1
|
Dinamarca MC, Colombo L, Tousiaki NE, Müller M, Pecho-Vrieseling E. Synaptic and functional alterations in the development of mutant huntingtin expressing hiPSC-derived neurons. Front Mol Biosci 2022; 9:916019. [PMID: 35928225 PMCID: PMC9343803 DOI: 10.3389/fmolb.2022.916019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Huntington's disease (HD) is a monogenic disease that results in a combination of motor, psychiatric, and cognitive symptoms. It is caused by a CAG trinucleotide repeat expansion in the exon 1 of the huntingtin (HTT) gene, which results in the production of a mutant HTT protein (mHTT) with an extended polyglutamine tract (PolyQ). Severe motor symptoms are a hallmark of HD and typically appear during middle age; however, mild cognitive and personality changes often occur already during early adolescence. Wild-type HTT is a regulator of synaptic functions and plays a role in axon guidance, neurotransmitter release, and synaptic vesicle trafficking. These functions are important for proper synapse assembly during neuronal network formation. In the present study, we assessed the effect of mHTT exon1 isoform on the synaptic and functional maturation of human induced pluripotent stem cell (hiPSC)-derived neurons. We used a relatively fast-maturing hiPSC line carrying a doxycycline-inducible pro-neuronal transcription factor, (iNGN2), and generated a double transgenic line by introducing only the exon 1 of HTT, which carries the mutant CAG (mHTTEx1). The characterization of our cell lines revealed that the presence of mHTTEx1 in hiPSC-derived neurons alters the synaptic protein appearance, decreases synaptic contacts, and causes a delay in the development of a mature neuronal activity pattern, recapitulating some of the developmental alterations observed in HD models, nonetheless in a shorted time window. Our data support the notion that HD has a neurodevelopmental component and is not solely a degenerative disease.
Collapse
Affiliation(s)
| | - Laura Colombo
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Matthias Müller
- Novartis Institute for Biomedical Research, Basel, Switzerland
| | | |
Collapse
|
2
|
Harberts J, Siegmund M, Schnelle M, Zhang T, Lei Y, Yu L, Zierold R, Blick RH. Robust neuronal differentiation of human iPSC-derived neural progenitor cells cultured on densely-spaced spiky silicon nanowire arrays. Sci Rep 2021; 11:18819. [PMID: 34552130 PMCID: PMC8458299 DOI: 10.1038/s41598-021-97820-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/29/2021] [Indexed: 11/12/2022] Open
Abstract
Nanostructured cell culture substrates featuring nanowire (NW) arrays have been applied to a variety of basic cell lines and rodent neurons to investigate cellular behavior or to stimulate cell responses. However, patient-derived human neurons-a prerequisite for studying e.g. neurodegenerative diseases efficiently-are rarely employed due to sensitive cell culture protocols and usually long culturing periods. Here, we present human patient induced pluripotent stem cell-derived neurons cultured on densely-spaced spiky silicon NW arrays (600 NWs/ 100 µm[Formula: see text] with NW lengths of 1 µm) which show mature electrophysiological characteristics after only 20 days of culturing. Exemplary neuronal growth and network formation on the NW arrays are demonstrated using scanning electron microscopy and immunofluorescence microscopy. The cells and neurites rest in a fakir-like settling state on the NWs only in contact with the very NW tips shown by cross-sectional imaging of the cell/NW interface using focused ion beam milling and confocal laser scanning microscopy. Furthermore, the NW arrays promote the cell culture by slightly increasing the share of differentiated neurons determined by the quantification of immunofluorescence microscopy images. The electrophysiological functionality of the neurons is confirmed with patch-clamp recordings showing the excellent capability to fire action potentials. We believe that the short culturing time to obtain functional human neurons generated from patient-derived neural progenitor cells and the robustness of this differentiation protocol to produce these neurons on densely-spaced spiky nanowire arrays open up new pathways for stem cell characterization and neurodegenerative disease studies.
Collapse
Affiliation(s)
- Jann Harberts
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.
| | - Malte Siegmund
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Matteo Schnelle
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Ting Zhang
- School of Electronics Science and Engineering, Nanjing University, Nanjing, 210093, China
| | - Yakui Lei
- School of Electronics Science and Engineering, Nanjing University, Nanjing, 210093, China
| | - Linwei Yu
- School of Electronics Science and Engineering, Nanjing University, Nanjing, 210093, China
| | - Robert Zierold
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.
| | - Robert H Blick
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Material Science and Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
3
|
Trombetta-Lima M, Sabogal-Guáqueta AM, Dolga AM. Mitochondrial dysfunction in neurodegenerative diseases: A focus on iPSC-derived neuronal models. Cell Calcium 2021; 94:102362. [PMID: 33540322 DOI: 10.1016/j.ceca.2021.102362] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/19/2022]
Abstract
Progressive neuronal loss is a hallmark of many neurodegenerative diseases, including Alzheimer's and Parkinson's disease. These pathologies exhibit clear signs of inflammation, mitochondrial dysfunction, calcium deregulation, and accumulation of aggregated or misfolded proteins. Over the last decades, a tremendous research effort has contributed to define some of the pathological mechanisms underlying neurodegenerative processes in these complex brain neurodegenerative disorders. To better understand molecular mechanisms responsible for neurodegenerative processes and find potential interventions and pharmacological treatments, it is important to have robust in vitro and pre-clinical animal models that can recapitulate both the early biological events undermining the maintenance of the nervous system and early pathological events. In this regard, it would be informative to determine how different inherited pathogenic mutations can compromise mitochondrial function, calcium signaling, and neuronal survival. Since post-mortem analyses cannot provide relevant information about the disease progression, it is crucial to develop model systems that enable the investigation of early molecular changes, which may be relevant as targets for novel therapeutic options. Thus, the use of human induced pluripotent stem cells (iPSCs) represents an exceptional complementary tool for the investigation of degenerative processes. In this review, we will focus on two neurodegenerative diseases, Alzheimer's and Parkinson's disease. We will provide examples of iPSC-derived neuronal models and how they have been used to study calcium and mitochondrial alterations during neurodegeneration.
Collapse
Affiliation(s)
- Marina Trombetta-Lima
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, the Netherlands
| | - Angélica María Sabogal-Guáqueta
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, the Netherlands
| | - Amalia M Dolga
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, the Netherlands.
| |
Collapse
|
4
|
Harberts J, Fendler C, Teuber J, Siegmund M, Silva A, Rieck N, Wolpert M, Zierold R, Blick RH. Toward Brain-on-a-Chip: Human Induced Pluripotent Stem Cell-Derived Guided Neuronal Networks in Tailor-Made 3D Nanoprinted Microscaffolds. ACS NANO 2020; 14:13091-13102. [PMID: 33058673 DOI: 10.1021/acsnano.0c04640] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Brain-on-a-chip (BoC) concepts should consider three-dimensional (3D) scaffolds to mimic the 3D nature of the human brain not accessible by conventional planar cell culturing. Furthermore, the essential key to adequately address drug development for human pathophysiological diseases of the nervous system, such as Parkinson's or Alzheimer's, is to employ human induced pluripotent stem cell (iPSC)-derived neurons instead of neurons from animal models. To address both issues, we present electrophysiologically mature human iPSC-derived neurons cultured in BoC applicable microscaffolds prepared by direct laser writing. 3D nanoprinted tailor-made elevated cavities interconnected by freestanding microchannels were used to create defined neuronal networks-as a proof of concept-with two-dimensional topology. The neuronal outgrowth in these nonplanar structures was investigated, among others, in terms of neurite length, size of continuous networks, and branching behavior using z-stacks prepared by confocal microscopy and cross-sectional scanning electron microscopy images prepared by focused ion beam milling. Functionality of the human iPSC-derived neurons was demonstrated with patch clamp measurements in both current- and voltage-clamp mode. Action potentials and spontaneous excitatory postsynaptic currents-fundamental prerequisites for proper network signaling-prove full integrity of these artificial neuronal networks. Considering the network formation occurring within only a few days and the versatile nature of direct laser writing to create even more complex scaffolds for 3D network topologies, we believe that our study offers additional approaches in human disease research to mimic the complex interconnectivity of the human brain in BoC studies.
Collapse
Affiliation(s)
- Jann Harberts
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Cornelius Fendler
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Jeremy Teuber
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Malte Siegmund
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Aaron Silva
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Niklas Rieck
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- School of Life Science Hamburg gGmbH, Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Merle Wolpert
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- School of Life Science Hamburg gGmbH, Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Robert Zierold
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Robert H Blick
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Material Science and Engineering, College of Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
5
|
Mateos-Aparicio P, Bello SA, Rodríguez-Moreno A. Challenges in Physiological Phenotyping of hiPSC-Derived Neurons: From 2D Cultures to 3D Brain Organoids. Front Cell Dev Biol 2020; 8:797. [PMID: 32984317 PMCID: PMC7479826 DOI: 10.3389/fcell.2020.00797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/28/2020] [Indexed: 12/31/2022] Open
Abstract
Neurons derived from human induced pluripotent stem cells (hiPSC-derived neurons) offer novel opportunities for the development of preclinical models of human neurodegenerative diseases (NDDs). Recent advances in the past few years have increased substantially the potential of these techniques and have uncovered new challenges that the field is facing. Here, we outline and discuss challenges related to the functional characterization of hiPSC-derived neurons and propose ways to overcome current difficulties. In particular, the enormous variability among studies in the electrical properties of hiPSC-derived neurons and broad differences in cell maturation are factors that impair reproducibility. Furthermore, we discuss how the use of 3D brain organoids are of help in resolving some difficulties posed by 2D cultures. Finally, we elaborate on recent and future advances that may help to overcome the discussed challenges and speed-up progress in the field.
Collapse
Affiliation(s)
| | | | - Antonio Rodríguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
6
|
Drakulic D, Djurovic S, Syed YA, Trattaro S, Caporale N, Falk A, Ofir R, Heine VM, Chawner SJRA, Rodriguez-Moreno A, van den Bree MBM, Testa G, Petrakis S, Harwood AJ. Copy number variants (CNVs): a powerful tool for iPSC-based modelling of ASD. Mol Autism 2020; 11:42. [PMID: 32487215 PMCID: PMC7268297 DOI: 10.1186/s13229-020-00343-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
Patients diagnosed with chromosome microdeletions or duplications, known as copy number variants (CNVs), present a unique opportunity to investigate the relationship between patient genotype and cell phenotype. CNVs have high genetic penetrance and give a good correlation between gene locus and patient clinical phenotype. This is especially effective for the study of patients with neurodevelopmental disorders (NDD), including those falling within the autism spectrum disorders (ASD). A key question is whether this correlation between genetics and clinical presentation at the level of the patient can be translated to the cell phenotypes arising from the neurodevelopment of patient induced pluripotent stem cells (iPSCs).Here, we examine how iPSCs derived from ASD patients with an associated CNV inform our understanding of the genetic and biological mechanisms underlying the aetiology of ASD. We consider selection of genetically characterised patient iPSCs; use of appropriate control lines; aspects of human neurocellular biology that can capture in vitro the patient clinical phenotype; and current limitations of patient iPSC-based studies. Finally, we consider how future research may be enhanced to maximise the utility of CNV patients for research of pathological mechanisms or therapeutic targets.
Collapse
Affiliation(s)
- Danijela Drakulic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, 152, Serbia
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, 0424, Oslo, Norway
- NORMENT, Department of Clinical Science, University of Bergen, 5007, Bergen, Norway
| | - Yasir Ahmed Syed
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Sebastiano Trattaro
- Laboratory of Stem Cell Epigenetics, IEO, European Institute of Oncology, IRCCS, 20146, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, 20122, Milan, Italy
| | - Nicolò Caporale
- Laboratory of Stem Cell Epigenetics, IEO, European Institute of Oncology, IRCCS, 20146, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, 20122, Milan, Italy
| | - Anna Falk
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Rivka Ofir
- BGU-iPSC Core Facility, The Regenerative Medicine & Stem Cell (RMSC) Research Center, Ben Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Vivi M Heine
- Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Child and Youth Psychiatry, Emma Children's Hospital, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081, Amsterdam, The Netherlands
| | - Samuel J R A Chawner
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Antonio Rodriguez-Moreno
- Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Ctra. de Utrera, Km 1, 41013, Seville, Spain
| | - Marianne B M van den Bree
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Giuseppe Testa
- Laboratory of Stem Cell Epigenetics, IEO, European Institute of Oncology, IRCCS, 20146, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, 20122, Milan, Italy
- Human Technopole, Via Cristina Belgioioso 171, 20157, Milan, Italy
| | - Spyros Petrakis
- Institute of Applied Biosciences/Centre for Research and Technology Hellas, 57001, Thessaloniki, Greece.
| | - Adrian J Harwood
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
7
|
Harberts J, Kusch M, O’Sullivan J, Zierold R, Blick RH. A Temperature-Controlled Patch Clamp Platform Demonstrated on Jurkat T Lymphocytes and Human Induced Pluripotent Stem Cell-Derived Neurons. Bioengineering (Basel) 2020; 7:E46. [PMID: 32455868 PMCID: PMC7355542 DOI: 10.3390/bioengineering7020046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 01/07/2023] Open
Abstract
Though patch clamping at room temperature is a widely disseminated standard procedure in the electrophysiological community, it does not represent the biological system in mammals at around 37 °C. In order to better mimic the natural environment in electrophysiological studies, we present a custom-built, temperature-controlled patch clamp platform for upright microscopes, which can easily be adapted to any upright patch clamp setup independently, whether commercially available or home built. Our setup can both cool and heat the platform having only small temperature variations of less than 0.5 °C. We demonstrate our setup with patch clamp measurements at 36 °C on Jurkat T lymphocytes and human induced pluripotent stem cell-derived neurons. Passive membrane parameters and characteristic electrophysiological properties, such as the gating properties of voltage-gated ion channels and the firing of action potentials, are compared to measurements at room temperature. We observe that many processes that are not explicitly considered as temperature dependent show changes with temperature. Thus, we believe in the need of a temperature control in patch clamp measurements if improved physiological conditions are required. Furthermore, we advise researchers to only compare electrophysiological results directly that have been measured at similar temperatures since small variations in cellular properties might be caused by temperature alterations.
Collapse
Affiliation(s)
- Jann Harberts
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany; (J.H.); (M.K.); (R.H.B.)
| | - Max Kusch
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany; (J.H.); (M.K.); (R.H.B.)
| | - John O’Sullivan
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany; (J.H.); (M.K.); (R.H.B.)
- Department of Physics and Astronomy, University College London, London WC1E 6BT , UK
| | - Robert Zierold
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany; (J.H.); (M.K.); (R.H.B.)
| | - Robert H. Blick
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany; (J.H.); (M.K.); (R.H.B.)
- Material Science and Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
8
|
Filice F, Schwaller B, Michel TM, Grünblatt E. Profiling parvalbumin interneurons using iPSC: challenges and perspectives for Autism Spectrum Disorder (ASD). Mol Autism 2020; 11:10. [PMID: 32000856 PMCID: PMC6990584 DOI: 10.1186/s13229-020-0314-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
Autism spectrum disorders (ASD) are persistent conditions resulting from disrupted/altered neurodevelopment. ASD multifactorial etiology-and its numerous comorbid conditions-heightens the difficulty in identifying its underlying causes, thus obstructing the development of effective therapies. Increasing evidence from both animal and human studies suggests an altered functioning of the parvalbumin (PV)-expressing inhibitory interneurons as a common and possibly unifying pathway for some forms of ASD. PV-expressing interneurons (short: PVALB neurons) are critically implicated in the regulation of cortical networks' activity. Their particular connectivity patterns, i.e., their preferential targeting of perisomatic regions and axon initial segments of pyramidal cells, as well as their reciprocal connections, enable PVALB neurons to exert a fine-tuned control of, e.g., spike timing, resulting in the generation and modulation of rhythms in the gamma range, which are important for sensory perception and attention.New methodologies such as induced pluripotent stem cells (iPSC) and genome-editing techniques (CRISPR/Cas9) have proven to be valuable tools to get mechanistic insight in neurodevelopmental and/or neurodegenerative and neuropsychiatric diseases. Such technological advances have enabled the generation of PVALB neurons from iPSC. Tagging of these neurons would allow following their fate during the development, from precursor cells to differentiated (and functional) PVALB neurons. Also, it would enable a better understanding of PVALB neuron function, using either iPSC from healthy donors or ASD patients with known mutations in ASD risk genes. In this concept paper, the strategies hopefully leading to a better understanding of PVALB neuron function(s) are briefly discussed. We envision that such an iPSC-based approach combined with emerging (genetic) technologies may offer the opportunity to investigate in detail the role of PVALB neurons and PV during "neurodevelopment ex vivo."
Collapse
Affiliation(s)
- Federica Filice
- Department of Neuroscience & Movements Science, Section of Medicine, University of Fribourg, Fribourg, Switzerland.
| | - Beat Schwaller
- Department of Neuroscience & Movements Science, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Tanja M Michel
- Department of Psychiatry, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Psychiatry in the Region of Southern Denmark, Department of Psychiatry, Odense University Hospital Southern Denmark, Odense, Denmark
- Research Unit for Psychiatry Odense, Institute for Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Neumuensterallee 3, 8032, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
| |
Collapse
|
9
|
Harberts J, Haferkamp U, Haugg S, Fendler C, Lam D, Zierold R, Pless O, Blick RH. Interfacing human induced pluripotent stem cell-derived neurons with designed nanowire arrays as a future platform for medical applications. Biomater Sci 2020; 8:2434-2446. [DOI: 10.1039/d0bm00182a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanostructured substrates such as nanowire arrays form a powerful tool for building next-generation medical devices.
Collapse
Affiliation(s)
- Jann Harberts
- Center for Hybrid Nanostructures
- Universität Hamburg
- 22761 Hamburg
- Germany
| | | | - Stefanie Haugg
- Center for Hybrid Nanostructures
- Universität Hamburg
- 22761 Hamburg
- Germany
| | - Cornelius Fendler
- Center for Hybrid Nanostructures
- Universität Hamburg
- 22761 Hamburg
- Germany
| | - Dennis Lam
- Fraunhofer IME ScreeningPort
- 22525 Hamburg
- Germany
| | - Robert Zierold
- Center for Hybrid Nanostructures
- Universität Hamburg
- 22761 Hamburg
- Germany
| | - Ole Pless
- Fraunhofer IME ScreeningPort
- 22525 Hamburg
- Germany
| | - Robert H. Blick
- Center for Hybrid Nanostructures
- Universität Hamburg
- 22761 Hamburg
- Germany
- Material Science and Engineering
| |
Collapse
|
10
|
Xie Y, Ng NN, Safrina OS, Ramos CM, Ess KC, Schwartz PH, Smith MA, O'Dowd DK. Comparisons of dual isogenic human iPSC pairs identify functional alterations directly caused by an epilepsy associated SCN1A mutation. Neurobiol Dis 2019; 134:104627. [PMID: 31786370 DOI: 10.1016/j.nbd.2019.104627] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/05/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023] Open
Abstract
Over 1250 mutations in SCN1A, the Nav1.1 voltage-gated sodium channel gene, are associated with seizure disorders including GEFS+. To evaluate how a specific mutation, independent of genetic background, causes seizure activity we generated two pairs of isogenic human iPSC lines by CRISPR/Cas9 gene editing. One pair is a control line from an unaffected sibling, and the mutated control carrying the GEFS+ K1270T SCN1A mutation. The second pair is a GEFS+ patient line with the K1270T mutation, and the corrected patient line. By comparing the electrophysiological properties in inhibitory and excitatory iPSC-derived neurons from these pairs, we found the K1270T mutation causes cell type-specific alterations in sodium current density and evoked firing, resulting in hyperactive neural networks. We also identified differences associated with genetic background and interaction between the mutation and genetic background. Comparisons within and between dual pairs of isogenic iPSC-derived neuronal cultures provide a novel platform for evaluating cellular mechanisms underlying a disease phenotype and for developing patient-specific anti-seizure therapies.
Collapse
Affiliation(s)
- Yunyao Xie
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States of America
| | - Nathan N Ng
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States of America
| | - Olga S Safrina
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States of America
| | - Carmen M Ramos
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States of America
| | - Kevin C Ess
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Philip H Schwartz
- Children's Hospital of Orange County Research Institute, Orange, CA, United States of America
| | - Martin A Smith
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, United States of America
| | - Diane K O'Dowd
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States of America.
| |
Collapse
|
11
|
Abstract
Many brain disorders exhibit altered synapse formation in development or synapse loss with age. To understand the complexities of human synapse development and degeneration, scientists now engineer neurons and brain organoids from human-induced pluripotent stem cells (hIPSC). These hIPSC-derived brain models develop both excitatory and inhibitory synapses and functional synaptic activity. In this review, we address the ability of hIPSC-derived brain models to recapitulate synapse development and insights gained into the molecular mechanisms underlying synaptic alterations in neuronal disorders. We also discuss the potential for more accurate human brain models to advance our understanding of synapse development, degeneration, and therapeutic responses.
Collapse
Affiliation(s)
- Emily S Wilson
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834
| | - Karen Newell-Litwa
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834
| |
Collapse
|
12
|
Bowles KR, Tcw J, Qian L, Jadow BM, Goate AM. Reduced variability of neural progenitor cells and improved purity of neuronal cultures using magnetic activated cell sorting. PLoS One 2019; 14:e0213374. [PMID: 30917153 PMCID: PMC6436701 DOI: 10.1371/journal.pone.0213374] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/19/2019] [Indexed: 02/07/2023] Open
Abstract
Genetic and epigenetic variability between iPSC-derived neural progenitor cells (NPCs) combined with differences in investigator technique and selection protocols contributes to variability between NPC lines, which subsequently impacts the quality of differentiated neuronal cultures. We therefore sought to develop an efficient method to reduce this variability in order to improve the purity of NPC and neuronal cultures. Here, we describe a magnetic activated cell sorting (MACS) method for enriching NPC cultures for CD271-/CD133+ cells at both early (<2–3) and late (>10) passage. MACS results in a similar sorting efficiency to fluorescence activated cell sorting (FACS), while achieving an increased yield of live cells and reduced cellular stress. Furthermore, neurons derived from MACS NPCs showed greater homogeneity between cell lines compared to those derived from unsorted NPCs. We conclude that MACS is a cheap technique for incorporation into standard NPC differentiation and maintenance protocols in order to improve culture homogeneity and consistency.
Collapse
Affiliation(s)
- Kathryn R Bowles
- Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America.,Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Julia Tcw
- Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America.,Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Lu Qian
- Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America.,Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Benjamin M Jadow
- Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America.,Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Alison M Goate
- Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America.,Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America.,Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| |
Collapse
|
13
|
Ylä-Outinen L, Tanskanen JMA, Kapucu FE, Hyysalo A, Hyttinen JAK, Narkilahti S. Advances in Human Stem Cell-Derived Neuronal Cell Culturing and Analysis. ADVANCES IN NEUROBIOLOGY 2019; 22:299-329. [DOI: 10.1007/978-3-030-11135-9_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Aebersold MJ, Thompson-Steckel G, Joutang A, Schneider M, Burchert C, Forró C, Weydert S, Han H, Vörös J. Simple and Inexpensive Paper-Based Astrocyte Co-culture to Improve Survival of Low-Density Neuronal Networks. Front Neurosci 2018. [PMID: 29535595 PMCID: PMC5835045 DOI: 10.3389/fnins.2018.00094] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bottom-up neuroscience aims to engineer well-defined networks of neurons to investigate the functions of the brain. By reducing the complexity of the brain to achievable target questions, such in vitro bioassays better control experimental variables and can serve as a versatile tool for fundamental and pharmacological research. Astrocytes are a cell type critical to neuronal function, and the addition of astrocytes to neuron cultures can improve the quality of in vitro assays. Here, we present cellulose as an astrocyte culture substrate. Astrocytes cultured on the cellulose fiber matrix thrived and formed a dense 3D network. We devised a novel co-culture platform by suspending the easy-to-handle astrocytic paper cultures above neuronal networks of low densities typically needed for bottom-up neuroscience. There was significant improvement in neuronal viability after 5 days in vitro at densities ranging from 50,000 cells/cm2 down to isolated cells at 1,000 cells/cm2. Cultures exhibited spontaneous spiking even at the very low densities, with a significantly greater spike frequency per cell compared to control mono-cultures. Applying the co-culture platform to an engineered network of neurons on a patterned substrate resulted in significantly improved viability and almost doubled the density of live cells. Lastly, the shape of the cellulose substrate can easily be customized to a wide range of culture vessels, making the platform versatile for different applications that will further enable research in bottom-up neuroscience and drug development.
Collapse
Affiliation(s)
- Mathias J Aebersold
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich, Switzerland
| | - Greta Thompson-Steckel
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich, Switzerland
| | - Adriane Joutang
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich, Switzerland
| | - Moritz Schneider
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich, Switzerland
| | - Conrad Burchert
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich, Switzerland
| | - Csaba Forró
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich, Switzerland
| | - Serge Weydert
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich, Switzerland
| | - Hana Han
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich, Switzerland
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich, Switzerland
| |
Collapse
|