1
|
Zamani M, Safari F, Siri M, Igder S, Khatami N, Dastghaib S, Mokarram P. Epigenetic modulation of autophagy pathway by small molecules in colorectal cancer: a systematic review. J Cancer Res Clin Oncol 2024; 150:474. [PMID: 39441422 PMCID: PMC11499346 DOI: 10.1007/s00432-024-05982-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024]
Abstract
PURPOSE Colorectal cancer (CRC) remains a global health challenge with limited treatment success due to drug resistance. Recent research highlights the potential of small molecules to modulate CRC by targeting epigenetics or autophagy pathways. This systematic review explores the epigenetic effect of small molecules on autophagy in CRC, aiming to identify novel therapeutic strategies. METHODS Following PRISMA guidelines, we systematically reviewed 508 studies from PubMed, Scopus, and Web of Science databases until August 13, 2023. RESULTS Eight studies met inclusion criteria, examining the role of small molecules as epigenetic modulators (Histone acetylation/deacetylation, DNA methylation/demethylation and gene expression regulation by miRNAs) influencing the autophagy pathway in CRC. The studies encompassed in vitro and animal model in vivo studies. Small molecules exhibited diverse effects on autophagy in CRC. For instance, panobinostat promoted autophagy leading to CRC cell death, while aspirin inhibited autophagy flux, reducing aspirin-mediated CRC cell death. The epigenetic modulation of autophagy by various small molecules differently affects their anticancer effect, which underscores the complexity of therapeutic interventions. CONCLUSION Understanding the intricate dynamics among small molecules, epigenetic modifications, and autophagy in CRC is crucial for developing targeted therapeutic strategies. Considering the dual role of autophagy in tumorigenesis and tumor suppression, administration of these small molecules may differently affect the cancer cell fate and drug response or resistance based on their effect on the autophagy pathway. Therefore, recognition of the epigenetics mechanism of anticancer small molecules on autophagy may contribute to deciding how to prescribe them for better CRC treatment.
Collapse
Affiliation(s)
- Mozhdeh Zamani
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farima Safari
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Morvarid Siri
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Igder
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Niloofar Khatami
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Pooneh Mokarram
- Autophagy Research Center, Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Amiri V, Mirzaeian A, Noroozi-Aghideh A. Non-Mutational Changes of Autophagy Marker LC3A in Patients with Acute Myeloid Leukemia; Effect of DNA Methylation and Expression Level of LncRNA-GAS5 and miRNA-155-5p, A Case Control Study. Indian J Hematol Blood Transfus 2024; 40:621-628. [PMID: 39469184 PMCID: PMC11512980 DOI: 10.1007/s12288-024-01765-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/29/2024] [Indexed: 10/30/2024] Open
Abstract
Clinical translation of autophagy modulators is tied to thoroughly acquainted with the precise state of this process and its regulators in a particular cancer. LC3Av1 is a marker of autophagosome membrane that has been contributed with pathobiology of myriad of human cancers. In the present study, we examined the effect of promoter methylation and miR-155 and LncRNA-GAS5 (GAS5) expression levels on transcription of LC3Av1 in AML patients. The study included 60 patients with de novo AML and 20 subjects with normal bone marrow cellular composition. Methylation-Sensitive high resolution melting (MS-HRM) was performed for analysis of LC3Av1 CpG island methylation and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) for assessing LC3Av1, GAS5 and miR-155 expression levels. There was a significant elevation in the expression level of miR-155 and repression of LC3Av1 in AML samples. We found that LC3Av1 downregulation was negatively associated with its CpG island hypermethylation and miR-155 expression. Aging leads to overexpression of LC3Av1. GAS5 neither was differently expressed in AML patients compared to control samples nor has been related to LC3Av1 expression. The present study revealed that epigenetic changes like DNA methylation and alteration of miR-155 have a pivotal role in repression of autophagy marker LC3Av1, which potentially could provide the important clues of prognostic and therapeutic targets. The optimal strategies for clinical implementation of autophagy in AML is yet to be fully achieved and deserve further studies. Supplementary Information The online version contains supplementary material available at 10.1007/s12288-024-01765-3.
Collapse
Affiliation(s)
- Vahid Amiri
- Department of Laboratory Sciences, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amin Mirzaeian
- HSCT Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Ali Noroozi-Aghideh
- HSCT Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
- Department of Hematology, Faculty of Paramedicine, Aja University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Shah NN, Dave BP, Shah KC, Shah DD, Maheshwari KG, Chorawala MR, Parekh PS, Jani M. Disabled-2, a versatile tissue matrix multifunctional scaffold protein with multifaceted signaling: Unveiling its potential in the cancer battle. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5533-5557. [PMID: 38502243 DOI: 10.1007/s00210-024-03037-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 03/01/2024] [Indexed: 03/21/2024]
Abstract
A multifunctional scaffold protein termed Disabled-2 (Dab2) has recently gained attention in the scientific community and has emerged as a promising candidate in the realm of cancer research. Dab2 protein is involved in a variety of signaling pathways, due to which its significance in the pathogenesis of several carcinomas has drawn considerable attention. Dab2 is essential for controlling the advancement of cancer because it engages in essential signaling pathways such as the Wnt/β-catenin, epidermal growth factor receptor (EGFR), and transforming growth factor-beta (TGF-β) pathways. Dab2 can also repress epithelial-mesenchymal transition (EMT) which is involved in tumor progression with metastatic expansion and adds another layer of significance to its possible impact on cancer spread. Furthermore, the role of Dab2 in processes such as cell growth, differentiation, apoptosis, invasion, and metastasis has been explored in certain investigative studies suggesting its significance. The present review examines the role of Dab2 in the pathogenesis of various cancer subtypes including breast cancer, ovarian cancer, gastric cancer, prostate cancer, and bladder urothelial carcinoma and also sheds some light on its potential to act as a therapeutic target and a prognostic marker in the treatment of various carcinomas. By deciphering this protein's diverse signaling, we hope to provide useful insights that may pave the way for novel therapeutic techniques and tailored treatment approaches in cancer management. Preclinical and clinical trial data on the impact of Dab2 regulation in cancer have also been included, allowing us to delineate role of Dab2 in tumor suppressor function, as well as its correlation with disease stage classification and potential therapy options. However, we observed that there is very scarce data in the form of studies on the evaluation of Dab2 role and treatment function in carcinomas, and further research into this matter could prove beneficial in the generation of novel therapeutic agents for patient-centric and tailored therapy, as well as early prognosis of carcinomas.
Collapse
Affiliation(s)
- Nidhi N Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Bhavarth P Dave
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Kashvi C Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Disha D Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Kunal G Maheshwari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India.
| | - Priyajeet S Parekh
- AV Pharma LLC, 1545 University Blvd N Ste A, Jacksonville, FL, 32211, USA
| | - Maharsh Jani
- Anand Niketan Shilaj, Ahmedabad, 380059, Gujarat, India
| |
Collapse
|
4
|
Chakraborty S, Nandi P, Mishra J, Niharika, Roy A, Manna S, Baral T, Mishra P, Mishra PK, Patra SK. Molecular mechanisms in regulation of autophagy and apoptosis in view of epigenetic regulation of genes and involvement of liquid-liquid phase separation. Cancer Lett 2024; 587:216779. [PMID: 38458592 DOI: 10.1016/j.canlet.2024.216779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Cellular physiology is critically regulated by multiple signaling nexuses, among which cell death mechanisms play crucial roles in controlling the homeostatic landscape at the tissue level within an organism. Apoptosis, also known as programmed cell death, can be induced by external and internal stimuli directing the cells to commit suicide in unfavourable conditions. In contrast, stress conditions like nutrient deprivation, infection and hypoxia trigger autophagy, which is lysosome-mediated processing of damaged cellular organelle for recycling of the degraded products, including amino acids. Apparently, apoptosis and autophagy both are catabolic and tumor-suppressive pathways; apoptosis is essential during development and cancer cell death, while autophagy promotes cell survival under stress. Moreover, autophagy plays dual role during cancer development and progression by facilitating the survival of cancer cells under stressed conditions and inducing death in extreme adversity. Despite having two different molecular mechanisms, both apoptosis and autophagy are interconnected by several crosslinking intermediates. Epigenetic modifications, such as DNA methylation, post-translational modification of histone tails, and miRNA play a pivotal role in regulating genes involved in both autophagy and apoptosis. Both autophagic and apoptotic genes can undergo various epigenetic modifications and promote or inhibit these processes under normal and cancerous conditions. Epigenetic modifiers are uniquely important in controlling the signaling pathways regulating autophagy and apoptosis. Therefore, these epigenetic modifiers of both autophagic and apoptotic genes can act as novel therapeutic targets against cancers. Additionally, liquid-liquid phase separation (LLPS) also modulates the aggregation of misfolded proteins and provokes autophagy in the cytosolic environment. This review deals with the molecular mechanisms of both autophagy and apoptosis including crosstalk between them; emphasizing epigenetic regulation, involvement of LLPS therein, and possible therapeutic approaches against cancers.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Prahallad Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462 030, MP, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India.
| |
Collapse
|
5
|
Chen T, Zheng L, Luo P, Zou J, Li W, Chen Q, Zou J, Qian B. Crosstalk between m6A modification and autophagy in cancer. Cell Biosci 2024; 14:44. [PMID: 38576024 PMCID: PMC10996158 DOI: 10.1186/s13578-024-01225-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/24/2024] [Indexed: 04/06/2024] Open
Abstract
Autophagy is a cellular self-degradation process that plays a crucial role in maintaining metabolic functions in cells and organisms. Dysfunctional autophagy has been linked to various diseases, including cancer. In cancer, dysregulated autophagy is closely associated with the development of cancer and drug resistance, and it can have both oncogenic and oncostatic effects. Research evidence supports the connection between m6A modification and human diseases, particularly cancer. Abnormalities in m6A modification are involved in the initiation and progression of cancer by regulating the expression of oncogenes and oncostatic genes. There is an interaction between m6A modification and autophagy, both of which play significant roles in cancer. However, the molecular mechanisms underlying this relationship are still unclear. m6A modification can either directly inhibit autophagy or promote its initiation, but the complex relationship between m6A modification, autophagy, and cancer remains poorly understood. Therefore, this paper aims to review the dual role of m6A and autophagy in cancer, explore the impact of m6A modification on autophagy regulation, and discuss the crucial role of the m6A modification-autophagy axis in cancer progression and treatment resistance.
Collapse
Affiliation(s)
- Tao Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Liying Zheng
- Department of Graduate, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Peiyue Luo
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Jun Zou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Wei Li
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Qi Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Junrong Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Biao Qian
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China.
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China.
| |
Collapse
|
6
|
Liu TW, Zhao YM, Jin KY, Wang JX, Zhao XF. KAT8 is upregulated and recruited to the promoter of Atg8 by FOXO to induce H4 acetylation for autophagy under 20-hydroxyecdysone regulation. J Biol Chem 2024; 300:105704. [PMID: 38309506 PMCID: PMC10904276 DOI: 10.1016/j.jbc.2024.105704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 02/05/2024] Open
Abstract
Selective gene expression in cells in physiological or pathological conditions is important for the growth and development of organisms. Acetylation of histone H4 at K16 (H4K16ac) catalyzed by histone acetyltransferase 8 (KAT8) is known to promote gene transcription; however, the regulation of KAT8 transcription and the mechanism by which KAT8 acetylates H4K16ac to promote specific gene expression are unclear. Using the lepidopteran insect Helicoverpa armigera as a model, we reveal that the transcription factor FOXO promotes KAT8 expression and recruits KAT8 to the promoter region of autophagy-related gene 8 (Atg8) to increase H4 acetylation at that location, enabling Atg8 transcription under the steroid hormone 20-hydroxyecdysone (20E) regulation. H4K16ac levels are increased in the midgut during metamorphosis, which is consistent with the expression profiles of KAT8 and ATG8. Knockdown of Kat8 using RNA interference results in delayed pupation and repression of midgut autophagy and decreases H4K16ac levels. Overexpression of KAT8-GFP promotes autophagy and increases H4K16ac levels. FOXO, KAT8, and H4K16ac colocalized at the FOXO-binding region to promote Atg8 transcription under 20E regulation. Acetylated FOXO at K180 and K183 catalyzed by KAT8 promotes gene transcription for autophagy. 20E via FOXO promotes Kat8 transcription. Knockdown or overexpression of FOXO appeared to give similar results as knockdown or overexpression of KAT8. Therefore, FOXO upregulates KAT8 expression and recruits KAT8 to the promoter region of Atg8, where the KAT8 induces H4 acetylation to promote Atg8 transcription for autophagy under 20E regulation. This study reveals the mechanism that KAT8 promotes transcription of a specific gene.
Collapse
Affiliation(s)
- Tian-Wen Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Yu-Meng Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Ke-Yan Jin
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.
| |
Collapse
|
7
|
Damiescu R, Efferth T, Dawood M. Dysregulation of different modes of programmed cell death by epigenetic modifications and their role in cancer. Cancer Lett 2024; 584:216623. [PMID: 38246223 DOI: 10.1016/j.canlet.2024.216623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/19/2023] [Accepted: 01/07/2024] [Indexed: 01/23/2024]
Abstract
Modifications of epigenetic factors affect our lives and can give important information regarding one's state of health. In cancer, epigenetic modifications play a crucial role, as they influence various programmed cell death types. The purpose of this review is to investigate how epigenetic modifications, such as DNA methylation, histone modifications, and non-coding RNAs, influence various cell death processes in suppressing or promoting cancer development. Autophagy and apoptosis are the most investigated programmed cell death modes, as based on the tumor stage these cell death types can either promote or prevent cancer evolution. Therefore, our discussion focuses on how epigenetic modifications affect autophagy and apoptosis, as well as their diagnostic and therapeutical potential in combination with available chemotherapeutics. Additionally, we summarize the available data regarding the role of epigenetic modifications on other programmed cell death modes, such as ferroptosis, necroptosis, and parthanatos in cancer and discuss current advancements.
Collapse
Affiliation(s)
- R Damiescu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz, Germany
| | - T Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz, Germany
| | - M Dawood
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz, Germany.
| |
Collapse
|
8
|
Han W, Wang W, Wang Q, Maduray K, Hao L, Zhong J. A review on regulation of DNA methylation during post-myocardial infarction. Front Pharmacol 2024; 15:1267585. [PMID: 38414735 PMCID: PMC10896928 DOI: 10.3389/fphar.2024.1267585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/25/2024] [Indexed: 02/29/2024] Open
Abstract
Myocardial infarction (MI) imposes a huge medical and economic burden on society, and cardiac repair after MI involves a complex series of processes. Understanding the key mechanisms (such as apoptosis, autophagy, inflammation, and fibrosis) will facilitate further drug development and patient treatment. Presently, a substantial body of evidence suggests that the regulation of epigenetic processes contributes to cardiac repair following MI, with DNA methylation being among the notable epigenetic factors involved. This article will review the research on the mechanism of DNA methylation regulation after MI to provide some insights for future research and development of related drugs.
Collapse
Affiliation(s)
- Wenqiang Han
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wenxin Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Qinhong Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Kellina Maduray
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Li Hao
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jingquan Zhong
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| |
Collapse
|
9
|
Li S, Ruan B, Wang Z, Xia J, Lin Q, Xu R, Zhu H, Yu Z. Glucose dysregulation promotes oncogenesis in human bladder cancer by regulating autophagy and YAP1/TAZ expression. J Cell Mol Med 2023; 27:3744-3759. [PMID: 37665055 PMCID: PMC10718143 DOI: 10.1111/jcmm.17943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/08/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023] Open
Abstract
Glucose dysregulation is strongly correlated with cancer development, and cancer is prevalent in patients with Type 2 diabetes (T2D). We aimed to elucidate the mechanism underlying autophagy in response to glucose dysregulation in human bladder cancer (BC). 220 BC patients were included in this retrospective study. The expression of YAP1, TAZ and AMPK, EMT-associated markers, and autophagy marker proteins was analysed by immunohistochemistry, western blotting, and quantitative real-time PCR (qPCR). Further, T24 and UMUC-3 BC cells were cultured in media with different glucose concentrations, and the expression of YAP1, TAZ, AMPK and EMT-associated markers, and autophagy marker proteins was analysed by western blotting and qPCR. Autophagy was observed by immunofluorescence and electron microscopy. BC cell viability was tested using MTT assays. A xenograft nude mouse model of diabetes was used to evaluate tumour growth, metastasis and survival. A poorer pathologic grade and tumour-node-metastasis stage were observed in patients with BC with comorbid T2D than in others with BC. YAP1 and TAZ were upregulated in BC samples from patients with T2D. Mechanistically, high glucose (HG) promoted BC progression both in vitro and in vivo and inhibited autophagy. Specifically, various autophagy marker proteins and AMPK were negatively regulated under HG conditions and correlated with YAP1 and TAZ expression. These results demonstrate that HG inhibits autophagy and promotes cancer development in BC. YAP1/TAZ/AMPK signalling plays a crucial role in regulating glucose dysregulation during autophagy. Targeting these effectors exhibits therapeutic significance and can serve as prognostic markers in BC patients with T2D.
Collapse
Affiliation(s)
- Shi Li
- Department of Urology, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang ProvinceThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Banzhan Ruan
- Department of Oncology of The First Affiliated Hospital and Tumor InstituteHainan Medical UniversityHaikouHainanChina
| | - Zhi Wang
- Department of Urology and Chest SurgeryThe People Hospital of TongjiangBazhongSichuanChina
| | - Jianling Xia
- Department of Oncology and HematologyThe People Hospital of TongjiangBazhongSichuanChina
- Cancer Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalHospital of the University of Electronic Science and Technology of ChinaChengduChina
| | - Qi Lin
- Department of UrologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Ruoting Xu
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Hua Zhu
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Zhixian Yu
- Department of UrologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
10
|
Song YQ, Yang GJ, Ma DL, Wang W, Leung CH. The role and prospect of lysine-specific demethylases in cancer chemoresistance. Med Res Rev 2023; 43:1438-1469. [PMID: 37012609 DOI: 10.1002/med.21955] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/08/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023]
Abstract
Histone methylation plays a key function in modulating gene expression, and preserving genome integrity and epigenetic inheritance. However, aberrations of histone methylation are commonly observed in human diseases, especially cancer. Lysine methylation mediated by histone methyltransferases can be reversed by lysine demethylases (KDMs), which remove methyl marks from histone lysine residues. Currently, drug resistance is a main impediment for cancer therapy. KDMs have been found to mediate drug tolerance of many cancers via altering the metabolic profile of cancer cells, upregulating the ratio of cancer stem cells and drug-tolerant genes, and promoting the epithelial-mesenchymal transition and metastatic ability. Moreover, different cancers show distinct oncogenic addictions for KDMs. The abnormal activation or overexpression of KDMs can alter gene expression signatures to enhance cell survival and drug resistance in cancer cells. In this review, we describe the structural features and functions of KDMs, the KDMs preferences of different cancers, and the mechanisms of drug resistance resulting from KDMs. We then survey KDM inhibitors that have been used for combating drug resistance in cancer, and discuss the opportunities and challenges of KDMs as therapeutic targets for cancer drug resistance.
Collapse
Affiliation(s)
- Ying-Qi Song
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Guan-Jun Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Wanhe Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macao, China
| |
Collapse
|
11
|
Chen X, Jin G, Luo H, Zhou L. Effect of Gubenyiliu formula II and its disassembled prescriptions on cell autophagy in breast cancer through PI3K/AKT/mTOR pathway. Anticancer Drugs 2023; 34:725-734. [PMID: 36727774 DOI: 10.1097/cad.0000000000001460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The aim of this study is to reveal the mechanism of Gubenyiliu II (GYII) inhibiting autophagy in breast cancer and the effect of its disassembled prescriptions, Quxie (QX) and Fuzheng (FZ), which cause autophagy difference on tumor growth. After a breast cancer in situ tumor model was established, mice were randomly distributed into different groups: model, GYII, QX, FZ and tamoxifen groups, and treated correspondingly. Then, the tumor volumes and weights were monitored. Immunohistochemistry detected the contents of microtubule-associated protein light chain 3 (LC3), phosphorylated phosphatidylinositol 3-kinase (p-PI3K), phosphorylated protein kinase B (p-AKT) and phosphorylated mammalian target of rapamycin (p-mTOR) in tumor tissues. Furthermore, 4T1 cells were administrated with the 20% contained serum. Cell proliferation, migration and invasion were measured using cell counting kit-8 and transwell assays. Electron microscopy and flow cytometry detected autophagy and apoptosis. The content of LC3 was measured by immunofluorescence. Western blot detected the protein levels of LC3, Beclin1, p-PI3K/PI3K, p-AKT/AKT and p-mTOR/mTOR in tumor tissues and 4T1 cells. GYII, QX and FZ treatment significantly reduced the tumor volumes and weights in breast cancer tumor-bearing mice. The cell proliferation, migration and invasion were restrained, and cell apoptosis and autophagy were promoted in GYII, QX and FZ groups. Moreover, GYII, QX and FZ increased the expression of LC3 in 4T1 cells and tumor tissues and decreased the phosphorylation levels of PI3K, AKT and mTOR in tumor tissues. The protein levels of LC3 and Beclin1 were upregulated, and p-PI3K/PI3K, p-AKT/AKT and p-mTOR/mTOR were downregulated in tumor tissues and 4T1 cells of treatment groups. Our study confirmed that GYII could treat breast cancer by restraining the PI3K/AKT/mTOR signaling pathway-mediated autophagy. While QX focuses on inhibiting tumor growth, FZ acts on inhibiting tumor metastasis.
Collapse
Affiliation(s)
- Xiaojuan Chen
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | | | | | | |
Collapse
|
12
|
Liu J, Shao Y, Li D, Li C. N6-methyladenosine helps Apostichopus japonicus resist Vibrio splendidus infection by targeting coelomocyte autophagy via the AjULK-AjYTHDF/AjEEF-1α axis. Commun Biol 2023; 6:547. [PMID: 37210465 DOI: 10.1038/s42003-023-04929-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023] Open
Abstract
N6-Methyladenosine (m6A) modification is one of the most abundant post-transcriptional modifications that can mediate autophagy in various pathological processes. However, the functional role of m6A in autophagy regulation is not well-documented during Vibrio splendidus infection of Apostichopus japonicus. In this study, the inhibition of m6A level by knockdown of methyltransferase-like 3 (AjMETTL3) significantly decreased V. splendidus-induced coelomocyte autophagy and led to an increase in the intracellular V. splendidus burden. In this condition, Unc-51-like kinase 1 (AjULK) displayed the highest differential expression of m6A level. Moreover, knockdown of AjULK can reverse the V. splendidus-mediated autophagy in the condition of AjMETTL3 overexpression. Furthermore, knockdown of AjMETTL3 did not change the AjULK mRNA transcript levels but instead decreased protein levels. Additionally, YTH domain-containing family protein (AjYTHDF) was identified as a reader protein of AjULK and promoted AjULK expression in an m6A-dependent manner. Furthermore, the AjYTHDF-mediated AjULK expression depended on its interaction with translation elongation factor 1-alpha (AjEEF-1α). Altogether, our findings suggest that m6A is involved in resisting V. splendidus infection via facilitating coelomocyte autophagy in AjULK-AjYTHDF/AjEEF-1α-dependent manner, which provides a theoretical basis for disease prevention and therapy in A. japonicus.
Collapse
Affiliation(s)
- Jiqing Liu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, P. R. China
| | - Yina Shao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, P. R. China
| | - Dongdong Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, P. R. China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, P. R. China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, P. R. China.
| |
Collapse
|
13
|
Tan J, Yang B, Zhong H, Luo M, Su Z, Xie C, Shi M, Sun C, Lin L. Circular RNA circEMB promotes osteosarcoma progression and metastasis by sponging miR-3184-5p and regulating EGFR expression. Biomark Res 2023; 11:3. [PMID: 36611218 PMCID: PMC9825012 DOI: 10.1186/s40364-022-00442-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Osteosarcoma (OSA) is the most prevalent type of bone cancer with a high rate of metastasis. Circular RNAs (CircRNAs) play an essential role in multiple aspects of tumour biology. This study aimed to elucidate the role of circEMB in OSA. METHODS circRNAs related to OSA invasion were identified via RNA sequencing and qRT-PCR. The relationship between circEMB levels and clinicopathological features of OSA was examined using the clinical specimens and data of 53 patients with OSA. Several in vivo and in vitro experiments, including intravital imaging, whole-transcriptome sequencing, transwell assay, flow cytometry, dual-luciferase reporter assay, RIP assay, RNA pull-down assay and RNA-FISH, were performed to examine the effects of circEMB on the malignant behaviour of OSA. RESULTS A novel circRNA, named circEMB (hsa_circ_001310), was identified in this study. circEMB can promote the malignant behaviour of OSA. In vitro experiments revealed that circEMB knockdown decreased cell proliferation, inhibited tumour invasion and metastasis; increased apoptosis and resulted in G1/S phase arrest. In vivo experiments revealed that circEMB knockdown inhibited tumour growth and metastasis in xenograft-bearing mice. Mechanistically, circEMB affects the malignant behaviour of OSA by mediating EGFR as an miR-3184-5p sponge. In addition, the circEMB/miR-3184-5p/EGFR axis modulates methotrexate (MTX) resistance in OSA. CONCLUSIONS CircEMB plays a critical role in promoting cancer via the miR-3184-5p/EGFR pathway, indicating that circEMB may serve as a therapeutic target for OSA.
Collapse
Affiliation(s)
- Jianye Tan
- grid.417404.20000 0004 1771 3058Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 China ,grid.412455.30000 0004 1756 5980Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006 China
| | - Bingsheng Yang
- grid.416466.70000 0004 1757 959XDepartment of Orthopaedics, Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Haobo Zhong
- Department of Orthopaedic, Huizhou First Hospital, Guangdong 516003 Huizhou, China
| | - Mengliang Luo
- grid.417404.20000 0004 1771 3058Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 China
| | - Zexin Su
- grid.417404.20000 0004 1771 3058Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 China
| | - Chao Xie
- grid.417404.20000 0004 1771 3058Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 China
| | - Meiling Shi
- grid.415002.20000 0004 1757 8108Department of Rheumatology and Clinical Immunology, Jiangxi Provincial Peoples’ Hospital Affiliated to Nanchang University, Nanchang, 330006 China
| | - Chunhan Sun
- Department of Orthopaedic, Huizhou First Hospital, Guangdong 516003 Huizhou, China
| | - Lijun Lin
- grid.417404.20000 0004 1771 3058Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 China
| |
Collapse
|
14
|
Appiah CO, Singh M, May L, Bakshi I, Vaidyanathan A, Dent P, Ginder G, Grant S, Bear H, Landry J. The epigenetic regulation of cancer cell recovery from therapy exposure and its implications as a novel therapeutic strategy for preventing disease recurrence. Adv Cancer Res 2023; 158:337-385. [PMID: 36990536 DOI: 10.1016/bs.acr.2022.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The ultimate goal of cancer therapy is the elimination of disease from patients. Most directly, this occurs through therapy-induced cell death. Therapy-induced growth arrest can also be a desirable outcome, if prolonged. Unfortunately, therapy-induced growth arrest is rarely durable and the recovering cell population can contribute to cancer recurrence. Consequently, therapeutic strategies that eliminate residual cancer cells reduce opportunities for recurrence. Recovery can occur through diverse mechanisms including quiescence or diapause, exit from senescence, suppression of apoptosis, cytoprotective autophagy, and reductive divisions resulting from polyploidy. Epigenetic regulation of the genome represents a fundamental regulatory mechanism integral to cancer-specific biology, including the recovery from therapy. Epigenetic pathways are particularly attractive therapeutic targets because they are reversible, without changes in DNA, and are catalyzed by druggable enzymes. Previous use of epigenetic-targeting therapies in combination with cancer therapeutics has not been widely successful because of either unacceptable toxicity or limited efficacy. The use of epigenetic-targeting therapies after a significant interval following initial cancer therapy could potentially reduce the toxicity of combination strategies, and possibly exploit essential epigenetic states following therapy exposure. This review examines the feasibility of targeting epigenetic mechanisms using a sequential approach to eliminate residual therapy-arrested populations, that might possibly prevent recovery and disease recurrence.
Collapse
Affiliation(s)
- Christiana O Appiah
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States; Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, United States
| | - Manjulata Singh
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Lauren May
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Ishita Bakshi
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Ashish Vaidyanathan
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Gordon Ginder
- Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Steven Grant
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States; Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States; Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States; Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, Massey Cancer Center, Richmond, Richmond, VA, United States
| | - Harry Bear
- Department of Surgery, Virginia Commonwealth University School of Medicine, Massey Cancer Center, Richmond, VA, United States; Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, Massey Cancer Center, Richmond, Richmond, VA, United States
| | - Joseph Landry
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| |
Collapse
|
15
|
Tian R, Sun Y, Han X, Wang J, Gu H, Wang W, Liang L. Identification and validation of prognostic autophagy-related genes associated with immune microenvironment in human gastric cancer. Aging (Albany NY) 2022; 14:7617-7634. [PMID: 36173625 PMCID: PMC9550254 DOI: 10.18632/aging.204313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 09/17/2022] [Indexed: 12/24/2022]
Abstract
Autophagy-related genes (ATGs) play critical roles in tumorigenesis and progression in gastric cancer (GC). The present study aimed to identify immune-based prognostic ATGs and verify their functions in tumor immune microenvironment (TIME) in GC. Macrophage infiltration was found to negatively correlate with prognosis in GC patients. After stratifying by infiltration levels of macrophages, we screened The Cancer Genome Atlas and Human Autophagy Database to identify the differentially expressed ATGs (DE-ATGs). Of 1,433 differentially expressed genes between the two groups, seven genes qualified as DE-ATGs. Of these, CXCR4, DLC1, and MAP1LC3C, exhibited strong prognostic prediction ability in Kaplan-Meier survival–log-rank test. High expression of these genes correlated with increased occurrence of advanced grade 3 tumors and poor prognoses. Furthermore, GSEA indicated that they were significantly associated with oncogenic and immune-related pathways. The comprehensive evaluation of TIME via GEPIA, ESTIMATE, CIBERSORT, and TIMER suggested that the three DE-ATGs were closely associated with immune condition, both in terms of immune cells and immune scores. Thus, the outcome of this study may aid in better understanding of the ATGs and their interaction with the immune microenvironment, which would allow the development of novel inhibitors, personalized treatment, and immunotherapy in gastric cancer.
Collapse
Affiliation(s)
- Ruyue Tian
- Department of Ultrasound, Aero Space Central Hospital, Beijing 100050, China.,Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, China
| | - Ya Sun
- Department of Ultrasound, Aero Space Central Hospital, Beijing 100050, China
| | - Xuedi Han
- Department of Ultrasound, Aero Space Central Hospital, Beijing 100050, China
| | - Jiajun Wang
- Department of Ultrasound, Aero Space Central Hospital, Beijing 100050, China
| | - Hongli Gu
- Department of Ultrasound, Aero Space Central Hospital, Beijing 100050, China
| | - Wenhai Wang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, China
| | - Lei Liang
- Department of Ultrasound, Aero Space Central Hospital, Beijing 100050, China
| |
Collapse
|
16
|
Gao SS, Zhang ZK, Wang XB, Ma Y, Yin GQ, Guo XB. Role of transcribed ultraconserved regions in gastric cancer and therapeutic perspectives. World J Gastroenterol 2022; 28:2900-2909. [PMID: 35978878 PMCID: PMC9280734 DOI: 10.3748/wjg.v28.i25.2900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/08/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is the fourth leading cause of cancer-related death. The occurrence and development of GC is a complex process involving multiple biological mechanisms. Although traditional regulation modulates molecular functions related to the occurrence and development of GC, the comprehensive mechanisms remain unclear. Ultraconserved region (UCR) refers to a genome sequence that is completely conserved in the homologous regions of the human, rat and mouse genomes, with 100% identity, without any insertions or deletions, and often located in fragile sites and tumour-related genes. The transcribed UCR (T-UCR) is transcribed from the UCR and is a new type of long noncoding RNA. Recent studies have found that the expression level of T-UCRs changes during the occurrence and development of GC, revealing a new mechanism underlying GC. Therefore, this article aims to review the relevant research on T-UCRs in GC, as well as the function of T-UCRs and their regulatory role in the occurrence and development of GC, to provide new strategies for GC diagnosis and treatment.
Collapse
Affiliation(s)
- Shen-Shuo Gao
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong Province, China
| | - Zhi-Kai Zhang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong Province, China
| | - Xu-Bin Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Yan Ma
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong Province, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Guo-Qing Yin
- Department of Anus and Intestine Surgery, Qingzhou Hospital Affiliated to Shandong First Medical University, Qingzhou 262500, Shandong Province, China
| | - Xiao-Bo Guo
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong Province, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| |
Collapse
|
17
|
Neuroblastoma: Essential genetic pathways and current therapeutic options. Eur J Pharmacol 2022; 926:175030. [DOI: 10.1016/j.ejphar.2022.175030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/29/2022]
|
18
|
Li Q, Zhang L, Zhang Z, Fan Y, Zhang Q. Carbonic anhydrase 10 functions as a tumor suppressor in renal cell carcinoma and its methylation is a risk factor for survival outcome. Urol Oncol 2022; 40:168.e1-168.e9. [DOI: 10.1016/j.urolonc.2021.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/31/2022]
|
19
|
Paskeh MDA, Entezari M, Clark C, Zabolian A, Ranjbar E, Farahani MV, Saleki H, Sharifzadeh SO, Far FB, Ashrafizadeh M, Samarghandian S, Khan H, Ghavami S, Zarrabi A, Łos MJ. Targeted regulation of autophagy using nanoparticles: New insight into cancer therapy. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166326. [DOI: 10.1016/j.bbadis.2021.166326] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/31/2021] [Accepted: 12/11/2021] [Indexed: 12/12/2022]
|
20
|
MA X, CHENG M, JIN J, BAI Y, ZHANG H, HE L, ZHOU W, ZHANG D, ZHANG S, XU J. DNMT3A regulates differentiation of osteoblast and autophagy of vascular smooth muscle cells in vascular medial calcification induced by high phosphorus through ERK1/2 signaling. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.74021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xiaoying MA
- Hebei Clinical Research Center for Chronic Kidney Disease, P.R. China
| | - Meijuan CHENG
- Hebei Clinical Research Center for Chronic Kidney Disease, P.R. China
| | - Jingjing JIN
- Hebei Clinical Research Center for Chronic Kidney Disease, P.R. China
| | - Yaling BAI
- Hebei Clinical Research Center for Chronic Kidney Disease, P.R. China
| | - Huiran ZHANG
- Hebei Clinical Research Center for Chronic Kidney Disease, P.R. China
| | - Lei HE
- Hebei Clinical Research Center for Chronic Kidney Disease, P.R. China
| | - Wei ZHOU
- Hebei Clinical Research Center for Chronic Kidney Disease, P.R. China
| | - Dongxue ZHANG
- Hebei Clinical Research Center for Chronic Kidney Disease, P.R. China
| | - Shenglei ZHANG
- Hebei Clinical Research Center for Chronic Kidney Disease, P.R. China
| | - Jinsheng XU
- Hebei Clinical Research Center for Chronic Kidney Disease, P.R. China
| |
Collapse
|
21
|
HDAC6 Inhibition Extinguishes Autophagy in Cancer: Recent Insights. Cancers (Basel) 2021; 13:cancers13246280. [PMID: 34944907 PMCID: PMC8699196 DOI: 10.3390/cancers13246280] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/07/2021] [Accepted: 12/11/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Autophagy is an essential process in cell recycling, and its involvement in cancer has been increasingly recognized in the last few decades. This mechanism acts as a double-edged sword in tumor progression and is known to either block or promote tumorigenesis in a context-specific manner. Its role in determining chemotherapeutic resistance makes it a potential target in cancer treatment. The two autophagic inhibitors hydroxychloroquine and chloroquine are currently used in the clinic but cause several side effects in tumor patients. Since recent studies also show that epigenetic enzymes such as histone deacetylase (HDAC) proteins are able to modulate autophagy, this review focuses on the ability of HDAC6 to actively regulate the autophagic process. We also explore the possibility of using HDAC6 inhibitors as therapeutic agents in adjuvant treatment or in combination with autophagic modulators to trigger this mechanism, thus avoiding the occurrence and effects of chemoresistance. Abstract Autophagy is an essential intracellular catabolic mechanism involved in the degradation and recycling of damaged organelles regulating cellular homeostasis and energy metabolism. Its activation enhances cellular tolerance to various stresses and is known to be involved in drug resistance. In cancer, autophagy has a dual role in either promoting or blocking tumorigenesis, and recent studies indicate that epigenetic regulation is involved in its mechanism of action in this context. Specifically, the ubiquitin-binding histone deacetylase (HDAC) enzyme HDAC6 is known to be an important player in modulating autophagy. Epigenetic modulators, such as HDAC inhibitors, mediate this process in different ways and are already undergoing clinical trials. In this review, we describe current knowledge on the role of epigenetic modifications, particularly HDAC-mediated modifications, in controlling autophagy in cancer. We focus on the controversy surrounding their ability to promote or block tumor progression and explore the impact of HDAC6 inhibitors on autophagy modulation in cancer. In light of the fact that targeted drug therapy for cancer patients is attracting ever increasing interest within the research community and in society at large, we discuss the possibility of using HDAC6 inhibitors as adjuvants and/or in combination with conventional treatments to overcome autophagy-related mechanisms of resistance.
Collapse
|
22
|
Jiang M, Bu WB, Chen YJ, Li L, Xiao T, Gu H. Mediation of Anti-Keloid Effects of mTOR Inhibitors by Autophagy-Independent Machinery. INTERNATIONAL JOURNAL OF DERMATOLOGY AND VENEREOLOGY 2021; 4:210-218. [DOI: 10.1097/jd9.0000000000000189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/30/2021] [Indexed: 01/04/2025]
Abstract
Abstract
Objective:
Blocking mechanistic target of rapamycin (mTOR) activation with mTOR inhibitors has promising therapeutic potential for keloids. However, the precise mechanism of mTOR inhibitors remains unclear. This study was aimed to investigate the role of autophagy machinery in the anti-keloid effects of mTOR inhibitors.
Methods:
We first validated the biological effects induced by the mTOR inhibitors rapamycin (100 nmol/L) and KU-0063794 (5 μmol/L) on the proliferation, apoptosis, migration, and collagen synthesis of keloid fibroblasts (KFs) derived from Han Chinese persons through a Cell Counting Kit-8 assay, 5-Bromo-2’-deoxyuridine incorporation, Annexin V/propidium iodide staining, migration, and western blotting. To explore whether autophagy machinery is involved in the anti-keloid effects of mTOR inhibitors, we first blocked the autophagy activation induced by rapamycin and KU-0063794 with a pharmacological autophagy inhibitor (wortmannin) or by silencing the key autophagy gene (ATG5), and we then re-evaluated these biological effects on KFs.
Results:
Blocking mTOR activation with either rapamycin or KU-0063794 completely inhibited proliferation, migration, and collagen synthesis of primary KFs but did not affect apoptosis. Incubating KFs with the autophagy inhibitor wortmannin or performing ATG5 silencing abrogated the subsequent activation of autophagic activity induced by rapamycin (rapamycin + E-64d + pepstatin vs. rapamycin + wortmannin + E-64d + pepstatin: 1.88 ± 0.38 vs. 1.02 ± 0.35, F = 6.86, P = 0.013), (non-sense control + rapamycin vs. ATG5 small interfering RNA + rapamycin: 1.46 ± 0.18 vs. 0.75 ± 0.20, respectively; F = 7.68, P = 0.01) or KU-0063794 (KU-0063794 + E-64d + pepstatin vs. KU-0063794 + wortmannin + E-64d + pepstatin: 1.65 ± 0.35 vs. 0.76 ± 0.17, F = 10.01, P = 0.004), (NC + KU-0063794 vs. ATG5 small interfering RNA + KU-0063794: 1.59 ± 0.50 vs. 0.77 ± 0.09, F = 5.93, P = 0.02) as evidenced by decreased accumulation of LC3-II. However, blockage of autophagy induction in mTOR inhibitor-treated KFs with both methods did not disturb their anti-keloid effects, such as inhibition of cell viability, cell migration, and collagen synthesis (P > 0.05 each).
Conclusion:
Blocking mTOR activation with the mTOR inhibitors rapamycin and KU-0063794 showed anti-keloid effects in KFs. Restoration of autophagy inhibition by mTOR inhibitors does not contribute to their anti-keloid effects.
Collapse
Affiliation(s)
- Meng Jiang
- Department of Physiotherapy, Hospital for Skin Diseases (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical, Nanjing, Jiangsu 210042, China
| | - Wen-Bo Bu
- Department of Dermatologic Surgery, Hospital for Skin Diseases (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical, Nanjing, Jiangsu 210042, China
| | - Yu-Jie Chen
- Department of Physiotherapy, Hospital for Skin Diseases (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical, Nanjing, Jiangsu 210042, China
| | - Li Li
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Disease (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu 210042, China
| | - Ta Xiao
- Department of Physiotherapy, Hospital for Skin Diseases (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical, Nanjing, Jiangsu 210042, China
| | - Heng Gu
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Disease (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu 210042, China
| |
Collapse
|
23
|
Chen X, Wang J, Tahir M, Zhang F, Ran Y, Liu Z, Wang J. Current insights into the implications of m6A RNA methylation and autophagy interaction in human diseases. Cell Biosci 2021; 11:147. [PMID: 34315538 PMCID: PMC8314498 DOI: 10.1186/s13578-021-00661-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a conserved degradation process crucial to maintaining the primary function of cellular and organismal metabolism. Impaired autophagy could develop numerous diseases, including cancer, cardiomyopathy, neurodegenerative disorders, and aging. N6-methyladenosine (m6A) is the most common RNA modification in eukaryotic cells, and the fate of m6A modified transcripts is controlled by m6A RNA binding proteins. m6A modification influences mRNA alternative splicing, stability, translation, and subcellular localization. Intriguingly, recent studies show that m6A RNA methylation could alter the expression of essential autophagy-related (ATG) genes and influence the autophagy function. Thus, both m6A modification and autophagy could play a crucial role in the onset and progression of various human diseases. In this review, we summarize the latest studies describing the impact of m6A modification in autophagy regulation and discuss the role of m6A modification-autophagy axis in different human diseases, including obesity, heart disease, azoospermatism or oligospermatism, intervertebral disc degeneration, and cancer. The comprehensive understanding of the m6A modification and autophagy interplay may help in interpreting their impact on human diseases and may aid in devising future therapeutic strategies.
Collapse
Affiliation(s)
- Xuechai Chen
- Center of Excellence for Environmental Safety and Biological Effects, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing, 100124, People's Republic of China
| | - Jianan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing, 100124, People's Republic of China
| | - Muhammad Tahir
- Center of Excellence for Environmental Safety and Biological Effects, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing, 100124, People's Republic of China
| | - Fangfang Zhang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing, 100124, People's Republic of China
| | - Yuanyuan Ran
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Xixiazhuang, Badachu, Beijing, 100144, People's Republic of China
| | - Zongjian Liu
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Xixiazhuang, Badachu, Beijing, 100144, People's Republic of China.
| | - Juan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing, 100124, People's Republic of China.
| |
Collapse
|
24
|
Shi Y, Shen HM, Gopalakrishnan V, Gordon N. Epigenetic Regulation of Autophagy Beyond the Cytoplasm: A Review. Front Cell Dev Biol 2021; 9:675599. [PMID: 34195194 PMCID: PMC8237754 DOI: 10.3389/fcell.2021.675599] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a highly conserved catabolic process induced under various stress conditions to protect the cell from harm and allow survival in the face of nutrient- or energy-deficient states. Regulation of autophagy is complex, as cells need to adapt to a continuously changing microenvironment. It is well recognized that the AMPK and mTOR signaling pathways are the main regulators of autophagy. However, various other signaling pathways have also been described to regulate the autophagic process. A better understanding of these complex autophagy regulatory mechanisms will allow the discovery of new potential therapeutic targets. Here, we present a brief overview of autophagy and its regulatory pathways with emphasis on the epigenetic control mechanisms.
Collapse
Affiliation(s)
- Yin Shi
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, China
| | - Han-Ming Shen
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Vidya Gopalakrishnan
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nancy Gordon
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
25
|
Bhol CS, Patil S, Sahu BB, Patra SK, Bhutia SK. The clinical significance and correlative signaling pathways of paired box gene 9 in development and carcinogenesis. Biochim Biophys Acta Rev Cancer 2021; 1876:188561. [PMID: 33965511 DOI: 10.1016/j.bbcan.2021.188561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 12/17/2022]
Abstract
Paired box 9 (PAX9) gene belongs to the PAX family, which encodes a family of metazoan transcription factors documented by a conserved DNA binding paired domain 128-amino-acids, critically essential for physiology and development. It is primarily expressed in embryonic tissues, such as the pharyngeal pouch endoderm, somites, neural crest-derived mesenchyme, and distal limb buds. PAX9 plays a vital role in craniofacial development by maintaining the odontogenic potential, mutations, and polymorphisms associated with the risk of tooth agenesis, hypodontia, and crown size in dentition. The loss-of-function of PAX9 in the murine model resulted in a short life span due to the arrest of cleft palate formation and skeletal abnormalities. According to recent studies, the PAX9 gene has a significant role in maintaining squamous cell differentiation, odontoblast differentiation of pluripotent stem cells, deregulation of which is associated with tumor initiation, and malignant transformation. Moreover, PAX9 contributes to promoter hypermethylation and alcohol- induced oro-esophageal squamous cell carcinoma mediated by downregulation of differentiation and apoptosis. Likewise, PAX9 activation is also reported to be associated with drug sensitivity. In summary, this current review aims to understand PAX9 function in the regulation of development, differentiation, and carcinogenesis, along with the underlying signaling pathways for possible cancer therapeutics.
Collapse
Affiliation(s)
- Chandra Sekhar Bhol
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Binod Bihari Sahu
- Plant Immunity Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India.
| |
Collapse
|
26
|
Zhang S, Zheng Y, Zhang G, Lin P, Wang W. Genomic DNA methylation analysis reveals that BLNK is a key potential gene in the regulation of autophagy-related thyroid cancer progression. Genome 2021; 64:801-812. [PMID: 33617368 DOI: 10.1139/gen-2020-0178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The purpose of this study was to explore the relationship between autophagy and DNA methylation, and to identify key genes for autophagy-regulated thyroid cancer progression. We divided patients with thyroid cancer into high-autophagy score (AS) group and low-AS group based on their AS values. The results found that AS was associated with the distant metastasis of thyroid cancer, and adversely affected prognosis. Then, we screened 359 differently expressed genes (DEGs) with DNA methylation status consistent with gene expression change. Functional classification analysis demonstrated that the 359 DEGs consistent with DNA methylation status were significantly involved in adhesion, migration, and differentiation of immune cells. To further screen the key genes in the autophagy-related thyroid cancer progression, we constructed a protein-protein interactions (PPI) network and performed prognostic analysis. B cell linker (BLNK) was identified as the key potential gene affecting autophagy-related thyroid cancer progression. Finally, we verified that BLNK promoted the proliferation of thyroid cancer cells, and BLNK expression was regulated by DNA methylation. Our research provides a new perspective for exploring the relationship between autophagy and DNA methylation during the progression of thyroid cancer and provides a new target for the treatment of metastatic thyroid cancer.
Collapse
Affiliation(s)
- Shengchi Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, 300192 Tianjin, China.,Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, 300192 Tianjin, China
| | - Yongzhe Zheng
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, 300192 Tianjin, China.,Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, 300192 Tianjin, China
| | - Guimin Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, 300192 Tianjin, China.,Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, 300192 Tianjin, China
| | - Peng Lin
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, 300192 Tianjin, China.,Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, 300192 Tianjin, China
| | - Wei Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, 300192 Tianjin, China.,Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, 300192 Tianjin, China
| |
Collapse
|
27
|
Guo ZF, Kong FL. Akt regulates RSK2 to alter phosphorylation level of H2A.X in breast cancer. Oncol Lett 2021; 21:187. [PMID: 33574926 PMCID: PMC7816342 DOI: 10.3892/ol.2021.12448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 08/13/2020] [Indexed: 02/06/2023] Open
Abstract
Histone H2AX (H2A.X) is a variant of the histone H2A family. Phosphorylation of H2A.X is a marker of DNA strand breaks and the presence or absence of H2A.X is closely related to tumor susceptibility and drug resistance. The present study found that the activity of the serine/threonine kinase Akt was negatively associated with H2A.X phosphorylated at the Ser16 site (H2A.X S16ph), but the mechanism of the inverse relationship remains elusive. The aim of the present study was to elucidate the mechanism of action between Akt and H2A.X S16ph and the exact role of this mechanism. Western blot analysis was performed to detect the regulatory association between p-Akt and H2A.X S16ph/p-RSK2, and immunoprecipitation and chromatin immunoprecipitation were performed to prove that Akt, RSK2 and H2A.X combine and interact in human breast cancer cells. The changes of cellular proliferation and migration induced by the interaction of Akt, RSK2 and H2A.X was determined by MTT, soft agar colony formation and cell migration experiments. The effect of interaction of Akt, RSK2 and H2A.X on cancer-promoting genes, such as PSAT-1 was determined via reverse transcription-quantitative PCR analysis. The current study indicated that the serine/threonine kinase ribosomal S6 kinase 2 (RSK2) as a kinase of H2A.X could be phosphorylated by Akt at Ser19 site. Moreover, Akt positively regulated the phosphorylation of RSK2 to inhibit phosphorylation of H2A.X, thereby affecting the affinity between RSK2 and substrate histone, promoting the survival and migration of breast cancer cells. In conclusion, Akt-mediated phosphorylation of RSK2 regulated the phosphorylation of H2A.X, thereby promoting oncogenic activity. This finding provides new insights to understand the pathogenesis and treatment mechanisms of breast cancer.
Collapse
Affiliation(s)
- Zhi-Feng Guo
- Department of Oncology, Section II, Chifeng Municipal Hospital, Chifeng, Inner Mongolia Autonomous Region 024000, P.R. China
| | - Fan-Long Kong
- Department of Oncology, Section II, Chifeng Municipal Hospital, Chifeng, Inner Mongolia Autonomous Region 024000, P.R. China
| |
Collapse
|
28
|
Kharkar PS. Cancer Stem Cell (CSC) Inhibitors in Oncology-A Promise for a Better Therapeutic Outcome: State of the Art and Future Perspectives. J Med Chem 2020; 63:15279-15307. [PMID: 33325699 DOI: 10.1021/acs.jmedchem.0c01336] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer stem cells (CSCs), a subpopulation of cancer cells endowed with self-renewal, tumorigenicity, pluripotency, chemoresistance, differentiation, invasive ability, and plasticity, reside in specialized tumor niches and are responsible for tumor maintenance, metastasis, therapy resistance, and tumor relapse. The new-age "hierarchical or CSC" model of tumor heterogeneity is based on the concept of eradicating CSCs to prevent tumor relapse and therapy resistance. Small-molecular entities and biologics acting on various stemness signaling pathways, surface markers, efflux transporters, or components of complex tumor microenvironment are under intense investigation as potential anti-CSC agents. In addition, smart nanotherapeutic tools have proved their utility in achieving CSC targeting. Several CSC inhibitors in clinical development have shown promise, either as mono- or combination therapy, in refractory and difficult-to-treat cancers. Clinical investigations with CSC marker follow-up as a measure of clinical efficacy are needed to turn the "hype" into the "hope" these new-age oncology therapeutics have to offer.
Collapse
Affiliation(s)
- Prashant S Kharkar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai 400 019, India
| |
Collapse
|
29
|
Mondal P, Natesh J, Penta D, Meeran SM. Progress and promises of epigenetic drugs and epigenetic diets in cancer prevention and therapy: A clinical update. Semin Cancer Biol 2020; 83:503-522. [PMID: 33309850 DOI: 10.1016/j.semcancer.2020.12.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022]
Abstract
Epigenetic modifications are heritable yet reversible, essential for normal physiological functions and biological development. Aberrant epigenetic modifications, including DNA methylation, histone modification, and non-coding RNA (ncRNA)-mediated gene regulation play a crucial role in cancer progression. In cellular reprogramming, irregular epigenomic modulations alter cell signaling pathways and the expression of tumor suppressor genes and oncogenes, resulting in cancer growth and metastasis. Therefore, alteration of epigenetic-status in cancer cells can be used as a potential target for cancer therapy. Several synthetic epigenetic inhibitors (epi-drugs) and natural epigenetic modulatory bioactives (epi-diets) have been shown to have the potential to alter the aberrant epigenetic status and inhibit cancer progression. Further, the use of combinatorial approaches with epigenetic drugs and diets has brought promising outcomes in cancer prevention and therapy. In this article, we have summarized the epigenetic modulatory activities of epi-drugs, epi-diets, and their combination against various cancers. We have also compiled the preclinical and clinical status of these epigenetic modulators in different cancers.
Collapse
Affiliation(s)
- Priya Mondal
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jagadish Natesh
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Dhanamjai Penta
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Syed Musthapa Meeran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
30
|
Liu PF, Farooqi AA, Peng SY, Yu TJ, Dahms HU, Lee CH, Tang JY, Wang SC, Shu CW, Chang HW. Regulatory effects of noncoding RNAs on the interplay of oxidative stress and autophagy in cancer malignancy and therapy. Semin Cancer Biol 2020; 83:269-282. [PMID: 33127466 DOI: 10.1016/j.semcancer.2020.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 12/15/2022]
Abstract
Noncoding RNAs (ncRNAs) regulation of various diseases including cancer has been extensively studied. Reactive oxidative species (ROS) elevated by oxidative stress are associated with cancer progression and drug resistance, while autophagy serves as an ROS scavenger in cancer cells. However, the regulatory effects of ncRNAs on autophagy and ROS in various cancer cells remains complex. Here, we explore how currently investigated ncRNAs, mainly miRNAs and lncRNAs, are involved in ROS production through modulating antioxidant genes. The regulatory effects of miRNAs and lncRNAs on autophagy-related (ATG) proteins to control autophagy activity in cancer cells are discussed. Moreover, differential expression of ncRNAs in tumor and normal tissues of cancer patients are further analyzed using The Cancer Genome Atlas (TCGA) database. This review hypothesizes links between ATG genes- or antioxidant genes-modulated ncRNAs and ROS production, which might result in tumorigenesis, malignancy, and cancer recurrence. A better understanding of the regulation of ROS and autophagy by ncRNAs might advance the use of ncRNAs as diagnostic and prognostic markers as well as therapeutic targets in cancer therapy.
Collapse
Affiliation(s)
- Pei-Feng Liu
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | - Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan.
| | - Sheng-Yao Peng
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Tzu-Jung Yu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Cheng-Hsin Lee
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Sheng-Chieh Wang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chih-Wen Shu
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
31
|
Chavez-Dominguez R, Perez-Medina M, Lopez-Gonzalez JS, Galicia-Velasco M, Aguilar-Cazares D. The Double-Edge Sword of Autophagy in Cancer: From Tumor Suppression to Pro-tumor Activity. Front Oncol 2020; 10:578418. [PMID: 33117715 PMCID: PMC7575731 DOI: 10.3389/fonc.2020.578418] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
During tumorigenesis, cancer cells are exposed to a wide variety of intrinsic and extrinsic stresses that challenge homeostasis and growth. Cancer cells display activation of distinct mechanisms for adaptation and growth even in the presence of stress. Autophagy is a catabolic mechanism that aides in the degradation of damaged intracellular material and metabolite recycling. This activity helps meet metabolic needs during nutrient deprivation, genotoxic stress, growth factor withdrawal and hypoxia. However, autophagy plays a paradoxical role in tumorigenesis, depending on the stage of tumor development. Early in tumorigenesis, autophagy is a tumor suppressor via degradation of potentially oncogenic molecules. However, in advanced stages, autophagy promotes the survival of tumor cells by ameliorating stress in the microenvironment. These roles of autophagy are intricate due to their interconnection with other distinct cellular pathways. In this review, we present a broad view of the participation of autophagy in distinct phases of tumor development. Moreover, autophagy participation in important cellular processes such as cell death, metabolic reprogramming, metastasis, immune evasion and treatment resistance that all contribute to tumor development, is reviewed. Finally, the contribution of the hypoxic and nutrient deficient tumor microenvironment in regulation of autophagy and these hallmarks for the development of more aggressive tumors is discussed.
Collapse
Affiliation(s)
- Rodolfo Chavez-Dominguez
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico.,Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Mario Perez-Medina
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico.,Laboratorio de Quimioterapia Experimental, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Jose S Lopez-Gonzalez
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Miriam Galicia-Velasco
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Dolores Aguilar-Cazares
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| |
Collapse
|
32
|
Zhu J, Jin L, Zhang A, Gao P, Dai G, Xu M, Xu L, Yang D. Coexpression Analysis of the EZH2 Gene Using The Cancer Genome Atlas and Oncomine Databases Identifies Coexpressed Genes Involved in Biological Networks in Breast Cancer, Glioblastoma, and Prostate Cancer. Med Sci Monit 2020; 26:e922346. [PMID: 32595202 PMCID: PMC7320634 DOI: 10.12659/msm.922346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background This study aimed to perform coexpression analysis of the EZH2 gene using The Cancer Genome Atlas (TCGA) and the Oncomine databases to identify coexpressed genes involved in biological networks in breast cancer, glioblastoma, and prostate cancer, with functional analysis of the EZH2 gene in the C4-2 human prostate cancer cell line in vitro. Material/Methods Data from TCGA and Oncomine databases were analyzed to determine the expression of EZH2 and the top five coexpressed genes in breast cancer, glioblastoma, and prostate cancer and the clinical significance the coexpressed genes. Gene Ontology (GO) analysis was performed to predict the functions and pathways of EZH2 using pathway annotation. The role of EZH2 in the C4-2 human prostate cancer cell line was studied in vitro. Results Analysis of 16 micro-arrays identified 185 genes that were coexpressed with EZH2. The top five coexpressed genes were MCM4, KIAA0101, MKI67, RRM2, and CDC25a. Increased expression of these genes and EZH2 were associated with reduced survival. Coexpressed genes were involved in biological networks associated with the cell cycle, mitosis, and DNA damage. The effects of EZH2 on prostate cancer cell was validated in vitro as knockdown of EZH2 resulted in a G2/M cell cycle arrest, increased DNA damage, and reduced colony number. Conclusions Coexpression analysis of EZH2 identified its role in the cell cycle, mitosis, and DNA repair. The molecular mechanisms involved in EZH2 gene expression in the cell response to DNA damage requires further study to determine whether EZH2 is a potential human cancer biomarker.
Collapse
Affiliation(s)
- Jin Zhu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Lu Jin
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Aili Zhang
- Department of Pediatric, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Peng Gao
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Guangcheng Dai
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Ming Xu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Lijun Xu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Dongrong Yang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| |
Collapse
|
33
|
Gareev I, Beylerli O, Yang G, Sun J, Pavlov V, Izmailov A, Shi H, Zhao S. The current state of MiRNAs as biomarkers and therapeutic tools. Clin Exp Med 2020; 20:349-359. [PMID: 32399814 DOI: 10.1007/s10238-020-00627-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/03/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are non-coding RNAs with a length of 18-22 nucleotides that regulate about a third of the human genome at the post-transcriptional level. MiRNAs are involved in almost all biological processes, including cell proliferation, apoptosis, and cell differentiation, but also play a key role in the pathogenesis of many diseases. Most miRNAs are expressed within the cells themselves. Due to various forms of transport from cells like exosomes, circulating miRNAs are stable and can be found in human body fluids, such as blood, saliva, cerebrospinal fluid, and urine. Circulating miRNAs are of great interest as potential noninvasive biomarkers for tumors, lipid disorders, diabetes mellitus, and cardiovascular diseases. However, the possibility of their use in the clinic is limited, and this is associated with a number of problems since currently there are significant differences between the procedures for processing samples, methods of analysis, and especially strategies for standardizing results. Moreover, miRNAs can represent not only potential biomarkers but also become new therapeutic agents and be used in modern clinical practice, which again confirms the need for their study.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, Russia
| | - Ozal Beylerli
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, Russia
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, Heilongjiang Province, China, 150001.,Institute of Brain Science, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jinxian Sun
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, Heilongjiang Province, China, 150001.,Institute of Brain Science, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Valentin Pavlov
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, Russia
| | - Adel Izmailov
- Regional Clinical Oncology Center, Ufa, Republic of Bashkortostan, Russia
| | - Huaizhang Shi
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, Heilongjiang Province, China, 150001.,Institute of Brain Science, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Shiguang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, Heilongjiang Province, China, 150001. .,Institute of Brain Science, Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
34
|
Jiang PC, Bu SR. Clinical value of circular RNAs and autophagy-related miRNAs in the diagnosis and treatment of pancreatic cancer. Hepatobiliary Pancreat Dis Int 2019; 18:511-516. [PMID: 31610988 DOI: 10.1016/j.hbpd.2019.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 09/27/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) are a special group of long-chain and non-coding RNAs characterized by a closed-loop structure without 3' and 5' polarity. In recent years, studies have demonstrated that circRNAs act as microRNA (miRNA) sponges to regulate the function of miRNAs. Increasing evidence indicates that circRNAs and targeted miRNAs are involved in the development, progression and metastasis of various cancers and drug resistance. A number of miRNAs are known to be associated with the pathogenesis, development and treatment of pancreatic cancer by regulating the autophagic activity. DATA SOURCES A comprehensive literature search was executed in PubMed and EMBASE using the medical subject headings (MeSH) terms "Pancreatic Neoplasms", "autophagy", "RNA, circular" and "microRNA". We also used text terms such as "diagnosis", "prognosis" and "biomarker" to supplement the results. RESULTS Autophagy-related miRNAs is closely related to pancreatic cancer. On basis of the retrieval results, we summarized the synthesis, features and functions of circRNAs and analyzed the association between autophagy-related miRNAs and pancreatic cancer. CONCLUSIONS circRNAs act as the miRNA sponges and there is an association between miRNAs and autophagy, which provides a new concept to broaden the knowledge about the mechanisms underlying the development, progression and metastasis of pancreatic cancer. Additionally, clinical value of circRNAs and autophagy-related miRNAs in the diagnosis and treatment of pancreatic cancer would be further verified with in-depth researches.
Collapse
Affiliation(s)
- Pei-Cheng Jiang
- Department of Gastroenterology and Hepatology, Jinshan Hospital Affiliated to Fudan University, Shanghai 201508, China
| | - Shu-Rui Bu
- Department of Gastroenterology and Hepatology, Jinshan Hospital Affiliated to Fudan University, Shanghai 201508, China.
| |
Collapse
|