1
|
Feiner N, Yang W, Bunikis I, While GM, Uller T. Adaptive introgression reveals the genetic basis of a sexually selected syndrome in wall lizards. SCIENCE ADVANCES 2024; 10:eadk9315. [PMID: 38569035 PMCID: PMC10990284 DOI: 10.1126/sciadv.adk9315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
The joint expression of particular colors, morphologies, and behaviors is a common feature of adaptation, but the genetic basis for such "phenotypic syndromes" remains poorly understood. Here, we identified a complex genetic architecture associated with a sexually selected syndrome in common wall lizards, by capitalizing on the adaptive introgression of coloration and morphology into a distantly related lineage. Consistent with the hypothesis that the evolution of phenotypic syndromes in vertebrates is facilitated by developmental linkage through neural crest cells, most of the genes associated with the syndrome are involved in neural crest cell regulation. A major locus was a ~400-kb region, characterized by standing structural genetic variation and previously implied in the evolutionary innovation of coloration and beak size in birds. We conclude that features of the developmental and genetic architecture contribute to maintaining trait integration, facilitating the extensive and rapid introgressive spread of suites of sexually selected characters.
Collapse
Affiliation(s)
| | - Weizhao Yang
- Department of Biology, Lund University, Lund, Sweden
| | - Ignas Bunikis
- Uppsala Genome Center, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Geoffrey M. While
- School of Natural Sciences, University of Tasmania, Sandy Bay, Tasmania, Australia
| | - Tobias Uller
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
2
|
Charney RM, Prasad MS, Juan-Sing C, Patel LJ, Hernandez JC, Wu J, García-Castro MI. Mowat-Wilson syndrome factor ZEB2 controls early formation of human neural crest through BMP signaling modulation. Stem Cell Reports 2023; 18:2254-2267. [PMID: 37890485 PMCID: PMC10679662 DOI: 10.1016/j.stemcr.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Mowat-Wilson syndrome is caused by mutations in ZEB2, with patients exhibiting characteristics indicative of neural crest (NC) defects. We examined the contribution of ZEB2 to human NC formation using a model based on human embryonic stem cells. We found ZEB2 to be one of the earliest factors expressed in prospective human NC, and knockdown revealed a role for ZEB2 in establishing the NC state while repressing pre-placodal and non-neural ectoderm genes. Examination of ZEB2 N-terminal mutant NC cells demonstrates its requirement for the repression of enhancers in the NC gene network and proper NC cell terminal differentiation into osteoblasts and peripheral neurons and neuroglia. This ZEB2 mutation causes early misexpression of BMP signaling ligands, which can be rescued by the attenuation of BMP. Our findings suggest that ZEB2 regulates early human NC specification by modulating proper BMP signaling and further elaborate the molecular defects underlying Mowat-Wilson syndrome.
Collapse
Affiliation(s)
- Rebekah M Charney
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, USA.
| | - Maneeshi S Prasad
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, USA
| | - Czarina Juan-Sing
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, USA
| | - Lipsa J Patel
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, USA
| | - Jacqueline C Hernandez
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, USA
| | - Jie Wu
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Martín I García-Castro
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
3
|
Thawani A, Maunsell HR, Zhang H, Ankamreddy H, Groves AK. The Foxi3 transcription factor is necessary for the fate restriction of placodal lineages at the neural plate border. Development 2023; 150:dev202047. [PMID: 37756587 PMCID: PMC10617604 DOI: 10.1242/dev.202047] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
The Foxi3 transcription factor, expressed in the neural plate border at the end of gastrulation, is necessary for the formation of posterior placodes and is thus important for ectodermal patterning. We have created two knock-in mouse lines expressing GFP or a tamoxifen-inducible Cre recombinase to show that Foxi3 is one of the earliest genes to label the border between the neural tube and epidermis, and that Foxi3-expressing neural plate border progenitors contribute primarily to cranial placodes and epidermis from the onset of expression, but not to the neural crest or neural tube lineages. By simultaneously knocking out Foxi3 in neural plate border cells and following their fates, we show that neural plate border cells lacking Foxi3 contribute to all four lineages of the ectoderm - placodes, epidermis, crest and neural tube. We contrast Foxi3 with another neural plate border transcription factor, Zic5, the progenitors of which initially contribute broadly to all germ layers until gastrulation and gradually become restricted to the neural crest lineage and dorsal neural tube cells. Our study demonstrates that Foxi3 uniquely acts early at the neural plate border to restrict progenitors to a placodal and epidermal fate.
Collapse
Affiliation(s)
- Ankita Thawani
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Helen R. Maunsell
- Program in Development, Disease Models and Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hongyuan Zhang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Andrew K. Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Development, Disease Models and Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
4
|
Keuls RA, Oh YS, Patel I, Parchem RJ. Post-transcriptional regulation in cranial neural crest cells expands developmental potential. Proc Natl Acad Sci U S A 2023; 120:e2212578120. [PMID: 36724256 PMCID: PMC9963983 DOI: 10.1073/pnas.2212578120] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/20/2022] [Indexed: 02/03/2023] Open
Abstract
Developmental potential is progressively restricted after germ layer specification during gastrulation. However, cranial neural crest cells challenge this paradigm, as they develop from anterior ectoderm, yet give rise to both ectodermal derivatives of the peripheral nervous system and ectomesenchymal bone and cartilage. How cranial neural crest cells differentiate into multiple lineages is poorly understood. Here, we demonstrate that cranial neural crest cells possess a transient state of increased chromatin accessibility. We profile the spatiotemporal emergence of premigratory neural crest and find evidence of lineage bias toward either a neuronal or ectomesenchymal fate, with each expressing distinct factors from earlier stages of development. We identify the miR-302 miRNA family to be highly expressed in cranial neural crest cells and genetic deletion leads to precocious specification of the ectomesenchymal lineage. Loss of mir-302 results in reduced chromatin accessibility in the neuronal progenitor lineage of neural crest and a reduction in peripheral neuron differentiation. Mechanistically, we find that mir-302 directly targets Sox9 to slow the timing of ectomesenchymal neural crest specification and represses multiple genes involved in chromatin condensation to promote accessibility required for neuronal differentiation. Our findings reveal a posttranscriptional mechanism governed by miRNAs to expand developmental potential of cranial neural crest.
Collapse
Affiliation(s)
- Rachel A. Keuls
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX77030
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX77030
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX77030
- Department of Neuroscience, Baylor College of Medicine, Houston, TX77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - Young Sun Oh
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX77030
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX77030
- Department of Neuroscience, Baylor College of Medicine, Houston, TX77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - Ivanshi Patel
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX77030
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX77030
- Department of Neuroscience, Baylor College of Medicine, Houston, TX77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX77030
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX77030
| | - Ronald J. Parchem
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX77030
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX77030
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX77030
- Department of Neuroscience, Baylor College of Medicine, Houston, TX77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX77030
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX77030
| |
Collapse
|
5
|
Patel I, Parchem RJ. Regulation of Oct4 in stem cells and neural crest cells. Birth Defects Res 2022; 114:983-1002. [PMID: 35365980 PMCID: PMC9525453 DOI: 10.1002/bdr2.2007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/25/2022] [Accepted: 03/14/2022] [Indexed: 12/30/2022]
Abstract
During embryonic development, cells gradually restrict their developmental potential as they exit pluripotency and differentiate into various cell types. The POU transcription factor Oct4 (encoded by Pou5f1) lies at the center of the pluripotency machinery that regulates stemness and differentiation in stem cells, and is required for reprogramming of somatic cells into induced pluripotent stem cells (iPSCs). Several studies have revealed that Oct4 and other stemness genes are also expressed in multipotent cell populations such as neural crest cells (NCCs), and are required to expand the NCC developmental potential. Transcriptional regulation of Oct4 has been studied extensively in stem cells during early embryonic development and reprogramming, but not in NCCs. Here, we review how Oct4 is regulated in pluripotent stem cells, and address some of the gaps in knowledge about regulation of the pluripotency network in NCCs.
Collapse
Affiliation(s)
- Ivanshi Patel
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTexasUSA,Stem Cells and Regenerative Medicine Center, Center for Cell and Gene TherapyBaylor College of MedicineHoustonTexasUSA,Dan L Duncan Comprehensive Cancer CenterBaylor College of MedicineHoustonTexasUSA
| | - Ronald J. Parchem
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTexasUSA,Stem Cells and Regenerative Medicine Center, Center for Cell and Gene TherapyBaylor College of MedicineHoustonTexasUSA,Dan L Duncan Comprehensive Cancer CenterBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
6
|
Abstract
Neural crest cells (NCCs) are a dynamic, multipotent, vertebrate-specific population of embryonic stem cells. These ectodermally-derived cells contribute to diverse tissue types in developing embryos including craniofacial bone and cartilage, the peripheral and enteric nervous systems and pigment cells, among a host of other cell types. Due to their contribution to a significant number of adult tissue types, the mechanisms that drive their formation, migration and differentiation are highly studied. NCCs have a unique ability to transition from tightly adherent epithelial cells to mesenchymal and migratory cells by altering their polarity, expression of cell-cell adhesion molecules and gaining invasive abilities. In this Review, we discuss classical and emerging factors driving NCC epithelial-to-mesenchymal transition and migration, highlighting the role of signaling and transcription factors, as well as novel modifying factors including chromatin remodelers, small RNAs and post-translational regulators, which control the availability and longevity of major NCC players.
Collapse
Affiliation(s)
| | - Crystal D. Rogers
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA
| |
Collapse
|