1
|
La Sala L, Carlini V, Mandò C, Anelli GM, Pontiroli AE, Trabucchi E, Cetin I, Abati S. Maternal Salivary miR-423-5p Is Linked to Neonatal Outcomes and Periodontal Status in Cardiovascular-High-Risk Pregnancies. Int J Mol Sci 2024; 25:9087. [PMID: 39201773 PMCID: PMC11354562 DOI: 10.3390/ijms25169087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Periodontal disease (PD) during pregnancy may trigger systemic inflammation, increasing the risk of developing cardiometabolic disease (CMD). As a consequence, PD may result in the activation of cellular and molecular pathways, affecting the disease course and pregnancy outcome. Although microRNAs (miRNAs) are considered ideal biomarkers for many diseases, few studies have investigated salivary miRNAs and their role in pregnancy or neonatal outcomes. In this study, we sought to investigate the associations between salivary miRNAs of pregnant women with oral diseases and their effects on neonatal outcomes. Eleven (n = 11) salivary miRNAs from a cohort of pregnant women with oral diseases (n = 32; oral health, H; gingivitis, G; and periodontitis, P) were detected using a previous profiling analysis with an FDR < 0.20 and a fold change (FC) < 0.5 or FC > 2 for the most highly expressed miRNAs. Spearman correlations were performed for 11 salivary microRNAs associated with oral-derived inflammation, which could affect neonatal outcomes during pregnancies at risk for cardiometabolic disease (CMD), defined by the presence of a high pregestational BMI. In addition, ROC curves demonstrated the diagnostic accuracy of the markers used. Upregulation of miR-423-5p expression and a decrease in miR-27b-3p expression were detected in the P-group (p < 0.05), and ROC analysis revealed the diagnostic accuracy of miR-423-5p for discriminating oral diseases, such as gingivitis versus periodontitis (P vs. G, AUC = 0.78, p < 0.05), and for discriminating it from the healthy oral cavity (P vs. H, AUC = 0.9, p < 0.01). In addition, miR-27b-3p and miR-622 were also able to discriminate the healthy group from the P-group (AUC = 0.8, p < 0.05; AUC = 0.8, p < 0.05). miR-483-5p was able to discriminate between the G-group (AUC = 0.9, p < 0.01) and the P-group (AUC = 0.8, p < 0.05). These data support the role of salivary miRNAs as early biomarkers for neonatal outcomes in pregnant women with periodontal disease at high risk for CMD and suggest that there is cross-talk between salivary miRNAs and subclinical systemic inflammation.
Collapse
Affiliation(s)
- Lucia La Sala
- Department Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- IRCCS MultiMedica, 20138 Milan, Italy;
| | | | - Chiara Mandò
- Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy; (C.M.); (G.M.A.)
| | - Gaia Maria Anelli
- Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy; (C.M.); (G.M.A.)
| | | | | | - Irene Cetin
- Department of Mother, Child and Neonate, IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Silvio Abati
- Department of Dentistry, Vita-Salute San Raffaele University, Milan 20132, Italy;
| |
Collapse
|
2
|
Nasiri K, Jahri M, Kolahdouz S, Soleimani M, Makiya A, Saini RS, Merza MS, Yasamineh S, Banakar M, Yazdanpanah MH. MicroRNAs Function in Dental Stem Cells as a Promising Biomarker and Therapeutic Target for Dental Diseases. Mol Diagn Ther 2023; 27:703-722. [PMID: 37773247 DOI: 10.1007/s40291-023-00675-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 10/01/2023]
Abstract
Undifferentiated, highly proliferative, clonogenic, and self-renewing dental stem cells have paved the way for novel approaches to mending cleft palates, rebuilding lost jawbone and periodontal tissue, and, most significantly, recreating lost teeth. New treatment techniques may be guided by a better understanding of these cells and their potential in terms of the specificity of the regenerative response. MicroRNAs have been recognized as an essential component in stem cell biology due to their role as epigenetic regulators of the processes that determine stem cell destiny. MicroRNAs have been proven to be crucial in a wide variety of molecular and biological processes, including apoptosis, cell proliferation, migration, and necrocytosis. MicroRNAs have been recognized to control protein translation, messenger RNA stability, and transcription and have been reported to play essential roles in dental stem cell biology, including the differentiation of dental stem cells, the immunological response, apoptosis, and the inflammation of the dental pulp. Because microRNAs increase dental stem cell differentiation, they may be used in regenerative medicine to either preserve the stem cell phenotype or to aid in the development of tooth tissue. The development of novel biomarkers and therapies for dental illnesses relies heavily on progress made in our knowledge of the roles played by microRNAs in regulating dental stem cells. In this article, we discuss how dental stem cells and their associated microRNAs may be used to cure dental illness.
Collapse
Affiliation(s)
- Kamyar Nasiri
- Department of Dentistry, Islamic Azad University, Tehran, Iran
| | - Mohammad Jahri
- Dental Research Center, School of Dentistry, Shahid Beheshti, Research Institute of Dental Sciences, University of Medical Sciences, Tehran, Iran
| | | | | | - Ali Makiya
- Student Research Committee, Faculty of Dentistry, Mashhad University of Medical Science, Mashhad, Iran
| | - Ravinder S Saini
- COAMS, King Khalid University, Abha, 62529, Kingdom of Saudi Arabia
| | - Muna S Merza
- Prosthetic Dental Techniques Department, Al-Mustaqbal University College, Babylon, 51001, Iraq
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Morteza Banakar
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Pediatric Dentistry, Faculty of Dentistry, Shahed University, Tehran, Iran.
| | | |
Collapse
|
3
|
The paradigm of miRNA and siRNA influence in Oral-biome. Biomed Pharmacother 2023; 159:114269. [PMID: 36682246 DOI: 10.1016/j.biopha.2023.114269] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Short nucleotide sequences like miRNA and siRNA have attracted a lot of interest in Oral-biome investigations. miRNA is a small class of non-coding RNA that regulates gene expression to provide effective regulation of post-transcription. On contrary, siRNA is 21-25 nucleotide dsRNA impairing gene function post-transcriptionally through inhibition of mRNA for homologous dependent gene silencing. This review highlights the application of miRNA in oral biome including oral cancer, dental implants, periodontal diseases, gingival fibroblasts, oral submucous fibrosis, radiation-induced oral mucositis, dental Pulp, and oral lichenoid disease. Moreover, we have also discussed the application of siRNA against the aforementioned disease along with the impact of miRNA and siRNA to the various pathways and molecular effectors pertaining to the dental diseases. The influence of upregulation and downregulation of molecular effector post-treatment with miRNA and siRNA and their impact on the clinical setting has been elucidated. Thus, the mentioned details on application of miRNA and siRNA will provide a novel gateway to the scholars to not only mitigate the long-lasting issue in dentistry but also develop new theragnostic approaches.
Collapse
|
4
|
Costantini E, Sinjari B, Di Giovanni P, Aielli L, Caputi S, Muraro R, Murmura G, Reale M. TNFα, IL-6, miR-103a-3p, miR-423-5p, miR-23a-3p, miR-15a-5p and miR-223-3p in the crevicular fluid of periodontopathic patients correlate with each other and at different stages of the disease. Sci Rep 2023; 13:126. [PMID: 36599866 DOI: 10.1038/s41598-022-26421-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
Periodontitis is one of the main frequent intraoral diseases. Pathogenesis triggers are the immune responses with pro-inflammatory cytokines production and non-coding RNAs expression. The purpose of the present study was to evaluate the involvement of selected miRNAs in various stages of periodontitis and their relationship with the levels of inflammatory mediators in gingival crevicular fluid (GCF). For this study, 36 subjects (21 with periodontal disease, 15 healthy controls) were selected with an age mean of 59.1 ± 3.7 years. Clinical parameters included plaque index, gingival index, sulcus bleeding index, pocket depth, and clinical attachment level. The GCF samples were taken using capillary paper. The levels of miRNAs in GCF were estimated using a Real-Time PCR and TNFα and IL-6 levels were assessed by enzyme-linked immunosorbent assay (ELISA). The results indicated that the miRNA-103a-3p, miRNA-23a-3p, miRNA-15a-5p, and miRNA-223-3p were significantly upregulated with respect to healthy controls. Significant differences were observed for miRNA-23a-3p, miRNA-103a-3p and miRNA-423-5p levels in accord with the disease stages. Inflammatory mediators evaluated in GCF correlate well with the clinical parameters and the severity of the periodontal disease. miRNAs can represent biomarkers of disease stage and can be investigated as a possible therapeutic target, as well as levels of TNFα and IL-6 may drive the disease progression by acting as prognostic markers.
Collapse
Affiliation(s)
- Erica Costantini
- Department of Medicine and Science of Aging, University "G. d'Annunzio", 66100, Chieti, Italy.
| | - Bruna Sinjari
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio", 66100, Chieti, Italy
| | - Pamela Di Giovanni
- Department of Pharmacy, University "G. d'Annunzio", 66100, Chieti, Italy
| | - Lisa Aielli
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio", 66100, Chieti, Italy
| | - Sergio Caputi
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio", 66100, Chieti, Italy
| | - Raffaella Muraro
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio", 66100, Chieti, Italy
| | - Giovanna Murmura
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio", 66100, Chieti, Italy
| | - Marcella Reale
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio", 66100, Chieti, Italy
| |
Collapse
|
5
|
Bachtiar BM, Bachtiar EW, Kusumaningrum A, Sunarto H, Soeroso Y, Sulijaya B, Apriyanti E, Fragrantia Theodorea C, Putra Pratomo I, Yudhistira, Efendi D. Porphyromonas gingivalis association with inflammatory markers and exosomal miRNA-155 in saliva of periodontitis patients with and without diabetes diagnosed with COVID-19. Saudi Dent J 2023; 35:61-69. [PMID: 36540394 PMCID: PMC9756571 DOI: 10.1016/j.sdentj.2022.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/05/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Background /Purposes: Studies have indicated that salivary molecules from patients with periodontitis and diabetes are confounded with pathological conditions associated with SARS-CoV-2 infection. The study aimed to address whether the abundance of Porphyromonas gingivalis which causes periodontitis, differed compared with that of Aggregatibacter actinomycetemcomitans (used as control) and to analyze the correlation of periodontitis with the expression levels of severe acute respiratory syndrome coronavirus 2 receptor (ACE2) and periodontitis inflammatory markers (TLR-2/TLR-4, TNFα, and miR-155). Materials and Methods A saliva sample (5 mL) was obtained from 23 hospitalized patients with COVID-19, categorized into two groups: diabetic (G1, n = 10) and non-diabetic (G2, n = 13). Saliva from patients with periodontitis without diabetes and coronavirus disease 2019 (COVID-19; n = 6) were included as control. The quantitative real-time polymerase chain reaction measured the levels of P. gingivalis and A. actinomycetemcomitans, as well as periodontitis markers in saliva. The obtained data were analyzed using one-way ANOVA and the Spearman correlation test. Results The abundance of P. gingivalis was observed to be higher (p < 0.05) in saliva of patients with diabetes (G1) than in those without diabetes (G2). A contradictory trend was observed for A. actinomycetemcomitans. The transcription level of ACE2 was comparable in all groups tested, while the expression of periodontitis markers varied. The relationships and sensitivity/specificity among P. gingivalis infection ACE2 expression, and inflammatory markers were also evaluated. Conclusions This study showed that the association between P. gingivalis infection and ACE2 expression might reflect the characteristics of saliva in COVID-19 patients with and without diabetes. However, the relationships between TLR-4 and miR-155 are more specific in discriminating against COVID-19 patients with and without diabetes.
Collapse
Affiliation(s)
- Boy M. Bachtiar
- Department of Oral Biology, Faculty of Dentistry Universitas Indonesia, Indonesia,Oral Science Research Center, Faculty of Dentistry Universitas Indonesia, Indonesia
| | - Endang W. Bachtiar
- Department of Oral Biology, Faculty of Dentistry Universitas Indonesia, Indonesia,Oral Science Research Center, Faculty of Dentistry Universitas Indonesia, Indonesia,Corresponding author at: Department of oral Biology and Oral Science Research center, Faculty of Dentistry, Universitas Indonesia, Indonesia
| | - Ardiana Kusumaningrum
- Department of Microbiology, Faculty of Medicine, Universitas Indonesia, Indonesia,Clinical Microbiology Medicine Staff Group, Universitas Indonesia Hospital, Indonesia
| | - Hari Sunarto
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Indonesia,Dental Center Universitas Indonesia Hospital, Depok, Indonesia
| | - Yuniarti Soeroso
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Indonesia
| | - Benso Sulijaya
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Indonesia
| | - Efa Apriyanti
- Department of Pediatric Nursing, Faculty of Nursing Universitas Indonesia, and Paediatric Intensive Care Unit, Universitas Indonesia Hospital, Indonesia
| | - Citra Fragrantia Theodorea
- Department of Oral Biology, Faculty of Dentistry Universitas Indonesia, Indonesia,Oral Science Research Center, Faculty of Dentistry Universitas Indonesia, Indonesia
| | - Irandi Putra Pratomo
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Indonesia, Indonesia,Pulmonology and Respiratory Medicine Staff Group - COVID-19 Task Force, Universitas Indonesia Hospital, Universitas Indonesia, Depok, Indonesia,Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Indonesia
| | - Yudhistira
- Clinical Pathology Medicine Staff Group, Universitas Indonesia Hospital, Indonesia
| | - Defi Efendi
- Department of Pediatric Nursing, Faculty of Nursing Universitas Indonesia, and Neonatal Intensive Care Unit, Universitas Indonesia Hospital, Depok, Indonesia
| |
Collapse
|
6
|
Kaur B, Kobayashi Y, Cugini C, Shimizu E. A Mini Review: The Potential Biomarkers for Non-invasive Diagnosis of Pulpal Inflammation. FRONTIERS IN DENTAL MEDICINE 2021; 2:718445. [PMID: 38947881 PMCID: PMC11212789 DOI: 10.3389/fdmed.2021.718445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
For assessing the adequacy of vital pulp therapy for an inflamed pulp, the use of non-invasive diagnostic tools is necessary to avoid further damage to the teeth. Detection of biomarkers that are indicative of the inflammatory status in pulp can be a promising tool for this purpose. These biomarkers need to be reliably correlated with pulpal inflammation and to be easily detected without pulp exposure. This mini-review article aims to review biomarkers that are present in gingival crevicular fluid (GCF) in inflamed pulp conditions. Several studies have reported the availability of various biomarkers including cytokines, proteases, elastase, neuropeptides, and growth factors. Non-invasive pulpal diagnostic methods will be useful as well to determine reversibility, irreversibility, or necrosis of inflamed pulp. These types of molecular diagnoses via analyzing the proteome have revolutionized the medical field, and are one of the most promising empirical methodologies that a clinician can utilize for the proactive identification of pulpal disease.
Collapse
Affiliation(s)
- Brahmleen Kaur
- Department of Oral and Maxillofacial Surgery, Rutgers School of Dental Medicine, Newark, NJ, United States
| | - Yoshifumi Kobayashi
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, United States
| | - Carla Cugini
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, United States
| | - Emi Shimizu
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, United States
- Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ, United States
| |
Collapse
|
7
|
Kapoor P, Chowdhry A, Bagga DK, Bhargava D, Aishwarya S. MicroRNAs in oral fluids (saliva and gingival crevicular fluid) as biomarkers in orthodontics: systematic review and integrated bioinformatic analysis. Prog Orthod 2021; 22:31. [PMID: 34632546 PMCID: PMC8502526 DOI: 10.1186/s40510-021-00377-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/18/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are non-coding short, single-stranded RNA molecules that may serve as biomarkers for various inflammatory and molecular mechanisms underlying bone and tissue remodeling consequent to orthodontic force application. METHODS A thorough literature search in major databases was conducted in March 2021 to generate evidence for miRNAs in orthodontics, with prior PROSPERO registration. The initial search revealed 920 articles, subjected to strict selection criteria according to PRISMA, and resulted in final inclusion of four studies. Quality assessment by QUADAS-2 classified three studies as unclear risk-of-bias while the applicability was high. Further, bioinformatic analysis was performed to identify the target genes from the miRNA database (miRDB) and TargetScan databases and their protein-protein interaction pathways with the STRING analysis. RESULTS Multiple miRNAs in gingival crevicular fluid (GCF) of orthodontic patients were seen, including miRNA-21, 27(a/b), 29(a/b/c), 34,146(a/b), 101, and 214 along with matrix metalloproteinases (MMPs)-1, 2, 3, 8, 9, 14 in one study. A statistically significant increase in expression of miRNA-29a/b/c,101, 21 from pre-treatment (before initiation of retraction) was seen to reach a peak at 4-6 weeks (wk) of retraction. On the contrary, miRNA-34a showed downregulation from the 1 day to 4 wk of retraction and also, negatively correlated with MMPs-2,9,14 levels at the same observation times. The distance of canine movement showed mild correlation with miRNA-27a/b, 214 at 2 wk of retraction. Bioinformatics revealed 1213 mutual target genes which were analyzed for inter-relational pathways using Cytoscape plugin, MCODE. Further, 894 prominent protein interactions were identified from the STRING database and SMAD4, IGF1, ADAMTS6, COL4A1, COL1A1, COL3A1, FGFR1, COL19A1, FBN1, COL5A1, MGAT4A, LTBP1, MSR1, COL11A1, and COL5A3 were recognized as the hub genes. Their interactions were able to isolate multiple miRNAs: hsa-miR-34a-5p, hsa-miR-29b-2-5p, hsa-miR-29b-3p, hsa-miR-34a-3p, hsa-miR-27a-5p, hsa-miR-29a-5p, hsa-miR-29b-1-5p, hsa-miR-29c-3p, hsa-miR-214-5p, hsa-miR-27a-3p, hsa-miR-29a-3p, hsamiR-146-5p, which were found promising as biomarkers for tooth movement. CONCLUSIONS Our results support using miRNAs as biomarkers in varied orthodontic study designs and for inter-relationships with pathological settings like periodontal disease, pre-malignancies, or conditions like obesity or metabolic irregularities, etc. The identified target genes and their protein interaction pathways can be used to propose precision therapies, focusing on ideal tooth movement with minimal iatrogenic side-effects.
Collapse
Affiliation(s)
- Priyanka Kapoor
- School of Dental Sciences, Sharda University, Greater Noida, UP India
- Department of Orthodontics, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, 110025 India
| | - Aman Chowdhry
- School of Dental Sciences, Sharda University, Greater Noida, UP India
- Department of Oral Pathology & Microbiology, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, 110025 India
| | - Dinesh Kumar Bagga
- Department of Orthodontics & Dentofacial Orthopaedics, School of Dental Sciences, Sharda University, Greater Noida, UP India
| | - Deepak Bhargava
- Department of Oral Pathology & Microbiology, School of Dental Sciences, Sharda University, Greater Noida, UP India
| | - S. Aishwarya
- Department of Bioinformatics, Stella Maris College (Autonomous), Chennai, India
| |
Collapse
|
8
|
Santonocito S, Polizzi A, Palazzo G, Isola G. The Emerging Role of microRNA in Periodontitis: Pathophysiology, Clinical Potential and Future Molecular Perspectives. Int J Mol Sci 2021; 22:5456. [PMID: 34064286 PMCID: PMC8196859 DOI: 10.3390/ijms22115456] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
During the last few decades, it has been established that messenger ribonucleic acid (mRNA) transcription does not inevitably lead to protein translation, but there are numerous processes involved in post-transcriptional regulation, which is a continuously developing field of research. MicroRNAs (miRNAs) are a group of small non-coding RNAs, which negatively regulate protein expression and are implicated in several physiological and pathological mechanisms. Aberrant expression of miRNAs triggers dysregulation of multiple cellular processes involved in innate and adaptive immune responses. For many years, it was thought that miRNAs acted only within the cell in which they were synthesised, but, recently, they have been found outside cells bound to lipids and proteins, or enclosed in extracellular vesicles, namely exosomes. They can circulate throughout the body, transferring information between cells and altering gene expression in the recipient cells, as they can fuse with and be internalised by the recipient cells. Numerous studies on miRNAs have been conducted in order to identify possible biomarkers that can be used in the diagnosis of periodontal disease. However, as therapeutic agents, single miRNAs can target several genes and influence multiple regulatory networks. The aim of this review was to examine the molecular role of miRNAs and exosomes in the pathophysiology of periodontal disease and to evaluate possible clinical and future implications for a personalised therapeutical approach.
Collapse
Affiliation(s)
| | | | | | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (S.S.); (A.P.); (G.P.)
| |
Collapse
|
9
|
Menini M, Dellepiane E, Pera F, Izzotti A, Baldi D, Delucchi F, Bagnasco F, Pesce P. MicroRNA in Implant Dentistry: From Basic Science to Clinical Application. Microrna 2021; 10:14-28. [PMID: 33970853 DOI: 10.2174/2211536610666210506123240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/13/2021] [Accepted: 03/18/2021] [Indexed: 11/22/2022]
Abstract
Specific microRNA (miRNA) expression profiles have been reported to be predictive of specific clinical outcomes of dental implants and might be used as biomarkers in implant dentistry with diagnostic and prognostic purposes. The aim of the present narrative review was to summarize current knowledge regarding the use of miRNAs in implant dentistry. The authors attempted to identify all available evidence on the topic and critically appraise it in order to lay the foundation for the development of further research oriented towards the clinical application of miRNAs in implant dentistry.
Collapse
Affiliation(s)
- Maria Menini
- Division of Fixed and Implant Prosthodontics, Department of Surgical Sciences (DISC), University of Genoa, Genova, Italy
| | - Elena Dellepiane
- Division of Fixed and Implant Prosthodontics, Department of Surgical Sciences (DISC), University of Genoa, Genova, Italy
| | - Francesco Pera
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Alberto Izzotti
- Department of Health Sciences, University of Genoa, Genova, Italy
| | - Domenico Baldi
- Division of Fixed and Implant Prosthodontics, Department of Surgical Sciences (DISC), University of Genoa, Genova, Italy
| | - Francesca Delucchi
- Division of Fixed and Implant Prosthodontics, Department of Surgical Sciences (DISC), University of Genoa, Genova, Italy
| | - Francesco Bagnasco
- Division of Fixed and Implant Prosthodontics, Department of Surgical Sciences (DISC), University of Genoa, Genova, Italy
| | - Paolo Pesce
- Division of Fixed and Implant Prosthodontics, Department of Surgical Sciences (DISC), University of Genoa, Genova, Italy
| |
Collapse
|
10
|
Gonçalves Fernandes J, Morford LA, Harrison PL, Kompotiati T, Huang H, Aukhil I, Wallet SM, Macchion Shaddox L. Dysregulation of genes and microRNAs in localized aggressive periodontitis. J Clin Periodontol 2020; 47:1317-1325. [PMID: 32876337 DOI: 10.1111/jcpe.13361] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/01/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022]
Abstract
AIM Previous data from our laboratory have demonstrated that localized aggressive periodontitis (LAP) patients produce elevated levels of pro-inflammatory cytokines in response to TLR4 and TLR2 ligation compared to unrelated and periodontally healthy controls (HC). The aim of the present work is to evaluate the contribution of TLR-related gene expression and miRNA regulation in LAP disease. MATERIAL AND METHODS Peripheral blood mononuclear cells (PBMCs) from LAP and health control (HC) patients were isolated. Gene and miRNA expression involved in TLR signalling pathway and immunopathology were evaluated in unstimulated PBMCs by real-time PCR (RT-PCR). RESULTS TICAM-1 (TRIF), FOS, IRAK1, TLR2 and CCL2 genes and the miRNAs miR-9-5p, miR-155-5p and 203a-3p, miR-147a, miR-182-5p and miR-183-5p were significantly up-regulated in LAP compared to HC. CONCLUSIONS Most of the genes and miRNAs overexpressed here are directly or indirectly related to immune response and inflammation. This profile supports our previous findings that suggests LAP patients have a "hyper-responsive" phenotype upon activation of TLR pathway by periodontal pathogens.
Collapse
Affiliation(s)
- Jussara Gonçalves Fernandes
- Department of Oral Health Practice, College of Dentistry, Center for Oral Health Research, University of Kentucky, Lexington, KY, USA
| | - Lorri Ann Morford
- Division of Orthodontics, Department of Oral Health Science, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Peter Lloyd Harrison
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA.,Division of Periodontology, School of Dental Science, Trinity College Dublin, Dublin, Ireland
| | - Theodora Kompotiati
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Hong Huang
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Ikramuddin Aukhil
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Shannon Margaret Wallet
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA.,Department of Oral and Craniofacial Health Sciences, School of Dentistry, The University of North Caroline, Chapel Hill, NC, USA
| | - Luciana Macchion Shaddox
- Department of Oral Health Practice, College of Dentistry, Center for Oral Health Research, University of Kentucky, Lexington, KY, USA.,Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
11
|
Aoki H, Tani H, Nakamura K, Sato H, Torimura M, Nakazato T. MicroRNA biomarkers for chemical hazard screening identified by RNA deep sequencing analysis in mouse embryonic stem cells. Toxicol Appl Pharmacol 2020; 392:114929. [PMID: 32105654 DOI: 10.1016/j.taap.2020.114929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 12/19/2022]
Abstract
We investigated the responses of microRNAs (miRNAs) using mouse embryonic stem cells (mESCs) exposed to nine chemicals (bis(2-ethylhexyl)phthalate, p-cresol, p-dichlorobenzene, phenol, pyrocatecol, chloroform, tri-n-butyl phosphate, trichloroethylene, and benzene), which are listed as "Class I Designated Chemical Substances" from the Japan Pollutant Release and Transfer Register. Using deep sequencing analysis (RNA-seq), several miRNAs were identified that show a substantial response to general chemical toxicity (i.e., to these nine chemicals considered as a group) and several miRNA biomarkers that show a substantial and specific response to benzene. The functions of the identified miRNAs were investigated in accordance with Gene Ontology terms of their predicted target genes, indicating regulation of cellular processes. We compared the results with those for the long non-coding RNAs (ncRNAs) and mRNAs reported in our previous studies in addition to previously identified miRNAs that are either up- or down-regulated in response to the benzene as stimuli. We also observed that the changes in expression of miRNAs were smaller than those for long ncRNAs and mRNAs. Taken together the current and previous results revealed that toxic chemical stimuli regulate the expression of miRNAs. We believe that the use of miRNAs, including the thus identified miRNAs, as biomarkers contribute to predicting the potential toxicity of particular chemicals or identifying human individuals that have been exposed to chemical hazards.
Collapse
Affiliation(s)
- Hiroshi Aoki
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan.
| | - Hidenori Tani
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Kaoru Nakamura
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Hiroaki Sato
- Research Institute of Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Masaki Torimura
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Tetsuya Nakazato
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| |
Collapse
|
12
|
Lee NH, Lee E, Kim YS, Kim WK, Lee YK, Kim SH. Differential expression of microRNAs in the saliva of patients with aggressive periodontitis: a pilot study of potential biomarkers for aggressive periodontitis. J Periodontal Implant Sci 2020; 50:281-290. [PMID: 33124206 PMCID: PMC7606899 DOI: 10.5051/jpis.2000120006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/10/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022] Open
Abstract
Purpose The aim of this study was to compare microRNA (miRNA) gene expression in saliva using miRNA polymerase chain reaction (PCR) arrays in healthy and aggressive periodontitis (AP) patients. Methods PCR arrays of 84 miRNAs related to the human inflammatory response and autoimmunity from the saliva samples of 4 patients with AP and 4 healthy controls were performed. The functions and diseases related to the miRNAs were obtained using TAM 2.0. Experimentally validated targets of differentially expressed miRNAs were obtained from mirTarBase. Gene ontology terms and pathways were analyzed using ConsensusPathDB. Results Four downregulated miRNAs (hsa-let-7a-5p, hsa-let-7f-5p, hsa-miR-181b-5p, and hsa-miR-23b-3p) were identified in patients with AP. These miRNAs are associated with cell death and innate immunity, and they target genes associated with osteoclast development and function. Conclusions This study is the first analysis of miRNAs in the saliva of patients with AP. Identifying discriminatory human salivary miRNA biomarkers reflective of periodontal disease in a non-invasive screening assay is crucial for the development of salivary diagnostics. These data provide a first step towards the discovery of key salivary miRNA biomarkers for AP.
Collapse
Affiliation(s)
- Nam Hun Lee
- Department of Periodontics, Asan Medical Center, Seoul, Korea
| | - Eunhye Lee
- Department of Conservative Dentistry, School of Dentistry, Seoul National University, Seoul, Korea
| | - Young Sung Kim
- Department of Periodontics, Asan Medical Center, Seoul, Korea.,Department of Dentistry, University of Ulsan College of Medicine, Seoul, Korea
| | - Won Kyung Kim
- Department of Periodontics, Asan Medical Center, Seoul, Korea
| | - Young Kyoo Lee
- Department of Periodontics, Asan Medical Center, Seoul, Korea
| | - Su Hwan Kim
- Department of Periodontics, Asan Medical Center, Seoul, Korea.,Department of Dentistry, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
13
|
Aoki H, Torimura M, Nakazato T. 384-Channel electrochemical sensor array chips based on hybridization-triggered switching for simultaneous oligonucleotide detection. Biosens Bioelectron 2019; 136:76-83. [PMID: 31039490 DOI: 10.1016/j.bios.2019.04.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/20/2022]
Abstract
We investigated the feasibility of simultaneous detection of multiple environmentally- and biomedically-relevant RNA biomarker target sequences on a single newly fabricated 384-ch sensor array chip aiming at practical application. The individual sensor is composed of a photolithographically-fabricated Au/Cr-based electrode modified with peptide nucleic acid (PNA) probes. The sensor array chips showed sequence-specific responses upon hybridization of the probes with target sequences complementary to the probes in contrast to mismatch versions. The target oligonucleotides have 15-22 mer sequences from messenger RNAs for estrogen-responsive genes and microRNAs for lung cancer biomarkers. The dependence on target concentrations of sensor responses was observed by using a single chip on which experiments for detection of several target concentrations proceeded simultaneously, with the detection limit of 7.33 × 10-8 M. As more realistic samples, oligonucleotide samples amplified by PCR from a synthesized template sequence were applied to the chip. They showed sequence-specific responses, revealing the potential for fabricated sensor array chips to be utilized to analyze PCR samples. Unlike complicated and expensive chips that require nanofabrication, our sensor array chips based on glass coated with gold thin films are simple and can be fabricated from inexpensive and readily available materials.
Collapse
Affiliation(s)
- Hiroshi Aoki
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan.
| | - Masaki Torimura
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Tetsuya Nakazato
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| |
Collapse
|
14
|
|
15
|
Regulatory roles of microRNAs in human dental tissues. Gene 2017; 596:9-18. [DOI: 10.1016/j.gene.2016.10.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/06/2016] [Accepted: 10/06/2016] [Indexed: 01/04/2023]
|
16
|
Herman M, Golasik M, Piekoszewski W, Walas S, Napierala M, Wyganowska-Swiatkowska M, Kurhanska-Flisykowska A, Wozniak A, Florek E. Essential and Toxic Metals in Oral Fluid-a Potential Role in the Diagnosis of Periodontal Diseases. Biol Trace Elem Res 2016; 173:275-82. [PMID: 26942441 PMCID: PMC5018033 DOI: 10.1007/s12011-016-0660-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/19/2016] [Indexed: 12/13/2022]
Abstract
Recently, many studies have investigated the relationship between the level of metals in the body and various diseases. The objective of this study was to examine any possible influence of periodontal disease upon the concentration of metals in oral fluid and blood and to explore the usability of applying cluster analysis coupled with the analysis of selected elements in oral fluid, calcium (Ca), copper (Cu), iron (Fe), magnesium (Mg), manganese (Mn), zinc (Zn), cadmium (Cd) and lead (Pb), for effectively distinguishing people affected by periodontitis from healthy individuals. The quantification of eight metals in oral fluid and blood samples was performed by two inductively coupled plasma techniques-inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP-OES). Most of the examined elements were detected at elevated concentration in the oral fluid of periodontal patients. However, the differences were statistically significant in the case of three metals: Cu, Mg and Mn (p < 0.05). Approximately, fivefold increase in the concentration of Cu, threefold-elevated levels of Mn and a twofold increase in the concentration of Mg were found in the oral fluid of the periodontal patients compared to the controls. Cluster analysis confirmed the statistical significance of the differences in the level of metals in the oral fluid between the two groups in most cases, plus enabled the correct classification of the subjects into patients and controls. The relationship between concentrations of metals and periodontal disease may in the future serve to prevent the development of such disease.
Collapse
Affiliation(s)
- Malgorzata Herman
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, 3 Ingardena Street, 30-060, Krakow, Poland
| | - Magdalena Golasik
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, 3 Ingardena Street, 30-060, Krakow, Poland
| | - Wojciech Piekoszewski
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, 3 Ingardena Street, 30-060, Krakow, Poland
- Laboratory of High Resolution Mass Spectrometry, Regional Laboratory of Physicochemical Analysis and Structural Research, Faculty of Chemistry, Jagiellonian University, 3 Ingardena Street, 30-060, Krakow, Poland
| | - Stanislaw Walas
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, 3 Ingardena Street, 30-060, Krakow, Poland
| | - Marta Napierala
- Laboratory of Environmental Research, Department of Toxicology, Faculty of Pharmacy, Poznan University of Medical Sciences, 30 Dojazd Street, 60-631, Poznan, Poland
| | | | - Anna Kurhanska-Flisykowska
- Department of Conservative Dentistry and Periodontology, Poznan University of Medical Sciences, 60-820, Poznan, Poland
| | - Anna Wozniak
- Laboratory of Environmental Research, Department of Toxicology, Faculty of Pharmacy, Poznan University of Medical Sciences, 30 Dojazd Street, 60-631, Poznan, Poland
| | - Ewa Florek
- Laboratory of Environmental Research, Department of Toxicology, Faculty of Pharmacy, Poznan University of Medical Sciences, 30 Dojazd Street, 60-631, Poznan, Poland.
| |
Collapse
|
17
|
MicroRNAs as Salivary Markers for Periodontal Diseases: A New Diagnostic Approach? BIOMED RESEARCH INTERNATIONAL 2016; 2016:1027525. [PMID: 27429973 PMCID: PMC4939343 DOI: 10.1155/2016/1027525] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/20/2016] [Indexed: 12/18/2022]
Abstract
The aim of this review is to discuss current findings regarding the roles of miRNAs in periodontal diseases and the potential use of saliva as a diagnostic medium for corresponding miRNA investigations. For periodontal disease, investigations have been restricted to tissue samples and five miRNAs, that is, miR-142-3p, miR-146a, miR-155, miR-203, and miR-223, were repeatedly validated in vivo and in vitro by different validation methods. Particularly noticeable are the small sample sizes, different internal controls, and different case definitions of periodontitis in in vivo studies. Beside of that, the validated miRNAs are associated with inflammation and therefore with various diseases. Furthermore, several studies successfully explored the use of salivary miRNA species for the diagnosis of oral cancer. Different cancer types were investigated and heterogeneous methodology was used; moreover, no overlap of results was found. In conclusion, five miRNAs have consistently been reported for periodontitis; however, their disease specificity, detectability, and expression in saliva and their importance as noninvasive markers are questionable. In principle, a salivary miRNA diagnostic method seems feasible. However, standardized criteria and protocols for preanalytics, measurements, and analysis should be established to obtain comparable results across different studies.
Collapse
|