1
|
Cáceres-Vélez PR, Ali A, Fournier-Level A, Dunshea FR, Jusuf PR. Phytochemical Composition and Toxicological Screening of Anise Myrtle and Lemon Myrtle Using Zebrafish Larvae. Antioxidants (Basel) 2024; 13:977. [PMID: 39199222 PMCID: PMC11351381 DOI: 10.3390/antiox13080977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Plants are an immense source of drugs, and 50% of modern pharmacopeia has a plant origin. With increasing life expectancy in humans, many age-related degenerative diseases converge on oxidative cellular stress pathways. This provides an opportunity to develop broad treatments by targeting the cause of common pathologic cell degeneration. Toxicological effects can be readily assessed in a live animal model system to establish potential fauna for clinical use. Here, we characterized and evaluated the antioxidant potential and toxicological effects of anise myrtle (Syzygium anisatum) and lemon myrtle (Backhousia citriodora) leaves. Using zebrafish larvae, a model for high-throughput pre-clinical in vivo toxicology screening, we identified safe levels of extract exposures for development of future therapeutics. The antioxidant capacity and toxicity were very similar in these two myrtles. The LC50-96h for anise myrtle was 284 mg/L, and for lemon myrtle, it was 270 mg/L. These measurements are comparable to ongoing studies we are performing using the same criteria in zebrafish, which allow for robust testing and prioritization of natural fauna for drug development.
Collapse
Affiliation(s)
| | - Akhtar Ali
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.A.); (F.R.D.)
| | | | - Frank R. Dunshea
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.A.); (F.R.D.)
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| | | |
Collapse
|
2
|
Omar NA, Kumar J, Teoh SL. Parkinson's disease model in zebrafish using intraperitoneal MPTP injection. Front Neurosci 2023; 17:1236049. [PMID: 37694115 PMCID: PMC10485380 DOI: 10.3389/fnins.2023.1236049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Parkinson's disease (PD) is the second most common neurodegenerative disease that severely affects the quality of life of patients and their family members. Exposure to 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been shown to reflect behavioral, molecular, and proteomic features of PD. This study aimed to assess the protocol for inducing PD following MPTP injection in adult zebrafish. Methods Fish were injected with 100 μg/g of MPTP intraperitoneally once or twice and then assessed on days 1 to 30 post-injection. Results Between one-time and two-time injections, there was no significant difference in most locomotor parameters, expressions of tyrosine hydroxylase-2 (th2) and dopamine transporter (dat) genes, and dopaminergic neurons (tyrosine hydroxylase positive, TH+ cells) counts. However, caspase-3 levels significantly differed between one- and two-time injections on the day 1 assessment. Discussion Over a 30-day period, the parameters showed significant differences in swimming speed, total distance traveled, tyrosine hydroxylase-1 (th1) and dat gene expressions, caspase-3 and glutathione protein levels, and TH+ cell counts. Days 3 and 5 showed the most changes compared to the control. In conclusion, a one-time injection of MPTP with delayed assessment on days 3 to 5 is a good PD model for animal studies.
Collapse
Affiliation(s)
- Noor Azzizah Omar
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Department of Medical Sciences, Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Bandar Baru Nilai, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Cáceres-Vélez PR, Ali A, Fournier-Level A, Dunshea FR, Jusuf PR. Phytochemical and Safety Evaluations of Finger Lime, Mountain Pepper, and Tamarind in Zebrafish Embryos. Antioxidants (Basel) 2022; 11:antiox11071280. [PMID: 35883771 PMCID: PMC9311898 DOI: 10.3390/antiox11071280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 12/11/2022] Open
Abstract
Plants play a pivotal role in drug discovery, constituting 50% of modern pharmacopeia. Many human diseases, including age-related degenerative diseases, converge onto common cellular oxidative stress pathways. This provides an opportunity to develop broad treatments to treat a wide range of diseases in the ageing population. Here, we characterize and assess the toxicological effects of finger lime (Citrus australasica), mountain pepper (Tasmannia lanceolata), and small-leaved tamarind (Diploglottis australis) extracts. The characterization demonstrates that these Australian native plants have antioxidant potential and, importantly, they have high concentrations of distinct combinations of different antioxidant classes. Using zebrafish larvae as a high-throughput pre-clinical in vivo toxicology screening model, our experiment effectively discriminates which of these extracts (and at what exposure levels) are suitable for development towards future therapies. The LC50-96h for finger lime and tamarind were >480 mg/L, and 1.70 mg/L for mountain pepper. Critically, this work shows that adverse effects are not correlated to the properties of these antioxidants, thus highlighting the need for combining characterization and in vivo screening to identify the most promising plant extracts for further development. Thus, we present a high-throughput pre-clinical screening that robustly tests natural plant products to utilize the diversity of antioxidant compounds for drug development.
Collapse
Affiliation(s)
- Paolin Rocio Cáceres-Vélez
- School of Biosciences, The University of Melbourne, Melbourne, VIC 3010, Australia;
- Correspondence: (P.R.C.-V.); (P.R.J.)
| | - Akhtar Ali
- School of Agriculture and Food, The University of Melbourne, Melbourne, VIC 3010, Australia; (A.A.); (F.R.D.)
| | | | - Frank R. Dunshea
- School of Agriculture and Food, The University of Melbourne, Melbourne, VIC 3010, Australia; (A.A.); (F.R.D.)
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| | - Patricia Regina Jusuf
- School of Biosciences, The University of Melbourne, Melbourne, VIC 3010, Australia;
- Correspondence: (P.R.C.-V.); (P.R.J.)
| |
Collapse
|
4
|
Kamal NAMA, Abdulmalek E, Fakurazi S, Cordova KE, Abdul Rahman MB. Dissolution and Biological Assessment of Cancer-Targeting Nano-ZIF-8 in Zebrafish Embryos. ACS Biomater Sci Eng 2022; 8:2445-2454. [PMID: 35583465 DOI: 10.1021/acsbiomaterials.2c00186] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cancer-targeting nanotherapeutics offer promising opportunities for selective delivery of cytotoxic chemotherapeutics to cancer cells. However, the understanding of dissolution behavior and safety profiles of such nanotherapeutics is scarce. In this study, we report the dissolution profile of a cancer-targeting nanotherapeutic, gemcitabine (GEM) encapsulated within RGD-functionalized zeolitic imidazolate framework-8 (GEM⊂RGD@nZIF-8), in dissolution media having pH = 6.0 and 7.4. GEM⊂RGD@nZIF-8 was not only responsive in acidic media (pH = 6.0) but also able to sustain the dissolution rate (57.6%) after 48 h compared to non-targeting nanotherapeutic GEM⊂nZIF-8 (76%). This was reflected by the f2 value of 36.1, which indicated a difference in the dissolution behaviors of GEM⊂RGD@nZIF-8 and GEM⊂nZIF-8 in acidic media compared to those in neutral media (pH = 7.4). A dissolution kinetic study showed that the GEM release mechanism from GEM⊂RGD@nZIF-8 followed the Higuchi model. In comparison to a non-targeting nanotherapeutic, the cancer-targeting nanotherapeutic exhibited an enhanced permeability rate in healthy zebrafish embryos but did not induce lethality to 50% of the embryos (LC50 > 250 μg mL-1) with significantly improved survivability (75%) after 96 h of incubation. Monitoring malformation showed minimal adverse effects with only 8.3% of edema at 62.5 μg mL-1. This study indicates that cancer-targeting GEM⊂RGD@nZIF, with its pH-responsive behavior for sustaining chemotherapeutic dissolution in a physiologically relevant environment and its non-toxicity toward the healthy embryos within the tested concentrations, has considerable potential for use in cancer treatment.
Collapse
Affiliation(s)
- Nurul Akmarina Mohd Abdul Kamal
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia.,UPM-MAKNA Cancer Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.,Foundry of Reticular Materials for Sustainability (FORMS), Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.,Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang (UMP), Pekan 26600, Pahang, Malaysia
| | - Emilia Abdulmalek
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia.,Foundry of Reticular Materials for Sustainability (FORMS), Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Kyle E Cordova
- Foundry of Reticular Materials for Sustainability (FORMS), Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.,Materials Discovery Research Unit, Advanced Research Centre, Royal Scientific Society, Amman 11941, Jordan
| | - Mohd Basyaruddin Abdul Rahman
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia.,UPM-MAKNA Cancer Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.,Foundry of Reticular Materials for Sustainability (FORMS), Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
5
|
Lu Y, Tang D, Zheng Z, Wang X, Zuo N, Yan R, Wu C, Ma J, Wang C, Xu H, He Y, Liu D, Liu S. Cingulin b Is Required for Zebrafish Lateral Line Development Through Regulation of Mitogen-Activated Protein Kinase and Cellular Senescence Signaling Pathways. Front Mol Neurosci 2022; 15:844668. [PMID: 35600071 PMCID: PMC9119177 DOI: 10.3389/fnmol.2022.844668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/11/2022] [Indexed: 01/10/2023] Open
Abstract
Cingulin, a cytoplasmic element of tight junctions (TJs), is involved in maintenance of the integrity of epithelial and endothelial cells. However, the role of cingulin in the development of auditory organs remains unclear. Zebrafish is popular as a model organism for hearing research. Using the whole mount in situ hybridization (WISH) experiment, we detected the expression of cingulin b in the posterior lateral line system (PLLs) of zebrafish. We traced the early development progress of zebrafish PLLs from 36 hpf to 72 hpf, and found that inhibition of cingulin b by target morpholinos resulted in severe developmental obstruction, including decreased number of neuromasts, reduced proliferative cells in the primordium, and repressed hair cell differentiation in the neuromasts. To examine the potential mechanism of cingulin b in the development of zebrafish PLL neuromasts, we performed RNA-seq analysis to compare the differently expressed genes (DEGs) between cingulin b knockdown samples and the controls. The KEGG enrichment analysis revealed that MAPK signaling pathway and cellular senescence were the key pathways with most DEGs in cingulin b-MO morphants compared to the Control-MO embryos. Furthermore, quantitative RT-PCR analysis confirmed the findings by RNA-seq that the transcript levels of cell cycle negative regulators such as tp53 and cdkn1a, were remarkably upregulated after inhibition of cingulin b. Our results therefore indicated an important role of cingulin b in the development of auditory organs, and MAPK signaling pathway was inhibited while cellular senescence pathway was activated after downregulation of cingulin b. We bring forward new insights of cingulin by exploring its function in auditory system.
Collapse
Affiliation(s)
- Yitong Lu
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Dongmei Tang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Zhiwei Zheng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Xin Wang
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
| | - Na Zuo
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Renchun Yan
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Cheng Wu
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Jun Ma
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Chuanxi Wang
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Hongfei Xu
- Department of Forensic Medicine, Soochow University, Suzhou, China
| | - Yingzi He
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
- *Correspondence: Yingzi He,
| | - Dong Liu
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
- Dong Liu, ;
| | - Shaofeng Liu
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
- Shaofeng Liu,
| |
Collapse
|
6
|
Kataba A, Botha TL, Nakayama SMM, Yohannes YB, Ikenaka Y, Wepener V, Ishizuka M. Environmentally relevant lead (Pb) water concentration induce toxicity in zebrafish (Danio rerio) larvae. Comp Biochem Physiol C Toxicol Pharmacol 2022; 252:109215. [PMID: 34673251 DOI: 10.1016/j.cbpc.2021.109215] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 12/30/2022]
Abstract
Early developmental stages of aquatic organisms including fish are inherently vulnerable to lead (Pb) and other water metal contaminants. However, reports on the deleterious effects of environmentally relevant Pb levels are limited. To this end, we exposed 2.5 h post fertilization (hpf) old zebrafish (Danio rerio) embryos to a range of Pb concentrations encompassing environmentally relevant levels (1, 10, 25, 50 and 100 μg/L Pb) until 96 hpf. Exposure negatively impacted the development and survival of zebrafish embryos by inducing embryo coagulation related mortalities in a concentration-dependent manner. At 24 hpf, the highest level of exposure (100 μg/L Pb) had impaired embryo activity characterized by reduced burst activity and the number of movements per minute made by embryos. At 72 hpf, newly hatched larvae exhibited adverse cardiovascular effects (100 μg/L Pb group) and neuromuscular effects (50 and 100 μg/L Pb groups). The antioxidant system dysregulation evidenced by downregulation of catalase, and upregulation of mRNA expression of glutathione S-transferase and cytochrome oxidase subunit I were observed. The pro-apoptotic tumour protein P53 (TP53) and the anti-apoptotic B cell lymphoma -2 (Bcl-2) mRNA expression levels were also affected. The former was downregulated across exposed groups and the latter was upregulated and downregulated in the groups with Pb concentrations less than 50 μg/L Pb and downregulated in 50 μg/L Pb, respectively. These findings suggest that Pb within environmentally relevant levels may be deleterious to developing zebrafish.
Collapse
Affiliation(s)
- Andrew Kataba
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Department of Biomedical Sciences, School of Veterinary Medicine, The University of Zambia, Box 32379, Lusaka, Zambia
| | - Tarryn L Botha
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, South Africa; Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, P/Bag X6, Roodepoort 1709, South Africa
| | - Shouta M M Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Yared B Yohannes
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Department of Chemistry, College of Natural and Computational Science, University of Gondar, P. O. Box 196, Gondar, Ethiopia
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, South Africa; Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; One Health Research Center, Hokkaido University, Japan
| | - Victor Wepener
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, South Africa
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan.
| |
Collapse
|
7
|
Bayda S, Amadio E, Cailotto S, Frión-Herrera Y, Perosa A, Rizzolio F. Carbon dots for cancer nanomedicine: a bright future. NANOSCALE ADVANCES 2021; 3:5183-5221. [PMID: 36132627 PMCID: PMC9419712 DOI: 10.1039/d1na00036e] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/14/2021] [Indexed: 05/25/2023]
Abstract
Cancer remains one of the main causes of death in the world. Early diagnosis and effective cancer therapies are required to treat this pathology. Traditional therapeutic approaches are limited by lack of specificity and systemic toxicity. In this scenario, nanomaterials could overcome many limitations of conventional approaches by reducing side effects, increasing tumor accumulation and improving the efficacy of drugs. In the past few decades, carbon nanomaterials (i.e., fullerenes, carbon nanotubes, and carbon dots) have attracted significant attention of researchers in various scientific fields including biomedicine due to their unique physical/chemical properties and biological compatibility and are among the most promising materials that have already changed and will keep changing human life. Recently, because of their functionalization and stability, carbon nanomaterials have been explored as a novel tool for the delivery of therapeutic cancer drugs. In this review, we present an overview of the development of carbon dot nanomaterials in the nanomedicine field by focusing on their synthesis, and structural and optical properties as well as their imaging, therapy and cargo delivery applications.
Collapse
Affiliation(s)
- Samer Bayda
- Faculty of Sciences, Jinan University Tripoli Lebanon
| | - Emanuele Amadio
- Department of Molecular Science and Nanosystems, University Ca' Foscari of Venice Italy
| | - Simone Cailotto
- Department of Molecular Science and Nanosystems, University Ca' Foscari of Venice Italy
| | - Yahima Frión-Herrera
- Department of Molecular Science and Nanosystems, University Ca' Foscari of Venice Italy
| | - Alvise Perosa
- Department of Molecular Science and Nanosystems, University Ca' Foscari of Venice Italy
| | - Flavio Rizzolio
- Department of Molecular Science and Nanosystems, University Ca' Foscari of Venice Italy
- Department of Pathology, IRCCS CRO Aviano National Cancer Institute 33081 Aviano Italy
| |
Collapse
|
8
|
Genetically encoded cell-death indicators (GEDI) to detect an early irreversible commitment to neurodegeneration. Nat Commun 2021; 12:5284. [PMID: 34489414 PMCID: PMC8421388 DOI: 10.1038/s41467-021-25549-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 08/16/2021] [Indexed: 01/07/2023] Open
Abstract
Cell death is a critical process that occurs normally in health and disease. However, its study is limited due to available technologies that only detect very late stages in the process or specific death mechanisms. Here, we report the development of a family of fluorescent biosensors called genetically encoded death indicators (GEDIs). GEDIs specifically detect an intracellular Ca2+ level that cells achieve early in the cell death process and that marks a stage at which cells are irreversibly committed to die. The time-resolved nature of a GEDI delineates a binary demarcation of cell life and death in real time, reformulating the definition of cell death. We demonstrate that GEDIs acutely and accurately report death of rodent and human neurons in vitro, and show that GEDIs enable an automated imaging platform for single cell detection of neuronal death in vivo in zebrafish larvae. With a quantitative pseudo-ratiometric signal, GEDIs facilitate high-throughput analysis of cell death in time-lapse imaging analysis, providing the necessary resolution and scale to identify early factors leading to cell death in studies of neurodegeneration. Cell death is a critical process in health and disease, yet available markers record later stages of cell death once a cell has already begun to decompose. Here the authors show the use of a genetically encoded calcium indicator that demarcates an irreversible stage of cell death earlier than previously possible.
Collapse
|
9
|
Dimitriadi A, Papaefthimiou C, Genizegkini E, Sampsonidis I, Kalogiannis S, Feidantsis K, Bobori DC, Kastrinaki G, Koumoundouros G, Lambropoulou DA, Kyzas GZ, Bikiaris DN. Adverse effects polystyrene microplastics exert on zebrafish heart - Molecular to individual level. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125969. [PMID: 34492880 DOI: 10.1016/j.jhazmat.2021.125969] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/08/2021] [Accepted: 04/22/2021] [Indexed: 06/13/2023]
Abstract
In the present study the effects of sublethal concentrations of polystyrene microplastics (PS-MPs) on zebrafish were evaluated at multiple levels, related to fish activity and oxidative stress, metabolic changes and contraction parameters in the heart tissue. Zebrafish were fed for 21 days food enriched with PS-MPs (particle sizes 3-12 µm) and a battery of stress indices like DNA damage, lipid peroxidation, autophagy, ubiquitin levels, caspases activation, metabolite adjustments, frequency and force of ventricular contraction were measured in fish heart, parallel to fish swimming velocity. In particular, exposure to PS-MPs caused significant decrease in heart function and swimming competence, while enhanced levels of oxidative stress indices and metabolic adjustments were observed in the heart of challenged species. Among stress indices, DNA damage was more vulnerable to the effect of PS-MPs. Our results provide evidence on the multiplicity of the PS-MPs effects on cellular function, physiology and metabolic pathways and heart rate of adult fish and subsequent effects on fish activity and fish fitness thus enlightening MPs characterization as a potent environmental pollutant.
Collapse
Affiliation(s)
| | - Chrisovalantis Papaefthimiou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Eleni Genizegkini
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Ioannis Sampsonidis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, GR-574 00 Thessaloniki, Greece
| | - Stavros Kalogiannis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, GR-574 00 Thessaloniki, Greece
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Dimitra C Bobori
- Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | | | - Dimitra A Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - George Z Kyzas
- Department of Chemistry, International Hellenic University, Kavala GR-654 04, Greece
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| |
Collapse
|
10
|
Jia PP, Junaid M, Wen PP, Yang YF, Li WG, Yang XG, Pei DS. Role of germ-free animal models in understanding interactions of gut microbiota to host and environmental health: A special reference to zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116925. [PMID: 33744636 DOI: 10.1016/j.envpol.2021.116925] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 05/07/2023]
Abstract
Numerous pieces of evidence documented the importance of gut microbiota in regulating human health and evaluating the toxicity of environmental pollutants, which are closely related to the host health in various aspects, including nutrition, energy translation, metabolism, pathogen resistance, and immune function. A variety of environmental factors can disrupt gut microbiota and their functions, and inevitably cause immune diseases, obesity and diabetes. However, deciphering the inner mechanisms involved in the functional interaction of gut microbes with host health is still needed extensive investigations. This review focused on the essential roles of intestinal microbes in host-related diseases and highlighted the development and applications of germ-free (GF) animal models, mainly zebrafish. Moreover, the generation, immunity characters, advantages and challenges of GF zebrafish models were also summarized. Importantly, the composition and isolation of zebrafish gut bacteria for further application and toxicity evaluation of aquatic environmental pollutants were also discussed. In conclusion, GF zebrafish play irreplaceable roles in understanding the potential functions and responses of customized microbiota towards human and environmental health implications.
Collapse
Affiliation(s)
- Pan-Pan Jia
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Muhammad Junaid
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Ping-Ping Wen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Yi-Fan Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Wei-Guo Li
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Xian-Guang Yang
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - De-Sheng Pei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; College of Life Science, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
11
|
Voos K, Schönauer E, Alhayek A, Haupenthal J, Andreas A, Müller R, Hartmann RW, Brandstetter H, Hirsch AKH, Ducho C. Phosphonate as a Stable Zinc-Binding Group for "Pathoblocker" Inhibitors of Clostridial Collagenase H (ColH). ChemMedChem 2021; 16:1257-1267. [PMID: 33506625 PMCID: PMC8251769 DOI: 10.1002/cmdc.202000994] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 01/05/2023]
Abstract
Microbial infections are a significant threat to public health, and resistance is on the rise, so new antibiotics with novel modes of action are urgently needed. The extracellular zinc metalloprotease collagenase H (ColH) from Clostridium histolyticum is a virulence factor that catalyses tissue damage, leading to improved host invasion and colonisation. Besides the major role of ColH in pathogenicity, its extracellular localisation makes it a highly attractive target for the development of new antivirulence agents. Previously, we had found that a highly selective and potent thiol prodrug (with a hydrolytically cleavable thiocarbamate unit) provided efficient ColH inhibition. We now report the synthesis and biological evaluation of a range of zinc-binding group (ZBG) variants of this thiol-derived inhibitor, with the mercapto unit being replaced by other zinc ligands. Among these, an analogue with a phosphonate motif as ZBG showed promising activity against ColH, an improved selectivity profile, and significantly higher stability than the thiol reference compound, thus making it an attractive candidate for future drug development.
Collapse
Affiliation(s)
- Katrin Voos
- Department of PharmacyPharmaceutical and Medicinal ChemistrySaarland UniversityCampus C2 366123SaarbrückenGermany
| | - Esther Schönauer
- Department of Biosciences andChristian Doppler Laboratory for Innovative Tools for Biosimilar CharacterizationDivision of Structural BiologyUniversity of SalzburgBillrothstrasse 115020SalzburgAustria
| | - Alaa Alhayek
- Department of Drug Design and OptimizationHelmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8 166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8 166123SaarbrückenGermany
| | - Jörg Haupenthal
- Department of Drug Design and OptimizationHelmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8 166123SaarbrückenGermany
| | - Anastasia Andreas
- Department of Microbial Natural ProductsHelmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8 166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8 166123SaarbrückenGermany
| | - Rolf Müller
- Department of Microbial Natural ProductsHelmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8 166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8 166123SaarbrückenGermany
| | - Rolf W. Hartmann
- Department of Drug Design and OptimizationHelmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8 166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8 166123SaarbrückenGermany
| | - Hans Brandstetter
- Department of Biosciences andChristian Doppler Laboratory for Innovative Tools for Biosimilar CharacterizationDivision of Structural BiologyUniversity of SalzburgBillrothstrasse 115020SalzburgAustria
| | - Anna K. H. Hirsch
- Department of Drug Design and OptimizationHelmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8 166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8 166123SaarbrückenGermany
| | - Christian Ducho
- Department of PharmacyPharmaceutical and Medicinal ChemistrySaarland UniversityCampus C2 366123SaarbrückenGermany
| |
Collapse
|
12
|
Mohan Prakash RL, Hwang DH, Hong IH, Chae J, Kang C, Kim E. Danio rerio as an alternative vertebrate model for jellyfish venom study: The toxinological aspects of Nemopilema nomurai venom. Toxicol Lett 2020; 335:91-97. [PMID: 33157172 DOI: 10.1016/j.toxlet.2020.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/07/2020] [Accepted: 10/29/2020] [Indexed: 01/11/2023]
Abstract
Nemopilema nomurai venom (NnV) is severely toxic to many organisms. However, the mechanism of its poisoning has not been properly understood yet. The present work demonstrates that zebrafish (Danio rerio) is an alternative vertebrate model for studying NnV jellyfish venom for the first time. In this model, NnV appears to cause severe hemorrhage and inflammation in cardiopulmonary regions of zebrafish. NnV also altered the swimming behavior of zebrafish accompanied by a significant downregulation of acetylcholinesterase (AChE) activity in brain tissues. Histopathological changes observed for various organs of D. rerio caused by NnV corresponded to an increase in lactate dehydrogenase (LDH) activity in tissues. NnV also significantly altered glutathione S-transferase (GST) activity in cardiopulmonary and brain tissues of D. rerio. SDS-PAGE revealed many protein bands of NnV of various sizes after silver staining. Taken together, these results indicate that Danio rerio can be a useful alternative animal model for jellyfish venom toxicology studies. Findings of the present study also suggest that Danio rerio could be used to develop an effective treatment strategy and discover the mechanism of action of jellyfish venom envenomation.
Collapse
Affiliation(s)
- Ramachandran Loganathan Mohan Prakash
- College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, South Korea; Institute of Animal Medicine, Gyeongsang National University, Jinju, 52828, South Korea.
| | - Du Hyeon Hwang
- College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, South Korea; Institute of Animal Medicine, Gyeongsang National University, Jinju, 52828, South Korea.
| | - Il-Hwa Hong
- College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, South Korea; Institute of Animal Medicine, Gyeongsang National University, Jinju, 52828, South Korea.
| | - Jinho Chae
- Marine Environmental Research and Information Laboratory, B1101, 17 Gosan-ro 148beon-gil, Gunpo-si, Gyeonggi-do, 15850, South Korea.
| | - Changkeun Kang
- College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, South Korea; Institute of Animal Medicine, Gyeongsang National University, Jinju, 52828, South Korea.
| | - Euikyung Kim
- College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, South Korea; Institute of Animal Medicine, Gyeongsang National University, Jinju, 52828, South Korea.
| |
Collapse
|
13
|
Zhang M, Wang Y, He W, Sun Y, Guo Y, Zhong W, Gao Q, Liao M, Wang X, Cai Y, Guo Y, Rao Z. Design, Synthesis, and Evaluation of Novel Enterovirus 71 Inhibitors as Therapeutic Drug Leads for the Treatment of Human Hand, Foot, and Mouth Disease. J Med Chem 2020; 63:1233-1244. [PMID: 31939669 DOI: 10.1021/acs.jmedchem.9b01414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Human hand, foot, and mouth disease (HFMD) is a serious public health threat with high infection rates in children and infants who reside in Asia and the Pacific regions, and no effective drugs are currently available. Enterovirus 71 (EV71) and coxsackievirus A16 are the major etiological pathogens. Based on an essential hydrophobic pocket on the viral capsid protein VP1, we designed and synthesized a series of small molecular weight compounds as inhibitors of EV71. A potential drug candidate named NLD-22 exhibited excellent antiviral activity (with an EC50 of 5.056 nM and a 100% protection rate for mice at a dose of 20 mg/kg) and low toxicity. NLD-22 had a favorable pharmacokinetic profile. High-resolution cryo-electron microscopy structural analysis confirmed NLD-22 bound to the hydrophobic pocket in VP1 to block viral infection. In general, NLD-22 was indicated to be a promising potential drug candidate for the treatment of HFMD.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and College of Pharmacy , Nankai University , Tianjin 300353 , China.,Drug Discovery Center for Infectious Diseases , Nankai University , Tianjin 300350 , People's Republic of China
| | - Ying Wang
- Tianjin International Joint Academy of Biotechnology and Medicine , Tianjin 300457 , China
| | - Wanli He
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and College of Pharmacy , Nankai University , Tianjin 300353 , China
| | - Yao Sun
- National Laboratory of Macromolecules, Institute of Biophysics , Chinese Academy of Science , Beijing 100101 , China
| | - Yan Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and College of Pharmacy , Nankai University , Tianjin 300353 , China
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Disease , Tianjin Medical University General Hospital , Tianjin 300052 , China
| | - Qiang Gao
- Sinovac Biotech Co., Ltd , Beijing 100085 , China
| | - Mingyang Liao
- National Beijing Center for Drug Safety Evaluation and Research , Beijing Institute of Pharmacology and Toxicology , 27 Taiping Road , Beijing 100850 , China
| | - Xiangxi Wang
- National Laboratory of Macromolecules, Institute of Biophysics , Chinese Academy of Science , Beijing 100101 , China
| | - Yan Cai
- Tianjin International Joint Academy of Biotechnology and Medicine , Tianjin 300457 , China
| | - Yu Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and College of Pharmacy , Nankai University , Tianjin 300353 , China.,Tianjin International Joint Academy of Biotechnology and Medicine , Tianjin 300457 , China.,Drug Discovery Center for Infectious Diseases , Nankai University , Tianjin 300350 , People's Republic of China.,Frontiers Science Center for Cell Responses , Nankai University , Tianjin 300350 , People's Republic of China
| | - Zihe Rao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and College of Pharmacy , Nankai University , Tianjin 300353 , China.,Tianjin International Joint Academy of Biotechnology and Medicine , Tianjin 300457 , China.,National Laboratory of Macromolecules, Institute of Biophysics , Chinese Academy of Science , Beijing 100101 , China.,Drug Discovery Center for Infectious Diseases , Nankai University , Tianjin 300350 , People's Republic of China.,Frontiers Science Center for Cell Responses , Nankai University , Tianjin 300350 , People's Republic of China
| |
Collapse
|
14
|
Dias C, Vasimalai N, P Sárria M, Pinheiro I, Vilas-Boas V, Peixoto J, Espiña B. Biocompatibility and Bioimaging Potential of Fruit-Based Carbon Dots. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E199. [PMID: 30717497 PMCID: PMC6409625 DOI: 10.3390/nano9020199] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 02/06/2023]
Abstract
Photo-luminescent carbon dots (CD) have become promising nanomaterials and their synthesis from natural products has attracted attention by the possibility of making the most of affordable, sustainable and, readily-available carbon sources. Here, we report on the synthesis, characterization and bioimaging potential of CDs produced from diverse extensively produced fruits: kiwi, avocado and pear. The in vitro cytotoxicity and anticancer potential of those CDs were assessed by comparing human epithelial cells from normal adult kidney and colorectal adenocarcinoma cells. In vivo toxicity was evaluated using zebrafish embryos given their peculiar embryogenesis, with transparent embryos developing ex-utero, allowing a real-time analysis. In vitro and in vivo experiments revealed that the synthesized CD presented toxicity only at concentrations of ≥1.5 mg mL-1. Kiwi CD exhibited the highest toxicity to both cells lines and zebrafish embryos, presenting lower LD50 values. Interestingly, despite inducing lower cytotoxicity in normal cells than the other CDs, black pepper CDs resulted in higher toxicity in vivo. The bio-distribution of CD in zebrafish embryos upon uptake was investigated using fluorescence microscopy. We observed a higher accumulation of CD in the eye and yolk sac, avocado CD being the ones more retained, indicating their potential usefulness in bio-imaging applications. This study shows the action of fruit-based CDs from kiwi, avocado and pear. However the compounds present in these fruit-based CDs and their mechanism of action as a bioimaging agent need to be further explored.
Collapse
Affiliation(s)
- Cindy Dias
- INL-International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal.
- CEB-Centre of Biological Engineering, University of Minho, 4720-057 Braga, Portugal.
| | - Nagamalai Vasimalai
- INL-International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal.
- Department of Chemistry, B.S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai-600048, India.
| | - Marisa P Sárria
- INL-International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal.
| | - Ivone Pinheiro
- INL-International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal.
| | - Vânia Vilas-Boas
- INL-International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal.
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050⁻313 Porto, Portugal.
| | - João Peixoto
- CEB-Centre of Biological Engineering, University of Minho, 4720-057 Braga, Portugal.
| | - Begoña Espiña
- INL-International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal.
| |
Collapse
|
15
|
Tixeira R, Poon IKH. Disassembly of dying cells in diverse organisms. Cell Mol Life Sci 2019; 76:245-257. [PMID: 30317529 PMCID: PMC11105331 DOI: 10.1007/s00018-018-2932-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/25/2018] [Accepted: 10/01/2018] [Indexed: 01/09/2023]
Abstract
Programmed cell death (PCD) is a conserved phenomenon in multicellular organisms required to maintain homeostasis. Among the regulated cell death pathways, apoptosis is a well-described form of PCD in mammalian cells. One of the characteristic features of apoptosis is the change in cellular morphology, often leading to the fragmentation of the cell into smaller membrane-bound vesicles through a process called apoptotic cell disassembly. Interestingly, some of these morphological changes and cell disassembly are also noted in cells of other organisms including plants, fungi and protists while undergoing 'apoptosis-like PCD'. This review will describe morphologic features leading to apoptotic cell disassembly, as well as its regulation and function in mammalian cells. The occurrence of cell disassembly during cell death in other organisms namely zebrafish, fly and worm, as well as in other eukaryotic cells will also be discussed.
Collapse
Affiliation(s)
- Rochelle Tixeira
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Ivan K H Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
16
|
Wang XH, Zheng SS, Huang T, Su LM, Zhao YH, Souders CL, Martyniuk CJ. Fluazinam impairs oxidative phosphorylation and induces hyper/hypo-activity in a dose specific manner in zebrafish larvae. CHEMOSPHERE 2018; 210:633-644. [PMID: 30031347 DOI: 10.1016/j.chemosphere.2018.07.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 06/08/2023]
Abstract
Fluazinam is a pyridinamine fungicide that induces oxidative stress and mitochondrial damage in cells, and it has been reported to be neurotoxic. To characterize the biological effects of fluazinam, we assessed mitochondrial bioenergetics, dopamine system expression, and behavior of early life staged zebrafish (0.01 μM-0.5 μM). Fluazinam at environmentally-relevant levels did not induce sub-lethal effects in larvae, but at the LC50 (0.5 μM), fluazinam decreased basal and ATP-linked respiration significantly in embryos. As mitochondria are directly related to redox homeostasis and apoptosis, the expression of genes related to oxidative stress and apoptosis were measured. Superoxide dismutase 2 (sod2), heat stock protein 70 (hsp70), bcl2-associated X protein (bax), and caspase 9 (casp9) mRNA levels were up-regulated by 0.5 μM fluazinam. Taken together, there was evidence for mitochondrial dysfunction and oxidative damage at the highest concentration of fluazinam (0.5 μM) tested. As there are reports for fluazinam-induced neurotoxicity in dopamine synthesizing cells, transcriptional targets in the dopamine system were assessed in the zebrafish. Tyrosine hydroxylase 1 (th1) and dopamine receptor 2a (drd2a) mRNA levels were decreased by 0.5 μM fluazinam, suggesting that this fungicide may affect the dopaminergic system. To further assess the potential for fluazinam-mediated neuromodulation, the dark photokinesis response was assessed in larvae following exposure. Larvae exposed to 0.1 μM fluazinam showed hyperactivity, while larvae exposed to 0.2 and 0.3 μM showed hypo-activity. This study demonstrates that fluazinam disrupts mitochondrial bioenergetics in zebrafish, inducing an oxidative stress response, and aberrant behaviors in larvae that are dose dependent.
Collapse
Affiliation(s)
- Xiao H Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China; Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Shan S Zheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Tao Huang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Li M Su
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Yuan H Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China.
| | - Christopher L Souders
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
17
|
Fernandes AL, Nascimento JP, Santos AP, Furtado CA, Romano LA, Eduardo da Rosa C, Monserrat JM, Ventura-Lima J. Assessment of the effects of graphene exposure in Danio rerio: A molecular, biochemical and histological approach to investigating mechanisms of toxicity. CHEMOSPHERE 2018; 210:458-466. [PMID: 30025363 DOI: 10.1016/j.chemosphere.2018.06.183] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/29/2018] [Accepted: 06/30/2018] [Indexed: 06/08/2023]
Abstract
Graphene has been shown to induce toxicity in mammals and marine crustaceans; however, information regarding oxidative stress in fish is scarce. The aim of this study was to evaluate the mechanism of graphene toxicity in different tissues of Danio rerio, considering different parameters of stress. Animals were injected intraperitoneally (i.p.) with 10 μL of suspensions containing different graphene concentrations (5 and 50 mg/L); the gills, intestine, muscle and brain were analysed 48 h later. There was no significant difference in the expression of the gclc (glutamate cysteine ligase catalytic subunit) and nrf2 (nuclear factor (erythroid-derived 2)-like 2) genes after exposure. In contrast, glutamate cysteine ligase (GCL) and glutathione-S-transferase (GST) activities were modulated and the glutathione (GSH) concentration was reduced in different tissues and at different concentrations. Lipid damage was observed in the gills. Histological analyses were performed to observe if the exposure could induce pathological damage in these tissues. The results showed pathological effects in all tissues, excluding the intestine, after exposure to both concentrations. Overall, these results indicate that graphene induces different grades of toxicological effects that are dependent on the analysed organ, with distinct pathological effects on some and oxidative effects on others. However, the brain and gills seem to be the primary target organs for graphene toxicity.
Collapse
Affiliation(s)
- Amanda Lucena Fernandes
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas - FURG, Brazil.
| | | | | | | | | | - Carlos Eduardo da Rosa
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas - FURG, Brazil
| | - José Maria Monserrat
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas - FURG, Brazil; Programa de Pós-Graduação em Aquacultura-FURG, Brazil
| | - Juliane Ventura-Lima
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas - FURG, Brazil; Programa de Pós-Graduação em Aquacultura-FURG, Brazil.
| |
Collapse
|
18
|
Han HS, Jang GH, Jun I, Seo H, Park J, Glyn-Jones S, Seok HK, Lee KH, Mantovani D, Kim YC, Edwards JR. Transgenic zebrafish model for quantification and visualization of tissue toxicity caused by alloying elements in newly developed biodegradable metal. Sci Rep 2018; 8:13818. [PMID: 30218086 PMCID: PMC6138638 DOI: 10.1038/s41598-018-32313-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/04/2018] [Indexed: 11/09/2022] Open
Abstract
The cytotoxicity of alloying elements in newly developed biodegradable metals can be assessed through relatively low-cost and rapid in vitro studies using different cell types. However, such approaches have limitations; as such, additional investigations in small mammalian models are required that recapitulate the physiological environment. In this study, we established a zebrafish (Danio rerio) model for cytotoxicity evaluations that combines the physiological aspects of an animal model with the speed and simplicity of a cell-based assay. The model was used to assess the cytotoxicity of five common alloying elements in biodegradable implant materials. Conventional in vitro testing using heart, liver, and endothelial cell lines performed in parallel with zebrafish studies revealed statistically significant differences in toxicity (up to 100-fold), along with distinct changes in the morphology of the heart, liver, and blood vessels that were undetectable in cell cultures. These results indicate that our zebrafish model is a useful alternative to mammalian systems for accurately and rapidly evaluating the in vivo toxicity of newly developed metallic materials.
Collapse
Affiliation(s)
- Hyung-Seop Han
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Gun Hyuk Jang
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- NuclixBio, Seoul, 08380, Republic of Korea
| | - Indong Jun
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Hyunseon Seo
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jimin Park
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Sion Glyn-Jones
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Hyun-Kwang Seok
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Kwan Hyi Lee
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department Min-Met-Materials Engineering & CHU de Québec Research Center, Laval University, Quebec City, Canada
| | - Yu-Chan Kim
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea.
| | - James R Edwards
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK.
| |
Collapse
|
19
|
Li JY, Gao K, Shao T, Fan DD, Hu CB, Sun CC, Dong WR, Lin AF, Xiang LX, Shao JZ. Characterization of an NLRP1 Inflammasome from Zebrafish Reveals a Unique Sequential Activation Mechanism Underlying Inflammatory Caspases in Ancient Vertebrates. THE JOURNAL OF IMMUNOLOGY 2018; 201:1946-1966. [PMID: 30150286 DOI: 10.4049/jimmunol.1800498] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/26/2018] [Indexed: 12/26/2022]
Abstract
NLRP1 inflammasome is one of the best-characterized inflammasomes in humans and other mammals. However, the existence of this inflammasome in nonmammalian species remains poorly understood. In this study, we report the molecular and functional identification of an NLRP1 homolog, Danio rerio NLRP1 (DrNLRP1) from a zebrafish (D. rerio) model. This DrNLRP1 possesses similar structural architecture to mammalian NLRP1s. It can trigger the formation of a classical inflammasome for the activation of zebrafish inflammatory caspases (D. rerio Caspase [DrCaspase]-A and DrCaspase-B) and maturation of D. rerio IL-1β in a D. rerio ASC (DrASC)-dependent manner. In this process, DrNLRP1 promotes the aggregation of DrASC into a filament with DrASCCARD core and DrASCPYD cluster. The assembly of DrNLRP1 inflammasome depends on the CARD-CARD homotypic interaction between DrNLRP1 and DrASCCARD core, and PYD-PYD interaction between DrCaspase-A/B and DrASCPYD cluster. The FIIND domain in DrNLRP1 is necessary for inflammasome assembly. To understand the mechanism of how the two DrCaspases are coordinated in DrNLRP1 inflammasome, we propose a two-step sequential activation model. In this model, the recruitment and activation of DrCaspase-A/B in the inflammasome is shown in an alternate manner, with a preference for DrCaspase-A followed by a subsequent selection for DrCaspase-B. By using morpholino oligonucleotide-based knockdown assays, the DrNLRP1 inflammasome was verified to play important functional roles in antibacterial innate immunity in vivo. These observations demonstrate that the NLRP1 inflammasome originated as early as in teleost fish. This finding not only gives insights into the evolutionary history of inflammasomes but also provides a favorable animal model for the study of NLRP1 inflammasome-mediated immunology and diseases.
Collapse
Affiliation(s)
- Jiang-Yuan Li
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Ke Gao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Tong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Dong-Dong Fan
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Chong-Bin Hu
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Cen-Cen Sun
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Wei-Ren Dong
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Ai-Fu Lin
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Li-Xin Xiang
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Jian-Zhong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou 310058, People's Republic of China; and .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, People's Republic of China
| |
Collapse
|
20
|
Mendoza-Ferreira N, Coutelier M, Janzen E, Hosseinibarkooie S, Löhr H, Schneider S, Milbradt J, Karakaya M, Riessland M, Pichlo C, Torres-Benito L, Singleton A, Zuchner S, Brice A, Durr A, Hammerschmidt M, Stevanin G, Wirth B. Biallelic CHP1 mutation causes human autosomal recessive ataxia by impairing NHE1 function. NEUROLOGY-GENETICS 2018; 4:e209. [PMID: 29379881 PMCID: PMC5775069 DOI: 10.1212/nxg.0000000000000209] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 08/22/2017] [Indexed: 12/14/2022]
Abstract
Objective: To ascertain the genetic and functional basis of complex autosomal recessive cerebellar ataxia (ARCA) presented by 2 siblings of a consanguineous family characterized by motor neuropathy, cerebellar atrophy, spastic paraparesis, intellectual disability, and slow ocular saccades. Methods: Combined whole-genome linkage analysis, whole-exome sequencing, and focused screening for identification of potential causative genes were performed. Assessment of the functional consequences of the mutation on protein function via subcellular fractionation, size-exclusion chromatography, and fluorescence microscopy were done. A zebrafish model, using Morpholinos, was generated to study the pathogenic effect of the mutation in vivo. Results: We identified a biallelic 3-bp deletion (p.K19del) in CHP1 that cosegregates with the disease. Neither focused screening for CHP1 variants in 2 cohorts (ARCA: N = 319 and NeurOmics: N = 657) nor interrogating GeneMatcher yielded additional variants, thus revealing the scarcity of CHP1 mutations. We show that mutant CHP1 fails to integrate into functional protein complexes and is prone to aggregation, thereby leading to diminished levels of soluble CHP1 and reduced membrane targeting of NHE1, a major Na+/H+ exchanger implicated in syndromic ataxia-deafness. Chp1 deficiency in zebrafish, resembling the affected individuals, led to movement defects, cerebellar hypoplasia, and motor axon abnormalities, which were ameliorated by coinjection with wild-type, but not mutant, human CHP1 messenger RNA. Conclusions: Collectively, our results identified CHP1 as a novel ataxia-causative gene in humans, further expanding the spectrum of ARCA-associated loci, and corroborated the crucial role of NHE1 within the pathogenesis of these disorders.
Collapse
Affiliation(s)
- Natalia Mendoza-Ferreira
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Marie Coutelier
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Eva Janzen
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Seyyedmohsen Hosseinibarkooie
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Heiko Löhr
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Svenja Schneider
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Janine Milbradt
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Mert Karakaya
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Markus Riessland
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Christian Pichlo
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Laura Torres-Benito
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Andrew Singleton
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Stephan Zuchner
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Alexis Brice
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Alexandra Durr
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Matthias Hammerschmidt
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Giovanni Stevanin
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Brunhilde Wirth
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| |
Collapse
|
21
|
Yu Y, Yi Y, Li Y, Peng T, Lao S, Zhang J, Liang S, Xiong Y, Shao S, Wu N, Zhao Y, Huang H. Dispersible MoS2 micro-sheets induced a proinflammatory response and apoptosis in the gills and liver of adult zebrafish. RSC Adv 2018; 8:17826-17836. [PMID: 35542100 PMCID: PMC9080493 DOI: 10.1039/c8ra00922h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/07/2018] [Indexed: 12/18/2022] Open
Abstract
High concentrations of CS-MoS2 micro-sheets caused lamellar fusions and localized lesions in gill and liver, respectively. Moreover, they also disturbed the expression levels of genes related with antioxidant enzymes, proinflammatory response and apoptosis.
Collapse
|
22
|
Félix LM, Serafim C, Valentim AM, Antunes LM, Matos M, Coimbra AM. Apoptosis-related genes induced in response to ketamine during early life stages of zebrafish. Toxicol Lett 2017; 279:1-8. [DOI: 10.1016/j.toxlet.2017.07.888] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 12/01/2022]
|
23
|
Khajuria DK, Kumar VB, Karasik D, Gedanken A. Fluorescent Nanoparticles with Tissue-Dependent Affinity for Live Zebrafish Imaging. ACS APPLIED MATERIALS & INTERFACES 2017; 9:18557-18565. [PMID: 28503921 DOI: 10.1021/acsami.7b04668] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Carbon quantum dots (CDs) are widely investigated because of their low toxicity, outstanding water solubility, and high biocompatibility. Specifically, fluorescent CDs have attracted ever-increasing interest. However, so far, only a few studies have focused on assessing the fluorescence of nitrogen-doped CDs (N@CDs) during in vivo exposure. Here, we describe a strategy for low-cost, one-pot synthesis of N@CDs. The low toxicity and suitability of the N@CDs for fluorescence imaging are validated using zebrafish (ZF) as a model. Strong fluorescence emission from ZF embryos and larvae confirms the distribution of N@CDs in ZF. The retention of N@CDs is very stable, long lasting, and with no detectable toxicity. The presence of a strong fluorescence at the yolk sac, especially in the vicinity of the intestine, suggests that a high content of N@CDs entered the digestive system. This indicates that N@CDs may have potential imaging applications in elucidating different aspects of lipoprotein and nutritional biology, in a ZF yolk lipid transport and metabolism model. On the other hand, the presence of a strong selective fluorescence at the eyes and melanophore strips at the trunk and tail region of ZF larvae suggests that N@CDs has a high melanin-binding affinity. These observations support a novel and revolutionary use of N@CDs as highly specific bioagents for eye and skin imaging and diagnosis of defects in them. N@CDs are known for their multifunctional applications as highly specific bioagents for various biomedical applications because of their exceptional biocompatibility, photostability, and selective affinity. These characteristics were validated in the developmental ZF model.
Collapse
Affiliation(s)
- Deepak Kumar Khajuria
- The Musculoskeletal Genetics Laboratory, Faculty of Medicine in the Galilee, The Musculoskeletal Genetics Laboratory, Bar-Ilan University , Safed 1311502, Israel
| | - Vijay Bhooshan Kumar
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University , Ramat-Gan 5290002, Israel
| | - David Karasik
- The Musculoskeletal Genetics Laboratory, Faculty of Medicine in the Galilee, The Musculoskeletal Genetics Laboratory, Bar-Ilan University , Safed 1311502, Israel
| | - Aharon Gedanken
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University , Ramat-Gan 5290002, Israel
| |
Collapse
|
24
|
Hrubik J, Glisic B, Samardzija D, Stanic B, Pogrmic-Majkic K, Fa S, Andric N. Effect of PMA-induced protein kinase C activation on development and apoptosis in early zebrafish embryos. Comp Biochem Physiol C Toxicol Pharmacol 2016; 190:24-31. [PMID: 27521797 DOI: 10.1016/j.cbpc.2016.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 12/19/2022]
Abstract
Protein kinase C (PKC) isoforms have been implicated in several key steps during early development, but the consequences of xenobiotic-induced PKC activation during early embryogenesis are still unknown. In this study, zebrafish embryos were exposed to a range of phorbol 12-myristate 13-acetate (PMA) concentrations (0-200μg/L) at different time points after fertilization. Results showed that 200μgPMA/L caused development of yolk bags, cardiac edema, slow blood flow, pulsating blood flow, slow pulse, elongated heart, lack of tail fins, curved tail, and coagulation. PMA exposure decreased survival rate of the embryos starting within the first 24h and becoming more pronounced after prolonged exposure (96h). PMA increased the number of apoptotic cells in the brain region as demonstrated by acridine orange staining and caused up-regulation of caspase 9 (casp9) and p53 up-regulated modulator of apoptosis (puma) mRNA in whole embryos. PMA caused oxidative stress in the embryos as demonstrated by decreased mRNA expression of catalase and superoxide dismutase 2. Inhibition of Pkc with GF109203X improved overall survival rate, reduced apoptosis in the brain and decreased expression of casp9 and puma in the PMA-exposed embryos. However, Pkc inhibition neither prevented development of deformities nor reversed oxidative stress in the PMA-exposed embryos. These data suggest that direct over-activation of Pkc during early embryogenesis of zebrafish is associated with apoptosis and decreased survival rate of the embryos.
Collapse
Affiliation(s)
- Jelena Hrubik
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Laboratory for Ecotoxicology, Novi Sad, Serbia
| | - Branka Glisic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Laboratory for Ecotoxicology, Novi Sad, Serbia
| | - Dragana Samardzija
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Laboratory for Ecotoxicology, Novi Sad, Serbia
| | - Bojana Stanic
- University of Novi Sad, Faculty of Technical Sciences, Department of Environmental Engineering and Occupational Safety and Health, Novi Sad, Serbia
| | - Kristina Pogrmic-Majkic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Laboratory for Ecotoxicology, Novi Sad, Serbia
| | - Svetlana Fa
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Laboratory for Ecotoxicology, Novi Sad, Serbia
| | - Nebojsa Andric
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Laboratory for Ecotoxicology, Novi Sad, Serbia.
| |
Collapse
|
25
|
Becerra-Amezcua MP, Guerrero-Legarreta I, González-Márquez H, Guzmán-García X. In vivo analysis of effects of venom from the jellyfish Chrysaora sp. in zebrafish (Danio rerio). Toxicon 2016; 113:49-54. [DOI: 10.1016/j.toxicon.2016.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/27/2016] [Accepted: 02/09/2016] [Indexed: 12/29/2022]
|
26
|
|
27
|
Jiang J, Wu S, Wang Y, An X, Cai L, Zhao X, Wu C. Carbendazim has the potential to induce oxidative stress, apoptosis, immunotoxicity and endocrine disruption during zebrafish larvae development. Toxicol In Vitro 2015; 29:1473-81. [DOI: 10.1016/j.tiv.2015.06.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 04/16/2015] [Accepted: 06/04/2015] [Indexed: 12/26/2022]
|
28
|
He Y, Tang D, Cai C, Chai R, Li H. LSD1 is Required for Hair Cell Regeneration in Zebrafish. Mol Neurobiol 2015; 53:2421-34. [PMID: 26008620 DOI: 10.1007/s12035-015-9206-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/01/2015] [Indexed: 02/06/2023]
Abstract
Lysine-specific demethylase 1 (LSD1/KDM1A) plays an important role in complex cellular processes such as differentiation, proliferation, apoptosis, and cell cycle progression. It has recently been demonstrated that during development, downregulation of LSD1 inhibits cell proliferation, modulates the expression of cell cycle regulators, and reduces hair cell formation in the zebrafish lateral line, which suggests that LSD1-mediated epigenetic regulation plays a key role in the development of hair cells. However, the role of LSD1 in hair cell regeneration after hair cell loss remains poorly understood. Here, we demonstrate the effect of LSD1 on hair cell regeneration following neomycin-induced hair cell loss. We show that the LSD1 inhibitor trans-2-phenylcyclopropylamine (2-PCPA) significantly decreases the regeneration of hair cells in zebrafish after neomycin damage. In addition, immunofluorescent staining demonstrates that 2-PCPA administration suppresses supporting cell proliferation and alters cell cycle progression. Finally, in situ hybridization shows that 2-PCPA significantly downregulates the expression of genes related to Wnt/β-catenin and Fgf activation. Altogether, our data suggest that downregulation of LSD1 significantly decreases hair cell regeneration after neomycin-induced hair cell loss through inactivation of the Wnt/β-catenin and Fgf signaling pathways. Thus, LSD1 plays a critical role in hair cell regeneration and might represent a novel biomarker and potential therapeutic approach for the treatment of hearing loss.
Collapse
Affiliation(s)
- Yingzi He
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital, Fudan University, Shanghai, 200031, People's Republic of China
| | - Dongmei Tang
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital, Fudan University, Shanghai, 200031, People's Republic of China
| | - Chengfu Cai
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Renjie Chai
- Co-innovation Center of Neuroregeneration, Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu, 210096, People's Republic of China
| | - Huawei Li
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital, Fudan University, Shanghai, 200031, People's Republic of China. .,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China. .,Institute of Stem Cell and Regeneration Medicine, Institute of Biomedical Science, Fudan University, Shanghai, People's Republic of China. .,Key Laboratory of Hearing Science, Ministry of Health, EENT Hospital, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
29
|
Abstract
AIM The application of strychnine (S) is limited due to its toxicity; strychnine N-oxide (SNO) is a derivative of strychnine. The aim was to employ zebrafish embryos to investigate and compare the developmental toxicity induced by S and SNO. METHODS The toxicity of S and SNO was examined through the hatching rate and survival rate. Morphological changes of the zebrafish were observed with a dissecting microscope. Apoptosis was detected through acridine orange (AO) staining and flow cytometry. Apoptotic genes were measured by RT-PCR. RESULTS Embryo malformation was observed in the embryos exposed to S at 200 μmol·L(-1). When SNO concentration was increased to 1 mmol·L(-1), scoliolosis, and pericardial edema could be seen in some embryos. Results from fluorescence microscopy and flow cytometry analysis showed that S at 200 μmol·L(-1) induced apoptosis, whereas the apoptotic rate in the SNO-treated group (200 μmol·L(-1)) was much lower than that in the S group. RT-PCR analysis showed that p53 mRNA expression and the ratio of Bax/Bcl-2 in the S group were significantly altered compared with the control group (*P < 0.05). Moreover, Bax mRNA expression in both S and SNO group were significantly different from that in the control group (**P < 0.01). CONCLUSION These results lead to the conclusion that SNO has significantly lower toxicity than S in zebrafish embryos.
Collapse
|
30
|
Qin L, Liu F, Liu H, Wei Z, Sun P, Wang Z. Evaluation of HODE-15, FDE-15, CDE-15, and BDE-15 toxicity on adult and embryonic zebrafish (Danio rerio). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:14047-14057. [PMID: 25043596 DOI: 10.1007/s11356-014-3322-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 07/09/2014] [Indexed: 06/03/2023]
Abstract
Diphenyl ether and its derivatives are widely used in the industry of spices, dyes, agrochemicals, and pharmaceuticals. Following the previous study, we selected 4,4'-dihydroxydiphenyl ether, 4,4'-difluorodiphenyl ether, 4,4'-dichlorodiphenyl ether, and 4,4'-dibromodiphenyl ether as research objects. The LC50 (96 h) values for these compounds in adult zebrafish were determined with the acute test. Also, developmental toxicities of the four substances to zebrafish embryos were observed at 24, 48, 72, and 96 hpf. All the LC50 (96 h) values of these compounds were between 1 and 10 mg/L, suggesting that they all had moderate toxicity to adult zebrafish. The embryonic test demonstrated that with increasing doses, 4,4'-dihydroxydiphenyl ether decreased the hatching rate, while 4,4'-difluorodiphenyl ether, 4,4'-dichlorodiphenyl ether, and 4,4'-dibromodiphenyl ether delayed the hatching time but had little effect on final hatchability at 96 hpf. All of these compounds inhibited larval growth, especially 4,4'-dihydroxydiphenyl ether. Exposure to these chemicals induced embryo yolk sac and pericardial edema. Spine deformation was visible in hatched larvae after 96 hpf 4,4'-dihydroxydiphenyl ether exposure, while tail curvature was observed for the halogenated compounds. The overall results indicated that 4,4'-dihydroxydiphenyl ether, 4,4'-difluorodiphenyl ether, 4,4'-dichlorodiphenyl ether, and 4,4'-dibromodiphenyl ether all had significant toxicity on adult and embryonic zebrafish.
Collapse
Affiliation(s)
- Li Qin
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, Nanjing, China
| | | | | | | | | | | |
Collapse
|
31
|
Filho JDS, Matsubara EY, Franchi LP, Martins IP, Rivera LMR, Rosolen JM, Grisolia CK. Evaluation of carbon nanotubes network toxicity in zebrafish (Danio rerio) model. ENVIRONMENTAL RESEARCH 2014; 134:9-16. [PMID: 25042031 DOI: 10.1016/j.envres.2014.06.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 06/13/2014] [Accepted: 06/19/2014] [Indexed: 05/02/2023]
Abstract
This is a detailed in vivo study of the biological response to carbon nanotubes network as probed by the zebrafish model. First, we prepared pristine carbon nanotubes (CNTs) by methanol chemical vapor deposition in the presence of Mn and Co as catalysts, followed by purification in acid, which furnished curved tubes with diameters lying between 10 and 130 nm. The CNT network consisted of pristine CNTs dispersed in water in the presence of a surfactant. The CNT network pellets corresponded to agglomerated multi-walled CNTs with an average diameter of about 500 nm. Although the same pristine CNTs had been previously found to exert genotoxic effects in vitro, here we verified that the CNT network was not genotoxic in vivo. Indeed, Raman spectroscopy and microscopy conducted in the intestine of the zebrafish revealed complete clearance of the CNT network as well as minimal disturbances, such as aneurysms, hyperemia, and reversible inflammatory focus in the zebrafish gills.
Collapse
Affiliation(s)
- Jose de Souza Filho
- Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasilia, Brazil
| | - Elaine Y Matsubara
- Departamento de Química-FFCLRP, Universidade de São Paulo, 14040-901, Ribeirão Preto-SP, Brasil.
| | - Leonardo Pereira Franchi
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto; Universidade de São Paulo, 14049-900, Ribeirão Preto - SP - Brazil
| | - Igor Pinheiro Martins
- Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasilia, Brazil
| | - Luis Miguel Ramires Rivera
- Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasilia, Brazil
| | - José Mauricio Rosolen
- Departamento de Química-FFCLRP, Universidade de São Paulo, 14040-901, Ribeirão Preto-SP, Brasil.
| | - Cesar Koppe Grisolia
- Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasilia, Brazil
| |
Collapse
|
32
|
p53 dependent apoptotic cell death induces embryonic malformation in Carassius auratus under chronic hypoxia. PLoS One 2014; 9:e102650. [PMID: 25068954 PMCID: PMC4113303 DOI: 10.1371/journal.pone.0102650] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 06/22/2014] [Indexed: 12/26/2022] Open
Abstract
Hypoxia is a global phenomenon affecting recruitment as well as the embryonic development of aquatic fauna. The present study depicts hypoxia induced disruption of the intrinsic pathway of programmed cell death (PCD), leading to embryonic malformation in the goldfish, Carrasius auratus. Constant hypoxia induced the early expression of pro-apoptotic/tumor suppressor p53 and concomitant expression of the cell death molecule, caspase-3, leading to high level of DNA damage and cell death in hypoxic embryos, as compared to normoxic ones. As a result, the former showed delayed 4 and 64 celled stages and a delay in appearance of epiboly stage. Expression of p53 efficiently switched off expression of the anti-apoptotic Bcl-2 during the initial 12 hours post fertilization (hpf) and caused embryonic cell death. However, after 12 hours, simultaneous downregulation of p53 and Caspase-3 and exponential increase of Bcl-2, caused uncontrolled cell proliferation and prevented essential programmed cell death (PCD), ultimately resulting in significant (p<0.05) embryonic malformation up to 144 hpf. Evidences suggest that uncontrolled cell proliferation after 12 hpf may have been due to downregulation of p53 abundance, which in turn has an influence on upregulation of anti-apoptotic Bcl-2. Therefore, we have been able to show for the first time and propose that hypoxia induced downregulation of p53 beyond 12 hpf, disrupts PCD and leads to failure in normal differentiation, causing malformation in gold fish embryos.
Collapse
|
33
|
Hallare AV, Ruiz PLS, Cariño JCED. Assessment of Jatropha curcas L. biodiesel seed cake toxicity using the zebrafish (Danio rerio) embryo toxicity (ZFET) test. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:6044-6056. [PMID: 24464135 DOI: 10.1007/s11356-014-2539-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 01/08/2014] [Indexed: 06/03/2023]
Abstract
Consequent to the growing demand for alternative sources of energy, the seeds from Jatropha curcas remain to be the favorite for biodiesel production. However, a significant volume of the residual organic mass (seed cake) is produced during the extraction process, which raises concerns on safe waste disposal. In the present study, we assessed the toxicity of J. curcas seed cake using the zebrafish (Danio rerio) embryotoxicity test. Within 1-h post-fertilization (hpf), the fertilized eggs were exposed to five mass concentrations of J. curcas seed cake and were followed through 24, 48, and 72 hpf. Toxicity was evaluated based on lethal endpoints induced on zebrafish embryos namely egg coagulation, non-formation of somites, and non-detachment of tail. The lowest concentration tested, 1 g/L, was not able to elicit toxicity on embryos whereas 100 % mortality (based also on lethal endpoints) was recorded at the highest concentration at 2.15 g/L. The computed LC50 for the J. curcas seed cake was 1.61 g/L. No further increase in mortality was observed in the succeeding time points (48 and 72 hpf) indicating that J. curcas seed cake exerted acute toxicity on zebrafish embryos. Sublethal endpoints (yolk sac and pericardial edema) were noted at 72 hpf in zebrafish embryos exposed to higher concentrations. The observed lethal endpoints induced on zebrafish embryos were discussed in relation to the active principles, notably, phorbol esters that have remained in the seed cake even after extraction.
Collapse
Affiliation(s)
- Arnold V Hallare
- Department of Biology, CAS, University of the Philippines, Manila, Padre Faura St., Manila, 1000, Philippines,
| | | | | |
Collapse
|
34
|
Fischer B, Metzger M, Richardson R, Knyphausen P, Ramezani T, Franzen R, Schmelzer E, Bloch W, Carney TJ, Hammerschmidt M. p53 and TAp63 promote keratinocyte proliferation and differentiation in breeding tubercles of the zebrafish. PLoS Genet 2014; 10:e1004048. [PMID: 24415949 PMCID: PMC3886889 DOI: 10.1371/journal.pgen.1004048] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 11/04/2013] [Indexed: 11/18/2022] Open
Abstract
p63 is a multi-isoform member of the p53 family of transcription factors. There is compelling genetic evidence that ΔNp63 isoforms are needed for keratinocyte proliferation and stemness in the developing vertebrate epidermis. However, the role of TAp63 isoforms is not fully understood, and TAp63 knockout mice display normal epidermal development. Here, we show that zebrafish mutants specifically lacking TAp63 isoforms, or p53, display compromised development of breeding tubercles, epidermal appendages which according to our analyses display more advanced stratification and keratinization than regular epidermis, including continuous desquamation and renewal of superficial cells by derivatives of basal keratinocytes. Defects are further enhanced in TAp63/p53 double mutants, pointing to partially redundant roles of the two related factors. Molecular analyses, treatments with chemical inhibitors and epistasis studies further reveal the existence of a linear TAp63/p53->Notch->caspase 3 pathway required both for enhanced proliferation of keratinocytes at the base of the tubercles and their subsequent differentiation in upper layers. Together, these studies identify the zebrafish breeding tubercles as specific epidermal structures sharing crucial features with the cornified mammalian epidermis. In addition, they unravel essential roles of TAp63 and p53 to promote both keratinocyte proliferation and their terminal differentiation by promoting Notch signalling and caspase 3 activity, ensuring formation and proper homeostasis of this self-renewing stratified epithelium. The mammalian epidermis is a stratified self-renewing epithelium, in which cell loss at the surface is properly balanced by cell proliferation in basal layers to ensure tissue homeostasis. But how is this balance genetically controlled? Here, we address this question in zebrafish breeding tubercles, epidermal appendages in which keratinocytes undergo more advanced differentiation processes than in regular fish epidermis, sharing crucial features with the cornified mammalian skin. We identify a linear pathway consisting of the transcription factor p53 and its close relative TAp63, which activate Notch signalling and thereby caspase 3 to promote terminal differentiation and eventual shedding of keratinocytes in upper tubercle layers, while at the same time employing non-cell autonomous mechanisms to promote keratinocyte proliferation at the tubercle base, thereby ensuring proper development and homeostasis of this self-renewing tissue. Such a two-fold function of the pathway is consistent with the formerly reported dual role of a caspase during wing regeneration in the fruitfly. Our findings will help to better understand the seemingly contrary effects described for TAp63 in different mammalian systems, while demonstrating partial functional redundancy between p53 and TAp63 during epidermal development in fish.
Collapse
Affiliation(s)
- Boris Fischer
- Institute of Developmental Biology, University of Cologne, Cologne, Germany
| | - Manuel Metzger
- Institute of Developmental Biology, University of Cologne, Cologne, Germany
| | - Rebecca Richardson
- Institute of Developmental Biology, University of Cologne, Cologne, Germany
| | - Philipp Knyphausen
- Institute of Developmental Biology, University of Cologne, Cologne, Germany
| | - Thomas Ramezani
- Institute of Developmental Biology, University of Cologne, Cologne, Germany
| | - Rainer Franzen
- Cell Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Elmon Schmelzer
- Cell Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Wilhelm Bloch
- Institute of Cardiology and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | | | - Matthias Hammerschmidt
- Institute of Developmental Biology, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
35
|
Wijesinghe WAJP, Kim EA, Kang MC, Lee WW, Lee HS, Vairappan CS, Jeon YJ. Assessment of anti-inflammatory effect of 5β-hydroxypalisadin B isolated from red seaweed Laurencia snackeyi in zebrafish embryo in vivo model. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:110-117. [PMID: 24317194 DOI: 10.1016/j.etap.2013.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/31/2013] [Accepted: 11/03/2013] [Indexed: 06/02/2023]
Abstract
5β-Hydroxypalisadin B, a halogenated secondary metabolite isolated from red seaweed Laurencia snackeyi was evaluated for its anti-inflammatory activity in lipopolysaccharide (LPS)-induced zebrafish embryo. Preliminary studies suggested the effective concentrations of the compound as 0.25, 0.5, 1 μg/mL for further in vivo experiments. 5β-Hydroxypalisadin B, exhibited profound protective effect in the zebrafish embryo as confirmed by survival rate, heart beat rate, and yolk sac edema size. The compound acts as an effective agent against reactive oxygen species (ROS) formation induced by LPS and tail cut. Moreover, 5β-hydroxypalisadin B effectively inhibited the LPS-induced nitric oxide (NO) production in zebrafish embryo. All the tested protective effects of 5β-hydroxypalisadin B were comparable to the well-known anti-inflammatory agent dexamethasone. According to the results obtained, 5β-hydroxypalisadin B isolated from red seaweed L. snackeyi could be considered as an effective anti-inflammatory agent which might be further developed as a functional ingredient.
Collapse
Affiliation(s)
- W A J P Wijesinghe
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - Eun-A Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - Min-Cheol Kang
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - Won-Woo Lee
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - Hyi-Seung Lee
- Marine Natural Products Laboratory, Korea Ocean Research & Development Institute, P.O. Box 29, Ansan 426-744, Republic of Korea
| | - Charles S Vairappan
- Laboratory of Natural Products Chemistry, Institute for Tropical Biology and Conservation, University Malaysia Sabah, Kota Kinabalu 88440, Sabah, Malaysia.
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea.
| |
Collapse
|
36
|
Lin HJ, Lee SH, Wu JL, Duann YF, Chen JY. Development of Cre-loxP technology in zebrafish to study the regulation of fish reproduction. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:1525-1539. [PMID: 23670400 DOI: 10.1007/s10695-013-9806-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 05/08/2013] [Indexed: 06/02/2023]
Abstract
One cannot seek permission to market transgenic fish mainly because there is no field test or any basic research on technological developments for evaluating their biosafety. Infertility is a necessary adjunct to exploiting transgenic fish unless completely secure land-locked facilities are available. In this study, we report the generation of a Cre transgenic zebrafish line using a cytomegalovirus promoter. We also produced fish carrying the Bax1 and Bax2 plasmids; these genes were separated by two loxP sites under a zona pellucida C promoter or were driven by an anti-Müllerian hormone promoter. We inserted a red fluorescent protein gene between the two loxP sites. After obtaining transgenic lines with the two transgenic fish crossed with each other (Cre transgenic zebrafish x loxP transgenic zebrafish), the floxed DNA was found to be specifically eliminated from the female or male zebrafish, and apoptosis gene expressions caused ovarian and testicular growth cessation and degeneration. Overexpression of the Bax1 and Bax2 genes caused various expression levels of apoptosis-related genes. Accordingly, this transgenic zebrafish model system provides a method to produce infertile fish and may be useful for application to genetically modified fish.
Collapse
Affiliation(s)
- Heng-Ju Lin
- Graduate Institute of Engineering Technology-Doctoral, National Taipei University of Technology, 1 Chung-Hsiao E. Rd., Sec. 3, Taipei, 10608, Taiwan
| | | | | | | | | |
Collapse
|
37
|
Kondakova EAA, Efremov VII. Morphofunctional transformations of the yolk syncytial layer during zebrafish development. J Morphol 2013; 275:206-16. [DOI: 10.1002/jmor.20209] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 08/11/2013] [Accepted: 09/05/2013] [Indexed: 12/14/2022]
Affiliation(s)
| | - Vladimir Ivanovich I. Efremov
- Department of Embryology, Faculty of Biology and Soil Science; Saint-Petersburg State University; St.-Petersburg Russia
| |
Collapse
|
38
|
Zhao X, Ong KJ, Ede JD, Stafford JL, Ng KW, Goss GG, Loo SCJ. Evaluating the toxicity of hydroxyapatite nanoparticles in catfish cells and zebrafish embryos. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:1734-1741. [PMID: 22887936 DOI: 10.1002/smll.201200639] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 06/12/2012] [Indexed: 06/01/2023]
Abstract
The toxicity of needle-(nHA-ND) and rod-shaped (nHA-RD) hydroxyapatite (HA) nanoparticles is evaluated in vitro on catfish B-cells (3B11) and catfish T-cells (28s.3) and in vivo on zebrafish embryos to determine if biological effects are similar to the effects seen in mammalian in vitro systems. Neither nHA-ND nor nHA-RD affect cell viability at concentrations of 10 to 300 μg mL(-1) . However, 30 μg mL(-1) needle-shaped nHA lower metabolic activity of the cells. Axial deformations are seen in zebrafish exposed to 300 μg mL(-1) needle shaped nHA after 120 h. For the first time, nHA is reported to cause zebrafish hatching delay. The lowest concentration (3 μg mL(-1) ) of both types of nHA cause the highest hatching inhibition and needle-shaped nHA exposed zebrafish exhibit the lowest hatch at 72 h post fertilization.
Collapse
Affiliation(s)
- Xinxin Zhao
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | | | | | | | | | | | | |
Collapse
|
39
|
Nadrah P, Maver U, Jemec A, Tišler T, Bele M, Dražić G, Benčina M, Pintar A, Planinšek O, Gaberšček M. Hindered disulfide bonds to regulate release rate of model drug from mesoporous silica. ACS APPLIED MATERIALS & INTERFACES 2013; 5:3908-3915. [PMID: 23581883 DOI: 10.1021/am400604d] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
With the advancement of drug delivery systems based on mesoporous silica nanoparticles (MSNs), a simple and efficient method regulating the drug release kinetics is needed. We developed redox-responsive release systems with three levels of hindrance around the disulfide bond. A model drug (rhodamine B dye) was loaded into MSNs' mesoporous voids. The pore opening was capped with β-cyclodextrin in order to prevent leakage of drug. Indeed, in absence of a reducing agent the systems exhibited little leakage, while the addition of dithiothreitol cleaved the disulfide bonds and enabled the release of cargo. The release rate and the amount of released dye were tuned by the level of hindrance around disulfide bonds, with the increased hindrance causing a decrease in the release rate as well as in the amount of released drug. Thus, we demonstrated the ability of the present mesoporous systems to intrinsically control the release rate and the amount of the released cargo by only minor structural variations. Furthermore, an in vivo experiment on zebrafish confirmed that the present model delivery system is nonteratogenic.
Collapse
Affiliation(s)
- Peter Nadrah
- National Institute of Chemistry, Hajdrihova ul. 19, SI-1001 Ljubljana, Slovenia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Luzio A, Monteiro SM, Fontaínhas-Fernandes AA, Pinto-Carnide O, Matos M, Coimbra AM. Copper induced upregulation of apoptosis related genes in zebrafish (Danio rerio) gill. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 128-129:183-189. [PMID: 23314331 DOI: 10.1016/j.aquatox.2012.12.018] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 12/11/2012] [Accepted: 12/19/2012] [Indexed: 06/01/2023]
Abstract
Copper (Cu) is an essential micronutrient that, when present in high concentrations, becomes toxic to aquatic organisms. It is known that Cu toxicity may induce apoptotic cell death. However, the precise mechanism and the pathways that are activated, in fish, are still unclear. Thus, this study aimed to assess which apoptotic pathways are triggered by Cu, in zebrafish (Danio rerio) gill, the main target of waterborne pollutants. Fish where exposed to 12.5 and 100 μg/L of Cu during 6, 12, 24 and 48 h. Fish gills were collected to TUNEL assay and mRNA expression analysis of selected genes by real time PCR. An approach to different apoptosis pathways was done selecting p53, caspase-8, caspase-9 and apoptosis inducing factor (AIF) genes. The higher incidence of TUNEL-positive cells, in gill epithelia of the exposed fish, proved that Cu induced apoptosis. The results suggest that different apoptosis pathways are triggered by Cu at different time points of the exposure period, as the increase in transcripts was sequential, instead of simultaneous. Apoptosis seems to be initiated via intrinsic pathway (caspase-9), through p53 activation; then followed by the extrinsic pathway (caspase-8) and finally by the caspase-independent pathway (AIF). A possible model for Cu-induce apoptosis pathways is proposed.
Collapse
Affiliation(s)
- Ana Luzio
- Centro de Investigação de Tecnologias Agro-Ambientais e Biológicas (CITAB), Departamento de Biologia e Ambiente (DeBA), Escola de Ciências da Vida e Ambiente (ECVA), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, Vila Real, Portugal.
| | | | | | | | | | | |
Collapse
|
41
|
Terriente J, Pujades C. Use of Zebrafish Embryos for Small Molecule Screening Related to Cancer. Dev Dyn 2013. [DOI: 10.1002/dvdy.23912] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Javier Terriente
- Department of Experimental and Health Sciences; Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona; PRBB; Barcelona; Spain
| | - Cristina Pujades
- Department of Experimental and Health Sciences; Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona; PRBB; Barcelona; Spain
| |
Collapse
|
42
|
Li A, Sun Y, Dou C, Chen J, Zhang J. Lysine-specific demethylase 1 expression in zebrafish during the early stages of neuronal development. Neural Regen Res 2012; 7:2719-26. [PMID: 25337119 PMCID: PMC4200741 DOI: 10.3969/j.issn.1673-5374.2012.34.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 11/06/2012] [Indexed: 12/29/2022] Open
Abstract
Lysine-specific demethylase 1 (Lsd1) is associated with transcriptional coregulation via the modulation of histone methylation. The expression pattern and function of zebrafish Lsd1 has not, however, been studied. Here, we describe the pattern of zebrafish Lsd1 expression during different development stages. In the zebrafish embryo, lsd1 mRNA was present during the early cleavage stage, indicating that maternally derived Lsd1 protein is involved in embryonic patterning. During embryogenesis from 0 to 48 hours post-fertilization (hpf), the expression of lsd1 mRNA in the embryo was ubiquitous before 12 hpf and then became restricted to the anterior of the embryo (particularly in the brain) from 24 hpf to 72 hpf. Inhibition of Lsd1 activity (by exposure to tranylcypromine) or knockdown of lsd1 expression (by morpholino antisense oligonucleotide injection) led to the loss of cells in the brain and to a dramatic downregulation of neural genes, including gad65, gad75, and reelin, but not hey1. These findings indicate an important role of Lsd1 during nervous system development in zebrafish.
Collapse
Affiliation(s)
- Aihong Li
- Department of Internal Neurology, Affiliated Hospital of Nantong University, Nantong 226019, Jiangsu Province, China
| | - Yong Sun
- Key Laboratory of Acupuncture Combined with Medication, Nanjing University of Chinese Medicine, Nanjing 210000, Jiangsu Province, China
| | - Changming Dou
- Anhui Academy of Environmental Sciences, Hefei 230061, Anhui Province, China
| | - Jixian Chen
- Department of Cardiothoracic Surgery, Third Affiliated Hospital of Wenzhou Medical College, Wenzhou 325000, Zhejiang Province, China
| | - Jie Zhang
- Department of Immunology, School of Medicine, Nantong University, Nantong 226019, Jiangsu Province, China
| |
Collapse
|
43
|
Cho MH, Lee EJ, Son M, Lee JH, Yoo D, Kim JW, Park SW, Shin JS, Cheon J. A magnetic switch for the control of cell death signalling in in vitro and in vivo systems. NATURE MATERIALS 2012; 11:1038-43. [PMID: 23042417 DOI: 10.1038/nmat3430] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 08/23/2012] [Indexed: 05/20/2023]
Abstract
The regulation of cellular activities in a controlled manner is one of the most challenging issues in fields ranging from cell biology to biomedicine. Nanoparticles have the potential of becoming useful tools for controlling cell signalling pathways in a space and time selective fashion. Here, we have developed magnetic nanoparticles that turn on apoptosis cell signalling by using a magnetic field in a remote and non-invasive manner. The magnetic switch consists of zinc-doped iron oxide magnetic nanoparticles (Zn(0.4)Fe(2.6)O(4)), conjugated with a targeting antibody for death receptor 4 (DR4) of DLD-1 colon cancer cells. The magnetic switch, in its On mode when a magnetic field is applied to aggregate magnetic nanoparticle-bound DR4s, promotes apoptosis signalling pathways. We have also demonstrated that the magnetic switch is operable at the micrometre scale and that it can be applied in an in vivo system where apoptotic morphological changes of zebrafish are successfully induced.
Collapse
Affiliation(s)
- Mi Hyeon Cho
- Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
He Y, Patterson S, Wang N, Hecker M, Martin JW, El-Din MG, Giesy JP, Wiseman SB. Toxicity of untreated and ozone-treated oil sands process-affected water (OSPW) to early life stages of the fathead minnow (Pimephales promelas). WATER RESEARCH 2012; 46:6359-6368. [PMID: 23022117 DOI: 10.1016/j.watres.2012.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/30/2012] [Accepted: 09/03/2012] [Indexed: 06/01/2023]
Abstract
Due to a policy of no release, oil sands process-affected water (OSPW), produced by the surface-mining oil sands industry in North Eastern Alberta, Canada, is stored on-site in tailings ponds. Currently, ozonation is considered one possible method for remediation of OSPW by reducing the concentrations of dissolved organic compounds, including naphthenic acids (NAs), which are considered the primary toxic constituents. However, further work was needed to evaluate the effectiveness of ozonation in reducing the toxicity of OSPW and to ensure that ozonation does not increase the toxicity of OSPW. This study examined effects of untreated, ozone-treated, and activated charcoal-treated OSPW (OSPW, O3-OSPW, and AC-OSPW) on the early life stage (ELS) of fathead minnow (Pimephales promelas). Success of hatching of eggs, spontaneous movement, and incidences of hemorrhage, pericardial edema, and malformation of the spine of embryos were examined. To elucidate the mechanism of toxicity, concentrations of reactive oxygen species (ROS) were measured, and the abundances of transcripts of genes involved in biotransformation of xenobiotics, response to oxidative stress, and apoptosis were quantified by real-time PCR. Compared to the control group, which had an embryo survival rate of 97.9 ± 2.08%, survival was significantly less when exposed to OSPW (43.8 ± 7.12%). Eggs exposed to untreated OSPW exhibited a significantly greater rate of premature hatching, and embryos exhibited greater spontaneous movement. Incidences of hemorrhage (50.0 ± 3.40%), pericardial edema (56.3 ± 7.12%), and malformation of the spine (37.5 ± 5.38%) were significantly greater in embryos exposed to OSPW compared to controls. These effects are typical of exposure to dioxin-like compounds, however, abundance of transcripts of cyp1a was not significantly greater in embryos exposed to OSPW. Significantly greater concentrations of ROS, and greater abundances of transcripts cyp3a, gst, sod, casp9, and apopen compared to controls, indicated that exposure to OSPW caused oxidative stress, which can result in damage to mitochondria and promote activation of caspase enzymes and apoptotic cell death. Removal of dissolved organic constituents by ozone treatment, or by activated charcoal, significantly attenuated all of the adverse effects associated with untreated OSPW. The results suggest that the organic fraction of OSPW can negatively impact the development of fathead minnow embryos through oxidative stress and apoptosis, and that ozonation attenuates this developmental toxicity.
Collapse
Affiliation(s)
- Yuhe He
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Chen L, Hu P, Zhang L, Huang S, Luo L, Huang C. Toxicity of graphene oxide and multi-walled carbon nanotubes against human cells and zebrafish. Sci China Chem 2012. [DOI: 10.1007/s11426-012-4620-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
46
|
Du M, Zhang D, Yan C, Zhang X. Developmental toxicity evaluation of three hexabromocyclododecane diastereoisomers on zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 112-113:1-10. [PMID: 22360937 DOI: 10.1016/j.aquatox.2012.01.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 01/16/2012] [Accepted: 01/17/2012] [Indexed: 05/31/2023]
Abstract
Structural dissimilarities of hexabromocyclododecane diastereoisomers could raise substantial differences in physicochemical, biological and toxicological properties. In order to fully assess the environmental safety and health risk of hexabromocyclododecanes (HBCDs), zebrafish embryos were used to evaluate the developmental toxicity of individual HBCD diastereoisomers (α-HBCD, β-HBCD and γ-HBCD). Four-hour post-fertilization (hpf) zebrafish embryos were exposed to different concentrations of HBCD diastereoisomers (0, 0.01, 0.1 and 1.0 mg/l) until 120 hpf. The results showed that exposure to HBCDs can affect the development of zebrafish embryos/larvae in a dose-dependent and diastereoselective manner. The diastereoisomers α-, β- and γ-HBCD at 0.01 mg/l had little effect on the development of zebrafish embryos except that exposure to 0.01 mg/l γ-HBCD significantly delayed hatching (P<0.05). At 0.1mg/l, α-HBCD resulted in depressed heart rate of larvae (96 hpf) and delayed hatching, whereas β- and γ-HBCD both caused significant hatching delay and growth inhibition (P<0.05). In addition, a remarkable and significant increase in mortality and malformation rate was noted at 0.1 mg/l γ-HBCD exposure groups (P<0.05). At 1.0 mg/l, α-, β- and γ-HBCD significantly affected all of the endpoints monitored (P<0.05). Additionally, HBCD diastereoisomers could induce the generation of reactive oxygen species (ROS) and the activities of caspase-3 and caspase-9 in a dose-dependent manner. The results indicated that HBCD diastereoisomers could cause developmental toxicity to zebrafish embryos through inducing apoptosis by ROS formation. The overall results showed a good agreement confirming that the order of developmental toxicity of HBCD diastereoisomers in zebrafish is γ-HBCD>β-HBCD>α-HBCD.
Collapse
Affiliation(s)
- Miaomiao Du
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | | | | | | |
Collapse
|
47
|
Abstract
Rho small GTPases play pivotal roles in a variety of dynamic cellular processes including cytoskeleton rearrangement, cell migration, cell proliferation, cell survival, and gene regulation. However, their functions in vivo are much less understood. Recently, the zebrafish, Danio rerio has emerged as a powerful model organism for developmental and genetic studies. Zebrafish embryos have many unique characteristics, such as optical transparency, external fertilization and development, and amenability for various molecular manipulations including morpholino oligo-mediated gene knockdown, mRNA or DNA overexpression-induced gain of function or rescue, in situ hybridization (ISH) with riboprobes for gene expression, western blot for protein analysis, small-molecule inhibition on signaling pathways, and bioimaging for tracking of molecular events. Taking many of such advantages, we have demonstrated the role of rhoA small GTPase in the control of gastrulation cell movements and cell survival during early zebrafish embryogenesis, linking RhoA functions to at least the noncanonical Wnt, Mek/Erk, and Bcl2 signaling nodes in vivo. Here, we describe the use of such techniques, including gene knockdown by morpholino oligo, functional rescue by mRNA overexpression, microinjection, ISH, western blot analysis and pharmacological inhibition of signaling pathways by small molecule inhibitors, with special considerations on their merits, potential drawbacks, and adaptation which could pave the way to our better understanding of the roles of various classes of small GTPases in regulating cell dynamics and development in vivo.
Collapse
Affiliation(s)
- Shizhen Zhu
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
48
|
Bohnsack JP, Assemi S, Miller JD, Furgeson DY. The primacy of physicochemical characterization of nanomaterials for reliable toxicity assessment: a review of the zebrafish nanotoxicology model. Methods Mol Biol 2012; 926:261-316. [PMID: 22975971 DOI: 10.1007/978-1-62703-002-1_19] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Engineered nanomaterials (ENMs) have become increasingly prevalent in the past two decades in academic, medical, commercial, and industrial settings. The unique properties imbued with nanoparticles, as the physiochemical properties change from the bulk material to the surface atoms, present unique and often challenging characteristics that larger macromolecules do not possess. While nanoparticle characteristics are indeed exciting for unique chemistries, surface properties, and diverse applications, reports of toxicity and environmental impacts have tempered this enthusiasm and given cause for an exponential increase for concomitant nanotoxicology assessment. Currently, nanotoxicology is a steadily growing with new literature and studies being published more frequently than ever before; however, the literature reveals clear, inconsistent trends in nanotoxicological assessment. At the heart of this issue are several key problems including the lack of validated testing protocols and models, further compounded by inadequate physicochemical characterization of the nanomaterials in question and the seminal feedback loop of chemistry to biology back to chemistry. Zebrafish (Danio rerio) are emerging as a strong nanotoxicity model of choice for ease of use, optical transparency, cost, and high degree of genomic homology to humans. This review attempts to amass all contemporary nanotoxicology studies done with the zebrafish and present as much relevant information on physicochemical characteristics as possible. While this report is primarily a physicochemical summary of nanotoxicity studies, we wish to strongly emphasize that for the proper evolution of nanotoxicology, there must be a strong marriage between the physical and biological sciences. More often than not, nanotoxicology studies are reported by groups dominated by one discipline or the other. Regardless of the starting point, nanotoxicology must be seen as an iterative process between chemistry and biology. It is our sincere hope that the future will introduce a paradigm shift in the approach to nanotoxicology with multidisciplinary groups for data analysis to produce predictive and correlative models for the end goal of rapid preclinical development of new therapeutics into the clinic or insertion into environmental protection.
Collapse
Affiliation(s)
- John P Bohnsack
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
| | | | | | | |
Collapse
|
49
|
Sun H, Lin CH, Smith ME. Growth hormone promotes hair cell regeneration in the zebrafish (Danio rerio) inner ear following acoustic trauma. PLoS One 2011; 6:e28372. [PMID: 22140580 PMCID: PMC3227666 DOI: 10.1371/journal.pone.0028372] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 11/07/2011] [Indexed: 01/13/2023] Open
Abstract
Background Previous microarray analysis showed that growth hormone (GH) was significantly upregulated following acoustic trauma in the zebrafish (Danio rerio) ear suggesting that GH may play an important role in the process of auditory hair cell regeneration. Our objective was to examine the effects of exogenous and endogenous GH on zebrafish inner ear epithelia following acoustic trauma. Methodology/Principal Findings We induced auditory hair cell damage by exposing zebrafish to acoustic overstimulation. Fish were then injected intraperitoneally with either carp GH or buffer, and placed in a recovery tank for either one or two days. Phalloidin-, bromodeoxyuridine (BrdU)-, and TUNEL-labeling were used to examine hair cell densities, cell proliferation, and apoptosis, respectively. Two days post-trauma, saccular hair cell densities in GH-treated fish were similar to that of baseline controls, whereas buffer-injected fish showed significantly reduced densities of hair cell bundles. Cell proliferation was greater and apoptosis reduced in the saccules, lagenae, and utricles of GH-treated fish one day following trauma compared to controls. Fluorescent in situ hybridization (FISH) was used to examine the localization of GH mRNA in the zebrafish ear. At one day post-trauma, GH mRNA expression appeared to be localized perinuclearly around erythrocytes in the blood vessels of the inner ear epithelia. In order to examine the effects of endogenous GH on the process of cell proliferation in the ear, a GH antagonist was injected into zebrafish immediately following acoustic trauma, resulting in significantly decreased cell proliferation one day post-trauma in all three zebrafish inner ear end organs. Conclusions/Significance Our results show that exogenous GH promotes post-trauma auditory hair cell regeneration in the zebrafish ear through stimulating proliferation and suppressing apoptosis, and that endogenous GH signals are present in the zebrafish ear during the process of auditory hair cell regeneration.
Collapse
Affiliation(s)
- Huifang Sun
- Department of Biology and Biotechnology Center, Western Kentucky University, Bowling Green, Kentucky, United States of America
| | - Chia-Hui Lin
- Department of Biology and Biotechnology Center, Western Kentucky University, Bowling Green, Kentucky, United States of America
| | - Michael E. Smith
- Department of Biology and Biotechnology Center, Western Kentucky University, Bowling Green, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
50
|
Pyati UJ, Gjini E, Carbonneau S, Lee JS, Guo F, Jette CA, Kelsell DP, Look AT. p63 mediates an apoptotic response to pharmacological and disease-related ER stress in the developing epidermis. Dev Cell 2011; 21:492-505. [PMID: 21920315 DOI: 10.1016/j.devcel.2011.07.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 04/12/2011] [Accepted: 07/22/2011] [Indexed: 01/12/2023]
Abstract
Endoplasmic reticulum (ER) stress triggers tissue-specific responses that culminate in either cellular adaptation or apoptosis, but the genetic networks distinguishing these responses are not well understood. Here we demonstrate that ER stress induced in the developing zebrafish causes rapid apoptosis in the brain, spinal cord, tail epidermis, lens, and epiphysis. Focusing on the tail epidermis, we uncover an apoptotic response that depends on Puma, but not on p53 or Chop. puma is transcriptionally activated during this ER stress response in a p53-independent manner, and is an essential mediator of epidermal apoptosis. We demonstrate that the p63 transcription factor is upregulated to initiate this apoptotic pathway and directly activates puma transcription in response to ER stress. We also show that a mutation of human Connexin 31, which causes erythrokeratoderma variabilis, induces ER stress and p63-dependent epidermal apoptosis in the zebrafish embryo, thus implicating this pathway in the pathogenesis of inherited disease.
Collapse
Affiliation(s)
- Ujwal J Pyati
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|