential to become first-line therapy for FI. Trial registration EU Clinical Trials Register, EudraCT 2010-023826-19 (Date of registration: 08.11.2010).
Collapse
Affiliation(s)
- Andrea Frudinger
- Department of Obstetrics and Gynaecology, Division of Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036, Graz, Austria.
| | | | - Johann Pfeifer
- Department of General Surgery, Medical University of Graz, Graz, Austria
| | - Eva Margreiter
- Department of General Surgery, Medical University of Graz, Graz, Austria
| | - Johannes Paede
- B-K Ultrasound, Pascalkehre 13, 25451, Quickborn, Germany
| | - Marco Thurner
- Innovacell Biotechnologie AG, Science Park, Innsbruck, Austria
| |
Collapse
|
21
|
Shahini A, Vydiam K, Choudhury D, Rajabian N, Nguyen T, Lei P, Andreadis ST. Efficient and high yield isolation of myoblasts from skeletal muscle. Stem Cell Res 2018; 30:122-129. [PMID: 29879622 PMCID: PMC6090567 DOI: 10.1016/j.scr.2018.05.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 02/05/2023] Open
Abstract
Skeletal muscle (SkM) regeneration relies on the activity of myogenic progenitors that reside beneath the basal lamina of myofibers. Here, we describe a protocol for the isolation of the SkM progenitors from young and old mice by exploiting their outgrowth potential from SkM explants on matrigel coated dishes in the presence of high serum, chicken embryo extract and basic fibroblast growth factor. Compared to other protocols, this method yields a higher number of myoblasts (10-20 million) by enabling the outgrowth of these cells from tissue fragments. The majority of outgrowth cells (~90%) were positive for myogenic markers such as α7-integrin, MyoD, and Desmin. The myogenic cell population could be purified to 98% with one round of pre-plating on collagen coated dishes, where differential attachment of fibroblasts and other non-myogenic progenitors separates them from myoblasts. Moreover, the combination of high serum medium and matrigel coating provided a proliferation advantage to myogenic cells, which expanded rapidly (~24 h population doubling), while non-myogenic cells diminished over time, thereby eliminating the need for further purification steps such as FACS sorting. Finally, myogenic progenitors gave rise to multinucleated myotubes that exhibited sarcomeres and spontaneous beating in the culture dish.
Collapse
Affiliation(s)
- Aref Shahini
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
| | - Kalyan Vydiam
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
| | - Debanik Choudhury
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
| | - Nika Rajabian
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
| | - Thy Nguyen
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
| | - Pedro Lei
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
| | - Stelios T Andreadis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA; Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA; Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14263, USA.
| |
Collapse
|