1
|
Wang X, Qu Y, Ji J, Liu H, Luo H, Li J, Han X. Colorectal cancer cells establish metabolic reprogramming with cancer-associated fibroblasts (CAFs) through lactate shuttle to enhance invasion, migration, and angiogenesis. Int Immunopharmacol 2024; 143:113470. [PMID: 39471692 DOI: 10.1016/j.intimp.2024.113470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/09/2024] [Accepted: 10/20/2024] [Indexed: 11/01/2024]
Abstract
Fibroblasts undergo metabolic reprogramming after contact with cancer cells in tumor microenvironment, producing lactate to provide a metabolic substrate for neighboring tumor cells. The exchange of lactate between cancer cells and fibroblasts via monocarboxylate transporters (MCTs) is known as the lactate shuttle. Colorectal cancer cells may establish a metabolic coupling akin to the lactate shuttle in collaboration with cancer-associated fibroblasts (CAFs) to augment their invasive and migratory capabilities. However, the specific phenomena and underlying mechanisms are not clear. In this study, we investigated the phenomena and explored the correlation and possible mechanism between CAFs and the invasion and migration of colorectal cancer cells by using two different co-culture models. The results showed that colorectal cancer cells established a lactate metabolic coupling with fibroblasts through the oxidative stress effect, triggering the metabolic reprogramming process of themselves and those of fibroblasts. In addition, lactate enhanced the invasion and migration of colorectal cancer by stabilizing the protein expression levels of nuclear factor kappa-B (NF-κB) and hypoxia-inducible factor-1α (HIF-1α). Blocking oxidative stress and lactate metabolic coupling with reactive oxygen species removers and MCT1-specific inhibitors, respectively, could effectively suppress metastasis in colorectal cancer. These findings suggest that targeting the lactate metabolic coupling between tumor cells and CAFs will offer a new strategy to combat colorectal cancer.
Collapse
Affiliation(s)
- Xingchen Wang
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Yaru Qu
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Jianbo Ji
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - He Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Huiyuan Luo
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Junnan Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Xiuzhen Han
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China; Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Science, Shandong University; Shandong Cancer Hospital and Institute, 440 Jiyan Road, Jinan 250117, Shandong Province, China.
| |
Collapse
|
2
|
Kwak Y, Nam SK, Park Y, Suh YS, Ahn SH, Kong SH, Park DJ, Lee HJ, Kim HH, Yang HK, Lee HS. Distinctive Phenotypic and Microenvironmental Characteristics of Neuroendocrine Carcinoma and Adenocarcinoma Components in Gastric Mixed Adenoneuroendocrine Carcinoma. Mod Pathol 2024; 37:100568. [PMID: 39029904 DOI: 10.1016/j.modpat.2024.100568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
This study aimed to conduct an in-depth examination of gene expression and microenvironmental profiles of gastric neuroendocrine carcinoma (NEC) and mixed adeno-NEC (MANEC). Tissue microarrays from 55 patients with gastric MANEC (N = 32) or NEC (N = 23) were analyzed using digital spatial profiling (GeoMx DSP, NanoString Technologies). Representative regions of interest were selected from the adenocarcinoma (ADC) portion (ADC-MANEC) and the NEC portion (NEC-MANEC) of the MANEC cores, and pure NEC (pNEC) cores. All regions of interest were separated into epithelial components and stromal components using the masking procedure in the GeoMx platform, followed by transcriptome analysis. Comparison of gene expression between ADC-MANEC and NEC-MANEC/pNEC identified several differentially expressed genes in the epithelial (including PEG10, MAP1B, STMN3, and AKT3) and stromal (FN1, COL1A1, SPARC, and BGN) components. Gene set enrichment analysis revealed that pathways related to the E2F target and G2M checkpoint were more enriched in NEC-MANEC and pNEC than in ADC-MANEC. Deconvolution analysis showed that the microenvironmental profile varied according to histologic differentiation. In ADC-MANEC, intraepithelial infiltrating immune cells were relatively more numerous, whereas fibroblasts in the stroma were more abundant in NEC-MANEC and pNEC. This study confirmed the distinct expression profile of each histologic component of MANEC according to its tumor vs stromal compartment using the DSP platform. Although each component of MANEC shares the same genetic origin, distinctive phenotypes should not be overlooked when managing patients with MANEC. This study provides a useful validation data set for future studies.
Collapse
Affiliation(s)
- Yoonjin Kwak
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Soo Kyung Nam
- Department of Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Yujun Park
- Department of Pathology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Yun-Suhk Suh
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Sang-Hoon Ahn
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Seong-Ho Kong
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Do Joong Park
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyuk-Joon Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyung-Ho Kim
- Department of Surgery, Chung-Ang University College of Medicine, Seoul, Korea
| | - Han-Kwang Yang
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
3
|
Li Y, Huang X, Li Y, Qiao Q, Chen C, Chen Y, Zhong W, Liu H, Sun T. WRN Nuclease-Mediated EcDNA Clearance Enhances Antitumor Therapy in Conjunction with Trehalose Dimycolate/Mesoporous Silica Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407026. [PMID: 39206698 PMCID: PMC11516056 DOI: 10.1002/advs.202407026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Current research on tumor fibrosis has focused on cancer-associated fibroblasts, which may exert dual functions of tumor promotion and inhibition. Little attention has been paid to whether tumor cells themselves can undergo fibrotic transformation and whether they can inhibit parenchymal cells similar to pulmonary fibrosis, thus achieving the goal of inhibiting the malignant progression of tumors. To explore the significance of inducing tumor fibrosis for cancer treatment. This study utilizes mesoporous silica nanoparticles (MSN) loaded with Trehalose dimycolate (TDM) to induce tumor cell fibrosis through the dual effects of TDM-induced inflammatory granuloma and MSN-induced foreign body granuloma. The results show that TDM/MSN (TM) can effectively induce tumor fibrosis, manifested specifically by collagen internalization, and suppression of proliferation and invasion capabilities, suggesting the potential role of tumor fibrosis therapy. However, further investigation reveals that extrachromosomal DNA (ecDNA) mediates resistance to fibrosis induction. To comprehensively enhance the efficacy, WRN exonuclease is conjugated to TM to form new nanoparticles (TMW) capable of effectively eliminating ecDNA, globally promoting tumor cell fibroblast-like transformation, and validated in a PDX model to inhibit cancer progression. Therefore, TMW, through inducing tumor cell fibrosis to inhibit its malignant progression, holds great potential as a clinical treatment strategy.
Collapse
Affiliation(s)
- Yinan Li
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
| | - Xiu Huang
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative DrugsTianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjin300450China
| | - Yingying Li
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative DrugsTianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjin300450China
| | - Qingqing Qiao
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
| | - Caihong Chen
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
| | - Yang Chen
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
| | - Weilong Zhong
- Tianjin Key Laboratory of Digestive DiseasesDepartment of Gastroenterology and HepatologyTianjin Institute of Digestive DiseasesTianjin Medical University General HospitalTianjin300052China
| | - Huijuan Liu
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative DrugsTianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjin300450China
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300350China
| |
Collapse
|
4
|
Al-qaraghuli S, Gache Y, Goncalves-Maia M, Alcor D, Muzotte E, Mahfouf W, Rezvani HR, Magnaldo T. Xeroderma Pigmentosum Type C Primary Skin Fibroblasts Overexpress HGF and Promote Squamous Cell Carcinoma Invasion in the Absence of Genotoxic Stress. Cancers (Basel) 2024; 16:3277. [PMID: 39409898 PMCID: PMC11475422 DOI: 10.3390/cancers16193277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 10/20/2024] Open
Abstract
Xeroderma pigmentosum (XP) is a very rare recessive disease caused by the incapacity to resolve ultraviolet-induced DNA lesions through Nucleotide Excision Repair (NER). Most XP patients suffer from aggressive skin carcinoma and melanoma at a very early age (<8). Our previous results showed that primary XP fibroblasts isolated from healthy (non-photo-exposed) skin negatively impact the extracellular matrix and fail to activate the innate immune system. Here, we show for the first time that XP-C fibroblasts also play a major role in cancer cell invasion ex vivo and in vivo through the overexpression of Hepatocyte Growth Factor/Scatter Factor (HGF/SF) in the absence of genotoxic attacks. The use of inhibitors of the activation of the HGF/SF pathway counteracted the effects of XP fibroblasts on the growth of cancer cells, suggesting new perspectives in the care of XP patients.
Collapse
Affiliation(s)
- Sahar Al-qaraghuli
- INSERM U1081–CNRS UMR7284-UNS, CEDEX 02, F-06107 Nice, France; (S.A.-q.)
- Faculté de Médicine, 2ème étage, CNRS UMR 6267—INSERM U998—UNSA, F-06107 Nice Cedex 2, France
| | - Yannick Gache
- INSERM U1081–CNRS UMR7284-UNS, CEDEX 02, F-06107 Nice, France; (S.A.-q.)
- Faculté de Médicine, 2ème étage, CNRS UMR 6267—INSERM U998—UNSA, F-06107 Nice Cedex 2, France
| | - Maria Goncalves-Maia
- INSERM U1081–CNRS UMR7284-UNS, CEDEX 02, F-06107 Nice, France; (S.A.-q.)
- Faculté de Médicine, 2ème étage, CNRS UMR 6267—INSERM U998—UNSA, F-06107 Nice Cedex 2, France
| | - Damien Alcor
- Faculté de Médicine, 2ème étage, CNRS UMR 6267—INSERM U998—UNSA, F-06107 Nice Cedex 2, France
- INSERM U1065, C3M, Microscopy Facility, F-06200 Nice, France
| | - Elodie Muzotte
- BRIC, UMR 1312, Inserm, Université de Bordeaux, F-33076 Bordeaux, France
| | - Walid Mahfouf
- BRIC, UMR 1312, Inserm, Université de Bordeaux, F-33076 Bordeaux, France
| | - Hamid-Reza Rezvani
- BRIC, UMR 1312, Inserm, Université de Bordeaux, F-33076 Bordeaux, France
- Centre de Référence pour les Maladies Rares de la Peau, CHU de Bordeaux, F-33000 Bordeaux, France
| | - Thierry Magnaldo
- INSERM U1081–CNRS UMR7284-UNS, CEDEX 02, F-06107 Nice, France; (S.A.-q.)
- Faculté de Médicine, 2ème étage, CNRS UMR 6267—INSERM U998—UNSA, F-06107 Nice Cedex 2, France
| |
Collapse
|
5
|
Chen M, Chen F, Gao Z, Li X, Hu L, Yang S, Zhao S, Song Z. CAFs and T cells interplay: The emergence of a new arena in cancer combat. Biomed Pharmacother 2024; 177:117045. [PMID: 38955088 DOI: 10.1016/j.biopha.2024.117045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
The interaction between the immune system and the tumor matrix has a huge impact on the progression and treatment of cancer. This paper summarizes and discusses the crosstalk between T cells and cancer-associated fibroblasts (CAFs). CAFs can also produce inhibitors that counteract the function of T cells and promote tumor immune escape, while T cells can also engage in complex two-way interactions with CAFs through direct cell contact, the exchange of soluble factors such as cytokines, and the remodeling of the extracellular matrix. Precise targeted intervention can effectively reverse tumor-promoting crosstalk between T cells and CAFs, improve anti-tumor immune response, and provide a new perspective for cancer treatment. Therefore, it is important to deeply understand the mechanism of crosstalk between T cells and CAFs. This review aims to outline the underlying mechanisms of these interactions and discuss potential therapeutic strategies that may become fundamental tools in the treatment of cancer, especially hard-to-cure cancers.
Collapse
Affiliation(s)
- Minjie Chen
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Fei Chen
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Zhaofeng Gao
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Xiaoping Li
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Lingyu Hu
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Shuying Yang
- Department of intensive medicine, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| | - Siqi Zhao
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| | - Zhengwei Song
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| |
Collapse
|
6
|
Takahashi Y, Morimura R, Tsukamoto K, Gomi S, Yamada A, Mizukami M, Naito Y, Irie S, Nagayama S, Shinozaki E, Yamaguchi K, Fujita N, Kitano S, Katayama R, Matsusaki M. In vitro throughput screening of anticancer drugs using patient-derived cell lines cultured on vascularized three-dimensional stromal tissues. Acta Biomater 2024; 183:111-129. [PMID: 38801868 DOI: 10.1016/j.actbio.2024.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/06/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
The development of high-throughput anticancer drug screening methods using patient-derived cancer cell (PDC) lines that maintain their original characteristics in an in vitro three-dimensional (3D) culture system poses a significant challenge to achieving personalized cancer medicine. Because stromal tissue plays a critical role in the composition and maintenance of the cancer microenvironment, in vitro 3D-culture using reconstructed stromal tissues has attracted considerable attention. Here, a simple and unique in vitro 3D-culture method using heparin and collagen together with fibroblasts and endothelial cells to fabricate vascularized 3D-stromal tissues for in vitro culture of PDCs is reported. Whereas co-treatment with bevacizumab, a monoclonal antibody against vascular endothelial growth factor, and 5-fluorouracil significantly reduced the survival rate of 3D-cultured PDCs to 30%, separate addition of each drug did not induce comparable strong cytotoxicity, suggesting the possibility of evaluating the combined effect of anticancer drugs and angiogenesis inhibitors. Surprisingly, drug evaluation using eight PDC lines with the 3D-culture method resulted in a drug efficacy concordance rate of 75% with clinical outcomes. The model is expected to be applicable to in vitro throughput drug screening for the development of personalized cancer medicine. STATEMENT OF SIGNIFICANCE: To replicate the cancer microenvironment, we constructed a cancer-stromal tissue model in which cancer cells are placed above and inside stromal tissue with vascular network structures derived from vascular endothelial cells in fibroblast tissue using CAViTs method. Using this method, we were able to reproduce the invasion and metastasis processes of cancer cells observed in vivo. Using patient-derived cancer cells, we assessed the possibility of evaluating the combined effect with an angiogenesis inhibitor. Further, primary cancer cells also grew on the stromal tissues with the normal medium. These data suggest that the model may be useful for new in vitro drug screening and personalized cancer medicine.
Collapse
Affiliation(s)
- Yuki Takahashi
- Business Development Division, Technical Research Institute, TOPPAN Holdings Inc., Saitama 345-8508, Japan; Division of Clinical Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Rii Morimura
- Business Development Division, Technical Research Institute, TOPPAN Holdings Inc., Saitama 345-8508, Japan; Division of Clinical Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Kei Tsukamoto
- Business Development Division, Technical Research Institute, TOPPAN Holdings Inc., Saitama 345-8508, Japan
| | - Sayaka Gomi
- Business Development Division, Technical Research Institute, TOPPAN Holdings Inc., Saitama 345-8508, Japan
| | - Asuka Yamada
- Business Development Division, Technical Research Institute, TOPPAN Holdings Inc., Saitama 345-8508, Japan; Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Miki Mizukami
- Business Development Division, Technical Research Institute, TOPPAN Holdings Inc., Saitama 345-8508, Japan
| | - Yasuyuki Naito
- Business Development Division, Technical Research Institute, TOPPAN Holdings Inc., Saitama 345-8508, Japan; Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Shinji Irie
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Satoshi Nagayama
- Department of Colorectal Surgery, Gastroenterological Cancer Center, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; Department of Surgery, Uji Tokushukai Medical Center, Kyoto 611-0041, Japan
| | - Eiji Shinozaki
- Department of Gastroenterological Chemotherapy, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Kensei Yamaguchi
- Department of Gastroenterological Chemotherapy, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Naoya Fujita
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Shiro Kitano
- Business Development Division, Technical Research Institute, TOPPAN Holdings Inc., Saitama 345-8508, Japan; Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan.
| | - Ryohei Katayama
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan.
| | - Michiya Matsusaki
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan; Department of Applied Chemistry Graduate School of Engineering Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
7
|
Aluksanasuwan S, Somsuan K, Ngoenkam J, Chiangjong W, Rongjumnong A, Morchang A, Chutipongtanate S, Pongcharoen S. Knockdown of heat shock protein family D member 1 (HSPD1) in lung cancer cell altered secretome profile and cancer-associated fibroblast induction. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119736. [PMID: 38663552 DOI: 10.1016/j.bbamcr.2024.119736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/02/2024] [Accepted: 04/16/2024] [Indexed: 05/06/2024]
Abstract
The crosstalk between lung cancer cells and cancer-associated fibroblast (CAF) is pivotal in cancer progression. Heat shock protein family D member 1 (HSPD1) is a potential prognostic biomarker associated with the tumor microenvironment in lung adenocarcinoma (LUAD). However, the role of HSPD1 in CAF activation remains unclear. This study established stable HSPD1-knockdown A549 lung cancer cells using a lentivirus-mediated shRNA transduction. A targeted label-free proteomic analysis identified six significantly altered secretory proteins in the shHSPD1-A549 secretome compared to shControl-A549. Functional enrichment analysis highlighted their involvement in cell-to-cell communication and immune responses within the tumor microenvironment. Additionally, most altered proteins exhibited positive correlations and significant prognostic impacts on LUAD patient survival. Investigations on the effects of lung cancer secretomes on lung fibroblast WI-38 cells revealed that the shControl-A549 secretome stimulated fibroblast proliferation, migration, and CAF marker expression. These effects were reversed upon the knockdown of HSPD1 in A549 cells. Altogether, our findings illustrate the role of HSPD1 in mediating CAF induction through secretory proteins, potentially contributing to the progression and aggressiveness of lung cancer.
Collapse
Affiliation(s)
- Siripat Aluksanasuwan
- School of Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand; Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai 57100, Thailand.
| | - Keerakarn Somsuan
- School of Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand; Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Jatuporn Ngoenkam
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Wararat Chiangjong
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Artitaya Rongjumnong
- Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Atthapan Morchang
- School of Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand; Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Somchai Chutipongtanate
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA
| | - Sutatip Pongcharoen
- Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok 65000, Thailand.
| |
Collapse
|
8
|
Sánchez-Ramírez D, Mendoza-Rodríguez MG, Alemán OR, Candanedo-González FA, Rodríguez-Sosa M, Montesinos-Montesinos JJ, Salcedo M, Brito-Toledo I, Vaca-Paniagua F, Terrazas LI. Impact of STAT-signaling pathway on cancer-associated fibroblasts in colorectal cancer and its role in immunosuppression. World J Gastrointest Oncol 2024; 16:1705-1724. [PMID: 38764833 PMCID: PMC11099434 DOI: 10.4251/wjgo.v16.i5.1705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/28/2024] [Accepted: 04/01/2024] [Indexed: 05/09/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the most commonly diagnosed and deadliest types of cancer worldwide. CRC displays a desmoplastic reaction (DR) that has been inversely associated with poor prognosis; less DR is associated with a better prognosis. This reaction generates excessive connective tissue, in which cancer-associated fibroblasts (CAFs) are critical cells that form a part of the tumor microenvironment. CAFs are directly involved in tumorigenesis through different mechanisms. However, their role in immunosuppression in CRC is not well understood, and the precise role of signal transducers and activators of transcription (STATs) in mediating CAF activity in CRC remains unclear. Among the myriad chemical and biological factors that affect CAFs, different cytokines mediate their function by activating STAT signaling pathways. Thus, the harmful effects of CAFs in favoring tumor growth and invasion may be modulated using STAT inhibitors. Here, we analyze the impact of different STATs on CAF activity and their immunoregulatory role.
Collapse
Affiliation(s)
- Damián Sánchez-Ramírez
- Unidad de Investigacion en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Mónica G Mendoza-Rodríguez
- Unidad de Investigacion en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Omar R Alemán
- Department of Biology, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Fernando A Candanedo-González
- Department of Pathology, National Medical Center Century XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Miriam Rodríguez-Sosa
- Unidad de Investigacion en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Juan José Montesinos-Montesinos
- Laboratorio de Células Troncales Mesenquimales, Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Mauricio Salcedo
- Unidad de Investigacion en Biomedicina y Oncologia Genomica, Instituto Mexciano del Seguro Social, Mexico City 07300, Mexico
| | - Ismael Brito-Toledo
- Servicio de Colon y Recto, Hospital de Oncología Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Felipe Vaca-Paniagua
- Unidad de Investigacion en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Luis I Terrazas
- Unidad de Investigacion en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de Mexico, Mexico
| |
Collapse
|
9
|
Lujano Olazaba O, Farrow J, Monkkonen T. Fibroblast heterogeneity and functions: insights from single-cell sequencing in wound healing, breast cancer, ovarian cancer and melanoma. Front Genet 2024; 15:1304853. [PMID: 38525245 PMCID: PMC10957653 DOI: 10.3389/fgene.2024.1304853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
Cancer has been described as the wound that does not heal, in large part due to fibroblast involvement. Activation of cancer-associated fibroblasts (CAFs) contributes to critical features of the tumor microenvironment, including upregulation of key marker proteins, recruitment of immune cells, and deposition of extracellular matrix (ECM)-similar to fibroblast activation in injury-induced wound healing. Prior to the widespread availability of single-cell RNA sequencing (scRNA seq), studies of CAFs or fibroblasts in wound healing largely relied on models guided by individual fibroblast markers, or methods with less resolution to unravel the heterogeneous nature of CAFs and wound healing fibroblasts (especially regarding scarring outcome). Here, insights from the enhanced resolution provided by scRNA sequencing of fibroblasts in normal wound healing, breast cancer, ovarian cancer, and melanoma are discussed. These data have revealed differences in expression of established canonical activation marker genes, epigenetic modifications, fibroblast lineages, new gene and proteins of clinical interest for further experimentation, and novel signaling interactions with other cell types that include spatial information.
Collapse
Affiliation(s)
| | | | - Teresa Monkkonen
- Department of Biology, San Diego State University, San Diego, CA, United States
| |
Collapse
|
10
|
Yang N, Hellevik T, Berzaghi R, Martinez‐Zubiaurre I. Radiation-induced effects on TGF-β and PDGF receptor signaling in cancer-associated fibroblasts. Cancer Rep (Hoboken) 2024; 7:e2018. [PMID: 38488488 PMCID: PMC10941573 DOI: 10.1002/cnr2.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/11/2023] [Accepted: 12/28/2023] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) consist of heterogeneous connective tissue cells and are often constituting the most abundant cell type in the tumor stroma. Radiation effects on tumor stromal components like CAFs in the context of radiation treatment is not well-described. AIM This study explores potential changes induced by ionizing radiation (IR) on platelet-derived growth factor (PDGF)/PDGFRs and transforming growth factor-beta (TGF-β)/TGFβRs signaling systems in CAFs. METHODS AND RESULTS Experiments were carried out by employing primary cultures of human CAFs isolated from freshly resected non-small cell lung carcinoma tumor tissues. CAF cultures from nine donors were treated with one high (1 × 18 Gy) or three fractionated (3 × 6 Gy) radiation doses. Alterations in expression levels of TGFβRII and PDGFRα/β induced by IR were analyzed by western blots and flow cytometry. In the presence or absence of cognate ligands, receptor activation was studied in nonirradiated and irradiated CAFs. Radiation exposure did not exert changes in expression of PDGF or TGF-β receptors in CAFs. Additionally, IR alone was unable to trigger activation of either receptor. The radiation regimens tested did not affect PDGFRβ signaling in the presence of PDGF-BB. In contrast, signaling via pSmad2/3 and pSmad1/5/8 appeared to be down-regulated in irradiated CAFs after stimulation with TGF-β, as compared with controls. CONCLUSION Our data demonstrate that IR by itself is insufficient to induce measurable changes in PDGF or TGF-β receptor expression levels or to induce receptor activation in CAFs. However, in the presence of their respective ligands, exposure to radiation at certain doses appear to interfere with TGF-β receptor signaling.
Collapse
Affiliation(s)
- Nannan Yang
- Department of Community Medicine, Faculty of Health SciencesUiT The Arctic University of NorwayTromsøNorway
| | - Turid Hellevik
- Department of Radiation OncologyUniversity Hospital of North NorwayTromsøNorway
| | - Rodrigo Berzaghi
- Department of Clinical Medicine, Faculty of Health SciencesUiT The Arctic University of NorwayTromsøNorway
| | - Inigo Martinez‐Zubiaurre
- Department of Clinical Medicine, Faculty of Health SciencesUiT The Arctic University of NorwayTromsøNorway
| |
Collapse
|
11
|
Zheng J, Hao H. The importance of cancer-associated fibroblasts in targeted therapies and drug resistance in breast cancer. Front Oncol 2024; 13:1333839. [PMID: 38273859 PMCID: PMC10810416 DOI: 10.3389/fonc.2023.1333839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) play a substantial role in the tumor microenvironment, exhibiting a strong association with the advancement of various types of cancer, including breast, pancreatic, and prostate cancer. CAFs represent the most abundant mesenchymal cell population in breast cancer. Through diverse mechanisms, including the release of cytokines and exosomes, CAFs contribute to the progression of breast cancer by influencing tumor energy metabolism, promoting angiogenesis, impairing immune cell function, and remodeling the extracellular matrix. Moreover, CAFs considerably impact the response to treatment in breast cancer. Consequently, the development of interventions targeting CAFs has emerged as a promising therapeutic approach in the management of breast cancer. This article provides an analysis of the role of CAFs in breast cancer, specifically in relation to diagnosis, treatment, drug resistance, and prognosis. The paper succinctly outlines the diverse mechanisms through which CAFs contribute to the malignant behavior of breast cancer cells, including proliferation, invasion, metastasis, and drug resistance. Furthermore, the article emphasizes the potential of CAFs as valuable tools for early diagnosis, targeted therapy, treatment resistance, and prognosis assessment in breast cancer, thereby offering novel approaches for targeted therapy and overcoming treatment resistance in this disease.
Collapse
Affiliation(s)
| | - Hua Hao
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
12
|
Majumder A. Evolving CAR-T-Cell Therapy for Cancer Treatment: From Scientific Discovery to Cures. Cancers (Basel) 2023; 16:39. [PMID: 38201467 PMCID: PMC10777914 DOI: 10.3390/cancers16010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
In recent years, chimeric antigen receptor (CAR)-T-cell therapy has emerged as the most promising immunotherapy for cancer that typically uses patients' T cells and genetically engineered them to target cancer cells. Although recent improvements in CAR-T-cell therapy have shown remarkable success for treating hematological malignancies, the heterogeneity in tumor antigens and the immunosuppressive nature of the tumor microenvironment (TME) limits its efficacy in solid tumors. Despite the enormous efforts that have been made to make CAR-T-cell therapy more effective and have minimal side effects for treating hematological malignancies, more research needs to be conducted regarding its use in the clinic for treating various other types of cancer. The main concern for CAR-T-cell therapy is severe toxicities due to the cytokine release syndrome, whereas the other challenges are associated with complexity and immune-suppressing TME, tumor antigen heterogeneity, the difficulty of cell trafficking, CAR-T-cell exhaustion, and reduced cytotoxicity in the tumor site. This review discussed the latest discoveries in CAR-T-cell therapy strategies and combination therapies, as well as their effectiveness in different cancers. It also encompasses ongoing clinical trials; current challenges regarding the therapeutic use of CAR-T-cell therapy, especially for solid tumors; and evolving treatment strategies to improve the therapeutic application of CAR-T-cell therapy.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
13
|
Chen F, Zhao D, Huang Y, Wen X, Feng S. Synergetic impact of combined navoximod with cisplatin mitigates chemo-immune resistance via blockading IDO1 + CAFs-secreted Kyn/AhR/IL-6 and pol ζ-prevented CIN in human oral squamous cell carcinoma. Life Sci 2023; 335:122239. [PMID: 37944638 DOI: 10.1016/j.lfs.2023.122239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is the most prevalent aggressive form of HNSC and treated with platinum-based chemotherapy as initial therapy. However, the development of acquired resistance and neurotoxicity to platinum agents poses a significant challenge to treat locally advanced OSCC. Notably, IDO1+ CAFs could promote immunosuppressive TME for OSCC progression. Therefore, we developed a potent IDO1 inhibitor navoximod to overcome chemo-immune resistance via an antitumor immune effect synergized with cisplatin in SCC-9 co-cultured IDO1+/IDO1- CAFs and SCC-7/IDO1+ CAFs-inoculated mice. The in vitro biological assays on IDO1+ CAFs co-cultured OSCC cancer cells supported that combined navoximod with cisplatin could mitigate chemo-immune resistance through blockading IDO1+ CAFs-secreted kynurenine (Kyn)-aryl hydrocarbon receptor (AhR)-IL-6 via suppressing p-STAT3/NF-κB signals and ceasing AhR-induced loss of pol ζ-caused chromosomal instability (CIN). Moreover, the combination elicited antitumor immunity via reducing IDO1+ CAFs-secreted Kyn/AhR and conferring pol ζ in SCC-7/IDO1+ CAFs-inoculated BALB/c mice. Meanwhile, the combination could block cisplatin-induced neurotoxicity and not interfere with chemotherapy. Taken together, the study investigated the promising therapeutic potential of combined navoximod with cisplatin to mitigate tumoral immune resistance via alleviating IDO1+ CAFs-secreted immune-suppression and CIN-caused cisplatin resistance, providing a paradigm for combined chemo-immunotherapy to prolong survival in patients with OSCC.
Collapse
Affiliation(s)
- Feihong Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| | - Deming Zhao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Ying Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xin Wen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Shicheng Feng
- School of Medicine, Southeast University, Nanjing 211189, PR China; Department of Oncology, Zhongda Hospital, Southeast University, Nanjing 211189, PR China
| |
Collapse
|
14
|
Krzysiek-Maczka G, Brzozowski T, Ptak-Belowska A. Helicobacter pylori-activated fibroblasts as a silent partner in gastric cancer development. Cancer Metastasis Rev 2023; 42:1219-1256. [PMID: 37460910 PMCID: PMC10713772 DOI: 10.1007/s10555-023-10122-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/20/2023] [Indexed: 12/18/2023]
Abstract
The discovery of Helicobacter pylori (Hp) infection of gastric mucosa leading to active chronic gastritis, gastroduodenal ulcers, and MALT lymphoma laid the groundwork for understanding of the general relationship between chronic infection, inflammation, and cancer. Nevertheless, this sequence of events is still far from full understanding with new players and mediators being constantly identified. Originally, the Hp virulence factors affecting mainly gastric epithelium were proposed to contribute considerably to gastric inflammation, ulceration, and cancer. Furthermore, it has been shown that Hp possesses the ability to penetrate the mucus layer and directly interact with stroma components including fibroblasts and myofibroblasts. These cells, which are the source of biophysical and biochemical signals providing the proper balance between cell proliferation and differentiation within gastric epithelial stem cell compartment, when exposed to Hp, can convert into cancer-associated fibroblast (CAF) phenotype. The crosstalk between fibroblasts and myofibroblasts with gastric epithelial cells including stem/progenitor cell niche involves several pathways mediated by non-coding RNAs, Wnt, BMP, TGF-β, and Notch signaling ligands. The current review concentrates on the consequences of Hp-induced increase in gastric fibroblast and myofibroblast number, and their activation towards CAFs with the emphasis to the altered communication between mesenchymal and epithelial cell compartment, which may lead to inflammation, epithelial stem cell overproliferation, disturbed differentiation, and gradual gastric cancer development. Thus, Hp-activated fibroblasts may constitute the target for anti-cancer treatment and, importantly, for the pharmacotherapies diminishing their activation particularly at the early stages of Hp infection.
Collapse
Affiliation(s)
- Gracjana Krzysiek-Maczka
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland.
| | - Tomasz Brzozowski
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland.
| | - Agata Ptak-Belowska
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland
| |
Collapse
|
15
|
Adebayo AS, Agbaje K, Adesina SK, Olajubutu O. Colorectal Cancer: Disease Process, Current Treatment Options, and Future Perspectives. Pharmaceutics 2023; 15:2620. [PMID: 38004598 PMCID: PMC10674471 DOI: 10.3390/pharmaceutics15112620] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Colorectal cancer (CRC) is one of the deadliest malignancies in the US, ranking fourth after lung, prostate, and breast cancers, respectively, in general populations. It continues to be a menace, and the incidence has been projected to more than double by 2035, especially in underdeveloped countries. This review seeks to provide some insights into the disease progression, currently available treatment options and their challenges, and future perspectives. Searches were conducted in the PubMed search engine in the university's online library. The keywords were "Colorectal Cancer" AND "disease process" OR "disease mechanisms" OR "Current Treatment" OR "Prospects". Selection criteria were original articles published primarily during the period of 2013 through 2023. Abstracts, books and documents, and reviews/systematic reviews were filtered out. Of over 490 thousand articles returned, only about 800 met preliminary selection criteria, 200 were reviewed in detail, but 191 met final selection criteria. Fifty-one other articles were used due to cross-referencing. Although recently considered a disease of lifestyle, CRC incidence appears to be rising in countries with low, low-medium, and medium social demographic indices. CRC can affect all parts of the colon and rectum but is more fatal with poor disease outcomes when it is right-sided. The disease progression usually takes between 7-10 years and can be asymptomatic, making early detection and diagnosis difficult. The CRC tumor microenvironment is made up of different types of cells interacting with each other to promote the growth and proliferation of the tumor cells. Significant advancement has been made in the treatment of colorectal cancer. Notable approaches include surgery, chemotherapy, radiation therapy, and cryotherapy. Chemotherapy, including 5-fluorouracil, irinotecan, oxaliplatin, and leucovorin, plays a significant role in the management of CRC that has been diagnosed at advanced stages. Two classes of monoclonal antibody therapies have been approved by the FDA for the treatment of colorectal cancer: the vascular endothelial growth factor (VEGF) inhibitor, e.g., bevacizumab (Avastin®), and the epidermal growth factor receptor (EGFR) inhibitor, e.g., cetuximab (Erbitux®) and panitumumab (Verbitix®). However, many significant problems are still being experienced with these treatments, mainly off-target effects, toxic side effects, and the associated therapeutic failures of small molecular drugs and the rapid loss of efficacy of mAb therapies. Other novel delivery strategies continue to be investigated, including ligand-based targeting of CRC cells.
Collapse
Affiliation(s)
- Amusa S. Adebayo
- College of Pharmacy, Howard University, 2400 6th St NW, Washington, DC 20059, USA; (K.A.); (S.K.A.); (O.O.)
| | | | | | | |
Collapse
|
16
|
Krisanits BA, Schuster R, Randise J, Nogueira LM, Lane JT, Panguluri GA, Li H, Helke K, Cuitiño MC, Koivisto C, Spruill L, Ostrowski MC, Anderson SM, Turner DP, Findlay VJ. Pubertal exposure to dietary advanced glycation end products disrupts ductal morphogenesis and induces atypical hyperplasia in the mammary gland. Breast Cancer Res 2023; 25:118. [PMID: 37803429 PMCID: PMC10559657 DOI: 10.1186/s13058-023-01714-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/18/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Advanced glycation end products (AGEs) are reactive metabolites intrinsically linked with modern dietary patterns. Processed foods, and those high in sugar, protein and fat, often contain high levels of AGEs. Increased AGE levels are associated with increased breast cancer risk, however their significance has been largely overlooked due to a lack of direct cause-and-effect relationship. METHODS To address this knowledge gap, FVB/n mice were fed regular, low AGE, and high AGE diets from 3 weeks of age and mammary glands harvested during puberty (7 weeks) or adulthood (12 weeks and 7 months) to determine the effects upon mammary gland development. At endpoint mammary glands were harvested and assessed histologically (n ≥ 4). Immunohistochemistry and immunofluorescence were used to assess cellular proliferation and stromal fibroblast and macrophage recruitment. The Kruskal-Wallis test were used to compare continuous outcomes among groups. Mammary epithelial cell migration and invasion in response to AGE-mediated fibroblast activation was determined in two-compartment co-culture models. In vitro experiments were performed in triplicate. The nonparametric Wilcoxon rank sum test was used to compare differences between groups. RESULTS Histological analysis revealed the high AGE diet delayed ductal elongation, increased primary branching, as well as increased terminal end bud number and size. The high AGE diet also led to increased recruitment and proliferation of stromal cells to abnormal structures that persisted into adulthood. Atypical hyperplasia was observed in the high AGE fed mice. Ex vivo fibroblasts from mice fed dietary-AGEs retain an activated phenotype and promoted epithelial migration and invasion of non-transformed immortalized and tumor-derived mammary epithelial cells. Mechanistically, we found that the receptor for AGE (RAGE) is required for AGE-mediated increases in epithelial cell migration and invasion. CONCLUSIONS We observed a disruption in mammary gland development when mice were fed a diet high in AGEs. Further, both epithelial and stromal cell populations were impacted by the high AGE diet in the mammary gland. Educational, interventional, and pharmacological strategies to reduce AGEs associated with diet may be viewed as novel disease preventive and/or therapeutic initiatives during puberty.
Collapse
Affiliation(s)
- Bradley A Krisanits
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Reid Schuster
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Jaime Randise
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Lourdes M Nogueira
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Jackson T Lane
- Department of Surgery and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Gowtami A Panguluri
- Department of Surgery and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Hong Li
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Kristi Helke
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Maria C Cuitiño
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- College of Health Sciences, Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Christopher Koivisto
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Laura Spruill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Michael C Ostrowski
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Steven M Anderson
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - David P Turner
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA.
- Department of Surgery and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| | - Victoria J Findlay
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA.
- Department of Surgery and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
17
|
Lee H, Hwang M, Jang S, Um SW. Immune Regulatory Function of Cancer- Associated Fibroblasts in Non-small Cell Lung Cancer. Tuberc Respir Dis (Seoul) 2023; 86:304-318. [PMID: 37345462 PMCID: PMC10555526 DOI: 10.4046/trd.2022.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/25/2023] [Accepted: 06/18/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are key components of the tumor microenvironment and significantly contribute to immune evasion. We investigated the effects of CAFs on the immune function of CD4+ and CD8+ T cells in non-small cell lung cancer (NSCLC). METHODS We isolated CAFs and normal fibroblasts (NFs) from tumors and normal lung tissues of NSCLC patients, respectively. CAFs were co-cultured with activated T cells to evaluate their immune regulatory function. We investigated the effect of CAF conditioned medium (CAF-CM) on the cytotoxicity of T cells. CAFs were also co-cultured with activated peripheral blood mononuclear cells and further incubated with cyclooxygenase- 2 (COX2) inhibitors to investigate the potential role of COX2 in immune evasion. RESULTS CAFs and NFs were isolated from the lung tissues (n=8) and lymph nodes (n=3) of NSCLC patients. Immune suppressive markers, such as COX2 and programmed death-ligand 1 (PD-L1), were increased in CAFs after co-culture with activated T cells. Interestingly, CAFs promoted the expression of programmed death-1 in CD4+ and CD8+ T cells, and strongly inhibited T cell proliferation in allogenic and autologous pairs of CAFs and T cells. CAF-CM decreased the cytotoxicity of T cells. COX2 inhibitors partially restored the proliferation of CD4+ and CD8+ T cells, and downregulated the expression of COX2, prostaglandin E synthase, prostaglandin E2, and PD-L1 in CAFs. CONCLUSION CAFs promote immune evasion by suppressing the function of CD4+ and CD8+ T cells via their effects on COX2 and PD-L1 in NSCLC. The immunosuppressive function of CAFs could be alleviated by COX2 inhibitors.
Collapse
Affiliation(s)
- Hyewon Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Mina Hwang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seonae Jang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sang-Won Um
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
18
|
Wu Q, He X, Liu J, Ou C, Li Y, Fu X. Integrative evaluation and experimental validation of the immune-modulating potential of dysregulated extracellular matrix genes in high-grade serous ovarian cancer prognosis. Cancer Cell Int 2023; 23:223. [PMID: 37777759 PMCID: PMC10543838 DOI: 10.1186/s12935-023-03061-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/08/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND High-grade serous ovarian cancer (HGSOC) is a challenging malignancy characterized by complex interactions between tumor cells and the surrounding microenvironment. Understanding the immune landscape of HGSOC, particularly the role of the extracellular matrix (ECM), is crucial for improving prognosis and guiding therapeutic interventions. METHODS AND RESULTS Using univariate Cox regression analysis, we identified 71 ECM genes associated with prognosis in seven HGSOC populations. The ECMscore signature, consisting of 14 genes, was validated using Cox proportional hazards regression with a lasso penalty. Cox regression analyses demonstrated that ECMscore is an excellent indicator for prognostic classification in prevalent malignancies, including HGSOC. Moreover, patients with higher ECMscores exhibited more active stromal and carcinogenic activation pathways, including apical surface signaling, Notch signaling, apical junctions, Wnt signaling, epithelial-mesenchymal transition, TGF-beta signaling, and angiogenesis. In contrast, patients with relatively low ECMscores showed more active immune-related pathways, such as interferon alpha response, interferon-gamma response, and inflammatory response. The relationship between the ECMscore and genomic anomalies was further examined. Additionally, the correlation between ECMscore and immune microenvironment components and signals in HGSOC was examined in greater detail. Moreover, the expression of MGP, COL8A2, and PAPPA and its correlation with FAP were validated using qRT-PCR on samples from HGSOC. The utility of ECMscore in predicting the prospective clinical success of immunotherapy and its potential in guiding the selection of chemotherapeutic agents were also explored. Similar results were obtained from pan-cancer research. CONCLUSION The comprehensive evaluation of the ECM may help identify immune activation and assist patients in HGSOC and even pan-cancer in receiving proper therapy.
Collapse
Affiliation(s)
- Qihui Wu
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, China
| | - Xiaoyun He
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, China
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jiaxin Liu
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, 410078, China
| | - Chunlin Ou
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, China.
- Department of Pathology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, China.
| | - Yimin Li
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197, Ruijin Er Road, Huangpu District, Shanghai, 200025, China.
| | - Xiaodan Fu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, China.
- Department of Pathology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, China.
| |
Collapse
|
19
|
Chen S, Fan L, Lin Y, Qi Y, Xu C, Ge Q, Zhang Y, Wang Q, Jia D, Wang L, Si J, Wang L. Bifidobacterium adolescentis orchestrates CD143 + cancer-associated fibroblasts to suppress colorectal tumorigenesis by Wnt signaling-regulated GAS1. Cancer Commun (Lond) 2023; 43:1027-1047. [PMID: 37533188 PMCID: PMC10508156 DOI: 10.1002/cac2.12469] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/16/2023] [Accepted: 07/13/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND The interplay between gut microbiota and tumor microenvironment (TME) in the pathogenesis of colorectal cancer (CRC) is not well explored. Here, we elucidated the functional role of Bifidobacterium adolescentis (B.a) on CRC and investigated its possible mechanism on the manipulation of cancer-associated fibroblasts (CAFs) in CRC. METHODS Different CRC animal models and various cell line models were established to explore the function of B.a on CRC. The single-cell RNA sequencing (scRNA-seq) or flow cytometry was used to detect the cell subsets in the TME of CRC. Western blot, quantitative real-time polymerase chain reaction (qRT-PCR), or immunofluorescence staining were performed to examine the activation of Wnt signaling and growth arrest specific 1 (GAS1) on CD143+ CAFs. Chromatin immunoprecipitation quantitative real-time PCR (CHIP-qPCR) was performed to investigate the regulation of transcription factor 4 (TCF4) on GAS1. Multi-immunofluorescence assay examined the expression level of CD143 and GAS1 on tissue microarray. RESULTS We found that B.a abundance was significantly reduced in CRC patients from two independent cohorts and the bacteria database of GMrepo. Supplementation with B.a suppressed ApcMin/+ spontaneous or AOM/DSS-induced tumorigenesis in mice. scRNA-seq revealed that B.a facilitated a subset of CD143+ CAFs by inhibiting the infiltration of Th2 cells, while promoting the TNF-alpha+ B cells in TME. CD143+ CAFs highly expressed GAS1 and exhibited tumor suppressive effect. Mechanistically, GAS1 was activated by the Wnt/β-catenin signaling in CD143+ CAFs. B.a abundance was correlated with the expression level of CD143 and GAS1. The level of CD143+ CAFs predicted the better survival outcome in CRC patients. CONCLUSIONS These results highlighted that B.a induced a new subset of CD143+ CAFs by Wnt signaling-regulated GAS1 to suppress tumorigenesis and provided a novel therapeutic target for probiotic-based modulation of TME in CRC.
Collapse
Affiliation(s)
- Shujie Chen
- Department of GastroenterologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Institute of GastroenterologyZhejiang UniversityHangzhouZhejiangP. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiangP. R. China
- Research Center of Prevention and Treatment of Senescent DiseaseSchool of Medicine Zhejiang UniversityHangzhouZhejiangP. R. China
| | - Lina Fan
- Institute of GastroenterologyZhejiang UniversityHangzhouZhejiangP. R. China
- Department of GastroenterologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiangP. R. China
| | - Yifeng Lin
- Institute of GastroenterologyZhejiang UniversityHangzhouZhejiangP. R. China
- Department of GastroenterologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiangP. R. China
| | - Yadong Qi
- Department of GastroenterologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Institute of GastroenterologyZhejiang UniversityHangzhouZhejiangP. R. China
| | - Chaochao Xu
- Institute of GastroenterologyZhejiang UniversityHangzhouZhejiangP. R. China
- Department of GastroenterologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiangP. R. China
| | - Qiwei Ge
- Institute of GastroenterologyZhejiang UniversityHangzhouZhejiangP. R. China
- Department of GastroenterologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiangP. R. China
| | - Ying Zhang
- Institute of GastroenterologyZhejiang UniversityHangzhouZhejiangP. R. China
- Department of GastroenterologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiangP. R. China
| | - Qiwen Wang
- Department of GastroenterologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Institute of GastroenterologyZhejiang UniversityHangzhouZhejiangP. R. China
| | - Dingjiacheng Jia
- Institute of GastroenterologyZhejiang UniversityHangzhouZhejiangP. R. China
- Department of GastroenterologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiangP. R. China
| | - Lan Wang
- Department of GastroenterologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Institute of GastroenterologyZhejiang UniversityHangzhouZhejiangP. R. China
| | - Jianmin Si
- Department of GastroenterologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Institute of GastroenterologyZhejiang UniversityHangzhouZhejiangP. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiangP. R. China
- Research Center of Prevention and Treatment of Senescent DiseaseSchool of Medicine Zhejiang UniversityHangzhouZhejiangP. R. China
| | - Liangjing Wang
- Institute of GastroenterologyZhejiang UniversityHangzhouZhejiangP. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiangP. R. China
- Research Center of Prevention and Treatment of Senescent DiseaseSchool of Medicine Zhejiang UniversityHangzhouZhejiangP. R. China
- Department of GastroenterologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiangP. R. China
| |
Collapse
|
20
|
Qin T, Li S, Henry LE, Chou E, Cavalcante RG, Garb BF, D'Silva NJ, Rozek LS, Sartor MA. Whole-genome CpG-resolution DNA Methylation Profiling of HNSCC Reveals Distinct Mechanisms of Carcinogenesis for Fine-scale HPV+ Cancer Subtypes. CANCER RESEARCH COMMUNICATIONS 2023; 3:1701-1715. [PMID: 37654626 PMCID: PMC10467604 DOI: 10.1158/2767-9764.crc-23-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/24/2023] [Accepted: 07/28/2023] [Indexed: 09/02/2023]
Abstract
DNA methylation is a vital early step in carcinogenesis. Most findings of aberrant DNA methylation in head and neck squamous cell carcinomas (HNSCC) are array based with limited coverage and resolution, and mainly explored by human papillomavirus (HPV) status, ignoring the high heterogeneity of this disease. In this study, we performed whole-genome bisulfite sequencing on a well-studied HNSCC cohort (n = 36) and investigated the methylation changes between fine-scaled HNSCC subtypes in relation to genomic instability, repetitive elements, gene expression, and key carcinogenic pathways. The previously observed hypermethylation phenotype in HPV-positive (HPV+) tumors compared with HPV-negative tumors was robustly present in the immune-strong (IMU) HPV+ subtype but absent in the highly keratinized (KRT) HPV+ subtype. Methylation levels of IMU tumors were significantly higher in repetitive elements, and methylation showed a significant correlation with genomic stability, consistent with the IMU subtype having more genomic stability and better prognosis. Expression quantitative trait methylation (cis-eQTM) analysis revealed extensive functionally-relevant differences, and differential methylation pathway analysis recapitulated gene expression pathway differences between subtypes. Consistent with their characteristics, KRT and HPV-negative tumors had high regulatory potential for multiple regulators of keratinocyte differentiation, which positively correlated with an expression-based keratinization score. Together, our findings revealed distinct mechanisms of carcinogenesis between subtypes in HPV+ HNSCC and uncovered previously ignored epigenomic differences and clinical implications, illustrating the importance of fine-scale subtype analysis in cancer. Significance This study revealed that the previously observed hypermethylation of HPV(+) HNSCC is due solely to the IMU subtype, illustrating the importance of fine-scale subtype analysis in such a heterogeneous disease. Particularly, IMU has significantly higher methylation of transposable elements, which can be tested as a prognosis biomarker in future translational studies.
Collapse
Affiliation(s)
- Tingting Qin
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Shiting Li
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Leanne E. Henry
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Elysia Chou
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Raymond G. Cavalcante
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Bailey F. Garb
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Nisha J. D'Silva
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Laura S. Rozek
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Maureen A. Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
21
|
Miyata-Morita K, Morita S, Dejima H, Saito K, Sakao Y, Mochizuki M, Sasajima Y. Cytological features of stromal spindle cells and their prognostic significance in lung adenocarcinoma. Cytopathology 2023; 34:337-345. [PMID: 36946097 DOI: 10.1111/cyt.13232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/21/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Cancer-associated fibroblasts (CAFs) in the tumour microenvironment play a key role in tumour development, proliferation, invasion, and metastasis. The cytological features of spindle cells including CAFs-defined as stromal spindle cells (SSCs) adjacent to cancer cells-are frequently encountered in pulmonary adenocarcinomas. This study aimed to investigate the association between the presence of SSCs in cytological specimens and the clinicopathological features. METHODS We evaluated 211 patients with pulmonary adenocarcinoma who underwent surgical resection. All participants had cytological specimens corresponding to the histological specimens available for review. RESULTS Of the 211 cases examined, 89 were SSC-positive (SSC+ ) and 122 were SSC-negative (SSC- ). SSC+ cases were more frequently associated with higher pathological stage (P < 0.001), lymph node metastasis (P = 0.002), anaplastic lymphoma kinase (ALK) gene rearrangement (P = 0.04), high tumour grade (P < 0.001), solid and micropapillary predominant pattern (P = 0.02), and lymphatic vessel (P = 0.003), blood vessel (P < 0.001), and pleural invasion (P = 0.03) as compared to SSC- cases. Patients with SSC+ adenocarcinoma had a significantly shorter recurrence-free survival than those with SSC- adenocarcinoma (P = 0.009). Cytologically, necrotic background (P = 0.002), mucinous cancer cells (P = 0.02), pleomorphic cells (P < 0.001), and mutual cell inclusions (P = 0.01) were observed more frequently in SSC+ adenocarcinomas. CONCLUSIONS The presence of SSCs could be an important cytological feature for predicting poor prognosis in lung adenocarcinomas.
Collapse
Affiliation(s)
- Kana Miyata-Morita
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Shigeki Morita
- Department of Pathology, Mitsui Memorial Hospital, Tokyo, Japan
- Department of Pathology, Teikyo University Hospital, Tokyo, Japan
| | - Hitoshi Dejima
- Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Koji Saito
- Department of Pathology, Teikyo University Hospital, Tokyo, Japan
| | - Yukinori Sakao
- Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Makoto Mochizuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Yuko Sasajima
- Department of Pathology, Teikyo University Hospital, Tokyo, Japan
| |
Collapse
|
22
|
Moslehian MS, Shabkhizan R, Asadi MR, Bazmani A, Mahdipour M, Haiaty S, Rahbarghazi R, Sakhinia E. Interaction of lncRNAs with mTOR in colorectal cancer: a systematic review. BMC Cancer 2023; 23:512. [PMID: 37280524 DOI: 10.1186/s12885-023-11008-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023] Open
Abstract
Colorectal cancer (CRC) is the third most widespread cancer and the fourth leading lethal disease among different societies. It is thought that CRC accounts for about 10% of all newly diagnosed cancer cases with high-rate mortality. lncRNAs, belonging to non-coding RNAs, are involved in varied cell bioactivities. Emerging data have confirmed a significant alteration in lncRNA transcription under anaplastic conditions. This systematic review aimed to assess the possible influence of abnormal mTOR-associated lncRNAs in the tumorigenesis of colorectal tissue. In this study, the PRISMA guideline was utilized based on the systematic investigation of published articles from seven databases. Of the 200 entries, 24 articles met inclusion criteria and were used for subsequent analyses. Of note, 23 lncRNAs were prioritized in association with the mTOR signaling pathway with up-regulation (79.16%) and down-regulation (20.84%) trends. Based on the obtained data, mTOR can be stimulated or inhibited during CRC by the alteration of several lncRNAs. Determining the dynamic activity of mTOR and relevant signaling pathways via lncRNAs can help us progress novel molecular therapeutics and medications.
Collapse
Affiliation(s)
- Marziyeh Sadat Moslehian
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Shabkhizan
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Asadi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Bazmani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University Of Mashhad, Mashhad, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St, Tabriz, Iran
| | - Sanya Haiaty
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ebrahim Sakhinia
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Tabriz Genetic Analysis Centre (TGAC), Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
23
|
Cai D, Liu T, Fang J, Liu Y. Molecular cluster mining of high-grade serous ovarian cancer via multi-omics data analysis aids precise medicine. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04831-x. [PMID: 37178426 DOI: 10.1007/s00432-023-04831-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
PURPOSE HGSOC is a kind of gynecological cancer with high mortality and strong heterogeneity. The study used multi-omics and multiple algorithms to identify novel molecular subtypes, which can help patients obtain more personalized treatments. METHODS Firstly, the consensus clustering result was obtained using a consensus ensemble of ten classical clustering algorithms, based on mRNA, lncRNA, DNA methylation, and mutation data. The difference in signaling pathways was evaluated using the single-sample gene set enrichment analysis (ssGSEA). Meanwhile, the relationship between genetic alteration, response to immunotherapy, drug sensitivity, prognosis, and subtypes was further analyzed. Finally, the reliability of the new subtype was verified in three external datasets. RESULTS Three molecular subtypes were identified. Immune desert subtype (CS1) had little enrichment in the immune microenvironment and metabolic pathways. Immune/non-stromal subtype (CS2) was enriched in the immune microenvironment and metabolism of polyamines. Immune/stromal subtype (CS3) not only enriched anti-tumor immune microenvironment characteristics but also enriched pro-tumor stroma characteristics, glycosaminoglycan metabolism, and sphingolipid metabolism. The CS2 had the best overall survival and the highest response rate to immunotherapy. The CS3 had the worst prognosis and the lowest response rate to immunotherapy but was more sensitive to PARP and VEGFR molecular-targeted therapy. The similar differences among three subtypes were successfully validated in three external cohorts. CONCLUSION We used ten clustering algorithms to comprehensively analyze four types of omics data, identified three biologically significant subtypes of HGSOC patients, and provided personalized treatment recommendations for each subtype. Our findings provided novel views into the HGSOC subtypes and could provide potential clinical treatment strategies.
Collapse
Affiliation(s)
- Daren Cai
- Department of Biostatistics, China Pharmaceutical University, Nanjing, China
| | - Tiantian Liu
- Department of Biostatistics, China Pharmaceutical University, Nanjing, China
| | - Jingya Fang
- Department of Biostatistics, China Pharmaceutical University, Nanjing, China.
| | - Yingbo Liu
- Department of Biostatistics, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
24
|
Chhabra Y, Weeraratna AT. Fibroblasts in cancer: Unity in heterogeneity. Cell 2023; 186:1580-1609. [PMID: 37059066 PMCID: PMC11422789 DOI: 10.1016/j.cell.2023.03.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 04/16/2023]
Abstract
Tumor cells do not exist in isolation in vivo, and carcinogenesis depends on the surrounding tumor microenvironment (TME), composed of a myriad of cell types and biophysical and biochemical components. Fibroblasts are integral in maintaining tissue homeostasis. However, even before a tumor develops, pro-tumorigenic fibroblasts in close proximity can provide the fertile 'soil' to the cancer 'seed' and are known as cancer-associated fibroblasts (CAFs). In response to intrinsic and extrinsic stressors, CAFs reorganize the TME enabling metastasis, therapeutic resistance, dormancy and reactivation by secreting cellular and acellular factors. In this review, we summarize the recent discoveries on CAF-mediated cancer progression with a particular focus on fibroblast heterogeneity and plasticity.
Collapse
Affiliation(s)
- Yash Chhabra
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Department of Oncology, Sidney Kimmel Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Ashani T Weeraratna
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Department of Oncology, Sidney Kimmel Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
25
|
Matsumoto Y, Jia N, Heimburg-Molinaro J, Cummings RD. Targeting Tn-positive tumors with an afucosylated recombinant anti-Tn IgG. Sci Rep 2023; 13:5027. [PMID: 36977722 PMCID: PMC10050417 DOI: 10.1038/s41598-023-31195-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
The aberrant expression of the Tn antigen (CD175) on surface glycoproteins of human carcinomas is associated with tumorigenesis, metastasis, and poor survival. To target this antigen, we developed Remab6, a recombinant, human chimeric anti-Tn-specific monoclonal IgG. However, this antibody lacks antibody-dependent cell cytotoxicity (ADCC) effector activity, due to core fucosylation of its N-glycans. Here we describe the generation of an afucosylated Remab6 (Remab6-AF) in HEK293 cells in which the FX gene is deleted (FXKO). These cells cannot synthesize GDP-fucose through the de novo pathway, and lack fucosylated glycans, although they can incorporate extracellularly-supplied fucose through their intact salvage pathway. Remab6-AF has strong ADCC activity against Tn+ colorectal and breast cancer cell lines in vitro, and is effective in reducing tumor size in an in vivo xenotransplant mouse model. Thus, Remab6-AF should be considered as a potential therapeutic anti-tumor antibody against Tn+ tumors.
Collapse
Affiliation(s)
- Yasuyuki Matsumoto
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS-11090, Boston, MA, 02115, USA
| | - Nan Jia
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS-11090, Boston, MA, 02115, USA
| | - Jamie Heimburg-Molinaro
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS-11090, Boston, MA, 02115, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS-11090, Boston, MA, 02115, USA.
- Department of Surgery, Surgical Sciences, Beth Israel Deaconess Medical Center, CLS 11087, 3 Blackfan Circle, Boston, MA, 02115, USA.
| |
Collapse
|
26
|
Pellinen T, Paavolainen L, Martín-Bernabé A, Papatella Araujo R, Strell C, Mezheyeuski A, Backman M, La Fleur L, Brück O, Sjölund J, Holmberg E, Välimäki K, Brunnström H, Botling J, Moreno-Ruiz P, Kallioniemi O, Micke P, Östman A. Fibroblast subsets in non-small cell lung cancer: Associations with survival, mutations, and immune features. J Natl Cancer Inst 2023; 115:71-82. [PMID: 36083003 DOI: 10.1093/jnci/djac178] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/30/2022] [Accepted: 09/06/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are molecularly heterogeneous mesenchymal cells that interact with malignant cells and immune cells and confer anti- and protumorigenic functions. Prior in situ profiling studies of human CAFs have largely relied on scoring single markers, thus presenting a limited view of their molecular complexity. Our objective was to study the complex spatial tumor microenvironment of non-small cell lung cancer (NSCLC) with multiple CAF biomarkers, identify novel CAF subsets, and explore their associations with patient outcome. METHODS Multiplex fluorescence immunohistochemistry was employed to spatially profile the CAF landscape in 2 population-based NSCLC cohorts (n = 636) using antibodies against 4 fibroblast markers: platelet-derived growth factor receptor-alpha (PDGFRA) and -beta (PDGFRB), fibroblast activation protein (FAP), and alpha-smooth muscle actin (αSMA). The CAF subsets were analyzed for their correlations with mutations, immune characteristics, and clinical variables as well as overall survival. RESULTS Two CAF subsets, CAF7 (PDGFRA-/PDGFRB+/FAP+/αSMA+) and CAF13 (PDGFRA+/PDGFRB+/FAP-/αSMA+), showed statistically significant but opposite associations with tumor histology, driver mutations (tumor protein p53 [TP53] and epidermal growth factor receptor [EGFR]), immune features (programmed death-ligand 1 and CD163), and prognosis. In patients with early stage tumors (pathological tumor-node-metastasis IA-IB), CAF7 and CAF13 acted as independent prognostic factors. CONCLUSIONS Multimarker-defined CAF subsets were identified through high-content spatial profiling. The robust associations of CAFs with driver mutations, immune features, and outcome suggest CAFs as essential factors in NSCLC progression and warrant further studies to explore their potential as biomarkers or therapeutic targets. This study also highlights multiplex fluorescence immunohistochemistry-based CAF profiling as a powerful tool for the discovery of clinically relevant CAF subsets.
Collapse
Affiliation(s)
- Teijo Pellinen
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Lassi Paavolainen
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | | | | | - Carina Strell
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Artur Mezheyeuski
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Max Backman
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Linnea La Fleur
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Oscar Brück
- Hematology Research Unit Helsinki, University of Helsinki and Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | - Jonas Sjölund
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University Cancer Centre, Lund University, Sweden
| | - Erik Holmberg
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Katja Välimäki
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Hans Brunnström
- Division of Pathology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Johan Botling
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Pablo Moreno-Ruiz
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Olli Kallioniemi
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.,Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Arne Östman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
27
|
Olah O, Majlat E, Koszo R, Vereb Z, Voros A. Predictive role of neostromal CD10 expression in breast cancer patients treated with neoadjuvant chemotherapy. Pathol Oncol Res 2023; 28:1610598. [PMID: 36685105 PMCID: PMC9849231 DOI: 10.3389/pore.2022.1610598] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023]
Abstract
Background: The therapeutic strategy of invasive breast cancer is based on routine histopathological markers (estrogen-, progesterone receptor, HER2, Ki67) routinely evaluated in tumor cells. However, the assessment of cancer stroma could influence therapeutic strategies. Studies have shown that stromal expression of CD10, a zinc-dependent metalloproteinase, is associated with biological aggressiveness of the tumor. In the present retrospective study, we aimed to evaluate stromal CD10 expression and association between CD10 expression and response to neoadjuvant chemotherapy in invasive breast cancer. Methods: CD10 immunohistochemistry was performed on core biopsies taken before the neoadjuvant therapy. Stromal CD10 expression was determined and compared with well-known predictive and prognostic tissue markers as well as with the following groups defined according to the degree of tumor response: no regression, partial regression, and complete regression. Results: A total of 60 locally advanced invasive breast carcinomas of "no special type" were included. The proportion of CD10 positive tumors was significantly higher in the "no regression" group compared to "complete regression" group (p = 0.000). Stromal CD10 expression was found to be significantly associated with decrease in response to neoadjuvant chemotherapy. According to CD10 expression we did not find any difference in hormone receptor status, Ki67, tumor grade or neostromal area. Conclusion: Our data suggest that CD10 expression can serve as a predictive marker of the effect of neoadjuvant chemotherapy in breast cancer patients. Therefore, its inclusion into the routine assessment of biopsies to tailor tumor-specific therapeutic strategies merits consideration.
Collapse
Affiliation(s)
- Orsolya Olah
- Department of Pathology, School of Medicine, University of Szeged, Szeged, Hungary
| | - Edit Majlat
- Department of Pathology, School of Medicine, University of Szeged, Szeged, Hungary
| | - Renata Koszo
- Department of Oncotherapy, School of Medicine, University of Szeged, Szeged, Hungary
| | - Zoltan Vereb
- Department of Dermatology and Allergology, School of Medicine, University of Szeged, Szeged, Hungary
| | - Andras Voros
- Department of Pathology, School of Medicine, University of Szeged, Szeged, Hungary,*Correspondence: Andras Voros,
| |
Collapse
|
28
|
Gu L, Liao P, Liu H. Cancer-associated fibroblasts in acute leukemia. Front Oncol 2022; 12:1022979. [PMID: 36601484 PMCID: PMC9806275 DOI: 10.3389/fonc.2022.1022979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Although the prognosis for acute leukemia has greatly improved, treatment of relapsed/refractory acute leukemia (R/R AL) remains challenging. Recently, increasing evidence indicates that the bone marrow microenvironment (BMM) plays a crucial role in leukemogenesis and therapeutic resistance; therefore, BMM-targeted strategies should be a potent protocol for treating R/R AL. The targeting of cancer-associated fibroblasts (CAFs) in solid tumors has received much attention and has achieved some progress, as CAFs might act as an organizer in the tumor microenvironment. Additionally, over the last 10 years, attention has been drawn to the role of CAFs in the BMM. In spite of certain successes in preclinical and clinical studies, the heterogeneity and plasticity of CAFs mean targeting them is a big challenge. Herein, we review the heterogeneity and roles of CAFs in the BMM and highlight the challenges and opportunities associated with acute leukemia therapies that involve the targeting of CAFs.
Collapse
Affiliation(s)
- Ling Gu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China,The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China,NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China,*Correspondence: Ling Gu, ; Ping Liao, ; Hanmin Liu,
| | - Ping Liao
- Calcium Signalling Laboratory, National Neuroscience Institute, Singapore, Singapore,Academic & Clinical Development, Duke-NUS Medical School, Singapore, Singapore,Health and Social Sciences, Singapore Institute of Technology, Singapore, Singapore,*Correspondence: Ling Gu, ; Ping Liao, ; Hanmin Liu,
| | - Hanmin Liu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China,The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China,NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China,Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China,*Correspondence: Ling Gu, ; Ping Liao, ; Hanmin Liu,
| |
Collapse
|
29
|
The role of Hedgehog and Notch signaling pathway in cancer. MOLECULAR BIOMEDICINE 2022; 3:44. [PMID: 36517618 PMCID: PMC9751255 DOI: 10.1186/s43556-022-00099-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022] Open
Abstract
Notch and Hedgehog signaling are involved in cancer biology and pathology, including the maintenance of tumor cell proliferation, cancer stem-like cells, and the tumor microenvironment. Given the complexity of Notch signaling in tumors, its role as both a tumor promoter and suppressor, and the crosstalk between pathways, the goal of developing clinically safe, effective, tumor-specific Notch-targeted drugs has remained intractable. Drugs developed against the Hedgehog signaling pathway have affirmed definitive therapeutic effects in basal cell carcinoma; however, in some contexts, the challenges of tumor resistance and recurrence leap to the forefront. The efficacy is very limited for other tumor types. In recent years, we have witnessed an exponential increase in the investigation and recognition of the critical roles of the Notch and Hedgehog signaling pathways in cancers, and the crosstalk between these pathways has vast space and value to explore. A series of clinical trials targeting signaling have been launched continually. In this review, we introduce current advances in the understanding of Notch and Hedgehog signaling and the crosstalk between pathways in specific tumor cell populations and microenvironments. Moreover, we also discuss the potential of targeting Notch and Hedgehog for cancer therapy, intending to promote the leap from bench to bedside.
Collapse
|
30
|
Al-Haideri M, Tondok SB, Safa SH, maleki AH, Rostami S, Jalil AT, Al-Gazally ME, Alsaikhan F, Rizaev JA, Mohammad TAM, Tahmasebi S. CAR-T cell combination therapy: the next revolution in cancer treatment. Cancer Cell Int 2022; 22:365. [DOI: 10.1186/s12935-022-02778-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
AbstractIn recent decades, the advent of immune-based therapies, most notably Chimeric antigen receptor (CAR)-T cell therapy has revolutionized cancer treatment. The promising results of numerous studies indicate that CAR-T cell therapy has had a remarkable ability and successful performance in treating blood cancers. However, the heterogeneity and immunosuppressive tumor microenvironment (TME) of solid tumors have challenged the effectiveness of these anti-tumor fighters by creating various barriers. Despite the promising results of this therapeutic approach, including tumor degradation and patient improvement, there are some concerns about the efficacy and safety of the widespread use of this treatment in the clinic. Complex and suppressing tumor microenvironment, tumor antigen heterogeneity, the difficulty of cell trafficking, CAR-T cell exhaustion, and reduced cytotoxicity in the tumor site limit the applicability of CAR-T cell therapy and highlights the requiring to improve the performance of this treatment. With this in mind, in the last decade, many efforts have been made to use other treatments for cancer in combination with tuberculosis to increase the effectiveness of CAR-T cell therapy, especially in solid tumors. The combination therapy results have promising consequences for tumor regression and better cancer control compared to single therapies. Therefore, this study aimed to comprehensively discuss different cancer treatment methods in combination with CAR-T cell therapy and their therapeutic outcomes, which can be a helpful perspective for improving cancer treatment in the near future.
Collapse
|
31
|
Zhang J, Chen M, Fang C, Luo P. A cancer-associated fibroblast gene signature predicts prognosis and therapy response in patients with pancreatic cancer. Front Oncol 2022; 12:1052132. [PMID: 36465388 PMCID: PMC9716208 DOI: 10.3389/fonc.2022.1052132] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/27/2022] [Indexed: 11/03/2023] Open
Abstract
Pancreatic cancer is a lethal malignancy with a 5-year survival rate of about 10% in the United States, and it is becoming an increasingly prominent cause of cancer death. Among pancreatic cancer patients, pancreatic ductal adenocarcinoma (PDAC) accounts for more than 90% of all cases and has a very poor prognosis with an average survival of only 1 year in about 18% of all tumor stages. In the past years, there has been an increasing interest in cancer-associated fibroblasts (CAFs) and their roles in PDAC. Recent data reveals that CAFs in PDAC are heterogeneous and various CAF subtypes have been demonstrated to promote tumor development while others hinder cancer proliferation. Furthermore, CAFs and other stromal populations can be potentially used as novel prognostic markers in cancer. In the present study, in order to evaluate the prognostic value of CAFs in PDAC, CAF infiltration rate was evaluated in 4 PDAC datasets of TCGA, GEO, and ArrayExpress databases and differentially expressed genes (DEGs) between CAF-high and CAF-low patients were identified. Subsequently, a CAF-based gene expression signature was developed and studied for its association with overall survival (OS). Additionally, functional enrichment analysis, somatic alteration analysis, and prognostic risk model construction was conducted on the identified DEGs. Finally, oncoPredict algorithm was implemented to assess drug sensitivity prediction between high- and low-risk cohorts. Our results revealed that CAF risk-high patients have a worse survival rate and increased CAF infiltration is a poor prognostic indicator in pancreatic cancer. Functional enrichment analysis also revealed that "extracellular matrix organization" and "vasculature development" were the top enriched pathways among the identified DEGs. We also developed a panel of 12 genes, which in additional to its prognostic value, could predict higher chemotherapy resistance rate. This CAF-based panel can be potentially utilized alone or in conjunction with other clinical parameters to make early predictions and prognosticate responsiveness to treatment in PDAC patients. Indeed, it is necessary to conduct extensive prospective investigations to confirm the clinical utility of these findings.
Collapse
Affiliation(s)
- Jinbao Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Meiling Chen
- Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Chuanfa Fang
- Department of Gastroenteric Hernia Surgery, Ganzhou Hospital Affiliated to Nanchang University, Jiangxi, Ganzhou, China
| | - Peng Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
32
|
Corchado-Sonera M, Rambani K, Navarro K, Kladney R, Dowdle J, Leone G, Chamberlin HM. Discovery of nonautonomous modulators of activated Ras. G3 GENES|GENOMES|GENETICS 2022; 12:6656354. [PMID: 35929788 PMCID: PMC9526067 DOI: 10.1093/g3journal/jkac200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
Communication between mesodermal cells and epithelial cells is fundamental to normal animal development and is frequently disrupted in cancer. However, the genes and processes that mediate this communication are incompletely understood. To identify genes that mediate this communication and alter the proliferation of cells with an oncogenic Ras genotype, we carried out a tissue-specific genome-wide RNAi screen in Caenorhabditis elegans animals bearing a let-60(n1046gf) (RasG13E) allele. The screen identifies 24 genes that, when knocked down in adjacent mesodermal tissue, suppress the increased vulval epithelial cell proliferation defect associated with let-60(n1046gf). Importantly, gene knockdown reverts the mutant animals to a wild-type phenotype. Using chimeric animals, we genetically confirm that 2 of the genes function nonautonomously to revert the let-60(n1046gf) phenotype. The effect is genotype restricted, as knockdown does not alter development in a wild type (let-60(+)) or activated EGF receptor (let-23(sa62gf)) background. Although many of the genes identified encode proteins involved in essential cellular processes, including chromatin formation, ribosome function, and mitochondrial ATP metabolism, knockdown does not alter the normal development or function of targeted mesodermal tissues, indicating that the phenotype derives from specific functions performed by these cells. We show that the genes act in a manner distinct from 2 signal ligand classes (EGF and Wnt) known to influence the development of vulval epithelial cells. Altogether, the results identify genes with a novel function in mesodermal cells required for communicating with and promoting the proliferation of adjacent epithelial cells with an activated Ras genotype.
Collapse
Affiliation(s)
| | - Komal Rambani
- Department of Cancer Biology and Genetics, Ohio State University , Columbus, OH 43210, USA
- Biomedical Sciences Graduate Program, Ohio State University , Columbus, OH 43210, USA
| | - Kristen Navarro
- Department of Molecular Genetics, Ohio State University , Columbus, OH 43210, USA
| | - Raleigh Kladney
- Department of Cancer Biology and Genetics, Ohio State University , Columbus, OH 43210, USA
| | - James Dowdle
- Department of Cancer Biology and Genetics, Ohio State University , Columbus, OH 43210, USA
| | - Gustavo Leone
- Department of Molecular Genetics, Ohio State University , Columbus, OH 43210, USA
- Department of Cancer Biology and Genetics, Ohio State University , Columbus, OH 43210, USA
| | - Helen M Chamberlin
- Department of Molecular Genetics, Ohio State University , Columbus, OH 43210, USA
| |
Collapse
|
33
|
Fotsitzoudis C, Koulouridi A, Messaritakis I, Konstantinidis T, Gouvas N, Tsiaoussis J, Souglakos J. Cancer-Associated Fibroblasts: The Origin, Biological Characteristics and Role in Cancer-A Glance on Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14184394. [PMID: 36139552 PMCID: PMC9497276 DOI: 10.3390/cancers14184394] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Tumor microenvironment is a major contributor to tumor growth, metastasis and resistance to therapy. It consists of many cancer-associated fibroblasts (CAFs), which derive from different types of cells. CAFs detected in different tumor types are linked to poor prognosis, as in the case of colorectal cancer. Although their functions differ according to their subtype, their detection is not easy, and there are no established markers for such detection. They are possible targets for therapeutic treatment. Many trials are ongoing for their use as a prognostic factor and as a treatment target. More research remains to be carried out to establish their role in prognosis and treatment. Abstract The therapeutic approaches to cancer remain a considerable target for all scientists around the world. Although new cancer treatments are an everyday phenomenon, cancer still remains one of the leading mortality causes. Colorectal cancer (CRC) remains in this category, although patients with CRC may have better survival compared with other malignancies. Not only the tumor but also its environment, what we call the tumor microenvironment (TME), seem to contribute to cancer progression and resistance to therapy. TME consists of different molecules and cells. Cancer-associated fibroblasts are a major component. They arise from normal fibroblasts and other normal cells through various pathways. Their role seems to contribute to cancer promotion, participating in tumorigenesis, proliferation, growth, invasion, metastasis and resistance to treatment. Different markers, such as a-SMA, FAP, PDGFR-β, periostin, have been used for the detection of cancer-associated fibroblasts (CAFs). Their detection is important for two main reasons; research has shown that their existence is correlated with prognosis, and they are already under evaluation as a possible target for treatment. However, extensive research is warranted.
Collapse
Affiliation(s)
- Charalampos Fotsitzoudis
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Asimina Koulouridi
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Ippokratis Messaritakis
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece
- Correspondence: ; Tel.: +30-2810-394926
| | | | | | - John Tsiaoussis
- Department of Anatomy, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - John Souglakos
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece
- Department of Medical Oncology, University Hospital of Heraklion, 71110 Heraklion, Greece
| |
Collapse
|
34
|
Hillers-Ziemer LE, Kuziel G, Williams AE, Moore BN, Arendt LM. Breast cancer microenvironment and obesity: challenges for therapy. Cancer Metastasis Rev 2022; 41:627-647. [PMID: 35435599 PMCID: PMC9470689 DOI: 10.1007/s10555-022-10031-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023]
Abstract
Women with obesity who develop breast cancer have a worsened prognosis with diminished survival rates and increased rates of metastasis. Obesity is also associated with decreased breast cancer response to endocrine and chemotherapeutic treatments. Studies utilizing multiple in vivo models of obesity as well as human breast tumors have enhanced our understanding of how obesity alters the breast tumor microenvironment. Changes in the complement and function of adipocytes, adipose-derived stromal cells, immune cells, and endothelial cells and remodeling of the extracellular matrix all contribute to the rapid growth of breast tumors in the context of obesity. Interactions of these cells enhance secretion of cytokines and adipokines as well as local levels of estrogen within the breast tumor microenvironment that promote resistance to multiple therapies. In this review, we will discuss our current understanding of the impact of obesity on the breast tumor microenvironment, how obesity-induced changes in cellular interactions promote resistance to breast cancer treatments, and areas for development of treatment interventions for breast cancer patients with obesity.
Collapse
Affiliation(s)
- Lauren E Hillers-Ziemer
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Genevra Kuziel
- Program in Cancer Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Abbey E Williams
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Brittney N Moore
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Lisa M Arendt
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Program in Cancer Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Dr. Rm 4354A, Madison, WI, 53706, USA.
| |
Collapse
|
35
|
Nadal L, Peissert F, Elsayed A, Weiss T, Look T, Weller M, Piro G, Carbone C, Tortora G, Matasci M, Favalli N, Corbellari R, Di Nitto C, Prodi E, Libbra C, Galeazzi S, Carotenuto C, Halin C, Puca E, Neri D, De Luca R. Generation and in vivo validation of an IL-12 fusion protein based on a novel anti-human FAP monoclonal antibody. J Immunother Cancer 2022; 10:jitc-2022-005282. [PMID: 36104101 PMCID: PMC9476130 DOI: 10.1136/jitc-2022-005282] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND In this study, we describe the generation of a fully human monoclonal antibody (named '7NP2') targeting human fibroblast activation protein (FAP), an antigen expressed in the microenvironment of different types of solid neoplasms. METHODS 7NP2 was isolated from a synthetic antibody phage display library and was improved by one round of mutagenesis-based affinity maturation. The tumor recognition properties of the antibody were validated by immunofluorescence procedures performed on cancer biopsies from human patients. A fusion protein consisting of the 7NP2 antibody linked to interleukin (IL)-12 was generated and the anticancer activity of the murine surrogate product (named mIL12-7NP2) was evaluated in mouse models. Furthermore, the safety of the fully human product (named IL12-7NP2) was evaluated in Cynomolgus monkeys. RESULTS Biodistribution analysis in tumor-bearing mice confirmed the ability of the product to selectively localize to solid tumors while sparing healthy organs. Encouraged by these results, therapy studies were conducted in vivo, showing a potent antitumor activity in immunocompetent and immunodeficient mouse models of cancer, both as single agent and in combination with immune checkpoint inhibitors. The fully human product was tolerated when administered to non-human primates. CONCLUSIONS The results obtained in this work provided a rationale for future clinical translation activities using IL12-7NP2.
Collapse
Affiliation(s)
- Lisa Nadal
- Antibody Therapeutics, Philochem AG, Otelfingen, Zurich, Switzerland
| | - Frederik Peissert
- Antibody Therapeutics, Philochem AG, Otelfingen, Zurich, Switzerland.,Department of Biology and Biotechnology, IUSS, Pavia, Italy
| | - Abdullah Elsayed
- Antibody Therapeutics, Philochem AG, Otelfingen, Zurich, Switzerland.,Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Tobias Weiss
- Department of Neurology and Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
| | - Thomas Look
- Department of Neurology and Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
| | - Michael Weller
- Department of Neurology and Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
| | - Geny Piro
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Carmine Carbone
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Giampaolo Tortora
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Medical Oncology, Department of Translational Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Mattia Matasci
- Antibody Therapeutics, Philochem AG, Otelfingen, Zurich, Switzerland
| | - Nicholas Favalli
- Antibody Therapeutics, Philochem AG, Otelfingen, Zurich, Switzerland
| | | | - Cesare Di Nitto
- Antibody Therapeutics, Philochem AG, Otelfingen, Zurich, Switzerland
| | - Eleonora Prodi
- Antibody Therapeutics, Philochem AG, Otelfingen, Zurich, Switzerland
| | | | | | | | - Cornelia Halin
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Emanuele Puca
- Antibody Therapeutics, Philochem AG, Otelfingen, Zurich, Switzerland
| | | | - Roberto De Luca
- Antibody Therapeutics, Philochem AG, Otelfingen, Zurich, Switzerland
| |
Collapse
|
36
|
Zhao J, Chen Y. Systematic identification of cancer-associated-fibroblast-derived genes in patients with colorectal cancer based on single-cell sequencing and transcriptomics. Front Immunol 2022; 13:988246. [PMID: 36105798 PMCID: PMC9465173 DOI: 10.3389/fimmu.2022.988246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) has a high incidence rate and poor prognosis, and the available treatment approaches have limited therapeutic benefits. Therefore, understanding the underlying mechanisms of occurrence and development is particularly crucial. Increasing attention has been paid to the pathophysiological role of cancer-associated fibroblasts (CAFs) in the heterogeneous tumour microenvironment. CAFs play a crucial role in tumorigenesis, tumour progression and treatment response. However, routine tissue sequencing cannot adequately reflect the heterogeneity of tumours. In this study, single-cell sequencing was used to examine the fibroblast population in CRC. After cluster analysis, the fibroblast population was divided into four subgroups. The distribution and role of these four subgroups in CRC were found to be different. Based on differential gene expression and lasso regression analysis of the main marker genes in these subgroups, four representative genes were obtained, namely, TCF7L1, FLNA, GPX3 and MMP11. Patients with CRC were divided into the low- and high-risk groups using the prognostic risk model established based on the expression of these four genes. The prognosis of patients in different risk groups varied significantly; patients with low-risk scores had a greater response to PDL1 inhibitors, significant clinical benefits and significantly prolonged overall survival. These effects may be attributed to inhibition of the function of T cells in the immune microenvironment and promotion of the function of tumour-associated macrophages.
Collapse
Affiliation(s)
- Jia Zhao
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Ying Chen
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
- *Correspondence: Ying Chen,
| |
Collapse
|
37
|
Xue C, Gao Y, Sun Z, Li X, Zhang M, Yang Y, Han Q, Bai C, Zhao RC. Mesenchymal stem cells derived from adipose tissue accelerate the progression of colon cancer by inducing a MTCAF phenotype via ICAM1/STAT3/AKT axis. Front Oncol 2022; 12:837781. [PMID: 36016615 PMCID: PMC9398219 DOI: 10.3389/fonc.2022.837781] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Previous studies have shown that the risk of colon cancer is greatly increased in people with obesity, and fat content in colorectal cancer tissue is increased in people with obesity. As an important part of tumor microenvironment, adipose-derived mesenchymal stem cells (MSCs) are also another important source of cancer-associated fibroblasts (CAFs), which may be one of the important mechanisms of affecting tumor progression. However, the mechanism is poorly defined. In the present study, CAFs were transformed from MSCs [MSC-transformed CAFs (MTCAFs)] by co-culturing with HCT116 cells. Bioinformatics and Western blotting analysis indicated a positive correlation between intercellular adhesion molecule-1(ICAM-1) and the progression of colon cancer. In clinical colon cancer specimens, we found that ICAM-1 was highly expressed and related to shorter disease-free survival, which might act as an indication for the progression of clinical colon cancer. Our data showed that ICAM-1 secreted from MTCAFs could positively promote the proliferation, migration, and invasion of colon cancer cells by activating signal transducer and activator of transcription 3 (STAT3) and Serine/threonine-protein kinase (AKT) signaling and that blocking ICAM-1 in MTCAFs reversed these effects. We further verified that ICAM-1 secreted from MTCAFs promoted tumor progression in vivo. Taken together, ICAM-1 plays a critical role in regulating tumor growth and metastasis, which could be a potential therapeutic target in colon cancer.
Collapse
Affiliation(s)
- Chunling Xue
- Beijing Key Laboratory, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| | - Yang Gao
- Department of oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhao Sun
- Department of oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xuechun Li
- Beijing Key Laboratory, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| | - Mingjia Zhang
- Beijing Key Laboratory, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| | - Ying Yang
- Department of oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Qin Han
- Beijing Key Laboratory, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
- *Correspondence: Qin Han, ; Chunmei Bai, ; Robert Chunhua Zhao,
| | - Chunmei Bai
- Department of oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- *Correspondence: Qin Han, ; Chunmei Bai, ; Robert Chunhua Zhao,
| | - Robert Chunhua Zhao
- Beijing Key Laboratory, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
- *Correspondence: Qin Han, ; Chunmei Bai, ; Robert Chunhua Zhao,
| |
Collapse
|
38
|
Al-Tweigeri T, AlRaouji NN, Tulbah A, Arafah M, Aboussekhra M, Al-Mohanna F, Gad AM, Eldali AM, Elhassan TA, Aboussekhra A. High AUF1 level in stromal fibroblasts promotes carcinogenesis and chemoresistance and predicts unfavorable prognosis among locally advanced breast cancer patients. BREAST CANCER RESEARCH : BCR 2022; 24:46. [PMID: 35821051 PMCID: PMC9275022 DOI: 10.1186/s13058-022-01543-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022]
Abstract
Background Locally advanced breast cancer (LABC), the most aggressive form of the disease, is a serious threat for women's health worldwide. The AU-rich RNA-binding factor 1 (AUF1) promotes the formation of chemo-resistant breast cancer stem cells. Thereby, we investigated the power of AUF1 expression, in both cancer cells and their stromal fibroblasts, as predictive biomarker for LABC patients’ clinical outcome following neoadjuvant treatment. Methods We have used immunohistochemistry to assess the level of AUF1 on formalin-fixed paraffin-embedded tissues. Immunoblotting was utilized to show the effect of AUF1 ectopic expression in breast stromal fibroblasts on the expression of various genes both in vitro and in orthotopic tumor xenografts. Cytotoxicity was evaluated using the WST1 assay, while a label-free real-time setting using the xCELLigence RTCA technology was utilized to assess the proliferative, migratory and invasive abilities of cells. Results We have shown that high AUF1 immunostaining (≥ 10%) in both cancer cells and their adjacent cancer-associated fibroblasts (CAFs) was significantly associated with higher tumor grade. Kaplan–Meier univariate analysis revealed a strong correlation between high AUF1 level in CAFs and poor patient’s survival. This correlation was highly significant in patients with triple negative breast cancer, who showed poor disease-free survival (DFS) and overall survival (OS). High expression of AUF1 in CAFs was also associated with poor OS of ER+/Her2− patients. Similarly, AUF1-positive malignant cells tended to be associated with shorter DFS and OS of ER+/Her2+ patients. Interestingly, neoadjuvant therapy downregulated AUF1 to a level lower than 10% in malignant cells in a significant number of patients, which improved both DFS and OS. In addition, ectopic expression of AUF1 in breast fibroblasts activated these cells and enhanced their capacity to promote, in an IL-6-dependent manner, the epithelial-to-mesenchymal transition and stemness processes. Furthermore, these AUF1-expressing cells enhanced the chemoresistance of breast cancer cells and their growth in orthotopic tumor xenografts. Conclusions The present findings show that the CAF-activating factor AUF1 has prognostic/predictive value for breast cancer patients and could represent a great therapeutic target in order to improve the precision of cancer treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-022-01543-x.
Collapse
Affiliation(s)
- Taher Al-Tweigeri
- Oncology Center, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
| | - Noura N AlRaouji
- Department of Molecular Oncology, Cancer Biology and Experimental Therapeutics Section, King Faisal Specialist Hospital and Research Centre, MBC # 03, PO BOX 3354, Riyadh, 11211, Saudi Arabia
| | - Asma Tulbah
- Department of Pathology, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
| | - Maria Arafah
- Department of Pathology, King Saud University, PO BOX 2925, Riyadh, 11461, Saudi Arabia
| | - Mouad Aboussekhra
- Department of Molecular Oncology, Cancer Biology and Experimental Therapeutics Section, King Faisal Specialist Hospital and Research Centre, MBC # 03, PO BOX 3354, Riyadh, 11211, Saudi Arabia
| | - Falah Al-Mohanna
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
| | - Ahmed Mostafa Gad
- Oncology Center, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia.,Clinical Oncology and Nuclear Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, 11591, Egypt
| | - Abdelmonneim M Eldali
- Department of Biostatistics, Epidemiology and Scientific Computing, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
| | - Tusneem A Elhassan
- Oncology Center, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
| | - Abdelilah Aboussekhra
- Department of Molecular Oncology, Cancer Biology and Experimental Therapeutics Section, King Faisal Specialist Hospital and Research Centre, MBC # 03, PO BOX 3354, Riyadh, 11211, Saudi Arabia.
| |
Collapse
|
39
|
Dynamic Co-Evolution of Cancer Cells and Cancer-Associated Fibroblasts: Role in Right- and Left-Sided Colon Cancer Progression and Its Clinical Relevance. BIOLOGY 2022; 11:biology11071014. [PMID: 36101394 PMCID: PMC9312176 DOI: 10.3390/biology11071014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/22/2022]
Abstract
Simple Summary The versatile crosstalk between cancer cells and cancer-associated fibroblasts (CAFs) of the tumour microenvironment (TME) drives colorectal carcinogenesis and heterogeneity. Colorectal cancer (CRC) can be classified by the anatomical sites from which the cancer arises, either from the right or left colon. Although the cancer cell–CAF interaction is being widely studied, its role in the progression of cancer in the right and left colon and cancer heterogeneity are still yet to be elucidated. Further insight into the complex interaction between different cellular components in the cancer niche, their evolutionary process and their influence on cancer progression would propel the discovery of effective targeted CRC therapy. Abstract Cancer is a result of a dynamic evolutionary process. It is composed of cancer cells and the tumour microenvironment (TME). One of the major cellular constituents of TME, cancer-associated fibroblasts (CAFs) are known to interact with cancer cells and promote colorectal carcinogenesis. The accumulation of these activated fibroblasts is linked to poor diagnosis in colorectal cancer (CRC) patients and recurrence of the disease. However, the interplay between cancer cells and CAFs is yet to be described, especially in relation to the sidedness of colorectal carcinogenesis. CRC, which is the third most commonly diagnosed cancer globally, can be classified according to the anatomical region from which they originate: left-sided (LCRC) and right-sided CRC (RCR). Both cancers differ in many aspects, including in histology, evolution, and molecular signatures. Despite occurring at lower frequency, RCRC is often associated with worse diagnosis compared to LCRC. The differences in molecular profiles between RCRC and LCRC also influence the mode of treatment that can be used to specifically target these cancer entities. A better understanding of the cancer cell–CAF interplay and its association with RCRC and LRCR progression will provide better insight into potential translational aspects of targeted treatment for CRC.
Collapse
|
40
|
Wu J, Deng H, Zhong H, Wang T, Rao Z, Wang Y, Chen Y, Zhang C. Comparison of 68Ga-FAPI and 18F-FDG PET/CT in the Evaluation of Patients With Newly Diagnosed Non-Small Cell Lung Cancer. Front Oncol 2022; 12:924223. [PMID: 35860594 PMCID: PMC9289292 DOI: 10.3389/fonc.2022.924223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/03/2022] [Indexed: 12/11/2022] Open
Abstract
Purpose Several studies have demonstrated that 68Ga-FAPI PET/CT shows high intratumoral tracer uptake and low normal tissue uptake, allowing for excellent visualization of cancer. The purpose of this study was to compare the ability of 68Ga-FAPI and 18F-FDG PET/CT for the evaluation of newly diagnosed NSCLC. Materials and Methods A prospective analysis of 28 individuals with histopathologically newly confirmed NSCLC that underwent 68Ga-FAPI and 18F-FDG PET/CT was conducted. The performance of two imaging modalities was compared based upon visual assessment, rates of cancer detection, and semi-quantitative parameters (target-to-background ratio [TBR], maximum standard uptake value [SUVmax]) for both primary tumors and metastases. Results In total, this study enrolled 28 participants (13 male, 15 female; median age: 60.5 years, range: 34 – 78 years. <u>For primary tumors, 68Ga-FAPI and 18F-FDG PET/CT have similar detection performance (28 vs. 27). However, 68Ga-FAPI PET/CT was found to more effectively evaluate most metastases as compared to 18F-FDG PET/CT. 68Ga-FAPI PET/CT detecting more metastases present within the lymph nodes (53 vs. 49), pleura (8 vs. 7), liver (4 vs. 1), and bone (41 vs. 35).</u> The SUVmax and TBR values for 68Ga-FAPI were substantially superior to those for 18F-FDG in lymph node, pleural, and bone metastases. While the SUVmax for these two imaging approaches was comparable for hepatic metastases, 68Ga-FAPI exhibited a significantly higher TBR in relation to that of 18F-FDG. In addition, 68Ga-FAPI PET/CT demonstrates excellent N (80% [8/10]) and M (92.9% [26/28]) staging accuracy in NSCLC patients. Conclusions 68Ga-FAPI PET/CT as an examination modality is excellent for evaluation of newly diagnosed NSCLC. 68Ga-FAPI PET/CT improves the detection rates of most metastases and facilitating the superior staging of patients with newly diagnosed NSCLC, relative to that achieved by 18F-FDG PET/CT.
Collapse
Affiliation(s)
- Junhao Wu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Hao Deng
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Haoshu Zhong
- Department of Hematology, Clinical Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Stem Cell Laboratory, The Clinical Research Institute, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tao Wang
- Department of the General Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zijuan Rao
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Yingwei Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Chunyin Zhang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, China
- *Correspondence: Chunyin Zhang,
| |
Collapse
|
41
|
Tarannum M, Holtzman K, Dréau D, Mukherjee P, Vivero-Escoto JL. Nanoparticle combination for precise stroma modulation and improved delivery for pancreatic cancer. J Control Release 2022; 347:425-434. [PMID: 35569588 DOI: 10.1016/j.jconrel.2022.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
Abstract
Therapeutic success in the treatment of pancreatic ductal adenocarcinoma (PDAC) is hindered by the extensive stroma associated to this disease. Stroma is composed of cellular and non-cellular components supporting and evolving with the tumor. One of the most studied mediators of cancer cell-stroma crosstalk is sonic hedgehog (SHh) pathway leading to the intense desmoplasia observed in PDAC tumors. Herein, we demonstrate that the use of mesoporous silica nanoparticles (MSNs) containing an SHh inhibitor, cyclopamine (CyP), and the combination of chemotherapeutic drugs (Gemcitabine (Gem)/cisplatin (cisPt)) as the main delivery system for the sequential treatment led to the reduction in tumor stroma along with an improvement in the treatment of PDAC. We synthesized two versions of the MSN-based platform containing the SHh inhibitor (CyP-MSNs) and the drug combination (PEG-Gem-cisPt-MSNs). In vitro and in vivo protein analysis show that CyP-MSNs effectively inhibited the SHh pathway. In addition, the sequential combination of CyP-MSNs followed by PEG-Gem-cisPt-MSNs led to effective stromal modulation, increased access of secondary PEG-Gem-cisPt-MSNs at the tumor site, and improved therapeutic performance in HPAF II xenograft mice. Taken together, our findings support the potential of drug delivery using MSNs for stroma modulation and to prevent pancreatic cancer progression.
Collapse
Affiliation(s)
- Mubin Tarannum
- Department of Chemistry, University of North Carolina Charlotte, Charlotte, NC 28223, USA; Nanoscale Science Program, University of North Carolina Charlotte, Charlotte, NC 28223, USA
| | - Katherine Holtzman
- Department of Biological Sciences, University of North Carolina Charlotte, Charlotte, NC 28223, USA
| | - Didier Dréau
- Department of Biological Sciences, University of North Carolina Charlotte, Charlotte, NC 28223, USA; Center for Biomedical Engineering and Science, University of North Carolina Charlotte, Charlotte, NC 28223, USA
| | - Pinku Mukherjee
- Department of Biological Sciences, University of North Carolina Charlotte, Charlotte, NC 28223, USA; Center for Biomedical Engineering and Science, University of North Carolina Charlotte, Charlotte, NC 28223, USA
| | - Juan L Vivero-Escoto
- Department of Chemistry, University of North Carolina Charlotte, Charlotte, NC 28223, USA; Nanoscale Science Program, University of North Carolina Charlotte, Charlotte, NC 28223, USA; Center for Biomedical Engineering and Science, University of North Carolina Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
42
|
Al-Kharashi LA, Tulbah A, Arafah M, Eldali AM, Al-Tweigeri T, Aboussekhra A. High DNMT1 Expression in Stromal Fibroblasts Promotes Angiogenesis and Unfavorable Outcome in Locally Advanced Breast Cancer Patients. Front Oncol 2022; 12:877219. [PMID: 35719957 PMCID: PMC9202650 DOI: 10.3389/fonc.2022.877219] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background Active breast cancer-associated fibroblasts (CAFs) play a leading role in breast carcinogenesis through promoting angiogenesis and resistance to therapy. Consequently, these active stromal cells have significant influence on patient outcome. Therefore, we explored here the role of the DNA methyltransferase 1 (DNMT1) protein in CAF-dependent promotion of angiogenesis as well as the prognostic power of DNMT1 level in both cancer cells and their adjacent CAFs in locally advanced breast cancer patients. Methods We applied immunohistochemistry to evaluate the level of DNMT1 in breast cancer tissues and their adjacent normal counterparts. Quantitative RT-PCR and immunoblotting were performed to investigate the role of DNMT1 in regulating the expression of pro-angiogenic genes in active CAFs and also their response to the DNMT1 inhibitors decitabine (DAC) as well as eugenol. Results We have shown that DNMT1 controls the pro-angiogenic potential of CAFs both in vitro and in vivo through positive regulation of the expression/secretion of 2 important pro-angiogenic factors VEGF-A and IL-8 as well as their upstream effectors mTOR and HIF-1α. To confirm this, we have shown that these DNMT1-related pro-angiogenic effects were suppressed by 2 DNMT1 inhibitors decitabine and eugenol. Interestingly, in a cohort of 100 tumors from locally advanced breast cancer patients (LABC), we have shown that high expression of DNMT1 in tumor cells and their adjacent stromal fibroblasts is correlated with poor survival of these patients. Conclusion DNMT1 upregulation in breast stromal fibroblasts promotes angiogenesis via IL-8/VEGF-A upregulation, and correlates well with poor survival of LABC patients.
Collapse
Affiliation(s)
- Layla A Al-Kharashi
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Asma Tulbah
- Department of Pathology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Maria Arafah
- Department of Pathology, King Saud University, Riyadh, Saudi Arabia
| | - Abdelmonneim M Eldali
- Department of Biostatistics, Epidemiology and Scientific Computing, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Taher Al-Tweigeri
- Department of Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Abdelilah Aboussekhra
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
43
|
Lin FW, Yeh MH, Lin CL, Wei JCC. Association between Breast Cancer and Second Primary Lung Cancer among the Female Population in Taiwan: A Nationwide Population-Based Cohort Study. Cancers (Basel) 2022; 14:cancers14122977. [PMID: 35740640 PMCID: PMC9221143 DOI: 10.3390/cancers14122977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/28/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
PURPOSE A special association between breast cancer and second primary lung cancer in Taiwanese women has been discovered not only in clinical practice, but also in a large population-based study. We hereby investigate the association between breast cancer and second primary lung cancer in Taiwanese women. METHODS This study was conducted from the National Health Insurance Research Database (NHIRD) from Taiwan National Health Insurance (NHI). Patients older than 18 years old and hospitalized with a first diagnosis of breast cancer during 2000 to 2012 were enrolled in the breast cancer group. Patients who were cancer free were frequency-matched with the breast cancer group by age (every five-year span) and index year. The ratio of breast cancer group to non-breast cancer group was 1:4. The event as the outcome in this study was lung cancer. The comorbidities viewed as important confounding factors included coronary artery disease, stroke, hypertension, diabetes, chronic obstructive pulmonary disease, hyperlipidemia, tuberculosis, chronic kidney disease, and chronic liver disease and cirrhosis. We estimated the hazard ratios (HRs), adjusted hazard ratios (aHRs), and 95% confidence intervals (CIs) for risk of lung cancer in the breast cancer group and non-breast cancer group using Cox proportional hazard models. Sensitivity analysis was also done using propensity score matching. All of the statistical analyses were performed using SAS statistical software, version 9.4 (SAS Institute Inc., Cary, NC). RESULTS There were 94,451 breast cancer patients in the breast cancer group and 377,804 patients in the non-breast cancer group in this study. After being stratified by age, urbanization level, and comorbidities, the patients with breast cancer had a significantly higher risk of lung cancer compared with the patients without breast cancer, particularly for those who aged between 20 and 49 years (aHR = 2.10, 95% CI = 1.71-2.58), 50 and 64 years (aHR = 1.35, 95% CI = 1.15-1.58), and those without any comorbidities (aHR = 1.92, 95% CI = 1.64-2.23). CONCLUSION Patients with breast cancer had a significantly higher risk of developing second primary lung cancer compared with patients without breast cancer, particularly in younger groups and in those without any comorbidities. The special association may be attributed to some potential risk factors such as genetic susceptibility and long-term exposure to PM2.5, and is supposed to increase public awareness. Further studies are necessary given the fact that inherited genotypes, different subtypes of breast cancer and lung cancer, and other unrecognized etiologies may play vital roles in both cancers' development.
Collapse
Affiliation(s)
- Fan-Wen Lin
- Department of Surgery, Chung Shan Medical University Hospital, Taichung 40201, Taiwan;
| | - Ming-Hsin Yeh
- Division of Breast Surgery, Department of Surgery, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Correspondence:
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung 40202, Taiwan;
- College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - James Cheng-Chung Wei
- Department of Allergy, Immunology & Rheumatology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan;
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 40201, Taiwan
| |
Collapse
|
44
|
Lendahl U, Muhl L, Betsholtz C. Identification, discrimination and heterogeneity of fibroblasts. Nat Commun 2022; 13:3409. [PMID: 35701396 PMCID: PMC9192344 DOI: 10.1038/s41467-022-30633-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 05/04/2022] [Indexed: 12/14/2022] Open
Abstract
Fibroblasts, the principal cell type of connective tissue, secrete extracellular matrix components during tissue development, homeostasis, repair and disease. Despite this crucial role, the identification and distinction of fibroblasts from other cell types are challenging and laden with caveats. Rapid progress in single-cell transcriptomics now yields detailed molecular portraits of fibroblasts and other cell types in our bodies, which complement and enrich classical histological and immunological descriptions, improve cell class definitions and guide further studies on the functional heterogeneity of cell subtypes and states, origins and fates in physiological and pathological processes. In this review, we summarize and discuss recent advances in the understanding of fibroblast identification and heterogeneity and how they discriminate from other cell types. In this review, the authors look at how recent progress in single-cell transcriptomics complement and enrich the classical, largely morphological, portraits of fibroblasts. The detailed molecular information now available provides new insights into fibroblast identity, heterogeneity and function.
Collapse
Affiliation(s)
- Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden.,Department of Neurobiology, Care sciences and Society, Karolinska Institutet, SE-14183, Huddinge, Sweden
| | - Lars Muhl
- Department of Medicine, Huddinge, Karolinska Institutet, Blickagången 16, SE-141 57, Huddinge, Sweden
| | - Christer Betsholtz
- Department of Medicine, Huddinge, Karolinska Institutet, Blickagången 16, SE-141 57, Huddinge, Sweden. .,Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden.
| |
Collapse
|
45
|
Roles of Notch Signaling in the Tumor Microenvironment. Int J Mol Sci 2022; 23:ijms23116241. [PMID: 35682918 PMCID: PMC9181414 DOI: 10.3390/ijms23116241] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
The Notch signaling pathway is an architecturally simple signaling mechanism, well known for its role in cell fate regulation during organ development and in tissue homeostasis. In keeping with its importance for normal development, dysregulation of Notch signaling is increasingly associated with different types of tumors, and proteins in the Notch signaling pathway can act as oncogenes or tumor suppressors, depending on the cellular context and tumor type. In addition to a role as a driver of tumor initiation and progression in the tumor cells carrying oncogenic mutations, it is an emerging realization that Notch signaling also plays a role in non-mutated cells in the tumor microenvironment. In this review, we discuss how aberrant Notch signaling can affect three types of cells in the tumor stroma-cancer-associated fibroblasts, immune cells and vascular cells-and how this influences their interactions with the tumor cells. Insights into the roles of Notch in cells of the tumor environment and the impact on tumor-stroma interactions will lead to a deeper understanding of Notch signaling in cancer and inspire new strategies for Notch-based tumor therapy.
Collapse
|
46
|
Chen Z, Jiang W, Li Z, Zong Y, Deng G. Immune-and Metabolism-Associated Molecular Classification of Ovarian Cancer. Front Oncol 2022; 12:877369. [PMID: 35646692 PMCID: PMC9133421 DOI: 10.3389/fonc.2022.877369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/19/2022] [Indexed: 01/25/2023] Open
Abstract
Ovarian cancer (OV) is a complex gynecological disease, and its molecular characteristics are not clear. In this study, the molecular characteristics of OV subtypes based on metabolic genes were explored through the comprehensive analysis of genomic data. A set of transcriptome data of 2752 known metabolic genes was used as a seed for performing non negative matrix factorization (NMF) clustering. Three subtypes of OV (C1, C2 and C3) were found in analysis. The proportion of various immune cells in C1 was higher than that in C2 and C3 subtypes. The expression level of immune checkpoint genes TNFRSF9 in C1 was higher than that of other subtypes. The activation scores of cell cycle, RTK-RAS, Wnt and angiogenesis pathway and ESTIMATE immune scores in C1 group were higher than those in C2 and C3 groups. In the validation set, grade was significantly correlated with OV subtype C1. Functional analysis showed that the extracellular matrix related items in C1 subtype were significantly different from other subtypes. Drug sensitivity analysis showed that C2 subtype was more sensitive to immunotherapy. Survival analysis of differential genes showed that the expression of PXDN and CXCL11 was significantly correlated with survival. The results of tissue microarray immunohistochemistry showed that the expression of PXDN was significantly correlated with tumor size and pathological grade. Based on the genomics of metabolic genes, a new OV typing method was developed, which improved our understanding of the molecular characteristics of human OV.
Collapse
Affiliation(s)
- Zhenyue Chen
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weiyi Jiang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen Li
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yun Zong
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gaopi Deng
- Department Obstetrics and Gynecology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
47
|
Xue C, Li G, Zheng Q, Gu X, Bao Z, Lu J, Li L. The functional roles of the circRNA/Wnt axis in cancer. Mol Cancer 2022; 21:108. [PMID: 35513849 PMCID: PMC9074313 DOI: 10.1186/s12943-022-01582-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/22/2022] [Indexed: 01/09/2023] Open
Abstract
CircRNAs, covalently closed noncoding RNAs, are widely expressed in a wide range of species ranging from viruses to plants to mammals. CircRNAs were enriched in the Wnt pathway. Aberrant Wnt pathway activation is involved in the development of various types of cancers. Accumulating evidence indicates that the circRNA/Wnt axis modulates the expression of cancer-associated genes and then regulates cancer progression. Wnt pathway-related circRNA expression is obviously associated with many clinical characteristics. CircRNAs could regulate cell biological functions by interacting with the Wnt pathway. Moreover, Wnt pathway-related circRNAs are promising potential biomarkers for cancer diagnosis, prognosis evaluation, and treatment. In our review, we summarized the recent research progress on the role and clinical application of Wnt pathway-related circRNAs in tumorigenesis and progression.
Collapse
Affiliation(s)
- Chen Xue
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| | - Ganglei Li
- grid.13402.340000 0004 1759 700XDepartment of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Qiuxian Zheng
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| | - Xinyu Gu
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| | - Zhengyi Bao
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| | - Juan Lu
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| | - Lanjuan Li
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| |
Collapse
|
48
|
Sullivan L, Pacheco RR, Kmeid M, Chen A, Lee H. Tumor Stroma Ratio and Its Significance in Locally Advanced Colorectal Cancer. Curr Oncol 2022; 29:3232-3241. [PMID: 35621653 PMCID: PMC9139914 DOI: 10.3390/curroncol29050263] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 11/16/2022] Open
Abstract
Colorectal cancer is the third leading cause of cancer-related death, and its incidence is rising in the younger patient population. In the past decade, research has unveiled several processes (underlying tumorigenesis, many of which involve interactions between tumor cells and the surrounding tissue or tumor microenvironment (TME). Interactions between components of the TME are mediated at a sub-microscopic level. However, the endpoint of those interactions results in morphologic changes which can be readily assessed at microscopic examination of biopsy and resection specimens. Among these morphologic changes, alteration to the tumor stroma is a new, important determinant of colorectal cancer progression. Different methodologies to estimate the proportion of tumor stroma relative to tumor cells, or tumor stroma ratio (TSR), have been developed. Subsequent validation has supported the prognostic value, reproducibility and feasibility of TSR in various subgroups of colorectal cancer. In this manuscript, we review the literature surrounding TME in colorectal cancer, with a focus on tumor stroma ratio.
Collapse
|
49
|
Nucleolin Overexpression Predicts Patient Prognosis While Providing a Framework for Targeted Therapeutic Intervention in Lung Cancer. Cancers (Basel) 2022; 14:cancers14092217. [PMID: 35565346 PMCID: PMC9101044 DOI: 10.3390/cancers14092217] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Despite the clinical benefit of new anticancer therapies, such as immune checkpoint inhibitors, lung cancer remains the most frequent cause of cancer-related death worldwide, thus supporting the need to develop novel anticancer treatments. Endothelial cells of the tumor-associated vasculature are easily accessible to drugs administered intravenously, besides having greater genetic stability than neoplastic cells and thus lowering the risk of developing drug resistance. In this respect, the identification of alternative targets, and therapeutic strategies, within the tumor vasculature is of high relevance. Accordingly, this work aimed at characterizing nucleolin expression in patient-derived pulmonary carcinomas and further validating nucleolin as a novel target to mediate successful therapeutic interventions against human lung cancers. The highlighted prognostic value of nucleolin points towards the applicability of nucleolin-based targeting strategies against nucleolinhigh pulmonary carcinomas, present in every disease stage, in a clinical trial setting. Abstract Notwithstanding the advances in the treatment of lung cancer with immune checkpoint inhibitors, the high percentage of non-responders supports the development of novel anticancer treatments. Herein, the expression of the onco-target nucleolin in patient-derived pulmonary carcinomas was characterized, along with the assessment of its potential as a therapeutic target. The clinical prognostic value of nucleolin for human pulmonary carcinomas was evaluated through data mining from the Cancer Genome Atlas project and immunohistochemical detection in human samples. Cell surface expression of nucleolin was evaluated by flow cytometry and subcellular fraction Western blotting in lung cancer cell lines. Nucleolin mRNA overexpression correlated with poor overall survival of lung adenocarcinoma cancer patients and further predicted the disease progression of both lung adenocarcinoma and squamous carcinoma. Furthermore, a third of the cases presented extra-nuclear expression, contrasting with the nucleolar pattern in non-malignant tissues. A two- to twelve-fold improvement in cytotoxicity, subsequent to internalization into the lung cancer cell lines of doxorubicin-loaded liposomes functionalized by the nucleolin-binding F3 peptide, was correlated with the nucleolin cell surface levels and the corresponding extent of cell binding. Overall, the results suggested nucleolin overexpression as a poor prognosis predictor and thus a target for therapeutic intervention in lung cancer.
Collapse
|
50
|
Hu D, Li Z, Zheng B, Lin X, Pan Y, Gong P, Zhuo W, Hu Y, Chen C, Chen L, Zhou J, Wang L. Cancer-associated fibroblasts in breast cancer: Challenges and opportunities. Cancer Commun (Lond) 2022; 42:401-434. [PMID: 35481621 PMCID: PMC9118050 DOI: 10.1002/cac2.12291] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/06/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment is proposed to contribute substantially to the progression of cancers, including breast cancer. Cancer-associated fibroblasts (CAFs) are the most abundant components of the tumor microenvironment. Studies have revealed that CAFs in breast cancer originate from several types of cells and promote breast cancer malignancy by secreting factors, generating exosomes, releasing nutrients, reshaping the extracellular matrix, and suppressing the function of immune cells. CAFs are also becoming therapeutic targets for breast cancer due to their specific distribution in tumors and their unique biomarkers. Agents interrupting the effect of CAFs on surrounding cells have been developed and applied in clinical trials. Here, we reviewed studies examining the heterogeneity of CAFs in breast cancer and expression patterns of CAF markers in different subtypes of breast cancer. We hope that summarizing CAF-related studies from a historical perspective will help to accelerate the development of CAF-targeted therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Dengdi Hu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Zhaoqing Li
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Bin Zheng
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Xixi Lin
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Yuehong Pan
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Peirong Gong
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Wenying Zhuo
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China.,Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Yujie Hu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Cong Chen
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Lini Chen
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Jichun Zhou
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Linbo Wang
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| |
Collapse
|