1
|
Thakur C, Qiu Y, Pawar A, Chen F. Epigenetic regulation of breast cancer metastasis. Cancer Metastasis Rev 2024; 43:597-619. [PMID: 37857941 DOI: 10.1007/s10555-023-10146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Breast cancer is the most frequently diagnosed malignancy and the second leading cause of cancer-related mortality among women worldwide. Recurrent metastasis is associated with poor patient outcomes and poses a significant challenge in breast cancer therapies. Cancer cells adapting to a new tissue microenvironment is the key event in distant metastasis development, where the disseminating tumor cells are likely to acquire genetic and epigenetic alterations during the process of metastatic colonization. Despite several decades of research in this field, the exact mechanisms governing metastasis are not fully understood. However, emerging body of evidence indicates that in addition to genetic changes, epigenetic reprogramming of cancer cells and the metastatic niche are paramount toward successful metastasis. Here, we review and discuss the latest knowledge about the salient attributes of metastasis and epigenetic regulation in breast cancer and crucial research domains that need further investigation.
Collapse
Affiliation(s)
- Chitra Thakur
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA.
| | - Yiran Qiu
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA
| | - Aashna Pawar
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA
| | - Fei Chen
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA.
| |
Collapse
|
2
|
Ji H, Bi Z, Pawar AS, Seno A, Almutairy BS, Fu Y, Qiu Y, Zhang W, Wang Z, Thakur C, Cui H, Yang L, Chen F. Genomic and epigenetic characterization of the arsenic-induced oncogenic microRNA-21. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123396. [PMID: 38295932 DOI: 10.1016/j.envpol.2024.123396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/14/2023] [Accepted: 01/17/2024] [Indexed: 02/15/2024]
Abstract
As one of the first identified oncogenic microRNAs, the precise details concerning the transcriptional regulation and function of microRNA-21 (miR-21) are still not completely established. The miR-21 gene is situated on chromosome 17q23.2, positioned at the 3'-UTR of the gene that encodes vacuole membrane protein-1 (VMP1). In this current study, we presented evidence indicating that miR-21 possesses its own gene promoter, which can be found in the intron 10 of the VMP1 gene. Chromatin immunoprecipitation followed by global DNA sequencing (ChIP-seq) revealed the presence of a broad H3K4me3 peak spanning the entire gene body of the primary miR-21 and the existence of super-enhancer clusters in the close proximity to both the miR-21 gene promoter and the transcription termination site in arsenic (As3+)-induced cancer stem-like cells (CSCs) and human induced pluripotent stem cells (hiPSCs). In non-transformed human bronchial epithelial cells (BEAS-2B), As3+ treatment enhanced Nrf2 binding to both the host gene VMP1 of miR-21 and the miR-21 gene. Knockout of Nrf2 inhibited both the basal and As3+-induced expressions of miR-21. Furthermore, the As3+-enhanced Nrf2 peaks in ChIP-seq fully overlap with these super-enhancers enriched with H3K4me1 and H3K27ac in the miR-21 gene, suggesting that Nrf2 may coordinate with other transcription factors through the super-enhancers to regulate the expression of miR-21 in cellular response to As3+. These findings demonstrate the unique genetic and epigenetic characteristics of miR-21 and may provide insights into understanding the novel mechanisms linking environmental As3+ exposure and human cancers.
Collapse
Affiliation(s)
- Haoyan Ji
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA; State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Zhuoyue Bi
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Aashna S Pawar
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Akimasa Seno
- R&D Center, Katayama Chemicals Ind., Co. Ltd, Ina, Minoh, Osaka, 562-0015, Japan
| | - Bandar Saeed Almutairy
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Yao Fu
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Yiran Qiu
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Wenxuan Zhang
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Ziwei Wang
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Chitra Thakur
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Liqun Yang
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Fei Chen
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA.
| |
Collapse
|
3
|
Yu M, Fan Y, Zhao Y, Tang Y. MicroRNA-140-3p inhibits proliferation and promotes apoptosis in non-small cell lung cancer by targeting MDIG. ENVIRONMENTAL TOXICOLOGY 2024; 39:1521-1530. [PMID: 38009637 DOI: 10.1002/tox.24026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/29/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are associated with cancer progression. MiR-140-3p is a tumor suppressor. Nevertheless, its function in non-small cell lung cancer (NSCLC) is unclear. METHODS MiR-140-3p expression in NSCLC clinical specimens was examined using the TCGA database and real-time PCR. NSCLC cell proliferation and apoptosis were investigated after the miRNA overexpression. Then, mineral dust-induced gene (MDIG) levels in NSCLC clinical specimens were monitored by real-time PCR and western blotting. Bioinformatics predicated the binding of miR-140-3p to MDIG, and their relationship was validated by luciferase reporter assay. The miR-140-3p/MDIG axis was further validated through rescue experiments. The involvement of STAT3 signaling in the actions of miR-140-3p/MDIG axis was investigated. RESULTS MiR-140-3p was decreased in NSCLC tissues and negatively correlated with MDIG expression. Additionally, it was also lower in high-grade specimens than in low-grade ones. MiR-140-3p restrained cell proliferation, facilitated apoptosis, and inhibited STAT3 signaling in NSCLC. Interestingly, MDIG was a target of this miRNA. Furthermore, MDIG upregulation abolished miR-140-3p's effect on cell proliferation, apoptosis, and STAT3 pathway in NSCLC cells. CONCLUSION MiR-140-3p restrained NSCLC development through the regulation of the STAT3 pathway by targeting MDIG. This axis may be a promising target for NSCLC treatment.
Collapse
Affiliation(s)
- Miaomiao Yu
- Department of Medical Oncology, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yueren Fan
- Department of Medical Oncology, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yihang Zhao
- Department of Medical Oncology, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yu Tang
- Department of Medical Oncology, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Wang Z, Thakur C, Seno A, Chen F. Digging out MDIG from the mess of H3K9me3, OTX2 and MYC signaling in human cancers. Int J Biol Sci 2024; 20:1090-1092. [PMID: 38322115 PMCID: PMC10845298 DOI: 10.7150/ijbs.92589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 12/25/2023] [Indexed: 02/08/2024] Open
Affiliation(s)
- Ziwei Wang
- Stony Brook Cancer Center, and Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Chitra Thakur
- Stony Brook Cancer Center, and Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Akimasa Seno
- Faculty of Engineering, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan, and R&D Center, Katayama Chemicals Ind., Co. Ltd, Ina, Minoh, Osaka, 562-0015, Japan
| | - Fei Chen
- Stony Brook Cancer Center, and Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| |
Collapse
|
5
|
Curran CS, Cui X, Li Y, Jeakle M, Sun J, Demirkale CY, Minkove S, Hoffmann V, Dhamapurkar R, Chumbris S, Bolyard C, Iheanacho A, Eichacker PQ, Torabi-Parizi P. Anti-PD-L1 therapy altered inflammation but not survival in a lethal murine hepatitis virus-1 pneumonia model. Front Immunol 2024; 14:1308358. [PMID: 38259435 PMCID: PMC10801642 DOI: 10.3389/fimmu.2023.1308358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Because prior immune checkpoint inhibitor (ICI) therapy in cancer patients presenting with COVID-19 may affect outcomes, we investigated the beta-coronavirus, murine hepatitis virus (MHV)-1, in a lethal pneumonia model in the absence (Study 1) or presence of prior programmed cell death ligand-1 (PD-L1) antibody (PD-L1mAb) treatment (Study 2). Methods In Study 1, animals were inoculated intratracheally with MHV-1 or vehicle and evaluated at day 2, 5, and 10 after infection. In Study 2, uninfected or MHV-1-infected animals were pretreated intraperitoneally with control or PD-L1-blocking antibodies (PD-L1mAb) and evaluated at day 2 and 5 after infection. Each study examined survival, physiologic and histologic parameters, viral titers, lung immunophenotypes, and mediator production. Results Study 1 results recapitulated the pathogenesis of COVID-19 and revealed increased cell surface expression of checkpoint molecules (PD-L1, PD-1), higher expression of the immune activation marker angiotensin converting enzyme (ACE), but reduced detection of the MHV-1 receptor CD66a on immune cells in the lung, liver, and spleen. In addition to reduced detection of PD-L1 on all immune cells assayed, PD-L1 blockade was associated with increased cell surface expression of PD-1 and ACE, decreased cell surface detection of CD66a, and improved oxygen saturation despite reduced blood glucose levels and increased signs of tissue hypoxia. In the lung, PD-L1mAb promoted S100A9 but inhibited ACE2 production concomitantly with pAKT activation and reduced FOXO1 levels. PD-L1mAb promoted interferon-γ but inhibited IL-5 and granulocyte-macrophage colony-stimulating factor (GM-CSF) production, contributing to reduced bronchoalveolar lavage levels of eosinophils and neutrophils. In the liver, PD-L1mAb increased viral clearance in association with increased macrophage and lymphocyte recruitment and liver injury. PD-L1mAb increased the production of virally induced mediators of injury, angiogenesis, and neuronal activity that may play role in COVID-19 and ICI-related neurotoxicity. PD-L1mAb did not affect survival in this murine model. Discussion In Study 1 and Study 2, ACE was upregulated and CD66a and ACE2 were downregulated by either MHV-1 or PD-L1mAb. CD66a is not only the MHV-1 receptor but also an identified immune checkpoint and a negative regulator of ACE. Crosstalk between CD66a and PD-L1 or ACE/ACE2 may provide insight into ICI therapies. These networks may also play role in the increased production of S100A9 and neurological mediators in response to MHV-1 and/or PD-L1mAb, which warrant further study. Overall, these findings support observational data suggesting that prior ICI treatment does not alter survival in patients presenting with COVID-19.
Collapse
Affiliation(s)
- Colleen S. Curran
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Xizhong Cui
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Yan Li
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Mark Jeakle
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Junfeng Sun
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Cumhur Y. Demirkale
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Samuel Minkove
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Victoria Hoffmann
- Division of Veterinary Resources, National Institutes of Health, Bethesda, MD, United States
| | - Rhea Dhamapurkar
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Symya Chumbris
- Texcell North-America, Inc., Frederick, MD, United States
| | | | | | - Peter Q. Eichacker
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Parizad Torabi-Parizi
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
6
|
Tang H, Guan Y, Yuan Z, Guo T, Tan X, Fan Y, Zhang E, Wang X. Histone demethylase KDM4B contributes to advanced clear cell renal carcinoma and association with copy number variations and cell cycle progression. Epigenetics 2023; 18:2192319. [PMID: 36952476 PMCID: PMC10038057 DOI: 10.1080/15592294.2023.2192319] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023] Open
Abstract
Advanced renal cell carcinoma (RCC) poses a threat to patient survival. Epigenetic remodelling is the pathogenesis of renal cancer. Histone demethylase 4B (KDM4B) is overexpressed in many cancers through various pathways. However, the role of KDM4B in clear cell renal carcinoma has not yet been elucidated. The differential expression of KDM4B was first verified by analysing public databases. The expression of KDM4B in fresh tissues and pathology slides was further analysed by western blotting and immunohistochemical staining. KDM4B overexpression and knockdown cell lines were also established. Cell Counting Kit-8 (CCK-8) assay was used to detect cell growth. Transwell assays were performed to assess cell migration. Xenografts were used to evaluate tumour growth and metastasis in vivo. Finally, KDM4B expression levels associated with copy number variation (CNV) and cell cycle stage were evaluated based on single-cell RNA sequencing data. KDM4B was expressed at higher levels in tumour tissues than in the adjacent normal tissues. High levels of KDM4B are associated with worse pathological features and poorer prognosis. KDM4B also promotes cell proliferation and migration in vitro, as well as tumour growth and metastasis in vivo. Tumour cells with high KDM4B expression exhibited higher CNV levels and a greater proportion of cells in the G1/S transition phase. Our results confirm that KDM4B promotes the progression of clear cell renal carcinoma, is correlated with poor prognosis, and may be related to high levels of CNV and cell cycle progression.
Collapse
Affiliation(s)
- Heting Tang
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yaping Guan
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhihao Yuan
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tuanjie Guo
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangyin Tan
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Fan
- Department of Renal Transplantation, Xiangan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Encheng Zhang
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Wang
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Thakur C, Qiu Y, Zhang Q, Carruthers NJ, Yu M, Bi Z, Fu Y, Wadgaonkar P, Almutairy B, Seno A, Stemmer PM, Chen F. Deletion of mdig enhances H3K36me3 and metastatic potential of the triple negative breast cancer cells. iScience 2022; 25:105057. [PMID: 36124233 PMCID: PMC9482110 DOI: 10.1016/j.isci.2022.105057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/06/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
In this report, we provide evidence showing diminished expression of the mineral dust-induced gene (mdig), a previously identified oncogenic gene, in human triple negative breast cancer (TNBC). Using a mouse model of orthotopic xenograft of the TNBC MDA-MB-231 cells, we demonstrate that mdig promotes the growth of primary tumors but inhibits metastasis of these cells in vivo. Knockout of mdig resulted in an enhancement of H3K36me3 in the genome and upregulation of some X chromosome-linked genes for cell motility, invasion, and metastasis. Silencing MAGED2, one of the most upregulated and H3K36me3-enriched genes resulted from mdig depletion, can partially reverse the invasive migration of the mdig knockout cells. The anti-metastatic and inhibitory role of mdig on H3K36me3 was cross-validated in another cell line, A549 lung cancer cells. Together, our data suggest that mdig is antagonist against H3K36me3 that enforces expression of genes, such as MAGED2, for cell invasion and metastasis. Loss of mdig expression in TNBC and metastatic breast cancer Knockout of mdig enforces metastasis of the TNBC cells Mdig antagonizes H3K36me3 that promotes expression of X-linked metastatic genes Silencing MAGED2 reduces invasive migration of the mdig knockout cells
Collapse
Affiliation(s)
- Chitra Thakur
- Stony Brook Cancer Center and Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Yiran Qiu
- Stony Brook Cancer Center and Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Qian Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Nicholas J Carruthers
- Institute of Environmental Health Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Miaomiao Yu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA.,Cancer Hospital of China Medical University, 44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning Province, China
| | - Zhuoyue Bi
- Stony Brook Cancer Center and Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Yao Fu
- Stony Brook Cancer Center and Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA
| | - Priya Wadgaonkar
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Bandar Almutairy
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA.,College of Pharmacy, Al-Dawadmi Campus, Shaqra University, P.O. Box 11961, Riyadh, Saudi Arabia
| | - Akimasa Seno
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA.,Faculty of Engineering, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| | - Paul M Stemmer
- Institute of Environmental Health Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Fei Chen
- Stony Brook Cancer Center and Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA.,Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| |
Collapse
|
8
|
Thakur C, Qiu Y, Fu Y, Bi Z, Zhang W, Ji H, Chen F. Epigenetics and environment in breast cancer: New paradigms for anti-cancer therapies. Front Oncol 2022; 12:971288. [PMID: 36185256 PMCID: PMC9520778 DOI: 10.3389/fonc.2022.971288] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/26/2022] [Indexed: 11/27/2022] Open
Abstract
Breast cancer remains the most frequently diagnosed cancer in women worldwide. Delayed presentation of the disease, late stage at diagnosis, limited therapeutic options, metastasis, and relapse are the major factors contributing to breast cancer mortality. The development and progression of breast cancer is a complex and multi-step process that incorporates an accumulation of several genetic and epigenetic alterations. External environmental factors and internal cellular microenvironmental cues influence the occurrence of these alterations that drives tumorigenesis. Here, we discuss state-of-the-art information on the epigenetics of breast cancer and how environmental risk factors orchestrate major epigenetic events, emphasizing the necessity for a multidisciplinary approach toward a better understanding of the gene-environment interactions implicated in breast cancer. Since epigenetic modifications are reversible and are susceptible to extrinsic and intrinsic stimuli, they offer potential avenues that can be targeted for designing robust breast cancer therapies.
Collapse
Affiliation(s)
- Chitra Thakur
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, United States
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Yiran Qiu
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, United States
| | - Yao Fu
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, United States
| | - Zhuoyue Bi
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, United States
| | - Wenxuan Zhang
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, United States
| | - Haoyan Ji
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, United States
| | - Fei Chen
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, United States
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
9
|
JMJD family proteins in cancer and inflammation. Signal Transduct Target Ther 2022; 7:304. [PMID: 36050314 PMCID: PMC9434538 DOI: 10.1038/s41392-022-01145-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/22/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
The occurrence of cancer entails a series of genetic mutations that favor uncontrollable tumor growth. It is believed that various factors collectively contribute to cancer, and there is no one single explanation for tumorigenesis. Epigenetic changes such as the dysregulation of enzymes modifying DNA or histones are actively involved in oncogenesis and inflammatory response. The methylation of lysine residues on histone proteins represents a class of post-translational modifications. The human Jumonji C domain-containing (JMJD) protein family consists of more than 30 members. The JMJD proteins have long been identified with histone lysine demethylases (KDM) and histone arginine demethylases activities and thus could function as epigenetic modulators in physiological processes and diseases. Importantly, growing evidence has demonstrated the aberrant expression of JMJD proteins in cancer and inflammatory diseases, which might serve as an underlying mechanism for the initiation and progression of such diseases. Here, we discuss the role of key JMJD proteins in cancer and inflammation, including the intensively studied histone lysine demethylases, as well as the understudied group of JMJD members. In particular, we focused on epigenetic changes induced by each JMJD member and summarized recent research progress evaluating their therapeutic potential for the treatment of cancer and inflammatory diseases.
Collapse
|
10
|
Geng F, Yang W, Song D, Hou H, Han B, Chen Y, Zhao H. MDIG, a 2‑oxoglutarate‑dependent oxygenase, acts as an oncogene and predicts the prognosis of multiple types of cancer. Int J Oncol 2022; 61:82. [PMID: 35583005 PMCID: PMC9162052 DOI: 10.3892/ijo.2022.5372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/09/2022] [Indexed: 11/05/2022] Open
Abstract
Recent studies have indicated that mineral dust‑induced gene (MDIG) is an oncogene induced by environmental factors, which has a key role in the development and progression of various tumor types, through epigenetic modifications; however, there are no previous pan‑cancer analyses of MDIG. In the present study, a comprehensive pan‑cancer analysis of MDIG was performed using public databases. The results demonstrated that MDIG was upregulated in tumor tissue samples compared with normal tissue, that it was present in all cancer cell lines and it was closely associated with the prognosis of patients with different tumor types. Furthermore, MDIG expression was closely associated with the immunological characteristics of the tumor microenvironment (TME), such as the frequency of tumor‑infiltrating immune cells, TME‑relevant signatures, immunostimulatory genes, immune checkpoint genes, chemokine receptor genes, tumor mutational burden and microsatellite instability. In parallel, high expression of MDIG was associated with improved overall survival of patients and this was verified in a cohort of patients who had received anti‑programmed cell death 1 ligand 1 treatment. Furthermore, high expression of MDIG led to multiple drug resistance in The Cancer Genome Atlas‑lung adenocarcinoma cohort. In addition, gene set variant analysis and gene set enrichment analysis indicated that MDIG was involved in cell cycle regulation. In vitro experiments suggested that MDIG promoted cell proliferation through the mTOR complex 2/Akt and pyruvate dehydrogenase kinase 1/Akt signaling pathways. In summary, the present study suggests that MDIG may be a prognostic biomarker and therapeutic target for various cancer types.
Collapse
Affiliation(s)
- Feng Geng
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Wei Yang
- Department of Pulmonary and Critical Care Medicine, General Hospital of Northern Theatre Command, Shenyang, Liaoning 110001, P.R. China
| | - Dandan Song
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Haijia Hou
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Bing Han
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yecheng Chen
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Hongwen Zhao
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
11
|
Li Y, Wang C, Gao H, Gu J, Zhang Y, Zhang Y, Xie M, Cheng X, Yang M, Zhang W, Li Y, He M, Xu H, Zhang H, Ji Q, Ma T, Ding S, Zhao Y, Gao Y. KDM4 inhibitor SD49-7 attenuates leukemia stem cell via KDM4A/MDM2/p21 CIP1 axis. Theranostics 2022; 12:4922-4934. [PMID: 35836814 PMCID: PMC9274755 DOI: 10.7150/thno.71460] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/04/2022] [Indexed: 01/12/2023] Open
Abstract
Rationale: Traditional treatments for leukemia fail to address stem cell drug resistance characterized by epigenetic mediators such as histone lysine-specific demethylase 4 (KDM4). The KDM4 family, which acts as epigenetic regulators inducing histone demethylation during the development and progression of leukemia, lacks specific molecular inhibitors. Methods: The KDM4 inhibitor, SD49-7, was synthesized and purified based on acyl hydrazone Schiff base. The interaction between SD49-7 and KDM4s was monitored in vitro by surface plasma resonance (SPR). In vitro and in vivo biological function experiments were performed to analyze apoptosis, colony-formation, proliferation, differentiation, and cell cycle in cell sub-lines and mice. Molecular mechanisms were demonstrated by RNA-seq, ChIP-seq, RT-qPCR and Western blotting. Results: We found significantly high KDM4A expression levels in several human leukemia subtypes. The knockdown of KDM4s inhibited leukemogenesis in the MLL-AF9 leukemia mouse model but did not affect the survival of normal human hematopoietic cells. We identified SD49-7 as a selective KDM4 inhibitor that impaired the progression of leukemia stem cells (LSCs) in vitro. SD49-7 suppressed leukemia development in the mouse model and patient-derived xenograft model of leukemia. Depletion of KDM4s activated the apoptosis signaling pathway by suppressing MDM2 expression via modulating H3K9me3 levels on the MDM2 promoter region. Conclusion: Our study demonstrates a unique KDM4 inhibitor for LSCs to overcome the resistance to traditional treatment and offers KDM4 inhibition as a promising strategy for resistant leukemia therapy.
Collapse
Affiliation(s)
- Yinghui Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Chaoqun Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Huier Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.,Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| | - Jiali Gu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yiran Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yingyi Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55901, USA
| | - Min Xie
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Xuelian Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Ming Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Wenshan Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yafang Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Mei He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Hui Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Hexiao Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Qing Ji
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Tianhua Ma
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Sheng Ding
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.,✉ Corresponding authors: Yingdai Gao, E-mail: , +86-022-23909416; Yu Zhao, E-mail: ; Sheng Ding, E-mail:
| | - Yu Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.,✉ Corresponding authors: Yingdai Gao, E-mail: , +86-022-23909416; Yu Zhao, E-mail: ; Sheng Ding, E-mail:
| | - Yingdai Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.,✉ Corresponding authors: Yingdai Gao, E-mail: , +86-022-23909416; Yu Zhao, E-mail: ; Sheng Ding, E-mail:
| |
Collapse
|
12
|
Petkova V, Marinova D, Kyurkchiyan S, Stancheva G, Mekov E, Kachakova-Yordanova D, Slavova Y, Kostadinov D, Mitev V, Kaneva R. Expression analysis of MINA53: correlation with aberrantly expressed mRNAs and pathological features in non-small lung cancer. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2021.2019117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Veronika Petkova
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Dora Marinova
- Department of Health Care, UMHAT ‘Medika’, University of Ruse, Ruse, Bulgaria
| | - Silva Kyurkchiyan
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Gergana Stancheva
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Evgeni Mekov
- Department of Occupational Diseases, UMHAT ‘Sveti Ivan Rilski’, Medical University of Sofia, Sofia, Bulgaria
| | - Darina Kachakova-Yordanova
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Yanina Slavova
- Department of Public Health and Social Activities, UMHAT ‘Medika’, University of Ruse, Ruse, Bulgaria
| | - Dimitar Kostadinov
- Department of Pulmonary Diseases, MHATPD ‘Sveta Sofia’, Medical University of Sofia, Sofia, Bulgaria
| | - Vanyo Mitev
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Radka Kaneva
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
13
|
Nowak R, Tumber A, Hendrix E, Ansari MS, Sabatino M, Antonini L, Andrijes R, Salah E, Mautone N, Pellegrini FR, Simelis K, Kawamura A, Johansson C, Passeri D, Pellicciari R, Ciogli A, Del Bufalo D, Ragno R, Coleman ML, Trisciuoglio D, Mai A, Oppermann U, Schofield CJ, Rotili D. First-in-Class Inhibitors of the Ribosomal Oxygenase MINA53. J Med Chem 2021; 64:17031-17050. [PMID: 34843649 PMCID: PMC8667043 DOI: 10.1021/acs.jmedchem.1c00605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Indexed: 01/05/2023]
Abstract
MINA53 is a JmjC domain 2-oxoglutarate-dependent oxygenase that catalyzes ribosomal hydroxylation and is a target of the oncogenic transcription factor c-MYC. Despite its anticancer target potential, no small-molecule MINA53 inhibitors are reported. Using ribosomal substrate fragments, we developed mass spectrometry assays for MINA53 and the related oxygenase NO66. These assays enabled the identification of 2-(aryl)alkylthio-3,4-dihydro-4-oxoypyrimidine-5-carboxylic acids as potent MINA53 inhibitors, with selectivity over NO66 and other JmjC oxygenases. Crystallographic studies with the JmjC demethylase KDM5B revealed active site binding but without direct metal chelation; however, molecular modeling investigations indicated that the inhibitors bind to MINA53 by directly interacting with the iron cofactor. The MINA53 inhibitors manifest evidence for target engagement and selectivity for MINA53 over KDM4-6. The MINA53 inhibitors show antiproliferative activity with solid cancer lines and sensitize cancer cells to conventional chemotherapy, suggesting that further work investigating their potential in combination therapies is warranted.
Collapse
Affiliation(s)
- Radosław
P. Nowak
- Botnar
Research Centre, Nuffield Orthopaedic Centre, University of Oxford, Headington OX3 7LD, U.K.
| | - Anthony Tumber
- Botnar
Research Centre, Nuffield Orthopaedic Centre, University of Oxford, Headington OX3 7LD, U.K.
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, 12, Mansfield Road, University of Oxford, Oxford OX1 3TA, U.K.
| | - Eline Hendrix
- Institute
of Cancer and Genomic Sciences, University
of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Mohammad Salik
Zeya Ansari
- Institute
of Molecular Biology and Pathology (IMBP), National Research Council
(CNR) c/o Department of Biology and Biotechnology “Charles
Darwin” Sapienza University of Rome, Via degli Apuli 4, Rome 00185, Italy
| | - Manuela Sabatino
- Rome
Center for Molecular Design, Department of Chemistry and Technology
of Drugs, ″Sapienza″ University
of Rome, Piazzale Aldo
Moro 5, Rome 00185, Italy
| | - Lorenzo Antonini
- Rome
Center for Molecular Design, Department of Chemistry and Technology
of Drugs, ″Sapienza″ University
of Rome, Piazzale Aldo
Moro 5, Rome 00185, Italy
| | - Regina Andrijes
- Institute
of Cancer and Genomic Sciences, University
of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Eidarus Salah
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, 12, Mansfield Road, University of Oxford, Oxford OX1 3TA, U.K.
| | - Nicola Mautone
- Department
of Chemistry and Technology of Drugs, ″Sapienza″
University of Rome, Piazzale
Aldo Moro 5, Rome 00185, Italy
| | - Francesca Romana Pellegrini
- Institute
of Molecular Biology and Pathology (IMBP), National Research Council
(CNR) c/o Department of Biology and Biotechnology “Charles
Darwin” Sapienza University of Rome, Via degli Apuli 4, Rome 00185, Italy
| | - Klemensas Simelis
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, 12, Mansfield Road, University of Oxford, Oxford OX1 3TA, U.K.
| | - Akane Kawamura
- Chemistry
- School of Natural and Environmental Sciences, Newcastle University, Newcastle
upon Tyne NE1 7RU, U.K.
| | - Catrine Johansson
- Botnar
Research Centre, Nuffield Orthopaedic Centre, University of Oxford, Headington OX3 7LD, U.K.
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, 12, Mansfield Road, University of Oxford, Oxford OX1 3TA, U.K.
| | - Daniela Passeri
- TES
Pharma S.r.l. Via P. Togliatti 20, Corciano, Perugia 06073, Italy
| | | | - Alessia Ciogli
- Department
of Chemistry and Technology of Drugs, ″Sapienza″
University of Rome, Piazzale
Aldo Moro 5, Rome 00185, Italy
| | - Donatella Del Bufalo
- Preclinical
Models and New Therapeutic Agents Unit, IRCCS-Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Rino Ragno
- Rome
Center for Molecular Design, Department of Chemistry and Technology
of Drugs, ″Sapienza″ University
of Rome, Piazzale Aldo
Moro 5, Rome 00185, Italy
| | - Mathew L. Coleman
- Institute
of Cancer and Genomic Sciences, University
of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Daniela Trisciuoglio
- Institute
of Molecular Biology and Pathology (IMBP), National Research Council
(CNR) c/o Department of Biology and Biotechnology “Charles
Darwin” Sapienza University of Rome, Via degli Apuli 4, Rome 00185, Italy
| | - Antonello Mai
- Department
of Chemistry and Technology of Drugs, ″Sapienza″
University of Rome, Piazzale
Aldo Moro 5, Rome 00185, Italy
| | - Udo Oppermann
- Botnar
Research Centre, Nuffield Orthopaedic Centre, University of Oxford, Headington OX3 7LD, U.K.
| | - Christopher J. Schofield
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, 12, Mansfield Road, University of Oxford, Oxford OX1 3TA, U.K.
| | - Dante Rotili
- Department
of Chemistry and Technology of Drugs, ″Sapienza″
University of Rome, Piazzale
Aldo Moro 5, Rome 00185, Italy
| |
Collapse
|
14
|
Sun B, Zhao H. The bioinformatics analysis of RIOX2 gene in lung adenocarcinoma and squamous cell carcinoma. PLoS One 2021; 16:e0259447. [PMID: 34855761 PMCID: PMC8638848 DOI: 10.1371/journal.pone.0259447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/19/2021] [Indexed: 12/14/2022] Open
Abstract
Lung cancer is characterized by high morbidity and mortality rates, and it has become an important public health issue worldwide. The occurrence and development of tumors is a multi-gene and multi-stage complex process. As an oncogene, ribosomal oxygenase 2 (RIOX2) has been associated with a variety of cancers. In this article, we analyzed the correlation between RIOX2 expression and methylation in lung cancer based on the databases including the cancer genome atlas (TCGA) (https://portal.gdc.cancer.gov/) and the gene expression omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/). It was found that RIOX2 is highly expressed in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) tissues, whose expression is negatively correlated with its methylation level. In this regard, methylation at cg09716038, cg14773523, cg14941179, and cg22299097 had a significant negative correlation with RIOX2 expression in LUAD, whereas in LUSC, methylation at cg09716038, cg14773523, cg14941179, cg22299097, cg05451573, cg10779801, and cg23629183 is negatively correlated with RIOX2 expression. According to the analysis based on the databases, RIOX2 gene could not be considered as the independent prognostic biomarker in lung adenocarcinoma or squamous cell lung cancer. However, the molecular mechanism of RIOX2 gene in the development of lung cancer may be helpful in improving lung cancer therapy.
Collapse
Affiliation(s)
- Bingqing Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hongwen Zhao
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
- * E-mail:
| |
Collapse
|
15
|
Zhang Q, Wadgaonkar P, Xu L, Thakur C, Fu Y, Bi Z, Qiu Y, Almutairy B, Zhang W, Stemmer P, Chen F. Environmentally-induced mdig contributes to the severity of COVID-19 through fostering expression of SARS-CoV-2 receptor NRPs and glycan metabolism. Am J Cancer Res 2021; 11:7970-7983. [PMID: 34335974 PMCID: PMC8315075 DOI: 10.7150/thno.62138] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
The novel β-coronavirus, SARS-CoV-2, the causative agent of coronavirus disease 2019 (COVID-19), has infected more than 177 million people and resulted in 3.84 million death worldwide. Recent epidemiological studies suggested that some environmental factors, such as air pollution, might be the important contributors to the mortality of COVID-19. However, how environmental exposure enhances the severity of COVID-19 remains to be fully understood. In the present report, we provided evidence showing that mdig, a previously reported environmentally-induced oncogene that antagonizes repressive trimethylation of histone proteins, is an important regulator for SARS-CoV-2 receptors neuropilin-1 (NRP1) and NRP2, cathepsins, glycan metabolism and inflammation, key determinants for viral infection and cytokine storm of the patients. Depletion of mdig in bronchial epithelial cells by CRISPR-Cas-9 gene editing resulted in a decreased expression of NRP1, NRP2, cathepsins, and genes involved in protein glycosylation and inflammation, largely due to a substantial enrichment of lysine 9 and/or lysine 27 trimethylation of histone H3 (H3K9me3/H3K27me3) on these genes as determined by ChIP-seq. Meanwhile, we also validated that environmental factor arsenic is able to induce mdig, NRP1 and NRP2, and genetic disruption of mdig lowered expression of NRP1 and NRP2. Furthermore, mdig may coordinate with the Neanderthal variants linked to an elevated mortality of COVID-19. These data, thus, suggest that mdig is a key mediator for the severity of COVID-19 in response to environmental exposure and targeting mdig may be the one of the effective strategies in ameliorating the symptom and reducing the mortality of COVID-19.
Collapse
|
16
|
Brewitz L, Nakashima Y, Tumber A, Salah E, Schofield CJ. Fluorinated derivatives of pyridine-2,4-dicarboxylate are potent inhibitors of human 2-oxoglutarate dependent oxygenases. J Fluor Chem 2021; 247:109804. [PMID: 34219804 PMCID: PMC8223498 DOI: 10.1016/j.jfluchem.2021.109804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 01/21/2023]
Abstract
2-Oxoglutarate (2OG) oxygenases have important roles in human biology and are validated medicinal chemistry targets. Improving the selectivity profile of broad-spectrum 2OG oxygenase inhibitors may help enable the identification of selective inhibitors for use in functional assignment work. We report the synthesis of F- and CF3-substituted derivatives of the broad-spectrum 2OG oxygenase inhibitor pyridine-2,4-dicarboxylate (2,4-PDCA). Their inhibition selectivity profile against selected functionally distinct human 2OG oxygenases was determined using mass spectrometry-based assays. F-substituted 2,4-PDCA derivatives efficiently inhibit the 2OG oxygenases aspartate/asparagine-β-hydroxylase (AspH) and the JmjC lysine-specific N ε-demethylase 4E (KDM4E); The F- and CF3-substituted 2,4-PDCA derivatives were all less efficient inhibitors of the tested 2OG oxygenases than 2,4-PDCA itself, except for the C5 F-substituted 2,4-PDCA derivative which inhibited AspH with a similar efficiency as 2,4-PDCA. Notably, the introduction of a F- or CF3-substituent at the C5 position of 2,4-PDCA results in a substantial increase in selectivity for AspH over KDM4E compared to 2,4-PDCA. Crystallographic studies inform on the structural basis of our observations, which exemplifies how a small change on a 2OG analogue can make a substantial difference in the potency of 2OG oxygenase inhibition.
Collapse
Affiliation(s)
- Lennart Brewitz
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, United Kingdom
| | - Yu Nakashima
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, United Kingdom
- Present address: Institute of Natural Medicine, University of Toyama, 2630-Sugitani, 930-0194, Toyama, Japan
| | - Anthony Tumber
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, United Kingdom
| | - Eidarus Salah
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, United Kingdom
| | - Christopher J. Schofield
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, United Kingdom
| |
Collapse
|
17
|
Shi J, Thakur C, Zhao Y, Li Y, Nie L, Zhang Q, Bi Z, Fu Y, Wadgaonkar P, Almutairy B, Xu L, Zhang W, Qiu Y, Rice M, Cui H, Chen F. Pathological and Prognostic Indications of the mdig Gene in Human Lung Cancer. Cell Physiol Biochem 2021; 55:13-28. [PMID: 33423409 PMCID: PMC8140388 DOI: 10.33594/000000322] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND/AIMS The mineral-dust-induced gene mdig is a lung-cancer-associated oncogene. The focus of this study is to evaluate the expression status of mdig in lung cancer and to assess its influence in predicting the patient's overall survival. METHODS Using high-density tissue microarrays and clinical samples of synchronous multiple primary lung cancer (SMPLC), we investigated the expression of mdig through immunohistochemistry and utilized the open-access lung cancer patient databases containing genomic and transcriptomic data from the UCSC Xena and TCGA web platforms to determine the prognostic values of mdig expression status among different subtypes of lung cancer. RESULTS mdig is upregulated in smokers and in lung squamous cell carcinoma. High mdig expression predicted poor overall survival in lung squamous cell carcinoma and female smokers. Among tumor tissues from SMPLC patients, we not only unraveled the highest positive rate of mdig expression, but also revealed a unique cytoplasmic, rather than nuclear localization of mdig protein. Furthermore, by inspecting some pathological but not cancerous lung tissues, we believe that mdig is required for the transformation of non-cancerous lung cells to the fully-fledged cancer cells. CONCLUSION These data suggested that mdig is involved in various stages of lung carcinogenesis, possibly through the epigenetic regulation on some critical cancer-associated genes, and increased mdig expression is an important prognostic factor for some types of lung cancer.
Collapse
Affiliation(s)
- Junwei Shi
- The First Geriatric Hospital of Nantong, and Nantong Pulmonary Hospital, Nantong, China
| | - Chitra Thakur
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA,
| | - Yuzu Zhao
- Engineering Research Center for Cancer Biomedical and Translational Medicine, State Key Laboratory of Silkworm Biology, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Yongsen Li
- Engineering Research Center for Cancer Biomedical and Translational Medicine, State Key Laboratory of Silkworm Biology, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Lishen Nie
- The First Geriatric Hospital of Nantong, and Nantong Pulmonary Hospital, Nantong, China
| | - Qian Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Zhuoyue Bi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Yao Fu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Priya Wadgaonkar
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Bandar Almutairy
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Liping Xu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Wenxuan Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Yiran Qiu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - M'kya Rice
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Hongjuan Cui
- Engineering Research Center for Cancer Biomedical and Translational Medicine, State Key Laboratory of Silkworm Biology, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA,
| |
Collapse
|
18
|
Cooperation between NRF2-mediated transcription and MDIG-dependent epigenetic modifications in arsenic-induced carcinogenesis and cancer stem cells. Semin Cancer Biol 2021; 76:310-318. [PMID: 33823236 DOI: 10.1016/j.semcancer.2021.03.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/27/2021] [Accepted: 03/28/2021] [Indexed: 02/07/2023]
Abstract
Environmental exposure to arsenic, a well-established carcinogen linked to a number of human cancers, is a public health concern in many areas of the world. Despite extensive studies on the molecular mechanisms of arsenic-induced carcinogenesis, how initial cellular responses, such as activation of stress kinases and the generation of reactive oxygen species, converge to affect the transcriptional and/or epigenetic reprogramming required for the malignant transformation of normal cells or normal stem cells remains to be elucidated. In this review, we discuss some recent discoveries showing how the transcription factor NRF2 and an epigenetic regulator, MDIG, contribute to the arsenic-induced generation of cancer stem-like cells (CSCs) as determined by applying CRISPR-Cas9 gene editing and chromosome immunoprecipitation followed by DNA sequencing (ChIP-seq).
Collapse
|
19
|
De Vitis C, Corleone G, Salvati V, Ascenzi F, Pallocca M, De Nicola F, Fanciulli M, di Martino S, Bruschini S, Napoli C, Ricci A, Bassi M, Venuta F, Rendina EA, Ciliberto G, Mancini R. B4GALT1 Is a New Candidate to Maintain the Stemness of Lung Cancer Stem Cells. J Clin Med 2019; 8:E1928. [PMID: 31717588 PMCID: PMC6912435 DOI: 10.3390/jcm8111928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND According to the cancer stem cells (CSCs) hypothesis, a population of cancer cells with stem cell properties is responsible for tumor propagation, drug resistance, and disease recurrence. Study of the mechanisms responsible for lung CSCs propagation is expected to provide better understanding of cancer biology and new opportunities for therapy. METHODS The Lung Adenocarcinoma (LUAD) NCI-H460 cell line was grown either as 2D or as 3D cultures. Transcriptomic and genome-wide chromatin accessibility studies of 2D vs. 3D cultures were carried out using RNA-sequencing and Assay for Transposase Accessible Chromatin with high-throughput sequencing (ATAC-seq), respectively. Reverse transcription polymerase chain reaction (RT-PCR) was also carried out on RNA extracted from primary cultures derived from malignant pleural effusions to validate RNA-seq results. RESULTS RNA-seq and ATAC-seq data disentangled transcriptional and genome accessibility variability of 3D vs. 2D cultures in NCI-H460 cells. The examination of genomic landscape of genes upregulated in 3D vs. 2D cultures led to the identification of 2D cultures led to the identification of Beta-1,4-galactosyltranferase 1 (B4GALT1) as the top candidate. B4GALT1 as the top candidate. B4GALT1 was validated as a stemness factor, since its silencing caused strong inhibition of 3D spheroid formation. CONCLUSION Combined transcriptomic and chromatin accessibility study of 3D vs. 2D LUAD cultures led to the identification of B4GALT1 as a new factor involved in the propagation and maintenance of LUAD CSCs.
Collapse
Affiliation(s)
- Claudia De Vitis
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, “Sapienza” University of Rome, 00161 Rome, Italy; (C.D.V.); (R.M.)
| | - Giacomo Corleone
- SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS “Regina Elena” National Cancer Institute, 00144 Rome, Italy; (G.C.); (M.P.); (F.D.N.); (M.F.)
| | - Valentina Salvati
- Preclinical Models and New Therapeutic Agents Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Francesca Ascenzi
- Tumor Immunology and Immunotherapy Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Matteo Pallocca
- SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS “Regina Elena” National Cancer Institute, 00144 Rome, Italy; (G.C.); (M.P.); (F.D.N.); (M.F.)
| | - Francesca De Nicola
- SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS “Regina Elena” National Cancer Institute, 00144 Rome, Italy; (G.C.); (M.P.); (F.D.N.); (M.F.)
| | - Maurizio Fanciulli
- SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS “Regina Elena” National Cancer Institute, 00144 Rome, Italy; (G.C.); (M.P.); (F.D.N.); (M.F.)
| | - Simona di Martino
- Pathology Unit, IRCSS “Regina Elena” National Cancer Institute, 00144 Rome, Italy;
| | - Sara Bruschini
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy;
| | - Christian Napoli
- Department of Medical Surgical Sciences and Translational Medicine, Sant’Andrea Hospital, “Sapienza” University of Rome, 00189 Rome, Italy;
| | - Alberto Ricci
- Department of Clinical and Molecular Medicine, Division of Pneumology, Sapienza University of Rome, Sant’Andrea Hospital, 00189 Rome, Italy;
| | - Massimiliano Bassi
- Department of Thoracic Surgery, University of Rome Sapienza, 00161 Rome, Italy; (M.B.); (F.V.)
| | - Federico Venuta
- Department of Thoracic Surgery, University of Rome Sapienza, 00161 Rome, Italy; (M.B.); (F.V.)
| | - Erino Angelo Rendina
- Department of Thoracic Surgery, Sant’Andrea Hospital, “Sapienza” University of Rome, 00189 Rome, Italy
| | - Gennaro Ciliberto
- Scientific Direction, IRCCS “Regina Elena” National Cancer Institute, 00144 Rome, Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, “Sapienza” University of Rome, 00161 Rome, Italy; (C.D.V.); (R.M.)
| |
Collapse
|
20
|
Affiliation(s)
- Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA.
| |
Collapse
|