1
|
Li L, Xie K, Xie H, Wang L, Li Z, Lu Q, Feng J. AURKB promotes colorectal cancer progression by triggering the phosphorylation of histone H3 at serine 10 to activate CCNE1 expression. Aging (Albany NY) 2024; 16:8019-8030. [PMID: 38713155 PMCID: PMC11132018 DOI: 10.18632/aging.205801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/13/2024] [Indexed: 05/08/2024]
Abstract
Aurora kinase B (AURKB) initiates the phosphorylation of serine 10 on histone H3 (pH3S10), a crucial process for chromosome condensation and cytokinesis in mammalian mitosis. Nonetheless, the precise mechanisms through which AURKB regulates the cell cycle and contributes to tumorigenesis as an oncogenic factor in colorectal cancer (CRC) remain unclear. Here, we report that AURKB was highly expressed and positively correlated with Ki-67 expression in CRC. The abundant expression of AURKB promotes the growth of CRC cells and xenograft tumors in animal model. AURKB knockdown substantially suppressed CRC proliferation and triggered cell cycle arrest in G2/M phase. Interestingly, cyclin E1 (CCNE1) was discovered as a direct downstream target of AURKB and functioned synergistically with AURKB to promote CRC cell proliferation. Mechanically, AURKB activated CCNE1 expression by triggering pH3S10 in the promoter region of CCNE1. Furthermore, it was showed that the inhibitor specific for AURKB (AZD1152) can suppress CCNE1 expression in CRC cells and inhibit tumor cell growth. To conclude, this research demonstrates that AURKB accelerated the tumorigenesis of CRC through its potential to epigenetically activate CCNE1 expression, suggesting AURKB as a promising therapeutic target in CRC.
Collapse
Affiliation(s)
- Ling Li
- Department of Gastrointestinal Surgery, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ke Xie
- Department of Gastrointestinal Surgery, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Honghu Xie
- Department of Gastrointestinal Surgery, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Lei Wang
- Department of Gastrointestinal Surgery, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Zhong Li
- Department of Gastrointestinal Surgery, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Qicheng Lu
- Department of Gastrointestinal Surgery, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jin Feng
- Department of Gastrointestinal Surgery, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
2
|
Kakali B. Natural Compounds as Protease Inhibitors in Therapeutic Focus on Cancer Therapy. Anticancer Agents Med Chem 2024; 24:1167-1181. [PMID: 38988167 DOI: 10.2174/0118715206303964240708095110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024]
Abstract
Proteases are implicated in every hallmark of cancer and have complicated functions. For cancer cells to survive and thrive, the process of controlling intracellular proteins to keep the balance of the cell proteome is essential. Numerous natural compounds have been used as ligands/ small molecules to target various proteases that are found in the lysosomes, mitochondria, cytoplasm, and extracellular matrix, as possible anticancer therapeutics. Promising protease modulators have been developed for new drug discovery technology through recent breakthroughs in structural and chemical biology. The protein structure, function of significant tumor-related proteases, and their natural compound inhibitors have been briefly included in this study. This review highlights the most current frontiers and future perspectives for novel therapeutic approaches associated with the list of anticancer natural compounds targeting protease and the mode and mechanism of proteinase-mediated molecular pathways in cancer.
Collapse
Affiliation(s)
- Bhadra Kakali
- Department of Zoology, University of Kalyani, Kalyani, 741235, India
| |
Collapse
|
3
|
Suelmann BBM, Rademaker A, van Dooijeweert C, van der Wall E, van Diest PJ, Moelans CB. Genomic copy number alterations as biomarkers for triple negative pregnancy-associated breast cancer. Cell Oncol (Dordr) 2022; 45:591-600. [PMID: 35792986 PMCID: PMC9424154 DOI: 10.1007/s13402-022-00685-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2022] [Indexed: 11/28/2022] Open
Abstract
Abstract
Background
PABC, commonly defined as breast cancer diagnosed during or ≤ 1 year after pregnancy, accounts for 7% of all breast cancers in women ≤ 45 years. Compared to age-matched non-PABC patients, PABC is characterized by a particularly aggressive histopathologic profile with poorly differentiated and estrogen- and progesterone receptor negative tumors and associated high mortality rates. This study assessed the genomic background of triple-negative PABC tumors by detection of copy number alterations (CNAs).
Methods
MLPA was used to compare CNAs in breast cancer-associated chromosomal loci between triple-negative PABC- and subtype-matched non-PABC patients. Both CNA patterns were evaluated by cluster analysis; associations between individual gene CNAs, pathological characteristics and survival were explored.
Results
Triple-negative PABC tumors exhibited unique CNAs compared to non-PABC tumors, including enrichment for TOP2A copy number loss, an independent predictor of worse overall survival (HR 8.96, p = 0.020). Cluster analysis based on CNA profiles identified a triple-negative PABC-subgroup with a particularly poor prognosis, characterized by chromosome 8p copy number loss. Individual gene CNAs analysis revealed that FGFR1 copy number loss on chromosome 8p11.23 was an independent predictor of poor outcome in multivariate analysis (HR 3.59, p = 0.053) and predicted the development of distant metastases (p = 0.048).
Conclusion
This study provides novel insights into the biology of triple-negative PABC tumors suggesting that CNAs, particularly 8p loss and TOP2A loss, are involved in the development of breast cancer during pregnancy. FGFR1 loss and TOP2A loss seem to be promising new biomarkers that independently identify subgroups of PABC patients with poor prognosis. These genomic biomarkers may provide clues for personalized therapy.
Collapse
Affiliation(s)
- B B M Suelmann
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - A Rademaker
- Department of Pathology, University Medical Center Utrecht, PO Box 85500, Utrecht, 3508 GA, The Netherlands
| | - C van Dooijeweert
- Department of Pathology, University Medical Center Utrecht, PO Box 85500, Utrecht, 3508 GA, The Netherlands
| | - E van der Wall
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - P J van Diest
- Department of Pathology, University Medical Center Utrecht, PO Box 85500, Utrecht, 3508 GA, The Netherlands
| | - C B Moelans
- Department of Pathology, University Medical Center Utrecht, PO Box 85500, Utrecht, 3508 GA, The Netherlands.
| |
Collapse
|
4
|
Morale MG, Tamura RE, Cintra R, Araújo NM, Villa LL. TLR4 and SARM1 modulate survival and chemoresistance in an HPV-positive cervical cancer cell line. Sci Rep 2022; 12:6714. [PMID: 35468924 PMCID: PMC9039070 DOI: 10.1038/s41598-022-09980-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/25/2022] [Indexed: 11/25/2022] Open
Abstract
Human Papillomavirus is responsible for a wide range of mucosal lesions and tumors. The immune system participate in tumorigenesis in different ways. For example, signaling pathways triggered by Toll-like receptors (TLR) play a role in chemotherapy resistance in several tumor types and are candidates for contributing to the development of HPV-induced tumors. Here, we studied the receptor TLR4 and the adaptor molecule SARM1 in HeLa cells, an HPV-positive cervical cancer cell line. Knocking out of these genes individually proved to be important for maintaining cell viability and proliferation. TLR4 knock out cells were more sensitive to cisplatin treatment, which was illustrated by an increased frequency of apoptotic cells. Furthermore, TLR4 and SARM1 modulated ROS production, which was induced by cell death in response to cisplatin. In conclusion, TLR4 and SARM1 are important for therapy resistance and cervical cancer cell viability and may be relevant clinical targets.
Collapse
|
5
|
Sheng H, Pan H, Yao M, Xu L, Lu J, Liu B, Shen J, Shen H. Integrated Analysis of Circular RNA-Associated ceRNA Network Reveals Potential circRNA Biomarkers in Human Breast Cancer. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:1732176. [PMID: 34966440 PMCID: PMC8712159 DOI: 10.1155/2021/1732176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022]
Abstract
Circular RNA (circRNA) is closely related to tumorigenesis and cancer progression. Yet, the roles of cancer-specific circRNAs in the circRNA-related ceRNA network of breast cancer (BRCA) remain unclear. The aim of this study was to construct a ceRNA network associated with circRNA and to explore new therapeutic and prognostic targets and biomarkers for breast cancer. We downloaded the circRNA expression profile of BRCA from Gene Expression Omnibus (GEO) microarray datasets and downloaded the miRNA and mRNA expression profiles of BRCA from The Cancer Genome Atlas (TCGA) database. Differentially expressed mRNAs (DEmRNAs), differentially expressed miRNAs (DEmiRNAs), and differentially expressed circRNAs (DEcircRNAs) were identified, and a competitive endogenous RNA (ceRNA) regulatory network was constructed based on circRNA-miRNA pairs and miRNA-mRNA pairs. Gene ontology and pathway enrichment analyses were performed on mRNAs regulated by circRNAs in ceRNA networks. Survival analysis and correlation analysis of all mRNAs and miRNAs in the ceRNA network were performed. A total of 72 DEcircRNAs, 158 DEmiRNAs, and 2762 DE mRNAs were identified. The constructed ceRNA network contains 60 circRNA-miRNA pairs and 140 miRNA-mRNA pairs, including 40 circRNAs, 30 miRNAs, and 100 mRNAs. Functional enrichment indicated that DEmRNAs regulated by DEcircRNAs in ceRNA networks were significantly enriched in the PI3K-Akt signaling pathway, microRNAs in cancer, and proteoglycans in cancer. Survival analysis and correlation analysis of all mRNAs and miRNAs in the ceRNA network showed that 13 mRNAs and 6 miRNAs were significantly associated with overall survival, and 48 miRNA-mRNA interaction pairs had a significant negative correlation. A PPI network was established, and 21 hub genes were determined from the network. This study provides an effective bioinformatics basis for further understanding of the molecular mechanisms and predictions of breast cancer. A better understanding of the circRNA-related ceRNA network in BRCA will help identify potential biomarkers for diagnosis and prognosis.
Collapse
Affiliation(s)
- Han Sheng
- Department of Nursing, The First Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Huan Pan
- Department of Central Laboratory, The First Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Ming Yao
- Department of Anesthesiology and Pain Medicine, The First Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Longsheng Xu
- Department of Central Laboratory, The First Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Jianju Lu
- Department of Breast Disease, The First Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Beibei Liu
- Department of Central Laboratory, The First Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Jianfen Shen
- Department of Central Laboratory, The First Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Hui Shen
- Department of Central Laboratory, The First Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| |
Collapse
|
6
|
Sahu R, Pattanayak SP. Strategic Developments & Future Perspective on Gene Therapy for Breast Cancer: Role of mTOR and Brk/ PTK6 as Molecular Targets. Curr Gene Ther 2021; 20:237-258. [PMID: 32807051 DOI: 10.2174/1566523220999200731002408] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 12/24/2022]
Abstract
Breast cancer is a serious health issue and a major concern in biomedical research. Alteration in major signaling (viz. PI3K-AKT-mTOR, Ras-Raf-MEK-Erk, NF-kB, cyclin D1, JAK-STAT, Wnt, Notch, Hedgehog signaling and apoptotic pathway) contributes to the development of major subtypes of mammary carcinoma such as HER2 positive, TNBC, luminal A and B and normal-like breast cancer. Further, mutation and expression parameters of different genes involved in the growth and development of cells play an important role in the progress of different types of carcinoma, making gene therapy an emerging new therapeutic approach for the management of life-threatening diseases like cancer. The genetic targets (oncogenes and tumor suppressor genes) play a major role in the formation of a tumor. Brk/PTK6 and mTOR are two central molecules that are involved in the regulation of numerous signaling related to cell growth, proliferation, angiogenesis, survival, invasion, metastasis, apoptosis, and autophagy. Since these two proteins are highly upregulated in mammary carcinogenesis, this can be used as targeted genes for the treatment of breast cancer. However, not much work has been done on them. This review highlights the therapeutic significance of Brk and mTOR and their associated signaling in mammary carcinogenesis, which may provide a strategy to develop gene therapy for breast cancer management.
Collapse
Affiliation(s)
- Roja Sahu
- Division of Advanced Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand- 835 215, India
| | - Shakti P Pattanayak
- Division of Advanced Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand- 835 215, India,Department of Pharmacy, Central University of South Bihar (Gaya), Bihar-824 236, India
| |
Collapse
|
7
|
Huang FK, Zheng CY, Huang LK, Lin CQ, Zhou JF, Wang JX. Long non-coding RNA MCF2L-AS1 promotes the aggressiveness of colorectal cancer by sponging miR-874-3p and thereby up-regulating CCNE1. J Gene Med 2020; 23:e3285. [PMID: 33037865 DOI: 10.1002/jgm.3285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) have drawn growing attention because of the role which they play in various diseases, including colorectal cancer (CRC). However, the potential functions of lncRNA MCF2L antisense RNA 1 (MCF2L-AS1) in tumors remained largely unclear. The present study aimed to explore the clinical significance and the biological effects of lncRNA MCF2L antisense RNA 1 (MCF2L-AS1) in CRC. METHODS Reverse transcriptase-polymerase chain reaction was performed to determine the expression of MCF2L-AS1 in CRC. The clinical significance of MCF2L-AS1 in CRC patients was analyzed statistically. In vitro experiments were performed to determine the effects of MCF2L-AS1 on the cellular progression of CRC cells. Bioinformatic assays, luciferase reporter assays and RNA-pulldown assays were performed to predict for potential microRNAs that can interact with MCF2L-AS1 and mRNAs that can interact with miR-874-3p. RESULTS We identified a novel CRC-related lncRNA, MCF2L-AS1, which is distinctly highly expressed in CRC. Its diagnostic value for CRC patients was also demonstrated. Clinical assays revealed that high MCF2L-AS1 expression is associated with advanced stages, positive metastasis and the poor prognosis of CRC patients. Multivariate assays confirmed that MCF2L-AS1 expression is an independent poor prognostic factor for both 5-year overall survival and 5-year disease-free survival of CRC patients. Functionally, we confirmed that knockdown of MCF2L-AS1 distinctly suppresses the proliferation, migration and invasion of CRC cells and also promotes apoptosis. Mechanistic investigation showed that MCF2L-AS1 functions as an endogenous sponge for miR-874-3p to increase the expression of CCNE1. CONCLUSIONS Our findings identified a novel CRC-related lncRNA, MCF2L-AS1, which may be used as a potential diagnostic and prognostic biomarker for CRC patients. In addition, the newly identified MCF2L-AS1/miR-874-3p/CCNE1 axis can modulate the initiation and progression of CRC.
Collapse
Affiliation(s)
- Fa-Kun Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Cheng-Ying Zheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Long-Kai Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Chang-Qing Lin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Jun-Feng Zhou
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Jia-Xing Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
8
|
Li Y, Li L. Bioinformatic screening for candidate biomarkers and their prognostic values in endometrial cancer. BMC Genet 2020; 21:113. [PMID: 32962636 PMCID: PMC7510080 DOI: 10.1186/s12863-020-00898-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Endometrial cancer is a common gynecological cancer with annually increasing incidence worldwide. However, the biomarkers that provide prognosis and progression for this disease remain elusive. RESULTS Two eligible human endometrial cancer datasets (GSE17025 and GSE25405) were selected for the study. A total of 520 differentially expressed mRNAs and 30 differentially expressed miRNAs were identified. These mRNAs were mainly enriched in cell cycle, skeletal system development, vasculature development, oocyte maturation, and oocyte meiosis signalling pathways. A total of 160 pairs of differentially expressed miRNAs and mRNAs, including 22 differentially expressed miRNAs and 71 overlapping differentially expressed mRNAs, were validated in endometrial cancer samples using starBase v2.0 project. The prognosis analysis revealed that Cyclin E1 (CCNE1, one of the 82 hub genes, which correlated with hsa-miR-195 and hsa-miR-424) was significantly linked to a worse overall survival in endometrial cancer patients. CONCLUSIONS The hub genes and differentially expressed miRNAs identified in this study might be used as prognostic biomarkers for endometrial cancer and molecular targets for its treatment.
Collapse
Affiliation(s)
- Yaowei Li
- Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, Guangxi, 530021, People's Republic of China.,Department of Gynecology and obstetrics, Shangyu People's Hospital, Shangyu, Zhejiang, 312300, People's Republic of China
| | - Li Li
- Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, Guangxi, 530021, People's Republic of China.
| |
Collapse
|
9
|
Al-Awadhi FH, Luesch H. Targeting eukaryotic proteases for natural products-based drug development. Nat Prod Rep 2020; 37:827-860. [PMID: 32519686 PMCID: PMC7406119 DOI: 10.1039/c9np00060g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: up to April 2020 Proteases are involved in the regulation of many physiological processes. Their overexpression and dysregulated activity are linked to diseases such as hypertension, diabetes, viral infections, blood clotting disorders, respiratory diseases, and cancer. Therefore, they represent an important class of therapeutic targets. Several protease inhibitors have reached the market and >60% of them are directly related to natural products, even when excluding synthetic natural product mimics. Historically, natural products have been a valuable and validated source of therapeutic agents, as over half of the marketed drugs across targets and diseases are inspired by natural product structures. In the past two decades the number of new protease inhibitors discovered from nature has sharply increased. Additionally, the availability of 3D structural information for proteases has permitted structure-based design and accelerated the synthesis of optimized lead structures with improved potency and selectivity profiles, resulting in some of the most-potent-in-class inhibitors. These discoveries were oftentimes maximized by in-depth biological assessments of lead inhibitors, linking them to a relevant disease state. This review will discuss some of the current and emerging drug targets and their involvement in various disease processes, highlighting selected success stories behind several FDA-approved protease inhibitors that have natural products scaffolds as well as recent selected pharmacologically well-characterized inhibitors derived from marine or terrestrial sources.
Collapse
Affiliation(s)
- Fatma H Al-Awadhi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait.
| | - Hendrik Luesch
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, USA.
| |
Collapse
|
10
|
Wang H, Ren S, Xu Y, Miao W, Huang X, Qu Z, Li J, Liu X, Kong P. MicroRNA-195 reverses the resistance to temozolomide through targeting cyclin E1 in glioma cells. Anticancer Drugs 2020; 30:81-88. [PMID: 30273182 PMCID: PMC6287895 DOI: 10.1097/cad.0000000000000700] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glioma is the most common malignant tumor of the central nervous system with poor survival. Temozolomide (TMZ) is the first-line chemotherapy drug for initial and recurrent glioma treatment with a relatively good efficacy, which exerts its antitumor effects mainly through cell death induced by DNA double-strand breaks in the G1 and S phases. However, endogenous or acquired resistance to TMZ limits glioma patients’ clinical outcome and is also an important cause of glioma replase. MicroRNA-195 (miR-195) plays an important role in the regulation of G1-phase/S-phase transition, DNA damage repair, and apoptosis of tumor cells. We found that miR-195 expression was significantly decreased in TMZ-resistant glioma cells induced with TMZ and correlated to the resistance index negatively. Also, the exogenous expression of miR-195 reversed TMZ resistance and induced the apoptosis of TMZ-resistant glioblastoma cells. Further bioinformatics analysis showed cyclin E1 (CCNE1) was a potential target gene of miR-195. Knockdown of CCNE1 partially reversed the effect of decreased miR-195 on TMZ resistance. The data from The Cancer Genome Atlas – Cancer Genome further suggested that hsa-miR-195 could negatively regulate the expression of CCNE1 in glioma. In conclusion, miR-195 reverses the resistance to TMZ by targeting CCNE1 in glioma cells and it could act as a potential target for treatment in glioma with TMZ resistance.
Collapse
Affiliation(s)
| | - Shuxian Ren
- Department of Neurosurgery, The First Hospital.,Department of Neurosurgery, Tianjin Third Centeral Hospital, Tianjin
| | - Yongming Xu
- Department of Neurosurgery, The First Hospital.,Department of Neurosurgery, QuZhou People's Hospital, QuZhou, Zhejiang, People's Republic of China
| | - Wang Miao
- Department of Neurosurgery, The First Hospital
| | | | - Zhizhao Qu
- Department of Neurosurgery, The First Hospital
| | - Jinhu Li
- Department of Neurosurgery, The First Hospital
| | | | - Pengzhou Kong
- Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University
| |
Collapse
|
11
|
Robinson AM, Rathore R, Redlich NJ, Adkins DR, VanArsdale T, Van Tine BA, Michel LS. Cisplatin exposure causes c-Myc-dependent resistance to CDK4/6 inhibition in HPV-negative head and neck squamous cell carcinoma. Cell Death Dis 2019; 10:867. [PMID: 31727874 PMCID: PMC6856201 DOI: 10.1038/s41419-019-2098-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 12/15/2022]
Abstract
The loss of p16 is a signature event in Human Papilloma Virus (HPV)-negative head and neck squamous cell carcinoma (HNSCC) that leads to increased Cyclin Dependent Kinase 4/6 (CDK) signaling. Palbociclib, a CDK4/6 inhibitor, is active for the treatment of a subset of HNSCC. In this study, we analyzed patient response data from a phase I clinical trial of palbociclib in HNSCC and observed an association between prior cisplatin exposure and CDK inhibitor resistance. We studied the effects of palbociclib on cisplatin-sensitive and -resistant HNSCC cell lines. We found that while palbociclib is highly effective against chemo-naive HNSCC cell lines and tumor xenografts, prior cisplatin exposure induces intrinsic resistance to palbociclib in vivo, a relationship that was not observed in vitro. Mechanistically, in the course of provoking a DNA damage-resistance phenotype, cisplatin exposure upregulates both c-Myc and cyclin E, and combination treatment with palbociclib and the c-Myc bromodomain inhibitor JQ1 exerts a synergistic anti-growth effect in cisplatin-resistant cells. These data show the benefit of exploiting the inherent resistance mechanisms of HNSCC to overcome cisplatin- and palbociclib resistance through the use of c-Myc inhibition.
Collapse
Affiliation(s)
- Anthony M Robinson
- Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Richa Rathore
- Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | | | - Douglas R Adkins
- Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | | | - Brian A Van Tine
- Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
| | - Loren S Michel
- Memorial Sloan-Kettering Cancer Center, Monmouth, NJ, USA
| |
Collapse
|
12
|
Xiao L, Hong L, Zheng W. Motor Neuron and Pancreas Homeobox 1 (MNX1) Is Involved in Promoting Squamous Cervical Cancer Proliferation via Regulating Cyclin E. Med Sci Monit 2019; 25:6304-6312. [PMID: 31436258 PMCID: PMC6716296 DOI: 10.12659/msm.914233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Cervical cancer is one of the most lethal gynecologic malignancies worldwide. The objective of this study was to assess the role of MNX1 in cervical cancer and its underlying mechanisms. Material/Methods The expression of motor neuron and pancreas homeobox 1 (MNX1) in immortal epithelial cervical cell line ECT, cervical cancer cell HeLa, and SiHa and cervical cancer, as well as in adjacent noncancer tissues, was detected and analyzed. CCK-8 and colony formation assays were performed to evaluate the effects of MNX1 overexpression on cervical cancer cell proliferation. Transwell assay was used to detect migration and invasion after MNX1 knockdown or overexpression. Real-time PCR and Western blotting were used to examine MNX1 and cell cycle regulator expression. Results Data from our study indicated that MNX1 was upregulated both in cervical cancer cell lines and cervical cancer tissues. The high levels of MNX1 are related to advanced stages and lymph nodes metastasis. The overexpression of MNX1 promoted cervical cancer cells proliferation, migration, and invasion. Moreover, MNX1 upregulated 2 critical cell cycle regulators, CCNE1 and CCNE2. Conclusions These findings reveal MNX1 as a novel oncogene of cervical cancer and indicate MNX1 is a promising therapeutic and prognostic biomarker.
Collapse
Affiliation(s)
- Li Xiao
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland).,Department of Obstetrics and Gynaecology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei, China (mainland)
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Wenfei Zheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| |
Collapse
|
13
|
Chen M, Wu R, Li G, Liu C, Tan L, Xiao K, Ye Y, Qin Z. Motor neuron and pancreas homeobox 1/HLXB9 promotes sustained proliferation in bladder cancer by upregulating CCNE1/2. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:154. [PMID: 30012177 PMCID: PMC6048799 DOI: 10.1186/s13046-018-0829-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/05/2018] [Indexed: 11/29/2022]
Abstract
Background Uncontrolled proliferation is thought to be the most fundamental characteristic of cancer. Detailed knowledge of cancer cell proliferation mechanisms would not only benefit understanding of cancer progression, but may also provide new clues for developing novel therapeutic strategies. Methods In vitro function of MNX1 (Motor neuron and pancreas homeobox 1) in bladder cancer cell was evaluated using MTT assay, colony formation assay, and bromodeoxyuridine incorporation assay. Real-time PCR and western blotting were performed to detect MNX1 and CCNE1/2 expressions. In vivo tumor growth was conducted in BALB/c-nu mice. Results We reported that MNX1 is responsible for sustaining bladder cancer cell proliferation. Abnormal MNX1 upregulation in bladder cancer cell lines and 167 human tissue specimens; high MNX1 expression levels correlated significantly with shorter 5-year overall and relapse-free survival in the bladder cancer patients. Furthermore, MNX1 overexpression accelerated bladder cancer cell proliferation and tumorigenicity both in vitro and in vivo, whereas MNX1 downregulation arrested it. In addition, MNX1 transcriptionally upregulated CCNE1 and CCNE2 by directly bounding to their promoters, which promoted G1–S transition in the bladder cancer cells. Conclusion These findings reveal an oncogenic role and novel regulatory mechanism of MNX1 in bladder cancer progression and suggest that MNX1 is a potential prognostic biomarker and therapeutic target. Electronic supplementary material The online version of this article (10.1186/s13046-018-0829-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mingkun Chen
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China
| | - Rongpei Wu
- Department of Urology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Gang Li
- Department of Urology, Guangzhou Red Cross Hospital, The Affiliated Hospital of Medical College of Ji-Nan University, Guangzhou, 510220, Guangdong, China
| | - Cundong Liu
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China
| | - Lei Tan
- Department of Urology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China
| | - Kanghua Xiao
- Department of Urology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China
| | - Yunlin Ye
- Department of Urology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China. .,Department of Urology, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China.
| | - Zike Qin
- Department of Urology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China. .,Department of Urology, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China.
| |
Collapse
|
14
|
The Proliferative Response to p27 Down-Regulation in Estrogen Plus Progestin Hormonal Therapy is Lost in Breast Tumors. Transl Oncol 2018. [PMID: 29524829 PMCID: PMC5884216 DOI: 10.1016/j.tranon.2018.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Increased proliferation and breast cancer risk has been observed in postmenopausal women receiving estrogen (E) + progestin hormone replacement therapy (HRT). Progestin action is mediated through two progesterone receptor (PR) isoforms, PRA and PRB, with unique transcriptional activity and function. The current study examines hormonal regulation of PR isoforms in the normal postmenopausal human breast and the mechanism by which progestins increase proliferation and breast cancer risk. Archival benign breast biopsies from postmenopausal and premenopausal women, and luminal breast tumor biopsies from postmenopausal women, were analyzed for regulation of PRA and PRB expression by E and E+medroxyprogesterone acetate (MPA). In the postmenopausal breast without HRT, PRA and PRB expression was decreased compared to the premenopausal breast. Both E (n = 12) and E+MPA (n = 13) HRT in the postmenopausal breast were associated with increased PRA and PRB expression, increased nuclear cyclin E expression, and decreased nuclear p27 expression compared to no HRT (n = 16). With E+MPA HRT, there was a further decrease in nuclear p27 and increased Receptor Activator of NF-kappa B Ligand (RANKL) expression compared to E-alone HRT. In luminal breast cancers, E+MPA HRT (n = 6) was also associated with decreased nuclear expression of the cell cycle inhibitor p27 compared to E HRT (n = 6), but was not associated with increased proliferation. These results suggest that p27 mediates progestin-induced proliferation in the normal human breast and that regulation of this proliferative response by E+MPA is lost in breast tumors.
Collapse
|
15
|
Lu M, Faull KF, Whitelegge JP, He J, Shen D, Saxton RE, Chang HR. Proteomics and Mass Spectrometry for Cancer Biomarker Discovery. Biomark Insights 2017. [DOI: 10.1177/117727190700200005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Proteomics is a rapidly advancing field not only in the field of biology but also in translational cancer research. In recent years, mass spectrometry and associated technologies have been explored to identify proteins or a set of proteins specific to a given disease, for the purpose of disease detection and diagnosis. Such biomarkers are being investigated in samples including cells, tissues, serum/plasma, and other types of body fluids. When sufficiently refined, proteomic technologies may pave the way for early detection of cancer or individualized therapy for cancer. Mass spectrometry approaches coupled with bioinformatic tools are being developed for biomarker discovery and validation. Understanding basic concepts and application of such technology by investigators in the field may accelerate the clinical application of protein biomarkers in disease management.
Collapse
Affiliation(s)
- Ming Lu
- Gonda/UCLA Breast Cancer Research Laboratory, Los Angeles, California
- Revlon/UCLA Breast Center, Department of Surgery/Oncology, David Geffen School of Medicine, Los Angeles, California
| | - Kym F. Faull
- The Pasarow Mass Spectrometry Laboratory, Department of Psychiatry & Biobehavioral and the Neuropsychiatric Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
| | - Julian P. Whitelegge
- The Pasarow Mass Spectrometry Laboratory, Department of Psychiatry & Biobehavioral and the Neuropsychiatric Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
| | - Jianbo He
- Gonda/UCLA Breast Cancer Research Laboratory, Los Angeles, California
- Revlon/UCLA Breast Center, Department of Surgery/Oncology, David Geffen School of Medicine, Los Angeles, California
| | - Dejun Shen
- Gonda/UCLA Breast Cancer Research Laboratory, Los Angeles, California
- Revlon/UCLA Breast Center, Department of Surgery/Oncology, David Geffen School of Medicine, Los Angeles, California
| | - Romaine E. Saxton
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, Los Angeles, California
| | - Helena R. Chang
- Gonda/UCLA Breast Cancer Research Laboratory, Los Angeles, California
- Revlon/UCLA Breast Center, Department of Surgery/Oncology, David Geffen School of Medicine, Los Angeles, California
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, Los Angeles, California
| |
Collapse
|
16
|
Fredholm H, Magnusson K, Lindström LS, Tobin NP, Lindman H, Bergh J, Holmberg L, Pontén F, Frisell J, Fredriksson I. Breast cancer in young women and prognosis: How important are proliferation markers? Eur J Cancer 2017; 84:278-289. [PMID: 28844016 DOI: 10.1016/j.ejca.2017.07.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 01/03/2023]
Abstract
AIM Compared to middle-aged women, young women with breast cancer have a higher risk of systemic disease. We studied expression of proliferation markers in relation to age and subtype and their association with long-term prognosis. METHODS Distant disease-free survival (DDFS) was studied in 504 women aged <40 years and 383 women aged ≥40 years from a population-based cohort. Information on patient characteristics, treatment and follow-up was collected from medical records. Tissue microarrays were produced for analysis of oestrogen receptor, progesterone receptor (PR), Her2, Ki-67 and cyclins. RESULTS Young women with luminal tumours had significantly higher expression of Ki-67 and cyclins. Proliferation markers were prognostic only within this subtype. Ki-67 was a prognostic indicator only in young women with luminal PR+ tumours. The optimal cut-off for Ki-67 varied by age. High expression of cyclin E1 conferred a better DDFS in women aged <40 years with luminal PR- tumours (hazard ratio [HR] 0.47 [0.24-0.92]). Age <40 years was an independent risk factor of DDFS exclusively in women with luminal B PR+ tumours (HR 2.35 [1.22-4.50]). Young women with luminal B PR- tumours expressing low cyclin E1 had a six-fold risk of distant disease compared with luminal A (HR 6.21 [2.17-17.6]). CONCLUSIONS The higher expression of proliferation markers in young women does not have a strong impact on prognosis. Ki-67 is only prognostic in the subgroup of young women with luminal PR+ tumours. The only cyclin adding prognostic value beyond subtype is cyclin E1. Age is an independent prognostic factor only in women with luminal B PR+ tumours.
Collapse
Affiliation(s)
- Hanna Fredholm
- Karolinska Institutet, Department of Molecular Medicine and Surgery, Stockholm, Sweden; Department of Breast- and Endocrine Surgery, Karolinska University Hospital, Stockholm, Sweden.
| | - Kristina Magnusson
- Uppsala University, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala, Sweden
| | - Linda S Lindström
- Karolinska Institutet, Department of Biosciences and Nutrition, Stockholm, Sweden
| | - Nicholas P Tobin
- Karolinska Institutet, Department of Oncology and Pathology, Cancer Center Karolinska, Stockholm, Sweden
| | - Henrik Lindman
- Uppsala University, Department of Radiology, Oncology and Radiation Science, Uppsala University Hospital, Uppsala, Sweden
| | - Jonas Bergh
- Karolinska Institutet, Department of Oncology and Pathology, Cancer Center Karolinska, Stockholm, Sweden; Karolinska Oncology, Radiumhemmet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Holmberg
- Uppsala University, Department of Surgical Sciences, Regional Cancer Center, Uppsala University Hospital, Uppsala, Sweden; King's College London, Faculty of Life Sciences and Medicine, Division of Cancer Studies, London, UK
| | - Fredrik Pontén
- Uppsala University, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala, Sweden
| | - Jan Frisell
- Karolinska Institutet, Department of Molecular Medicine and Surgery, Stockholm, Sweden; Department of Breast- and Endocrine Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Irma Fredriksson
- Karolinska Institutet, Department of Molecular Medicine and Surgery, Stockholm, Sweden; Department of Breast- and Endocrine Surgery, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
17
|
Liu J, Zhu H, Zhong N, Jiang Z, Xu L, Deng Y, Jiang Z, Wang H, Wang J. Gene silencing of USP1 by lentivirus effectively inhibits proliferation and invasion of human osteosarcoma cells. Int J Oncol 2016; 49:2549-2557. [PMID: 27840911 DOI: 10.3892/ijo.2016.3752] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/20/2016] [Indexed: 11/06/2022] Open
Abstract
Osteosarcoma is the most frequent malignant bone tumor, affecting the extremities of adolescents and young adults. Ubiquitin-specific protease 1 (USP1) plays a critical role in many cellular processes including proteasome degradation, chromatin remodeling and cell cycle regulation. In the present study, we discovered that USP1 was overexpressed in 26 out of 30 osteosarcoma tissues compared to cartilage tumor tissues and normal bone tissues. We then constructed a lentiviral vector mediating RNA interference (RNAi) targeting USP1 and demonstrated that it significantly suppressed the mRNA and protein expression of the USP1 gene in U2OS cells. Knockdown of USP1 inhibited the growth and colony-forming, as well as significantly reduced the invasiveness of U2OS cells. Western blot analysis indicated that suppression of USP1 downregulated the expression of many proteins including SIK2, MMP-2, GSK-3β, Bcl-2, Stat3, cyclin E1, Notch1, Wnt-1 and cyclin A1. Most of these proteins are associated with tumor genesis and development. RNAi of SIK2 significantly decreased SIK2 protein expression and inhibited the ability of forming colonies, as well as induced apoptosis and reduced the invasiveness of U2OS cells. Collectively, our results suggest that silencing USP1 inhibits cell proliferation and invasion in U2OS cells. Therefore, USP1 may provide a novel therapeutic target for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Jinbo Liu
- Department of Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Hongjun Zhu
- Department of Thoracic Surgery, The First People's Hospital of Shangqiu, Shangqiu, Henan 476100, P.R. China
| | - Ning Zhong
- Department of Thoracic Surgery, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu 215000, P.R. China
| | - Zifeng Jiang
- Clinical Laboratories, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lele Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215200, P.R. China
| | - Youping Deng
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Zhenhuan Jiang
- Department of Orthopaedics, People's Hospital of Yixing City, Yixing, Jiangsu 214200, P.R. China
| | - Hongwei Wang
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Jinzhi Wang
- Department of Cell Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215007, P.R. China
| |
Collapse
|
18
|
Karakas C, Biernacka A, Bui T, Sahin AA, Yi M, Akli S, Schafer J, Alexander A, Adjapong O, Hunt KK, Keyomarsi K. Cytoplasmic Cyclin E and Phospho-Cyclin-Dependent Kinase 2 Are Biomarkers of Aggressive Breast Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1900-1912. [PMID: 27182644 DOI: 10.1016/j.ajpath.2016.02.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/29/2016] [Accepted: 02/29/2016] [Indexed: 12/24/2022]
Abstract
Cyclin E and its co-activator, phospho-cyclin-dependent kinase 2 (p-CDK2), regulate G1 to S phase transition and their deregulation induces oncogenesis. Immunohistochemical assessments of these proteins in cancer have been reported but were based only on their nuclear expression. However, the oncogenic forms of cyclin E (low molecular weight cyclin E or LMW-E) in complex with CDK2 are preferentially mislocalized to the cytoplasm. Here, we used separate nuclear and cytoplasmic scoring systems for both cyclin E and p-CDK2 expression to demonstrate altered cellular accumulation of these proteins using immunohistochemical analysis. We examined the specificity of different cyclin E antibodies and evaluated their concordance between immunohistochemical and Western blot analyses in a panel of 14 breast cell lines. Nuclear versus cytoplasmic staining of cyclin E readily differentiated full-length from LMW-E, respectively. We also evaluated the expression of cyclin E and p-CDK2 in 1676 breast carcinoma patients by immunohistochemistry. Cytoplasmic cyclin E correlated strongly with cytoplasmic p-CDK2 (P < 0.0001), high tumor grade, negative estrogen/progesterone receptor status, and human epidermal growth factor receptor 2 positivity (all P < 0.0001). In multivariable analysis, cytoplasmic cyclin E plus phosphorylated CDK2 (as one variable) predicted breast cancer recurrence-free and overall survival. These results suggest that cytoplasmic cyclin E and p-CDK2 can be readily detected with immunohistochemistry and used as clinical biomarkers for aggressive breast cancer.
Collapse
Affiliation(s)
- Cansu Karakas
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Anna Biernacka
- Department of Pathology, Baylor College of Medicine, Houston, Texas
| | - Tuyen Bui
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aysegul A Sahin
- Department of Pathology and Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Min Yi
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Said Akli
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jolie Schafer
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Angela Alexander
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Opoku Adjapong
- Department of Pathology and Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kelly K Hunt
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
19
|
Why (multi)targeting of cyclin-dependent kinases is a promising therapeutic option for hormone-positive breast cancer and beyond. Future Med Chem 2015; 8:55-72. [PMID: 26692095 DOI: 10.4155/fmc.15.155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Estrogens, via induction of their specific receptors (e.g., ER-α), regulate cell proliferation, differentiation and morphogenesis in mammary epithelium. Cell-cycle progression is driven by activation of complexes consisting of cyclin-dependent kinases (CDKs) and cyclins, which also modulate the activity of ER-α. Loss of control over the cell-cycle results in accelerated cell division and malignant transformation. Thus, a reciprocal relation exists between estrogen signaling and cell proliferation. Based on these findings, a new concept was developed to reduce ER-α activity and bring the cell cycle in transformed cells to heel. Prevention of ER-α activation and control over the deregulated cell cycle was achieved by supplementation with pharmacological CDK inhibitors alone or in combination with selective antiestrogens.
Collapse
|
20
|
Boros G, Miko E, Muramatsu H, Weissman D, Emri E, van der Horst GTJ, Szegedi A, Horkay I, Emri G, Karikó K, Remenyik É. Identification of Cyclobutane Pyrimidine Dimer-Responsive Genes Using UVB-Irradiated Human Keratinocytes Transfected with In Vitro-Synthesized Photolyase mRNA. PLoS One 2015; 10:e0131141. [PMID: 26121660 PMCID: PMC4488231 DOI: 10.1371/journal.pone.0131141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/27/2015] [Indexed: 12/16/2022] Open
Abstract
Major biological effects of UVB are attributed to cyclobutane pyrimidine dimers (CPDs), the most common photolesions formed on DNA. To investigate the contribution of CPDs to UVB-induced changes of gene expression, a model system was established by transfecting keratinocytes with pseudouridine-modified mRNA (Ψ-mRNA) encoding CPD-photolyase. Microarray analyses of this model system demonstrated that more than 50% of the gene expression altered by UVB was mediated by CPD photolesions. Functional classification of the gene targets revealed strong effects of CPDs on the regulation of the cell cycle and transcriptional machineries. To confirm the microarray data, cell cycle-regulatory genes, CCNE1 and CDKN2B that were induced exclusively by CPDs were selected for further investigation. Following UVB irradiation, expression of these genes increased significantly at both mRNA and protein levels, but not in cells transfected with CPD-photolyase Ψ-mRNA and exposed to photoreactivating light. Treatment of cells with inhibitors of c-Jun N-terminal kinase (JNK) blocked the UVB-dependent upregulation of both genes suggesting a role for JNK in relaying the signal of UVB-induced CPDs into transcriptional responses. Thus, photolyase mRNA-based experimental platform demonstrates CPD-dependent and -independent events of UVB-induced cellular responses, and, as such, has the potential to identify novel molecular targets for treatment of UVB-mediated skin diseases.
Collapse
Affiliation(s)
- Gábor Boros
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Edit Miko
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Hiromi Muramatsu
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Eszter Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | - Andrea Szegedi
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Dermatological Allergology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Irén Horkay
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabriella Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- * E-mail:
| | - Katalin Karikó
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Éva Remenyik
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
21
|
Guo X, Connick MC, Vanderhoof J, Ishak MA, Hartley RS. MicroRNA-16 modulates HuR regulation of cyclin E1 in breast cancer cells. Int J Mol Sci 2015; 16:7112-32. [PMID: 25830480 PMCID: PMC4425007 DOI: 10.3390/ijms16047112] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/11/2015] [Accepted: 03/23/2015] [Indexed: 02/06/2023] Open
Abstract
RNA binding protein (RBPs) and microRNAs (miRNAs or miRs) are post-transcriptional regulators of gene expression that are implicated in development of cancers. Although their individual roles have been studied, the crosstalk between RBPs and miRNAs is under intense investigation. Here, we show that in breast cancer cells, cyclin E1 upregulation by the RBP HuR is through specific binding to regions in the cyclin E1 mRNA 3' untranslated region (3'UTR) containing U-rich elements. Similarly, miR-16 represses cyclin E1, dependent on its cognate binding sites in the cyclin E1 3'UTR. Evidence in the literature indicates that HuR can regulate miRNA expression and recruit or dissociate RNA-induced silencing complexes (RISC). Despite this, miR-16 and HuR do not affect the other’s expression level or binding to the cyclin E1 3'UTR. While HuR overexpression partially blocks miR-16 repression of a reporter mRNA containing the cyclin E1 3'UTR, it does not block miR-16 repression of endogenous cyclin E1 mRNA. In contrast, miR-16 blocks HuR-mediated upregulation of cyclin E1. Overall our results suggest that miR-16 can override HuR upregulation of cyclin E1 without affecting HuR expression or association with the cyclin E1 mRNA.
Collapse
Affiliation(s)
- Xun Guo
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Melanie C Connick
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Jennifer Vanderhoof
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Mohammad-Ali Ishak
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Rebecca S Hartley
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
22
|
Carbain B, Paterson DJ, Anscombe E, Campbell AJ, Cano C, Echalier A, Endicott JA, Golding BT, Haggerty K, Hardcastle IR, Jewsbury PJ, Newell DR, Noble MEM, Roche C, Wang LZ, Griffin RJ. 8-Substituted O(6)-cyclohexylmethylguanine CDK2 inhibitors: using structure-based inhibitor design to optimize an alternative binding mode. J Med Chem 2014; 57:56-70. [PMID: 24304238 DOI: 10.1021/jm401555v] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Evaluation of the effects of purine C-8 substitution within a series of CDK1/2-selective O(6)-cyclohexylmethylguanine derivatives revealed that potency decreases initially with increasing size of the alkyl substituent. Structural analysis showed that C-8 substitution is poorly tolerated, and to avoid unacceptable steric interactions, these compounds adopt novel binding modes. Thus, 2-amino-6-cyclohexylmethoxy-8-isopropyl-9H-purine adopts a "reverse" binding mode where the purine backbone has flipped 180°. This provided a novel lead chemotype from which we have designed more potent CDK2 inhibitors using, in the first instance, quantum mechanical energy calculations. Introduction of an ortho-tolyl or ortho-chlorophenyl group at the purine C-8 position restored the potency of these "reverse" binding mode inhibitors to that of the parent 2-amino-6-cyclohexylmethoxy-9H-purine. By contrast, the corresponding 8-(2-methyl-3-sulfamoylphenyl)-purine derivative exhibited submicromolar CDK2-inhibitory activity by virtue of engineered additional interactions with Asp86 and Lys89 in the reversed binding mode, as confirmed by X-ray crystallography.
Collapse
Affiliation(s)
- Benoit Carbain
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, U.K
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Chen J, Wang G. Cyclin E expression and chemotherapeutic sensitivity in breast cancer cells. ACTA ACUST UNITED AC 2013; 26:565-6. [PMID: 17219969 DOI: 10.1007/s11596-006-0521-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The effects of the cyclin E expression levels on chemotherapeutic sensitivity of breast cancer cell line were explored. After the cyclin E expression was knockdown in MDA-MB-435 by RNA interference, FACS analysis and SA-beta-gal staining were used to evaluate the response sensitivity of breast cancer cells to DNA damage drugs (adriamycin, etc.). Adriamycin could induce G1 arrest in cyclin E knockdown MDA-MB-435 breast cell line and increase the percentage of cell senescence in cyclin E knockdown MDA-MB-435 cells. It was suggested that cyclin E knockdown could increase the chemotherapeutic sensitivity of breast cancer cells to DNA damage drugs.
Collapse
Affiliation(s)
- Jianying Chen
- Department of General Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
| | | |
Collapse
|
24
|
Canavese M, Santo L, Raje N. Cyclin dependent kinases in cancer: potential for therapeutic intervention. Cancer Biol Ther 2012; 13:451-7. [PMID: 22361734 DOI: 10.4161/cbt.19589] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cell cycle progression through each phase is regulated by heterodimers formed by cyclin-dependent kinases (CDKs) and their regulatory partner proteins, the cyclins. Together they coordinate the cellular events through cell cycle. De-regulation of cell-cycle control due to aberrant CDK activity is a common feature of most cancer types. Intensive research on small molecules that target cell cycle regulatory proteins has led to the identification of many candidate inhibitors that are able to arrest proliferation and induce apoptosis in neoplastic cells as a promising strategy to treat cancer. Interestingly, cyclin-dependent kinases (CDKs) have also been proposed as therapeutic targets for Multiple Myeloma (MM). Overexpression and aberrant expression of the cyclins, specifically the D cyclins is seen in the majority of MM underscoring the value of exploring CDK inhibition in MM which currently remains an incurable neoplastic plasma-cell disorder. It is characterized by clonal proliferation of malignant plasma cells in the bone marrow microenviroment and associated organ dysfunction. Recent preclinical and early clinical data explore several CDK inhibitors in the context of MM. This review will provide an overview of the main classes of CDK inhibitors with a focus on their mechanism of action and discuss clinical and pharmacological implications of CDK inhibitors as possible therapeutic approaches for the treatment of cancer with specific consideration to MM.
Collapse
|
25
|
Węsierska-Gądek J, Kramer MP. The impact of multi-targeted cyclin-dependent kinase inhibition in breast cancer cells: clinical implications. Expert Opin Investig Drugs 2011; 20:1611-28. [PMID: 22017180 DOI: 10.1517/13543784.2011.628985] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The progression of the mammalian cell cycle is driven by the transient activation of complexes consisting of cyclins and cyclin-dependent kinases (CDKs). Loss of control over the cell cycle results in accelerated cell division and malignant transformation and can be caused by the upregulation of cyclins, the aberrant activation of CDKs or the inactivation of cellular CDK inhibitors. For these reasons, cell cycle regulators are regarded as very promising therapeutic targets for the treatment of human malignancies. AREAS COVERED This review covers the structures and anti-breast cancer activity of selected pharmacological pan-specific CDK inhibitors. Multi-targeted CDK inhibitors affect CDKs involved in the regulation of both cell cycle progression and transcriptional control. The inhibition of CDK7/CDK9 has a serious impact on the activity of RNA polymerase II; when its carboxy-terminal domain is unphosphorylated, it is unable to recruit the cofactors required for transcriptional elongation, resulting in a global transcriptional block. Multi-targeted inhibition of CDKs represses anti-apoptotic proteins and thus promotes the induction of apoptosis. Moreover, the inhibition of CDK7 in estrogen receptor (ER)-positive breast cancer cells prevents activating phosphorylation of ER-α. EXPERT OPINION These diverse modes of action make multi-targeted CDK inhibitors promising drugs for the treatment of breast cancers.
Collapse
Affiliation(s)
- Józefa Węsierska-Gądek
- Medical University of Vienna, Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Cell Cycle Regulation Group, Borschkegasse 8a, 1090 Vienna, Austria.
| | | |
Collapse
|
26
|
Żelazowski MJ, Płuciennik E, Pasz-Walczak G, Potemski P, Kordek R, Bednarek AK. WWOX expression in colorectal cancer--a real-time quantitative RT-PCR study. Tumour Biol 2011; 32:551-60. [PMID: 21347750 PMCID: PMC3093543 DOI: 10.1007/s13277-010-0150-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 12/14/2010] [Indexed: 01/16/2023] Open
Abstract
The WWOX gene is a tumour suppressor gene affected in various types of malignancies. Numerous studies showed either loss or reduction of the WWOX expression in variety of tumours, including breast, ovary, liver, stomach and pancreas. Recent study demonstrated that breast cancer patients exhibiting higher WWOX expression showed significantly longer disease-free survival in contrast to the group with lower relative WWOX level. This work was undertaken to show whether similar phenomena take place in colon tumours and cell lines. To assess the correlation of WWOX gene expression with prognosis and cancer recurrence in 99 colorectal cancer patients, we performed qRT-PCR analysis. We also performed analysis of WWOX promoter methylation status using MethylScreen method and analysis of loss of heterozygosity (LOH) status at two WWOX-related loci, previously shown to be frequently deleted in various types of tumours. A significantly better disease-free survival was observed among patients with tumours exhibiting high level of WWOX (hazard ratio = 0.39; p = 0.0452; Mantel-Cox log-rank test), but in multivariate analysis it was not an independent prognostic factor. We also found that although in colorectal cancer WWOX expression varies among patients and correlates with DFS, the exact mode of decrease in this type of tumour was not found. We failed to find the evidence of LOH in WWOX region, or hypermethylation in promoter regions of this gene. Although we provide the evidence for tumour-suppressive role of WWOX gene expression in colon, we were unable to identify the molecular mechanism responsible for this.
Collapse
Affiliation(s)
- Maciej Jakub Żelazowski
- Department of Molecular Carcinogenesis, Medical University of Łódź, Zeligowskiego Str 7/9, 90-752 Łódź, Poland.
| | | | | | | | | | | |
Collapse
|
27
|
Ludyga N, Anastasov N, Gonzalez-Vasconcellos I, Ram M, Höfler H, Aubele M. Impact of protein tyrosine kinase 6 (PTK6) on human epidermal growth factor receptor (HER) signalling in breast cancer. MOLECULAR BIOSYSTEMS 2011; 7:1603-12. [DOI: 10.1039/c0mb00286k] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
Guo X, Wu Y, Hartley RS. Cold-inducible RNA-binding protein contributes to human antigen R and cyclin E1 deregulation in breast cancer. Mol Carcinog 2010; 49:130-40. [PMID: 19777567 DOI: 10.1002/mc.20582] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The cell cycle regulator cyclin E1 is aberrantly expressed in a variety of human cancers. In breast cancer, elevated cyclin E1 correlates with poor outcome, as do high cytoplasmic levels of the stress-induced RNA-binding protein human antigen R (HuR). We showed previously that increased cytoplasmic HuR elevates cyclin E1 in MCF-7 breast cancer cells by stabilizing its mRNA. We show here that cold-inducible RNA-binding protein (CIRP) co-regulates cyclin E1 with HuR in breast cancer cells. CIRP had been shown to interact with HuR in Xenopus laevis oocytes and to be decreased in endometrial cancer. To investigate if human CIRP and HuR co-regulate cyclin E1, HuR and CIRP levels were altered in MCF-7 cells and effects on cyclin E1 assessed. Altering HuR expression resulted in a reciprocal change in CIRP expression, while altering CIRP expression resulted in corresponding changes in HuR and cyclin E1 expression. CIRP and HuR co-precipitated in the presence of RNA and CIRP enhanced HuR binding to the cyclin E1 mRNA and increased cyclin E1 mRNA stability. CIRP co-localized with HuR predominantly in the nucleus, but also in discrete cytoplasmic foci identified as stress granules (SGs). CIRP overexpression increased the number of HuR-containing SGs, while its knockdown decreased them. Our results suggest that CIRP positively regulates HuR, ultimately resulting in increased protein synthesis of at least one of its targets.
Collapse
Affiliation(s)
- Xun Guo
- Department of Cell Biology and Physiology, Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131-0001, USA
| | | | | |
Collapse
|
29
|
Yu Z, Baserga R, Chen L, Wang C, Lisanti MP, Pestell RG. microRNA, cell cycle, and human breast cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1058-64. [PMID: 20075198 DOI: 10.2353/ajpath.2010.090664] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The discovery of microRNAs as a novel class of gene expression regulators has led to a new strategy for disease diagnostics and therapeutics. Cell cycle, cell proliferation, and tumorigenesis are all regulated by microRNAs. Several general principles linking microRNAs and cancer have been recently reviewed; therefore, the current review focuses specifically on the perspective of microRNAs in control of cell cycle, stem cells, and heterotypic signaling, as well as the role of these processes in breast cancer. Altered abundance of cell cycle regulation proteins and aberrant expression of microRNAs frequently coexist in human breast cancers. Altered microRNA expression in breast cancer cell lines is associated with altered cell cycle progression and cell proliferation. Indeed, recent studies have demonstrated a causal role for microRNA in governing breast tumor suppression or collaborative oncogenesis. This review summarizes the current understanding of the role for microRNA in regulating the cell cycle and summarizes the evidence for aberrant microRNA expression in breast cancer. The new evidence for microRNA regulation by annotated genes and the involvement of microRNA in breast cancer metastasis are discussed, as is the potential for microRNA to improve breast cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Zuoren Yu
- Department of Cancer Biology, Thomas Jefferson University, 233 S. 10 Street, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
30
|
The histone gene activator HINFP is a nonredundant cyclin E/CDK2 effector during early embryonic cell cycles. Proc Natl Acad Sci U S A 2009; 106:12359-64. [PMID: 19590016 DOI: 10.1073/pnas.0905651106] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Competency for DNA replication is functionally coupled to the activation of histone gene expression at the onset of S phase to form chromatin. Human histone nuclear factor P (HiNF-P; gene symbol HINFP) bound to its cyclin E/cyclin-dependent kinase 2 (CDK2) responsive coactivator p220(NPAT) is a key regulator of multiple human histone H4 genes that encode a major subunit of the nucleosome. Induction of the histone H4 transcription factor (HINFP)/p220(NPAT) coactivation complex occurs in parallel with the CDK-dependent release of pRB from E2F at the restriction point. Here, we show that the downstream CDK-dependent cell cycle effector HINFP is genetically required and, in contrast to the CDK2/cyclin E complex, cannot be compensated. We constructed a mouse Hinfp-null mutation and found that heterozygous Hinfp mice survive, indicating that 1 allele suffices for embryogenesis. Homozygous loss-of-function causes embryonic lethality: No homozygous Hinfp-null mice are obtained at or beyond embryonic day (E) 6.5. In blastocyst cultures, Hinfp-null embryos exhibit a delay in hatching, abnormal growth, and loss of histone H4 gene expression. Our data indicate that the CDK2/cyclin E/p220(NPAT)/HINFP/histone gene signaling pathway at the G1/S phase transition is an essential, nonredundant cell cycle regulatory mechanism that is established early in embryogenesis.
Collapse
|
31
|
Yu JC, Ding SL, Chang CH, Kuo SH, Chen ST, Hsu GC, Hsu HM, Hou MF, Jung LY, Cheng CW, Wu PE, Shen CY. Genetic susceptibility to the development and progression of breast cancer associated with polymorphism of cell cycle and ubiquitin ligase genes. Carcinogenesis 2009; 30:1562-70. [PMID: 19587092 DOI: 10.1093/carcin/bgp173] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Jyh-Cherng Yu
- Department of Surgery, Tri-Service General Hospital, Taipei 11472, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Diaz-Padilla I, Siu LL, Duran I. Cyclin-dependent kinase inhibitors as potential targeted anticancer agents. Invest New Drugs 2009; 27:586-94. [PMID: 19262992 DOI: 10.1007/s10637-009-9236-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 02/18/2009] [Indexed: 12/22/2022]
Abstract
Cyclin-dependent kinases (CDKs) are core components of the cell cycle machinery that govern the transition between phases during cell cycle progression. Genes involved in cell cycle are frequently mutated in human cancer and deregulated CDK activity represents a hallmark of malignancy. This knowledge provides a rationale for regarding CDKs and their associated molecules as potential targets for new drug development in anticancer research. The present article will review the most relevant CDK inhibitors with emphasis on the newer molecules in clinical development and the biological rationale of this therapeutic approach.
Collapse
Affiliation(s)
- Ivan Diaz-Padilla
- Medical Oncology Department, Centro Integral Oncologico Clara Campal, C/ Oña 10, 28050, Madrid, Spain
| | | | | |
Collapse
|
33
|
The dietary phytochemical indole-3-carbinol is a natural elastase enzymatic inhibitor that disrupts cyclin E protein processing. Proc Natl Acad Sci U S A 2008; 105:19750-5. [PMID: 19064917 DOI: 10.1073/pnas.0806581105] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Indole-3-carbinol (I3C), a naturally occurring component of Brassica vegetables, such as broccoli, cabbage, and Brussels sprouts, induces a G(1) cell-cycle arrest of human breast cancer cells, although the direct cellular targets that mediate this process are unknown. Treatment of highly invasive MDA-MB-231 breast cancer cells with I3C shifted the stable accumulation of cyclin E protein from the hyperactive lower-molecular-mass 35-kDa form that is associated with cancer cell proliferation and poor clinical outcomes to the 50-kDa cyclin E form that typically is expressed in normal mammary tissue. An in vitro cyclin E processing assay, in combination with zymography, demonstrated that I3C, but not its natural dimer, 3,3'-diindolylmethane, disrupts proteolytic processing of the 50-kDa cyclin E into the lower-molecular-mass forms by direct inhibition of human neutrophil elastase enzymatic activity. Analysis of elastase enzyme kinetics using either cyclin E or N-methoxysuccinyl-Ala-Ala-Pro-Val-p-nitroanalide as substrates demonstrated that I3C acts as a noncompetitive inhibitor of elastase activity with an inhibitory constant of approximately 12 microM. Finally, siRNA ablation of neutrophil elastase protein production in MDA-MB-231 cells mimicked the I3C-disrupted processing of the 50-kDa cyclin E protein and the indole-induced cell-cycle arrest. Taken together, our results demonstrate that elastase is the first identified specific target protein for I3C and that the direct I3C inhibition of elastase enzymatic activity implicates the potential use of this indole, or related compounds, in targeted therapies of human breast cancers where high elastase levels are correlated with poor prognosis.
Collapse
|
34
|
Indirect participation of Hsp90 in the regulation of the cyclin E turnover. Biochem Pharmacol 2008; 77:151-8. [PMID: 18977205 DOI: 10.1016/j.bcp.2008.09.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 09/28/2008] [Accepted: 09/30/2008] [Indexed: 01/13/2023]
Abstract
Cyclin E is the Cdk2-regulatory subunit required for the initiation of DNA replication at the G1/S transition. It accumulates in late G1 phase and gets rapidly degraded by the ubiquitin/proteasome pathway during S phase. The degradation of cyclin E is a consequence of its phosphorylation and subsequent isomerization by the peptidyl-prolyl isomerase Pin1. We show that in the colon cancer cells HT-29 the inhibition of the chaperone function of Hsp90 by geldanamycin (GA) enhances the ubiquitinylation of cyclin E and triggers active degradation via the proteasome pathway. As Hsp90 forms multiprotein complexes with and regulates the function and cell contents of numerous signaling proteins, this observation suggests a direct interaction between Hsp90 and cyclin E. However, experiments using cell lysate fractionation did not reveal the presence of complexes containing both Hsp90 and cyclin E. Coupled transcription/translation experiments also failed to detect the formation of complexes between newly synthesized cyclin E and Hsp90. We conclude that Hsp90 can regulate the degradation of cellular proteins without binding to them, by an indirect mechanism. This conclusion postulates a new category of proteins that are affected by the inactivation of Hsp90. Our observations do not support the possible involvement of a PPIase in this indirect mechanism. Besides, we did not observe active geldanamycin-dependent degradation of cyclin E in the prostate cancer-derived cell line DU-145, indicating that the Hsp90-dependent stabilization of cyclin E requires specific regulatory mechanism which may be lost in certain types of cancer cells.
Collapse
|
35
|
Voduc D, Nielsen TO, Cheang MC, Foulkes WD. The combination of high cyclin E and Skp2 expression in breast cancer is associated with a poor prognosis and the basal phenotype. Hum Pathol 2008; 39:1431-7. [DOI: 10.1016/j.humpath.2008.03.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 03/05/2008] [Accepted: 03/11/2008] [Indexed: 10/21/2022]
|
36
|
Brk is coamplified with ErbB2 to promote proliferation in breast cancer. Proc Natl Acad Sci U S A 2008; 105:12463-8. [PMID: 18719096 DOI: 10.1073/pnas.0805009105] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Amplification of the receptor tyrosine kinase ErbB2 is frequently observed in breast cancer. Amplification of erbB2 is also associated with multiple genomic gains and losses; however, the importance of these associated changes is largely unknown. We demonstrate that Brk, a cytoplasmic tyrosine kinase, is coamplified and coexpressed with ErbB2 in human breast cancers. ErbB2 interacts with Brk and increases its intrinsic kinase activity. Expression of Brk enhances the ErbB2-induced activation of Ras/MAPK signaling and cyclin E/cdk2 activity to induce cell proliferation of mammary 3-dimensional acini in culture. In a murine model of breast cancer, expression of Brk was found to shorten the latency of ErbB2-induced tumors by promoting cell proliferation, with no effect on protection from apoptosis. Furthermore, overexpression of Brk conferred resistance to the ability of Lapatinib, an ErbB2 kinase inhibitor, to inhibit ErbB2-induced proliferation. Thus, we identified Brk as a drug target for ErbB2-positive cancers.
Collapse
|
37
|
Berrebi D, Leclerc J, Schleiermacher G, Zaccaria I, Boccon-Gibod L, Fabre M, Jaubert F, El Ghoneimi A, Jeanpierre C, Peuchmaur M. High cyclin E staining index in blastemal, stromal or epithelial cells is correlated with tumor aggressiveness in patients with nephroblastoma. PLoS One 2008; 3:e2216. [PMID: 18493303 PMCID: PMC2373888 DOI: 10.1371/journal.pone.0002216] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Accepted: 04/03/2008] [Indexed: 02/02/2023] Open
Abstract
Purpose Identifying among nephroblastoma those with a high propensity for distant metastases using cell cycle markers: cyclin E as a regulator of progression through the cell cycle and Ki-67 as a tumor proliferation marker, since both are often deregulated in many human malignancies. Methodology/Principal Findings A staining index (SI) was obtained by immunohistochemistry using anti-cyclin E and anti-Ki-67 antibodies in paraffin sections of 54 postchemotherapy nephroblastoma including 42 nephroblastoma without metastasis and 12 with metastases. Median cyclin E and Ki-67 SI were 46% and 33% in blastemal cells, 30% and 10% in stromal cells, 37% and 29.5% in epithelial cells. The highest values were found for anaplastic nephroblastoma. A correlation between cyclin E and Ki-67 SI was found for the blastemal component and for the epithelial component. Univariate analysis showed prognostic significance for metastases with cyclin E SI in stromal cells, epithelial cells and blastemal cells (p = 0.03, p = 0.01 and p = 0.002, respectively) as well as with Ki-67 SI in blastema (p<10−4). The most striking data were that both cyclin E SI and blastemal Ki-67 SI discriminated between patients with metastases and patients without metastasis among intermediate-risk nephroblastoma. Conclusions Our findings show that a high cyclin E SI in all components of nephroblastoma is correlated with tumor aggressiveness and metastases, and that assessment of its expression may have prognostic value in the categorization of nephroblastoma.
Collapse
Affiliation(s)
- Dominique Berrebi
- Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, Service d'Anatomie et de Cytologie Pathologiques, Paris, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Cancer is a disease of "outlaw" cells that become mutated in regulatory mechanisms. They have lost normal self controls and relationships to the whole organism. Cancers can progress by several pathways from a normal cell to malignant cancer, from bad to worse. Questions about advisability of treatment for some cancers arise from the possibility that they are arrested during progression and so never become lethal. Techniques could be developed to determine the degree of progression and possibility for successful treatment. This article is intended to suggest a way of looking at cancer. It is not a review so references to research articles are infrequent.
Collapse
Affiliation(s)
- Meng Qiao
- Dana-Farber Cancer Institute, 44 Binney St., Boston, Massachusetts 02115, USA
| | | |
Collapse
|
39
|
Sieuwerts AM, Look MP, Meijer-van Gelder ME, Timmermans M, Trapman AMAC, Garcia RR, Arnold M, Goedheer AJW, de Weerd V, Portengen H, Klijn JGM, Foekens JA. Which cyclin E prevails as prognostic marker for breast cancer? Results from a retrospective study involving 635 lymph node-negative breast cancer patients. Clin Cancer Res 2007; 12:3319-28. [PMID: 16740753 DOI: 10.1158/1078-0432.ccr-06-0225] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To evaluate the prognostic value of cyclin E with a quantitative method for lymph node-negative primary breast cancer patients. PATIENTS AND METHODS mRNA transcripts of full-length and splice variants of cyclin E1 (CCNE1) and cyclin E2 (CCNE2) were measured by real-time PCR in frozen tumor samples from 635 lymph node-negative breast cancer patients who had not received neoadjuvant or adjuvant systemic therapy. RESULTS None of the PCR assays designed for the specific splice variants of the cyclins gave additional prognosis-related information compared with the common assays able to detect all variants. In Cox multivariate analysis, corrected for the traditional prognostic factors, high levels of cyclin E were independently associated with a short distant metastasis-free survival [hazard ratio (HR), 3.40; P < 0.001 for CCNE1 and HR, 1.76; P < 0.001 for CCNE2, respectively]. After dichotomizing the tumors at the median level of 70% tumor cells, the multivariate analysis showed particularly strong results for CCNE1 in the group of 433 patients with stroma-enriched primary tumors (HR, 5.12; P < 0.001). In these tumors, the worst prognosis was found for patients with estrogen receptor-negative tumors expressing high CCNE1 (HR, 9.89; P < 0.001) and for patients with small (T1) tumors expressing high CCNE1 (HR, 8.47; P < 0.001). CONCLUSION Our study shows that both CCNE1 and CCNE2 qualify as independent prognostic markers for lymph node-negative breast cancer patients, and that CCNE1 may provide additional information for specific subgroups of patients.
Collapse
|
40
|
A phase 1 study of SNS-032 (formerly BMS-387032), a potent inhibitor of cyclin-dependent kinases 2, 7 and 9 administered as a single oral dose and weekly infusion in patients with metastatic refractory solid tumors. Invest New Drugs 2007; 26:59-65. [PMID: 17938863 DOI: 10.1007/s10637-007-9090-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2007] [Accepted: 09/17/2007] [Indexed: 10/22/2022]
Abstract
PURPOSE SNS-032, (formerly BMS-387032) is a potent and selective inhibitor of cyclin-dependent kinases (CDK) 2, 7 and 9. The primary objective of the study was to establish the maximum tolerated dose (MTD), the maximum administered dose (MAD), dose limiting toxicity (DLT), and the recommended phase 2 dose for SNS-032 when administered as a weekly 1-h infusion. The secondary objective was to assess the safety and tolerability of SNS-032 and to evaluate its bioavailability as an oral solution. METHODS Patients with metastatic solid tumors or refractory lymphoma were treated with a starting dose of 4 mg/m2 intravenously administered over 1-h with a cycle defined as 3 weekly doses of SNS-032 every 21 days. Three patient cohorts were utilized in the dose-escalation schema. Pharmacokinetic studies were performed. For the 13 and 16 mg/m2 dose cohorts, the first dose of cycle 2 was given as an oral solution to estimate the oral bioavailability of the drug in humans. RESULTS A total of 21 patients were enrolled. Twenty treated patients received a total of 39 cycles of treatment. The most common treatment-related adverse events occurring with greater than 20% incidence were fatigue (25%) and nausea (20%). Following intravenous administration, plasma concentrations declined in a biphasic manner, resulting in mean terminal half-lives between 5 and 10 hours. The mean Cmax and AUC0-inf increased nearly linearly with dose, ranging from 0.067 to 0.287 microg/ml and 0.103 to 0.553 microg h/ml, respectively. The CL and Vss remained unchanged with increasing dose levels, averaging 38 l/h/m2 and 212 l/m2, respectively. Average oral bioavailability was 19% (range: 4-33%). Three (15%) patients experienced a best response of stable disease. Study enrollment was terminated during dose-escalation due to a change in the development strategy for the study drug. CONCLUSIONS SNS-032 administered as a weekly 1-h infusion was well tolerated, although study enrollment was terminated during dose-escalation and the MTD of SNS-032 administered intravenously on days 1, 8, and 15 of each treatment cycle was not reached. Tumor progression or stable disease was determined to be the best response in all evaluable patients. At the dose levels tested, the oral bioavailability of SNS-032 ranged from 4-33%. The data suggest that oral administration of SNS-032 may be feasible, though the tolerability and bioavailability of the oral formulation would have to be formally assessed.
Collapse
|
41
|
Barabutis N, Tsellou E, Schally AV, Kouloheri S, Kalofoutis A, Kiaris H. Stimulation of proliferation of MCF-7 breast cancer cells by a transfected splice variant of growth hormone-releasing hormone receptor. Proc Natl Acad Sci U S A 2007; 104:5575-9. [PMID: 17372203 PMCID: PMC1838504 DOI: 10.1073/pnas.0700407104] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recent evidence indicates that growth hormone-releasing hormone (GHRH) functions as an autocrine/paracrine growth factor for various human cancers. A splice variant (SV) of the full-length receptor for GHRH (GHRHR) is widely expressed in various primary human cancers and established cancer cell lines and appears to mediate the proliferative effects of GHRH. To investigate in greater detail the role of SV1 in tumorigenesis, we have expressed the full-length GHRHR and its SV1 in MCF-7 human breast cancer cells that do not possess either GHRHR or SV1. In accordance with previous findings, the expression of both GHRHR and SV1 restored the sensitivity to GHRH-induced stimulation of cell proliferation, with SV1 being more potent than the GHRHR. Furthermore, MCF-7 cells transfected with SV1 proliferated more quickly than the controls, even in the absence of exogenously added GHRH, suggesting the existence of intrinsic, ligand-independent activity of SV1 after its transfection. In agreement with the stimulation of cell proliferation, the levels of proliferation markers cyclin D1, cyclin E, and proliferating cell nuclear antigen were elevated in MCF-7 cells treated with GHRH, cultured in both serum-free and serum-containing media. In addition, SV1 caused a considerable stimulation of the ability of MCF-7 cells to grow in semisolid medium, an assay considered diagnostic for cell transformation. Collectively, our findings show that the expression of SV1 confers oncogenic activity and provide further evidence that GHRH operates as a growth factor in breast cancer and probably other cancers as well.
Collapse
Affiliation(s)
- Nektarios Barabutis
- *Department of Biological Chemistry, University of Athens Medical School, 75 Micras Asias, 115 27 Athens, Greece; and
- Endocrine Polypeptide and Cancer Institute, Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education and Department of Pathology, University of Miami Miller School of Medicine, Miami, FL 33125
| | - Erasmia Tsellou
- *Department of Biological Chemistry, University of Athens Medical School, 75 Micras Asias, 115 27 Athens, Greece; and
| | - Andrew V. Schally
- Endocrine Polypeptide and Cancer Institute, Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education and Department of Pathology, University of Miami Miller School of Medicine, Miami, FL 33125
- To whom correspondence may be addressed. E-mail: or
| | - Stavroula Kouloheri
- *Department of Biological Chemistry, University of Athens Medical School, 75 Micras Asias, 115 27 Athens, Greece; and
| | - Anastasios Kalofoutis
- *Department of Biological Chemistry, University of Athens Medical School, 75 Micras Asias, 115 27 Athens, Greece; and
| | - Hippokratis Kiaris
- *Department of Biological Chemistry, University of Athens Medical School, 75 Micras Asias, 115 27 Athens, Greece; and
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
42
|
Pan Y, Wang L, Le Dai J. Suppression of breast cancer cell growth by Na+/H+ exchanger regulatory factor 1 (NHERF1). Breast Cancer Res 2007; 8:R63. [PMID: 17078868 PMCID: PMC1797034 DOI: 10.1186/bcr1616] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 09/04/2006] [Accepted: 11/01/2006] [Indexed: 11/18/2022] Open
Abstract
Introduction Na+/H+ exchanger regulatory factor 1 (NHERF1, also known as EBP50 or NHERF) is a putative tumour suppressor gene in human breast cancer. Located at 17q25.1, NHERF1 is frequently targeted during breast tumourigenesis. Loss of heterozygosity (LOH) at the NHERF1 locus is found in more than 50% of breast tumours. In addition, NHERF1 is mutated in a subset of primary breast tumours and breast cancer cell lines. LOH at the NHERF1 locus is strongly associated with aggressive features of breast tumours, implicating NHERF1 as a haploinsufficiency tumour suppressor gene. However, the putative NHERF1 tumour suppressor activity has not been functionally verified. Methods To confirm the NHERF1 tumour suppressor activity suggested by our genetic analyses, we used retrovirus-transduced short hairpin RNA (shRNA) to knock down NHERF1 expression in breast cancer cell lines MCF7 and T47D. These cells were then assessed for cell growth in vitro and in vivo. The control and NHERF1 knockdown cells were also serum-starved and re-fed to compare their cell cycle progression as measured by fluorescence-activated cell sorting analyses. Results We found that downregulation of the endogenous NHERF1 in T47D or MCF7 cells resulted in enhanced cell proliferation in both anchorage-dependent and -independent conditions compared with that of the vector control cells. NHERF1 knockdown T47D cells implanted at mammary fat pads of athymic mice formed larger tumours than did control cells. We found that serum-starved NHERF1 knockdown cells had a faster G1-to-S transition after serum re-stimulation than the control cells. Immunoblotting showed that the accelerated cell cycle progression in NHERF1 knockdown cells was accompanied by increased expression of cyclin E and elevated Rb phosphorylation level. Conclusion Our findings suggested that the normal NHERF1 function in mammary epithelial cells involves blockage of cell cycle progression. Our study affirmed the tumour suppressor activity of NHERF1 in breast which may be related to its regulatory effect on cell cycle. It warrants future investigation of this novel tumour suppressor pathway in human breast cancer which may turn up therapeutic opportunities.
Collapse
Affiliation(s)
- Yong Pan
- Department of Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, 7435 Fannin Street, Houston, TX 77054, USA
| | - Lei Wang
- Department of Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, 7435 Fannin Street, Houston, TX 77054, USA
| | - Jia Le Dai
- Department of Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, 7435 Fannin Street, Houston, TX 77054, USA
| |
Collapse
|
43
|
Galons H, Bettayeb K, Meijer L. (R)-Roscovitine (CYC202, Seliciclib). ENZYME INHIBITORS SERIES 2006. [DOI: 10.1201/9781420005400.ch9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Bay BH, Jin R, Huang J, Tan PH. Metallothionein as a prognostic biomarker in breast cancer. Exp Biol Med (Maywood) 2006; 231:1516-21. [PMID: 17018874 DOI: 10.1177/153537020623100910] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is the most common cancer in women, with a general upward trend in incidence. Basic and clinical breast cancer research has continued at a rapid pace, in the endeavor to understand the biology of the disease so as to improve management of patients. Besides traditional pathological indicators, expression of molecular markers in breast cancer has also been comprehensively investigated. This paper will focus on the prognostic utility of metallothioneins (MTs), a family of low molecular weight metal binding proteins encoded by at least 10 functional MT genes that are associated with cell proliferation in breast cancer. Evidence that MT is a potential prognostic biomarker for breast cancer is supported by many reports in the literature. Expression of the MT protein has been detected by immunohistochemistry in a significant portion of invasive ductal breast cancers. MT expression has also been well studied in association with traditional clinico-pathological parameters of breast cancers. Generally, higher MT expression in breast cancers is predictive of worse patient outcomes. The relationship of MT isoforms to histological grade, estrogen receptor (ER) status, and prognosis will also be discussed.
Collapse
Affiliation(s)
- Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Blk MD 10, Singapore 117 597.
| | | | | | | |
Collapse
|
45
|
Ishii Y, Pirkmaier A, Alvarez JV, Frank DA, Keselman I, Logothetis D, Mandeli J, O'Connell MJ, Waxman S, Germain D. Cyclin D1 Overexpression and Response to Bortezomib Treatment in a Breast Cancer Model. ACTA ACUST UNITED AC 2006; 98:1238-47. [PMID: 16954476 DOI: 10.1093/jnci/djj334] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Cyclin D1 is frequently overexpressed in breast cancer, and its overexpression is, surprisingly, associated with improved survival. One potential mechanism for this association involves signal transducer and activator of transcription 3 (STAT3). METHODS Cyclin D1 and STAT3 expression were assessed in human tumors using microarray analysis and in breast cancer cell lines HBL100, T47D, MCF7, MDA-MB-453, and BT20 and in HBL100 and T47D cells stably overexpressing cyclin D1 using immunoblot analysis. Cyclin D1 protein was stabilized by treatment with the proteasome inhibitor bortezomib, and the effects on STAT3 expression in vitro was determined by using immunoblotting and on xenograft tumor growth and apoptosis in vivo was determined by using terminal deoxyuridine nick-end labeling assays. All statistical tests were two-sided. RESULTS Tumors with high cyclin D1 expression (n = 17) had low STAT3 expression (mean = 274 arbitrary units), and those with low cyclin D1 expression (n = 31) had high STAT3 expression (mean = 882 arbitrary units) (P<.001). In HBL100 and T47D parental and cyclin D1-overexpressing cells, cyclin D1 overexpression was also inversely associated with STAT3 expression, and cyclin D1 directly reduced the expression of STAT3. Stabilization of cyclin D1 protein by bortezomib treatment further amplified the cyclin D1-dependent repression of STAT3 in vitro and slowed tumor growth in vivo (week 7: untreated mean = 185.7 mm3 versus treated mean = 136.2 mm3, difference = 49.5 mm3, 95% confidence interval [CI] = 18 to 81 mm3, P = .007; week 8: untreated mean = 240.2 mm3 versus treated mean = 157.3 mm3, difference = 82.9 mm3, 95% CI = 9.1 to 156.7 mm3, P = .0014; and week 9: untreated mean = 256.4 mm3 versus treated mean = 170.2 mm3, difference = 86.2 mm3, 95% CI = 22.8 to 149.6 mm3, P = .006) and increased apoptosis (untreated mean = 19% versus treated mean = 54%, difference = 35%, 95% CI = 24.7% to 45.4%; P = .013) of xenograft tumors. CONCLUSIONS Cyclin D1 repression of STAT3 expression may explain the association between cyclin D1 overexpression and improved outcome in breast cancer. In addition, bortezomib can amplify the proapoptotic function of cyclin D1, raising the possibility that cyclin D1 levels may be a marker for predicting the response to this novel drug.
Collapse
Affiliation(s)
- Yuki Ishii
- Division of Hematology/Oncology, Department of Medicine, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
El Messaoudi S, Fabbrizio E, Rodriguez C, Chuchana P, Fauquier L, Cheng D, Theillet C, Vandel L, Bedford MT, Sardet C. Coactivator-associated arginine methyltransferase 1 (CARM1) is a positive regulator of the Cyclin E1 gene. Proc Natl Acad Sci U S A 2006; 103:13351-6. [PMID: 16938873 PMCID: PMC1569167 DOI: 10.1073/pnas.0605692103] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Indexed: 11/18/2022] Open
Abstract
The Cyclin E1 gene (CCNE1) is an ideal model to explore the mechanisms that control the transcription of cell cycle-regulated genes whose expression rises transiently before entry into S phase. E2F-dependent regulation of the CCNE1 promoter was shown to correlate with changes in the level of H3-K9 acetylation/methylation of nucleosomal histones positioned at the transcriptional start site region. Here we show that, upon growth stimulation, the same region is subject to variations of H3-R17 and H3-R26 methylation that correlate with the recruitment of coactivator-associated arginine methyltransferase 1 (CARM1) onto the CCNE1 and DHFR promoters. Accordingly, CARM1-deficient cells lack these modifications and present lowered levels and altered kinetics of CCNE1 and DHFR mRNA expression. Consistently, reporter gene assays demonstrate that CARM1 functions as a transcriptional coactivator for their E2F1/DP1-stimulated expression. CARM1 recruitment at the CCNE1 gene requires activator E2Fs and ACTR, a member of the p160 coactivator family that is frequently overexpressed in human breast cancer. Finally, we show that grade-3 breast tumors present coelevated mRNA levels of ACTR and CARM1, along with their transcriptional target CCNE1. All together, our results indicate that CARM1 is an important regulator of the CCNE1 gene.
Collapse
Affiliation(s)
- Selma El Messaoudi
- *Institut de Génétique Moléculaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5535/Institut Fédératif de Recherche 122, Université de Montpellier II, 34293 Montpellier, France
| | - Eric Fabbrizio
- *Institut de Génétique Moléculaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5535/Institut Fédératif de Recherche 122, Université de Montpellier II, 34293 Montpellier, France
| | - Carmen Rodriguez
- Genotype et Phenotypes Tumoraux E 229, Institut National de la Santé et de la Recherche Médicale, Centre Val d’Aurelle, 34298 Montpellier, France
| | - Paul Chuchana
- Genotype et Phenotypes Tumoraux E 229, Institut National de la Santé et de la Recherche Médicale, Centre Val d’Aurelle, 34298 Montpellier, France
| | - Lucas Fauquier
- Centre de Biologie du Developpement, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5547, 118 Route de Narbonne, 31062 Toulouse, France; and
| | - Donghang Cheng
- Department of Carcinogenesis, University of Texas, Smithville, TX 78957
| | - Charles Theillet
- Genotype et Phenotypes Tumoraux E 229, Institut National de la Santé et de la Recherche Médicale, Centre Val d’Aurelle, 34298 Montpellier, France
| | - Laurence Vandel
- Centre de Biologie du Developpement, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5547, 118 Route de Narbonne, 31062 Toulouse, France; and
| | - Mark T. Bedford
- Department of Carcinogenesis, University of Texas, Smithville, TX 78957
| | - Claude Sardet
- *Institut de Génétique Moléculaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5535/Institut Fédératif de Recherche 122, Université de Montpellier II, 34293 Montpellier, France
| |
Collapse
|
47
|
Abstract
Steroid receptor coactivator-3 (SRC-3, also known as NCoA3, AIB1, p/CIP, RAC3, ACTR, and TRAM1), localized on a frequently amplified region, 20q12, has been associated with multiple cancers, including breast, gastric and prostate cancers. Although SRC-3 has been implicated as an oncogene, compelling evidence has only recently emerged implicating it as a causal factor in the genesis of human cancers. Here, we summarize recent evidence that indicates aberrant SRC-3 expression is important in hormone-sensitive and -insensitive human cancers.
Collapse
Affiliation(s)
- Jun Yan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | |
Collapse
|