1
|
Bandara S, Dapat C, Oishi W, Tsinda EK, Saito M, Sano D. Quantitative evaluation of water, sanitation, and hygiene measures on COVID-19 pandemic peak reduction in the Philippines. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175055. [PMID: 39067604 DOI: 10.1016/j.scitotenv.2024.175055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
New cases of coronavirus disease 2019 (COVID-19) are continually being recorded worldwide, despite global efforts in implementing non-pharmaceutical interventions and establishing vaccination programs. This trend highlights the need to identify the factors associated with the continued spread of COVID-19. The World Health Organization recommends hand washing as a cost-effective intervention for preventing COVID-19, indicating that water, sanitation, and hygiene (WaSH) are central to the prevention of the disease. However, low- and middle-income countries lack adequate access to WaSH, which increases the risk of contracting COVID-19. The aim of this study was to identify the WaSH factors associated with the incidence of COVID-19 and quantitatively estimate the effects of improvements in WaSH on reducing the incidence of COVID-19 during the peak of the pandemic. Lasso regression and extreme gradient boosting models were used to identify the WaSH factors. Distinct estimation models were developed to assess the effect of WaSH in rural regions under two assumptions: increasing regional basic sanitation coverage up to 25 % and 50%. The reduction in the incidence of COVID-19 during the peak of the pandemic was calculated for each rural region. The results of the analyses indicated that basic sanitation is important for reducing the incidence of COVID-19 in rural regions compared to urban regions in the Philippines. In addition, the results suggested that increasing basic sanitation coverage could reduce the incidence of COVID-19 by 2-66 %, alleviating the burden on healthcare facilities. This study indicates that improved basic sanitation infrastructure are needed in rural Philippines. The results of this study emphasise the significance of WaSH as an indicator of COVID-19 incidence, highlighting the need for its enhancement to enable the achievement of sustainable disease prevention and pandemic preparedness goals.
Collapse
Affiliation(s)
- Sewwandi Bandara
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Clyde Dapat
- World Health Organization (WHO) Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Wakana Oishi
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Emmanuel Kagning Tsinda
- Center for Biomedical Innovation, Sinskey Lab, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Mayuko Saito
- Department of Virology, Graduate School of Medicine, Tohoku University, 2-1 Seriyo-Machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Daisuke Sano
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
2
|
Nagy A, Czitrovszky A, Lehoczki A, Farkas Á, Füri P, Osán J, Groma V, Kugler S, Micsinai A, Horváth A, Ungvári Z, Müller V. Creating respiratory pathogen-free environments in healthcare and nursing-care settings: a comprehensive review. GeroScience 2024:10.1007/s11357-024-01379-7. [PMID: 39392557 DOI: 10.1007/s11357-024-01379-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024] Open
Abstract
Hospital- and nursing-care-acquired infections are a growing problem worldwide, especially during epidemics, posing a significant threat to older adults in geriatric settings. Intense research during the COVID-19 pandemic highlighted the prominent role of aerosol transmission of pathogens. Aerosol particles can easily adsorb different airborne pathogens, carrying them for a long time. Understanding the dynamics of airborne pathogen transmission is essential for controlling the spread of many well-known pathogens, like the influenza virus, and emerging ones like SARS-CoV-2. Particles smaller than 50 to 100 µm remain airborne and significantly contribute to pathogen transmission. This review explores the journey of pathogen-carrying particles from formation in the airways, through airborne travel, to deposition in the lungs. The physicochemical properties of emitted particles depend on health status and emission modes, such as breathing, speaking, singing, coughing, sneezing, playing wind instruments, and medical interventions. After emission, sedimentation and evaporation primarily determine particle fate. Lung deposition of inhaled aerosol particles can be studied through in vivo, in vitro, or in silico methods. We discuss several numerical lung models, such as the Human Respiratory Tract Model, the LUng Dose Evaluation Program software (LUDEP), the Stochastic Lung Model, and the Computational Fluid Dynamics (CFD) techniques, and real-time or post-evaluation methods for detecting and characterizing these particles. Various air purification methods, particularly filtration, are reviewed for their effectiveness in healthcare settings. In the discussion, we analyze how this knowledge can help create environments with reduced PM2.5 and pathogen levels, enhancing safety in healthcare and nursing-care settings. This is particularly crucial for protecting older adults, who are more vulnerable to infections due to weaker immune systems and the higher prevalence of chronic conditions. By implementing effective airborne pathogen control measures, we can significantly improve health outcomes in geriatric settings.
Collapse
Affiliation(s)
- Attila Nagy
- Department of Applied and Nonlinear Optics, HUN-REN Wigner Research Centre for Physics, Konkoly-Thege Miklós St. 29-33, 1121, Budapest, Hungary.
| | - Aladár Czitrovszky
- Department of Applied and Nonlinear Optics, HUN-REN Wigner Research Centre for Physics, Konkoly-Thege Miklós St. 29-33, 1121, Budapest, Hungary
| | - Andrea Lehoczki
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Árpád Farkas
- Environmental Physics Department, HUN-REN Centre for Energy Research, Budapest, Hungary
| | - Péter Füri
- Environmental Physics Department, HUN-REN Centre for Energy Research, Budapest, Hungary
| | - János Osán
- Environmental Physics Department, HUN-REN Centre for Energy Research, Budapest, Hungary
| | - Veronika Groma
- Environmental Physics Department, HUN-REN Centre for Energy Research, Budapest, Hungary
| | - Szilvia Kugler
- Environmental Physics Department, HUN-REN Centre for Energy Research, Budapest, Hungary
| | | | - Alpár Horváth
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Zoltán Ungvári
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Veronika Müller
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
3
|
Duque-Daza CA, Murillo-Rincón J, Espinosa-Moreno AS, Alberini F, Alexiadis A, Garzón-Alvarado DA, Thomas AM, Simmons MJH. Analysis of the airflow features and ventilation efficiency of an Ultra-Clean-Air operating theatre by qDNS simulations and experimental validation. BUILDING AND ENVIRONMENT 2024; 256:None. [PMID: 38983757 PMCID: PMC11229090 DOI: 10.1016/j.buildenv.2024.111444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/24/2024] [Accepted: 03/22/2024] [Indexed: 07/11/2024]
Abstract
Ultra-Clean-Air (UCA) operating theatres aim to minimise surgical instrument contamination and wound infection through high flow rates of ultra-clean air, reducing the presence of Microbe Carrying Particles (MCPs). This study investigates the airflow patterns and ventilation characteristics of a UCA operating theatre (OT) under standard ventilation system operating conditions, considering both empty and partially occupied scenarios. Utilising a precise computational model, quasi-Direct Numerical Simulations (qDNS) were conducted to delineate flow velocity profiles, energy spectra, distributions of turbulent kinetic energy, energy dissipation rate, local Kolmogorov scales, and pressure-based coherent structures. These results were also complemented by a tracer gas decay analysis following ASHRAE standard guidelines. Simulations showed that contrary to the intended laminar regime, the OT's geometry inherently fosters a predominantly turbulent airflow, sustained until evacuation through the exhaust vents, and facilitating recirculation zones irrespective of occupancy level. Notably, the occupied scenario demonstrated superior ventilation efficiency, a phenomenon attributed to enhanced kinetic energy induced by the additional obstructions. The findings underscore the critical role of UCA-OT design in mitigating MCP dissemination, highlighting the potential to augment the design to optimise airflow across a broader theatre spectrum, thereby diminishing recirculation zones and consequently reducing the propensity for Surgical Site Infections (SSIs). The study advocates for design refinements to harness the turbulent dynamics beneficially, steering towards a safer surgical environment.
Collapse
Affiliation(s)
- Carlos A Duque-Daza
- GNUM Research Group, Department of Mechanical and Mechatronics Engineering, Universidad Nacional de Colombia, Carrera 30 45-03, Bogota D.C., 111321, Colombia
- School of Chemical Engineering, University of Birmingham, Edgbaston Campus, Birmingham, B15 2TT, United Kingdom
| | - Jairo Murillo-Rincón
- GNUM Research Group, Department of Mechanical and Mechatronics Engineering, Universidad Nacional de Colombia, Carrera 30 45-03, Bogota D.C., 111321, Colombia
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale del Risorgimento 4, Bologna, 40131, Italy
| | - Andrés S Espinosa-Moreno
- GNUM Research Group, Department of Mechanical and Mechatronics Engineering, Universidad Nacional de Colombia, Carrera 30 45-03, Bogota D.C., 111321, Colombia
| | - Federico Alberini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale del Risorgimento 4, Bologna, 40131, Italy
- School of Chemical Engineering, University of Birmingham, Edgbaston Campus, Birmingham, B15 2TT, United Kingdom
| | - Alessio Alexiadis
- School of Chemical Engineering, University of Birmingham, Edgbaston Campus, Birmingham, B15 2TT, United Kingdom
| | - Diego A Garzón-Alvarado
- GNUM Research Group, Department of Mechanical and Mechatronics Engineering, Universidad Nacional de Colombia, Carrera 30 45-03, Bogota D.C., 111321, Colombia
| | - Andrew M Thomas
- Royal Orthopaedic Hospital, Bristol Road South, Birmingham, B31 2AP, United Kingdom
| | - Mark J H Simmons
- School of Chemical Engineering, University of Birmingham, Edgbaston Campus, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
4
|
Atamer Balkan B, Chang Y, Sparnaaij M, Wouda B, Boschma D, Liu Y, Yuan Y, Daamen W, de Jong MCM, Teberg C, Schachtschneider K, Sikkema RS, van Veen L, Duives D, ten Bosch QA. The multi-dimensional challenges of controlling respiratory virus transmission in indoor spaces: Insights from the linkage of a microscopic pedestrian simulation and SARS-CoV-2 transmission model. PLoS Comput Biol 2024; 20:e1011956. [PMID: 38547311 PMCID: PMC11003685 DOI: 10.1371/journal.pcbi.1011956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/09/2024] [Accepted: 02/29/2024] [Indexed: 04/11/2024] Open
Abstract
SARS-CoV-2 transmission in indoor spaces, where most infection events occur, depends on the types and duration of human interactions, among others. Understanding how these human behaviours interface with virus characteristics to drive pathogen transmission and dictate the outcomes of non-pharmaceutical interventions is important for the informed and safe use of indoor spaces. To better understand these complex interactions, we developed the Pedestrian Dynamics-Virus Spread model (PeDViS), an individual-based model that combines pedestrian behaviour models with virus spread models incorporating direct and indirect transmission routes. We explored the relationships between virus exposure and the duration, distance, respiratory behaviour, and environment in which interactions between infected and uninfected individuals took place and compared this to benchmark 'at risk' interactions (1.5 metres for 15 minutes). When considering aerosol transmission, individuals adhering to distancing measures may be at risk due to the buildup of airborne virus in the environment when infected individuals spend prolonged time indoors. In our restaurant case, guests seated at tables near infected individuals were at limited risk of infection but could, particularly in poorly ventilated places, experience risks that surpass that of benchmark interactions. Combining interventions that target different transmission routes can aid in accumulating impact, for instance by combining ventilation with face masks. The impact of such combined interventions depends on the relative importance of transmission routes, which is hard to disentangle and highly context dependent. This uncertainty should be considered when assessing transmission risks upon different types of human interactions in indoor spaces. We illustrated the multi-dimensionality of indoor SARS-CoV-2 transmission that emerges from the interplay of human behaviour and the spread of respiratory viruses. A modelling strategy that incorporates this in risk assessments can help inform policy makers and citizens on the safe use of indoor spaces with varying inter-human interactions.
Collapse
Affiliation(s)
- Büsra Atamer Balkan
- Quantitative Veterinary Epidemiology, Wageningen University & Research, Wageningen, The Netherlands
| | - You Chang
- Quantitative Veterinary Epidemiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Martijn Sparnaaij
- Department of Transport & Planning, Delft University of Technology, Delft, The Netherlands
| | - Berend Wouda
- Gamelab, Delft University of Technology, Delft, The Netherlands
| | - Doris Boschma
- Gamelab, Delft University of Technology, Delft, The Netherlands
| | - Yangfan Liu
- Quantitative Veterinary Epidemiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Yufei Yuan
- Department of Transport & Planning, Delft University of Technology, Delft, The Netherlands
| | - Winnie Daamen
- Department of Transport & Planning, Delft University of Technology, Delft, The Netherlands
| | - Mart C. M. de Jong
- Quantitative Veterinary Epidemiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Colin Teberg
- Steady State Scientific Computing, Chicago, Illinois, United States of America
| | | | | | - Linda van Veen
- Gamelab, Delft University of Technology, Delft, The Netherlands
| | - Dorine Duives
- Department of Transport & Planning, Delft University of Technology, Delft, The Netherlands
| | - Quirine A. ten Bosch
- Quantitative Veterinary Epidemiology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
5
|
Liu H, Liu Z, He J, Hu C, Rong R, Han H, Wang L, Wang D. Reducing airborne transmission of SARS-CoV-2 by an upper-room ultraviolet germicidal irradiation system in a hospital isolation environment. ENVIRONMENTAL RESEARCH 2023; 237:116952. [PMID: 37619635 DOI: 10.1016/j.envres.2023.116952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Upper-room ultraviolet germicidal irradiation (UVGI) technology can potentially inhibit the transmission of airborne disease pathogens. There is a lack of quantitative evaluation of the performance of the upper-room UVGI for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) airborne transmission under the combined effects of ventilation and UV irradiation. Therefore, this study aimed to explore the performance of the upper-room UVGI system for reducing SARS-CoV-2 virus transmission in a hospital isolation environment. Computational fluid dynamics and virological data on SARS-CoV-2 were integrated to obtain virus aerosol exposure in the hospital isolation environment containing buffer rooms, wards and bathrooms. The UV inactivation model was applied to investigate the effects of ventilation rate, irradiation flux and irradiation height on the upper-room UVGI performance. The results showed that increasing ventilation rate from 8 to 16 air changes per hour (ACH) without UVGI obtained 54.32% and 45.63% virus reduction in the wards and bathrooms, respectively. However, the upper-room UVGI could achieve 90.43% and 99.09% virus disinfection, respectively, with the ventilation rate of 8 ACH and the irradiation flux of 10 μW cm-2. Higher percentage of virus could be inactivated by the upper-room UVGI at a lower ventilation rate; the rate of improvement of UVGI elimination effect slowed down with the increase of irradiation flux. Increase irradiation height at lower ventilation rate was more effective in improving the UVGI performance than the increase in irradiation flux at smaller irradiation height. These results could provide theoretical support for the practical application of UVGI in hospital isolation environments.
Collapse
Affiliation(s)
- Haiyang Liu
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, PR China
| | - Zhijian Liu
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, PR China.
| | - Junzhou He
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, PR China
| | - Chenxing Hu
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Rui Rong
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, PR China
| | - Hao Han
- State Key Laboratory of NBC Protection for Civilian, Beijing, 100191, China.
| | - Lingyun Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 100191, China
| | - Desheng Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 100191, China
| |
Collapse
|
6
|
Park S, Mistrick R, Sitzabee W, Rim D. Effect of ventilation strategy on performance of upper-room ultraviolet germicidal irradiation (UVGI) system in a learning environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165454. [PMID: 37467991 DOI: 10.1016/j.scitotenv.2023.165454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 06/22/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
Upper-room ultraviolet germicidal irradiation (UVGI) system is recently in the limelight as a potentially effective method to mitigate the risk of airborne virus infection in indoor environments. However, few studies quantitatively evaluated the relationship between ventilation effectiveness and virus disinfection performance of a UVGI system. The objective of this study is to investigate the effects of ventilation strategy on detailed airflow distributions and UVGI disinfection performance in an occupied classroom. Three-dimensional computational fluid dynamics (CFD) simulations were performed for representative cooling, heating, and ventilation scenarios. The results show that when the ventilation rate is 1.1 h-1 (the minimum ventilation rate based on ASHRAE 62.1), enhancing indoor air circulation with the mixing fan notably improves the UVGI disinfection performance, especially for cooling with displacement ventilation and all-air-heating conditions. However, increasing indoor air mixing yields negligible effect on the disinfection performance for forced-convection cooling condition. The results also reveal that regardless of indoor thermal condition, disinfection effectiveness of a UVGI system increases as ventilation effectiveness is close to unity. Moreover, when the room average air speed is >0.1 m/s, upper-room UVGI system could yield about 90% disinfection effect for the aerosol size of 1 μm-10 μm. The findings of this study imply that upper-room UVGI systems in indoor environments (i.e., classrooms, hospitals) should be designed considering ventilation strategy and occupancy conditions, especially for occupied buildings with insufficient air mixing throughout the space.
Collapse
Affiliation(s)
- Seongjun Park
- Department of Architectural Engineering, Pennsylvania State University, United States of America.
| | - Richard Mistrick
- Architectural Engineering Department, Pennsylvania State University, 104 Engineering Unit A, University Park, PA 16802, United States of America.
| | - William Sitzabee
- Pennsylvania State University, 201 Physical Plant Building, University Park, PA 16802, United States of America.
| | - Donghyun Rim
- Architectural Engineering Department, Pennsylvania State University, 222 Engineering Unit A, University Park, PA 16802, United States of America.
| |
Collapse
|
7
|
An overview of SARS-CoV-2 transmission and engineering strategies to mitigate risk. JOURNAL OF BUILDING ENGINEERING 2023; 73:106737. [PMCID: PMC10165872 DOI: 10.1016/j.jobe.2023.106737] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 10/31/2024]
Abstract
The spread of the COVID-19 pandemic has profoundly affected every aspect of our lives. To date, experts have acknowledged that airborne transmission is a key piece of the SARS-CoV-2 puzzle. Nevertheless, the exact mechanism of airborne transmission of SARS-CoV-2 remains unclear. Recent works have shown the spreading of SARS-CoV-2 through numerical modeling and experimental works, but the successful applications of engineering approaches in reducing the spread of SARS-CoV-2 are lacking. In this review, the environmental factors that influence the transmission risk of SARS-CoV-2, such as ventilation flow rates, humidity, and temperature, are discussed. Besides, additional macro and micro weather factors, regional and global transmission, and the variants of the spread of SARS-CoV-2 are also reviewed. Engineering approaches that practically reduce the risks of SARS-CoV-2 transmissions are reported. Given the complex human behavior, environmental properties, and dynamic nature of the SARS-CoV-2 virus, it is reasonable to summarize that SARS-CoV-2 may not be eradicated even with the timely implementation of interventions. Therefore, more research exploring the potential cost-effective ways to control the transmission rate of SARS-CoV-2 may be a worthwhile pursuit to moderate the current crisis.
Collapse
|
8
|
Siebler L, Rathje T, Calandri M, Stergiaropoulos K, Donker T, Richter B, Spahn C, Nusseck M. A coupled experimental and statistical approach for an assessment of SARS-CoV-2 infection risk at indoor event locations. BMC Public Health 2023; 23:1394. [PMID: 37474924 PMCID: PMC10357618 DOI: 10.1186/s12889-023-16154-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Indoor event locations are particularly affected by the SARS-CoV-2 pandemic. At large venues, only incomplete risk assessments exist, whereby no suitable measures can be derived. In this study, a physical and data-driven statistical model for a comprehensive infection risk assessment has been developed. At venues displacement ventilation concepts are often implemented. Here simplified theoretical assumptions fail for the prediction of relevant airflows for airborne transmission processes. Thus, with locally resolving trace gas measurements infection risks are computed more detailed. Coupled with epidemiological data such as incidences, vaccination rates, test sensitivities, and audience characteristics such as masks and age distribution, predictions of new infections (mean), situational R-values (mean), and individual risks on- and off-seat can be achieved for the first time. Using the Stuttgart State Opera as an example, the functioning of the model and its plausibility are tested and a sensitivity analysis is performed with regard to masks and tests. Besides a reference scenario on 2022-11-29, a maximum safety scenario with an obligation of FFP2 masks and rapid antigen tests as well as a minimum safety scenario without masks and tests are investigated. For these scenarios the new infections (mean) are 10.6, 0.25 and 13.0, respectively. The situational R-values (mean) - number of new infections caused by a single infectious person in a certain situation - are 2.75, 0.32 and 3.39, respectively. Besides these results a clustered consideration divided by age, masks and whether infections occur on-seat or off-seat are presented. In conclusion this provides an instrument that can enable policymakers and operators to take appropriate measures to control pandemics despite ongoing mass gathering events.
Collapse
Affiliation(s)
- Lukas Siebler
- Institute for Building Energetics, Thermotechnology and Energy Storage (IGTE), University of Stuttgart, Pfaffenwaldring 35, Stuttgart, 70569, Baden-Württemberg, Germany.
| | - Torben Rathje
- Institute for Building Energetics, Thermotechnology and Energy Storage (IGTE), University of Stuttgart, Pfaffenwaldring 35, Stuttgart, 70569, Baden-Württemberg, Germany
| | - Maurizio Calandri
- Institute for Building Energetics, Thermotechnology and Energy Storage (IGTE), University of Stuttgart, Pfaffenwaldring 35, Stuttgart, 70569, Baden-Württemberg, Germany
| | - Konstantinos Stergiaropoulos
- Institute for Building Energetics, Thermotechnology and Energy Storage (IGTE), University of Stuttgart, Pfaffenwaldring 35, Stuttgart, 70569, Baden-Württemberg, Germany
| | - Tjibbe Donker
- Institute for Infection Prevention and Hospital Epidemiology, University Medical Center Freiburg, Breisacher Straße 115 B, Freiburg, 79106, Baden-Württemberg, Germany
| | - Bernhard Richter
- Freiburg Institute for Musicians' Medicine, University of Music Freiburg, University Medical Center Freiburg, Medical Faculty of the Albert-Ludwigs-University Freiburg, Freiburg Center for Research and Teaching in Music, Germany, Elsässer Straße 2m, Freiburg, 79110, Baden-Württemberg, Germany
| | - Claudia Spahn
- Freiburg Institute for Musicians' Medicine, University of Music Freiburg, University Medical Center Freiburg, Medical Faculty of the Albert-Ludwigs-University Freiburg, Freiburg Center for Research and Teaching in Music, Germany, Elsässer Straße 2m, Freiburg, 79110, Baden-Württemberg, Germany
| | - Manfred Nusseck
- Freiburg Institute for Musicians' Medicine, University of Music Freiburg, University Medical Center Freiburg, Medical Faculty of the Albert-Ludwigs-University Freiburg, Freiburg Center for Research and Teaching in Music, Germany, Elsässer Straße 2m, Freiburg, 79110, Baden-Württemberg, Germany
| |
Collapse
|
9
|
Filipič G, Pirker L, Krajnc AP, Ješelnik M, Remškar M. Enhanced Filtration Efficiency of Natural Materials with the Addition of Electrospun Poly(vinylidene fluoride-co-hexafluoropropylene) Fibres. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2314. [PMID: 36984195 PMCID: PMC10054789 DOI: 10.3390/ma16062314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Pollutants and infectious diseases can spread through air with airborne droplets and aerosols. A respiratory mask can decrease the amount of pollutants we inhale and it can protect us from airborne diseases. With the onset of the COVID-19 pandemic, masks became an everyday item used by a lot of people around the world. As most of them are for a single use, the amount of non-recyclable waste increased dramatically. The plastic from which the masks are made pollutes the environment with various chemicals and microplastic. Here, we investigated the time- and size-dependent filtration efficiency (FE) of aerosols in the range of 25.9 to 685.4 nm of five different natural materials whose FE was enhanced using electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF) fibres. A scanning electron microscope (SEM) was used to determine the morphology and structure of the natural materials as well as the thickness of the PVDF fibres, while the phase of the electrospun fibres was determined by Raman spectroscopy. A thin layer of the electrospun PVDF fibres with the same grammage was sandwiched between two sheets of natural materials, and their FE increased up to 80%. By varying the grammature of the electrospun polymer, we tuned the FE of cotton from 82.6 to 99.9%. Thus, through the optimization of the grammage of the electrospun polymer, the amount of plastic used in the process can be minimized, while achieving sufficiently high FE.
Collapse
Affiliation(s)
- Gregor Filipič
- Jozef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Luka Pirker
- Jozef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
- Department of Electrochemical Materials, J. Heyrovsky Institute of Physical Chemistry, Dolejškova 3, 182 23 Prague, Czech Republic
| | - Anja Pogačnik Krajnc
- Jozef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska Ulica 19, 1000 Ljubljana, Slovenia
| | - Marjan Ješelnik
- smartMelamine d.o.o., Tomšičeva Cesta 9, 1330 Kočevje, Slovenia
| | - Maja Remškar
- Jozef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
10
|
Norvihoho LK, Yin J, Zhou ZF, Han J, Chen B, Fan LH, Lichtfouse E. Mechanisms controlling the transport and evaporation of human exhaled respiratory droplets containing the severe acute respiratory syndrome coronavirus: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2023; 21:1701-1727. [PMID: 36846189 PMCID: PMC9944801 DOI: 10.1007/s10311-023-01579-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/13/2023] [Indexed: 05/24/2023]
Abstract
Transmission of the coronavirus disease 2019 is still ongoing despite mass vaccination, lockdowns, and other drastic measures to control the pandemic. This is due partly to our lack of understanding on the multiphase flow mechanics that control droplet transport and viral transmission dynamics. Various models of droplet evaporation have been reported, yet there is still limited knowledge about the influence of physicochemical parameters on the transport of respiratory droplets carrying the severe acute respiratory syndrome coronavirus 2. Here we review the effects of initial droplet size, environmental conditions, virus mutation, and non-volatile components on droplet evaporation and dispersion, and on virus stability. We present experimental and computational methods to analyze droplet transport, and factors controlling transport and evaporation. Methods include thermal manikins, flow techniques, aerosol-generating techniques, nucleic acid-based assays, antibody-based assays, polymerase chain reaction, loop-mediated isothermal amplification, field-effect transistor-based assay, and discrete and gas-phase modeling. Controlling factors include environmental conditions, turbulence, ventilation, ambient temperature, relative humidity, droplet size distribution, non-volatile components, evaporation and mutation. Current results show that medium-sized droplets, e.g., 50 µm, are sensitive to relative humidity. Medium-sized droplets experience delayed evaporation at high relative humidity, and increase airborne lifetime and travel distance. By contrast, at low relative humidity, medium-sized droplets quickly shrink to droplet nuclei and follow the cough jet. Virus inactivation within a few hours generally occurs at temperatures above 40 °C, and the presence of viral particles in aerosols impedes droplet evaporation.
Collapse
Affiliation(s)
- Leslie Kojo Norvihoho
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi People’s Republic of China
| | - Jing Yin
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi People’s Republic of China
| | - Zhi-Fu Zhou
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi People’s Republic of China
| | - Jie Han
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi People’s Republic of China
| | - Bin Chen
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi People’s Republic of China
| | - Li-Hong Fan
- The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi People’s Republic of China
| | - Eric Lichtfouse
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi People’s Republic of China
| |
Collapse
|
11
|
The Skagit County choir COVID-19 outbreak - have we got it wrong? Public Health 2023; 214:85-90. [PMID: 36525760 PMCID: PMC9659549 DOI: 10.1016/j.puhe.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Over time, papers or reports may come to be taken for granted as evidence for some phenomenon. Researchers cite them without critically re-examining findings in the light of subsequent work. This can give rise to misleading or erroneous results and conclusions. We explore whether this has occurred in the widely reported outbreak of SARS-CoV-2 at a rehearsal of the Skagit Valley Chorale in March 2020, where it was assumed, and subsequently asserted uncritically, that the outbreak was due to a single infected person. STUDY DESIGN Review of original report and subsequent modelling and interpretations. METHODS We reviewed and analysed original outbreak data in relation to published data on incubation period, subsequent modelling drawing on the data, and interpretations of transmission characteristics of this incident. RESULTS We show it is vanishingly unlikely that this was a single point source outbreak as has been widely claimed and on which modelling has been based. CONCLUSION An unexamined assumption has led to erroneous policy conclusions about the risks of singing, and indoor spaces more generally, and the benefits of increased levels of ventilation. Although never publicly identified, one individual bears the moral burden of knowing what health outcomes have been attributed to their actions. We call for these claims to be re-examined and for greater ethical responsibility in the assumption of a point source in outbreak investigations.
Collapse
|
12
|
He Y, Chen J, Shi W, Shi J, Ma T, Wang X. Can nonvolatile tastants be smelled during food oral processing? Chem Senses 2023; 48:bjad028. [PMID: 37590987 PMCID: PMC10516591 DOI: 10.1093/chemse/bjad028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 08/19/2023] Open
Abstract
While accumulating evidence implied the involvement of retro-nasal sensation in the consumption of nonvolatile taste compounds, it is still unclear whether it was caused by the taste compounds themselves, and if so, how can they migrate from the oral to nasal cavity. At first, we proposed aerosol particles as an alternative oral-nasal mass transfer mechanism. The high-speed camera approved that aerosol particles could be generated by the typical oral and pharynx actions during food oral processing; while the narrow-band imaging of nasal cleft and mass spectrometry of nostril-exhaled air approved the migration of aerosol within the oral-nasal route. Then, the "smelling" of taste compounds within the aerosol particles was testified. The four-alternative forced choices (4AFC) approved that the potential volatile residues or contaminants within the headspace air of pure taste solution cannot arouse significant smell, while the taste compounds embedded in the in vitro prepared aerosol particles can be "smelled" via the ortho route. The "smell" of sucrose is very different from its taste and the "smell" of quinine, implying its actual olfaction. The sweetness intensity of sucrose solution was also reduced when the volunteers' noses were clipped, indicating the involvement of retro-nasal sensation during its drinking. At last, the efficiency of aerosol as a mechanism of oral-nasal mass transfer was demonstrated to be comparable with the volatile molecules under the experimental condition, giving it the potential to be a substantial and unique source of retro-nasal sensation during food oral processing.
Collapse
Affiliation(s)
- Yue He
- Laboratory of Food Oral Processing, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jianshe Chen
- Laboratory of Food Oral Processing, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Weiyao Shi
- EPC Natural Products Co., Ltd., Beijing, China
| | - Jingang Shi
- EPC Natural Products Co., Ltd., Beijing, China
| | - Tian Ma
- Laboratory of Food Oral Processing, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Xinmiao Wang
- Laboratory of Food Oral Processing, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
13
|
Cho J, Kim J, Kim Y. Development of a non-contact mobile screening center for infectious diseases: Effects of ventilation improvement on aerosol transmission prevention. SUSTAINABLE CITIES AND SOCIETY 2022; 87:104232. [PMID: 36212168 PMCID: PMC9526512 DOI: 10.1016/j.scs.2022.104232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Under the global landscape of the prolonged COVID-19 pandemic, the number of individuals who need to be tested for COVID-19 through screening centers is increasing. However, the risk of viral infection during the screening process remains significant. To limit cross-infection in screening centers, a non-contact mobile screening center (NCMSC) that uses negative pressure booths to improve ventilation and enable safe, fast, and convenient COVID-19 testing is developed. This study investigates aerosol transmission and ventilation control for eliminating cross-infection and for rapid virus removal from the indoor space using numerical analysis and experimental measurements. Computational fluid dynamics (CFD) simulations were used to evaluate the ventilation rate, pressure differential between spaces, and virus particle removal efficiency in NCMSC. We also characterized the airflow dynamics of NCMSC that is currently being piloted using particle image velocimetry (PIV). Moreover, design optimization was performed based on the air change rates and the ratio of supply air (SA) to exhaust air (EA). Three ventilation strategies for preventing viral transmission were tested. Based on the results of this study, standards for the installation and operation of a screening center for infectious diseases are proposed.
Collapse
Key Words
- ACH, Air Changes per Hour
- AR, Anteroom
- Aerosol transmission
- CFD, Computational Fluid Dynamics
- Computational fluid dynamics (CFD)
- EA, Eexhaust Air
- ER, Examination Room
- HCW, Health Care Worker
- Infectious disease
- NCMSC, Non-Contact Mobile Screening Center
- OA, Outdoor Air
- PIV, Particle Image Velocimetry
- Particle image velocimetry (PIV)
- SA, Supply Air
- SCB, Specimen Collection Booth
- Screening center
- TA, Transfer Air
- Ventilation strategy
Collapse
Affiliation(s)
- Jinkyun Cho
- Department of Building and Plant Engineering, Hanbat National University, Daejeon 34158, Republic of Korea
| | - Jinho Kim
- Department of Fire Protection, Safety and Facilities, Suwon Science College, Hwasung 18516, Republic of Korea
| | - Yundeok Kim
- Department of Architectural Engineering, Woosong University, Daejeon 34606, Republic of Korea
| |
Collapse
|
14
|
Siebler L, Calandri M, Rathje T, Stergiaropoulos K. Experimental Methods of Investigating Airborne Indoor Virus-Transmissions Adapted to Several Ventilation Measures. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11300. [PMID: 36141572 PMCID: PMC9517214 DOI: 10.3390/ijerph191811300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 06/16/2023]
Abstract
This study introduces a principle that unifies two experimental methods for evaluating airborne indoor virus-transmissions adapted to several ventilation measures. A first-time comparison of mechanical/natural ventilation and air purification with regard to infection risks is enabled. Effortful computational fluid dynamics demand detailed boundary conditions for accurate calculations of indoor airflows, which are often unknown. Hence, a suitable, simple and generalized experimental set up for identifying the spatial and temporal infection risk for different ventilation measures is more qualified even with unknown boundary conditions. A trace gas method is suitable for mechanical and natural ventilation with outdoor air exchange. For an accurate assessment of air purifiers based on filtration, a surrogate particle method is appropriate. The release of a controlled rate of either trace gas or particles simulates an infectious person releasing virus material. Surrounding substance concentration measurements identify the neighborhood exposure. One key aspect of the study is to prove that the requirement of concordant results of both methods is fulfilled. This is the only way to ensure that the comparison of different ventilation measures described above is reliable. Two examples (a two-person office and a classroom) show how practical both methods are and how the principle is applicable for different types and sizes of rooms.
Collapse
|
15
|
Singh R. Public Health Issue of Indoor Dilution Ventilation for Disease Prevention Versus PM2.5 in Intake Air in Auditoriums of Premier Engineering Institutes in India. Cureus 2022; 14:e25258. [PMID: 35755566 PMCID: PMC9217168 DOI: 10.7759/cureus.25258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Dilution ventilation by enhancing fresh air intake has been prescribed to reduce airborne infection spread during the COVID-19 pandemic. This is all the more important in assembly spaces like auditoriums. Premier technology institutes have large campuses with large auditoriums for academic and cultural events in India. These institutes serve as role models for society, where gatherings are essential, but there is also the possibility of transmission of all airborne respiratory infections, including tuberculosis, into the community. The fresh air taken in should also be filtered for pollution to prevent other lung issues. Aims: Fresh air intake and filtration have been studied in order to understand whether the outside air supplied indoors is filtered for PM2.5, which is a major ambient polluter in India. Settings and design/methods: In this study, the Right to Information Act of 2005 has been used to obtain first-hand information from the institutes with respect to the heating, ventilation, and air conditioning (HVAC) systems in their auditoriums. Twelve of the 19 institutes fall in cities with non-attainment of ambient air quality standards. Results: Eleven out of all those had recently integrated fresh air supply, and six replied in the negative. Only one out of all of them had appropriate filters. Conclusion: This study highlights the need for a possible trade-off between the use of air conditioners for thermal comfort + assumed protection against PM2.5, which is the switching off of air conditioners and manually opening up windows and using fans for ventilation. Indian HVAC design for gathering spaces, especially educational institutes, needs to factor in fresh air for dilution ventilation as well as PM2.5 filtration.
Collapse
|
16
|
Xu C, Yu CWF. Prevention and control of COVID-19 transmission in the indoor environment. INDOOR + BUILT ENVIRONMENT : THE JOURNAL OF THE INTERNATIONAL SOCIETY OF THE BUILT ENVIRONMENT 2022; 31:1159-1160. [PMID: 38603046 PMCID: PMC9095999 DOI: 10.1177/1420326x221098883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- Chunwen Xu
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao, China
| | | |
Collapse
|