1
|
Liu Z, Yang Y, Kong X, Ren X, Xuan F. Drug-device-field integration for mitochondria-targeting dysfunction and tumor therapy by home-tailored pyroelectric nanocomposites. Biomaterials 2025; 316:122990. [PMID: 39637584 DOI: 10.1016/j.biomaterials.2024.122990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/15/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
In spite of the hypoxia tumor microenvironment, an efficacious treatment with minimal invasiveness is highly desirable. Among common cellular organelles, mitochondria is a common target for inductive cellular apoptosis and tumor proliferation inhibition. Nevertheless, tumor hypoxic circumstances always give rise to poor therapeutic efficiency and instead lead to lesion recurrence and unsatisfactory prognosis. Herein, a home-tailored pyroelectric nanocomposites of BTO@PDA-FA-DOX-EGCG have been developed via a layer-by-layer synthesis to serve a cutting-edge tumor treatment with specific mitochondria-targeting, hypoxia-relieving, chemo-photodynamic performance and high anti-tumor efficacy. In particular, this therapeutic modality is featured as drug-device-field integration (DDFI) by combining chemo-drugs of DOX and EGCG, a commercially available medical laser and physical pyroelectric fields, which synergistically contributed to continuing ROS production and consequently cell apoptosis and tumor growth inhibition. Meanwhile, an anti-tumor mechanism of immune actuation and mitochondria dysfunction was elucidated by analyzing specific biomarkers of mitochondria complexes and MMPs, and therefore this research opened up a potential pathway for advanced tumor treatment by incorporating nanocomposites, medical devices and physical fields in a DDFI manner.
Collapse
Affiliation(s)
- Zhe Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, 300072, China.
| | - Yanxi Yang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, 300072, China
| | - Xinru Kong
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, 300072, China
| | - Xueli Ren
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, 300072, China
| | - Fengqi Xuan
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, 300222, China
| |
Collapse
|
2
|
Luo J, Luo J, Sheng Z, Fang Z, Fu Y, Wang N, Yang B, Xu B. Latest research progress on anti-microbial effects, mechanisms of action, and product developments of dietary flavonoids: A systematic literature review. Trends Food Sci Technol 2025; 156:104839. [DOI: 10.1016/j.tifs.2024.104839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Chen N, Yao P, Farid MS, Zhang T, Luo Y, Zhao C. Effect of bioactive compounds in processed Camellia sinensis tea on the intestinal barrier. Food Res Int 2025; 199:115383. [PMID: 39658174 DOI: 10.1016/j.foodres.2024.115383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/18/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
The human intestinal tract plays a pivotal role in safeguarding the body against noxious substances and microbial pathogens by functioning as a barrier. This barrier function is achieved through the combined action of physical, chemical, microbial, and immune components. Tea (Camellia sinensis) is the most widely consumed beverage in the world, and it is consumed and appreciated in a multitude of regions across the globe. Tea can be classified into various categories, including green, white, yellow, oolong, black, and dark teas, based on the specific processing methods employed. In recent times, there has been a notable surge in scientific investigation into the various types of tea. The recent surge in research on tea can be attributed to the plethora of bioactive compounds it contains, including polyphenols, polysaccharides, pigments, and theanine. The processing of different teas affects the active ingredients to varying degrees, resulting in a range of chemical reactions and the formation of different types and quantities of ingredients. The bioactive compounds present in tea are of great importance for the maintenance of the integrity of the intestinal barrier, operating through a variety of mechanisms. This literature review synthesizes scientific studies on the impact of the primary bioactive compounds and different processing methods of tea on the intestinal barrier function. This review places particular emphasis on the exploration of the barrier repair and regulatory effects of these compounds, including the mitigation of damage to different barriers following intestinal diseases. Specifically, the active ingredients in tea can alleviate damage to physical barriers and chemical barriers by regulating barrier protein expression. At the same time, they can also maintain the stability of immune and biological barriers by regulating the expression of inflammatory factors and the metabolism of intestinal flora. This investigation can establish a strong theoretical foundation for the future development of innovative tea products.
Collapse
Affiliation(s)
- Nan Chen
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Peng Yao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | | | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States.
| | - Changhui Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
4
|
Alam M, Gulzar M, Akhtar MS, Rashid S, Zulfareen, Tanuja, Shamsi A, Hassan MI. Epigallocatechin-3-gallate therapeutic potential in human diseases: molecular mechanisms and clinical studies. MOLECULAR BIOMEDICINE 2024; 5:73. [PMID: 39725830 DOI: 10.1186/s43556-024-00240-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/27/2024] [Accepted: 10/29/2024] [Indexed: 12/28/2024] Open
Abstract
Green tea has garnered increasing attention across age groups due to its numerous health benefits, largely attributed to Epigallocatechin 3-gallate (EGCG), its key polyphenol. EGCG exhibits a wide spectrum of biological activities, including antioxidant, anti-inflammatory, antibacterial, anticancer, and neuroprotective properties, as well as benefits for cardiovascular and oral health. This review provides a comprehensive overview of recent findings on the therapeutic potential of EGCG in various human diseases. Neuroprotective effects of EGCG include safeguarding neurons from damage and enhancing cognitive function, primarily through its antioxidant capacity to reduce reactive oxygen species (ROS) generated during physiological stress. Additionally, EGCG modulates key signaling pathways such as JAK/STAT, Delta-Notch, and TNF, all of which play critical roles in neuronal survival, growth, and function. Furthermore, EGCG is involved in regulating apoptosis and cell cycle progression, making it a promising candidate for the treatment of metabolic diseases, including cancer and diabetes. Despite its promising therapeutic potential, further clinical trials are essential to validate the efficacy and safety of EGCG and to optimize its delivery to target tissues. While many reviews have addressed the anticancer properties of EGCG, this review focuses on the molecular mechanisms and signaling pathways by which EGCG used in specific human diseases, particularly cancer, neurodegenerative and metabolic diseases. It serves as a valuable resource for researchers, clinicians, and healthcare professionals, revealing the potential of EGCG in managing neurodegenerative disorders, cancer, and metabolic diseases and highlighting its broader therapeutic values.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mehak Gulzar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohammad Salman Akhtar
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, PO Box 173, 11942, Al-Kharj, Saudi Arabia
| | - Zulfareen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Tanuja
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Anas Shamsi
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, P.O. Box 346, Ajman, UAE.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
5
|
Zhao W, Chen X, Han Z, Xun Z, Qi Y, Wang H, Chen C, Gong Z, Xue X. Nanoenzymes-Integrated and Microenvironment Self-Adaptive Hydrogel for the Healing of Burn Injury and Post-Burn Depression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2413032. [PMID: 39721011 DOI: 10.1002/advs.202413032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/09/2024] [Indexed: 12/28/2024]
Abstract
Burn injuries often cause prolonged oxidative stress and inflammatory pain due to an initial increase in inflammatory responses, consequently exacerbating depressive disorders and severely impairing patients' quality of life. The primary function of traditional burn dressings is to prevent infection and facilitate tissue repair. However, these dressings are not intended for the inflammatory pain and depression that often occur during recovery. This study describes a self-healing hydrogel H@EFCP, which is designed to alleviate inflammatory pain and post-burn depression in burn injuries. This hydrogel is synthesized through the cross-linking of carboxymethyl chitosan with borate ester chelates formed from epigallocatechin gallate and 4-formylphenylboronic acid. The incorporated Prussian blue nanoparticles increase the ability of H@EFCP to regulate the inflammatory process. H@EFCP is effective in the treatment of skin burns by reducing oxidative stress and improving the microenvironment of peripheral inflammation in mice. This modulation consists of a reduction of central nervous system inflammation and the risk of post-burn depression. Behavioral assays indicate that the hydrogel significantly reduces feelings of despair and anxiety after burns. Consequently, H@EFCP provides a dual-effect solution for the care and recovery of burn patients, including both burn repair and the associated psychological effects.
Collapse
Affiliation(s)
- Weitao Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, P. R. China
| | - Xi Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, P. R. China
| | - Ziwei Han
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, P. R. China
| | - Zengyu Xun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, P. R. China
| | - Yilin Qi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, P. R. China
| | - Heping Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, P. R. China
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Chang Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, P. R. China
| | - Zhongying Gong
- Tianjin First Central Hospital, School of Medcine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin, 300192, P. R. China
| | - Xue Xue
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, P. R. China
| |
Collapse
|
6
|
Godiyal Y, Maheshwari D, Taniguchi H, Zinzuwadia SS, Morera-Díaz Y, Tewari D, Bishayee A. Role of PD-1/PD-L1 signaling axis in oncogenesis and its targeting by bioactive natural compounds for cancer immunotherapy. Mil Med Res 2024; 11:82. [PMID: 39690423 DOI: 10.1186/s40779-024-00586-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024] Open
Abstract
Cancer is a global health problem and one of the leading causes of mortality. Immune checkpoint inhibitors have revolutionized the field of oncology, emerging as a powerful treatment strategy. A key pathway that has garnered considerable attention is programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1). The interaction between PD-L1 expressed on tumor cells and PD-1 reduces the innate immune response and thus compromises the capability of the body's immune system. Furthermore, it controls the phenotype and functionality of innate and adaptive immune components. A range of monoclonal antibodies, including avelumab, atezolizumab, camrelizumab, dostarlimab, durvalumab, sinitilimab, toripalimab, and zimberelimab, have been developed for targeting the interaction between PD-1 and PD-L1. These agents can induce a broad spectrum of autoimmune-like complications that may affect any organ system. Recent studies have focused on the effect of various natural compounds that inhibit immune checkpoints. This could contribute to the existing arsenal of anticancer drugs. Several bioactive natural agents have been shown to affect the PD-1/PD-L1 signaling axis, promoting tumor cell apoptosis, influencing cell proliferation, and eventually leading to tumor cell death and inhibiting cancer progression. However, there is a substantial knowledge gap regarding the role of different natural compounds targeting PD-1 in the context of cancer. Hence, this review aims to provide a common connection between PD-1/PD-L1 blockade and the anticancer effects of distinct natural molecules. Moreover, the primary focus will be on the underlying mechanism of action as well as the clinical efficacy of bioactive molecules. Current challenges along with the scope of future research directions targeting PD-1/PD-L1 interactions through natural substances are also discussed.
Collapse
Affiliation(s)
- Yogesh Godiyal
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Drishti Maheshwari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Hiroaki Taniguchi
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552, Magdalenka, Poland
- African Genome Center, Mohammed VI Polytechnic University, Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Shweta S Zinzuwadia
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Yanelys Morera-Díaz
- Clinical Investigation and Biomedical Research Directions, Center for Genetic Engineering and Biotechnology, 11600, Havana, Cuba
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
| | - Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
7
|
Sun W, Yang Y, Wang C, Liu M, Wang J, Qiao S, Jiang P, Sun C, Jiang S. Epigallocatechin-3-gallate at the nanoscale: a new strategy for cancer treatment. PHARMACEUTICAL BIOLOGY 2024; 62:676-690. [PMID: 39345207 PMCID: PMC11443569 DOI: 10.1080/13880209.2024.2406779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/21/2024] [Accepted: 09/15/2024] [Indexed: 10/01/2024]
Abstract
CONTEXT Epigallocatechin-3-gallate (EGCG), the predominant catechin in green tea, has shown the potential to combat various types of cancer cells through its ability to modulate multiple signaling pathways. However, its low bioavailability and rapid degradation hinder its clinical application. OBJECTIVE This review explores the potential of nanoencapsulation to enhance the stability, bioavailability, and therapeutic efficacy of EGCG in cancer treatment. METHODS We searched the PubMed database from 2019 to the present, using 'epigallocatechin gallate', 'EGCG', and 'nanoparticles' as search terms to identify pertinent literature. This review examines recent nano-engineering technology advancements that encapsulate EGCG within various nanocarriers. The focus was on evaluating the types of nanoparticles used, their synthesis methods, and the technologies applied to optimize drug delivery, diagnostic capabilities, and therapeutic outcomes. RESULTS Nanoparticles improve the physicochemical stability and pharmacokinetics of EGCG, leading to enhanced therapeutic outcomes in cancer treatment. Nanoencapsulation allows for targeted drug delivery, controlled release, enhanced cellular uptake, and reduced premature degradation of EGCG. The studies highlighted include those where EGCG-loaded nanoparticles significantly inhibited tumor growth in various models, demonstrating enhanced penetration and efficacy through active targeting mechanisms. CONCLUSIONS Nanoencapsulation of EGCG represents a promising approach in oncology, offering multiple therapeutic benefits over its unencapsulated form. Although the results so far are promising, further research is necessary to fully optimize the design of these nanosystems to ensure their safety, efficacy, and clinical viability.
Collapse
Affiliation(s)
- Wenxue Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Translational Pharmaceutical Laboratory, Jining NO.1 People's Hospital, Shandong First Medical University, Jining, China
| | - Yizhuang Yang
- Department of Pharmacy, Guilin Medical University, Guilin, China
| | - Cuiyun Wang
- Department of Pharmacy, Jining NO.1 People's Hospital, Shandong First Medical University, Jining, China
| | - Mengmeng Liu
- Department of Pharmacy, Jining NO.1 People's Hospital, Shandong First Medical University, Jining, China
| | - Jianhua Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Sen Qiao
- Hepatological Surgery Department, Jining NO.1 People's Hospital, Shandong First Medical University, Jining, China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining NO.1 People's Hospital, Shandong First Medical University, Jining, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining NO.1 People's Hospital, Shandong First Medical University, Jining, China
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
8
|
Zhou M, Zhou C, Geng H, Huang Z, Lin Z, Wang Y, Zhu Y, Shi J, Tan J, Guo L, Zhao Y, Zhang Y, Peng Q, Yu H, Dai W, Lv H, Lin Z. EGCG-enabled Deep Tumor Penetration of Phosphatase and Acidity Dual-responsive Nanotherapeutics for Combinatory Therapy of Breast Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406245. [PMID: 39558766 DOI: 10.1002/smll.202406245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/23/2024] [Indexed: 11/20/2024]
Abstract
The presence of dense collagen fibers is a typical characteristic of triple-negative breast cancer (TNBC). Although these fibers hinder drug penetration and reduce treatment efficacy, the depletion of the collagen matrix is associated with tumor metastasis. To address this issue, epigallocatechin-3-gallate (EGCG) is first exploited for disrupting the dense collagenous stroma and alleviate fibrosis by specifically blocking the TGF-β/Smad pathway in fibroblasts and tumor cells when intraperitoneally administrated in TNBC tumor-bearing mice. A methotrexate (MTX)-loaded dual phosphate- and pH-responsive nanodrug (pHA@MOF-Au/MTX) is next engineered by integrating Fe-based metal-organic frameworks and gold nanoparticles for improved chemo/chemodynamic therapy of TNBC. Surface modification with pH (low)-insertion peptide substantially enhanced the binding of the nanodrug to 4T1 cells owing to tumor stroma remodeling by EGCG. High-concentration EGCG inhibited glutathione peroxidase by regulating mitochondrial glutamine metabolism, thus facilitating tumor cell ferroptosis. Furthermore, sequential EGCG and pHA@MOF-Au/MTX treatment showed remarkable anti-tumor effects in a mouse model of TNBC, with a tumor growth inhibition rate of 79.9%, and a pulmonary metastasis rate of 96.8%. Altogether, the combination strategy developed in this study can improve the efficacy of chemo/chemodynamic therapy in TNBC and represents an innovative application of EGCG.
Collapse
Affiliation(s)
- Mengxue Zhou
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, P. R. China
| | - Chuang Zhou
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, P. R. China
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China
| | - Huan Geng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, P. R. China
| | - Zhiwei Huang
- MOE, Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Zhiyuan Lin
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, P. R. China
| | - Ying Wang
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, P. R. China
| | - Yin Zhu
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, P. R. China
| | - Jiang Shi
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, P. R. China
| | - Junfeng Tan
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, P. R. China
| | - Li Guo
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, P. R. China
| | - Yanni Zhao
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China
| | - Yue Zhang
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, P. R. China
| | - Qunhua Peng
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, P. R. China
| | - Haijun Yu
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Weidong Dai
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, P. R. China
| | - Haipeng Lv
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, P. R. China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, P. R. China
| |
Collapse
|
9
|
Zhang D, Liu X, Li X, Cai X, Diao Z, Qiu L, Chen X, Liu Y, Sun J, Cui D, Ye Q, Yin T. A Multifunctional Low-Temperature Photothermal Nanomedicine for Melanoma Treatment via the Oxidative Stress Pathway Therapy. Int J Nanomedicine 2024; 19:11671-11688. [PMID: 39553457 PMCID: PMC11566580 DOI: 10.2147/ijn.s487683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024] Open
Abstract
Purpose Melanoma is a highly aggressive and dangerous malignant skin tumor and there is an urgent need to develop effective therapeutic approaches against melanoma. The main objective of this study was to construct a multifunctional nanomedicine (GNR@PEG-Qu) to investigate its therapeutic effect on melanoma from the oxidative stress pathway. Methods First, the nanomedicine GNR@PEG-Qu was synthesized and characterized, and its photothermal and antioxidant properties were confirmed. In addition, in vivo imaging capabilities were observed. Finally, the tumor inhibitory effects of GNR@PEG-Qu in vivo and in vitro as well as its biosafety were observed. Results GNR@PEG-Qu shows good photothermal and anti-oxidation properties. Following exposure to 1064 nm laser irradiation in the second near-infrared II (NIR-II) window, GNR@PEG-Qu shows anti-tumor ability through low-temperature photothermal therapy (PTT) adjuvant drug chemotherapy. GNR@PEG-Qu makes full use of the antioxidant capacity of quercetin, reduces ROS levels in melanoma, alleviates oxidative stress state, and achieves "oxidative stress avoidance" at the tumor site. Quercetin can also downregulate the expression of the heat shock protein Hsp70, which will improve the thermal sensitivity of the tumor site and enhance the efficacy of low-temperature PTT. Conclusion GNR@PEG-Qu nanoagent exhibits synergistic treatment and high tumor inhibition effects, which is a promising strategy developed to achieve oxidative stress avoidance and synergistic therapy of melanoma using quercetin (Qu)-coated gold nanorod (GNR@PEG).
Collapse
Affiliation(s)
- Dou Zhang
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
- Dongguan Biomedical Nano Engineering Technology Research Center, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
| | - Xuyi Liu
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
- Dongguan Biomedical Nano Engineering Technology Research Center, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
| | - Xiong Li
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, People’s Republic of China
| | - Xinyi Cai
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
- Dongguan Biomedical Nano Engineering Technology Research Center, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
| | - Zhenying Diao
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
- Dongguan Biomedical Nano Engineering Technology Research Center, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
| | - Long Qiu
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
- Dongguan Biomedical Nano Engineering Technology Research Center, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
| | - Xuelin Chen
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
- Dongguan Biomedical Nano Engineering Technology Research Center, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
| | - Yuyu Liu
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
- Dongguan Biomedical Nano Engineering Technology Research Center, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
| | - Jianbo Sun
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
| | - Daxiang Cui
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
| | - Qiaoyuan Ye
- Department of Dermatology and Venereology, Second Clinical Medical College of Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
| | - Ting Yin
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
- Dongguan Biomedical Nano Engineering Technology Research Center, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
| |
Collapse
|
10
|
Luo Q, Luo L, Zhao J, Wang Y, Luo H. Biological potential and mechanisms of Tea's bioactive compounds: An Updated review. J Adv Res 2024; 65:345-363. [PMID: 38056775 PMCID: PMC11519742 DOI: 10.1016/j.jare.2023.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Tea (Camellia sinensis) has a rich history and is widely consumed across many countries, and is categorized into green tea, white tea, oolong tea, yellow tea, black tea, and dark tea based on the level of fermentation. Based on a review of previous literature, the commonly recognized bioactive substances in tea include tea polyphenols, amino acids, polysaccharides, alkaloids, terpenoids, macro minerals, trace elements, and vitamins, which have been known to have various potential health benefits, such as anticancer, antioxidant, anti-inflammatory, anti-diabetes, and anti-obesity properties, cardiovascular protection, immune regulation, and control of the intestinal microbiota. Most studies have only pointed out the characteristics of tea's bioactivities, so a comprehensive summary of the pharmacological characteristics and mechanisms of tea's bioactivities and their use risks are vital. AIM OF REVIEW This paper aims to summarize tea's bioactive substances of tea and their pharmacological characteristics and mechanisms, providing a scientific basis for the application of bioactive substances in tea and outlining future research directions for the study of bioactive substances in tea. KEY SCIENTIFIC CONCEPTS OF REVIEW This review summarizes the main biologically active substances, pharmacological effects, and mechanisms and discusses the potential risks. It may help researchers grasp more comprehensive progress in the study of tea bioactive substances to further promote the application of tea as a natural bioactive substance in the medical field.
Collapse
Affiliation(s)
- Qiaoxian Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China
| | - Longbiao Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China
| | - Jinmin Zhao
- College of Pharmacy, Guangxi Medical University, Nanning, 530021, PR China
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China.
| | - Hua Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China; College of Pharmacy, Guangxi Medical University, Nanning, 530021, PR China.
| |
Collapse
|
11
|
Liang J, Xie J, He J, Li Y, Wei D, Zhou R, Wei G, Liu X, Chen Q, Li D. Inhibiting lncRNA NEAT1 Increases Glioblastoma Response to TMZ by Reducing Connexin 43 Expression. Cancer Rep (Hoboken) 2024; 7:e70031. [PMID: 39453684 PMCID: PMC11505515 DOI: 10.1002/cnr2.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/13/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
OBJECTIVES Glioblastoma multiforme (GBM) is considered the most assailant subtype of gliomas, presenting a formidable obstacle because of its inherent resistance to temozolomide (TMZ). This study aimed to characterize the function of lncRNA NEAT1 in facilitating the advancement of gliomas. METHODS The expression level of NEAT1 in glioma tissues and cells was detected by qRT-PCR. RNA interference experiment, cell proliferation assay, FITC/PI detection assay, immunoblotting, bioinformatics prediction, a double luciferase reporter gene assay, RNA immunoprecipitation (RIP) assay, SLDT assay and correlation analysis of clinical samples were performed to explore the regulatory effects of NEAT1, miR-454-3p and Cx43 and their role in malignant progression of GBM. The role of NEAT1 in vivo was investigated by an intracranial tumor formation experiment in mice. RESULTS The results showed that recurring gliomas displayed elevated levels of NEAT1 compared to primary gliomas. The suppression of NEAT1 led to a restoration of sensitivity in GBM cells to TMZ. NEAT1 functioned as a competitive endogenous RNA against miR-454-3p. Connexin 43 was identified as a miR-454-3p target. NEAT1 was found to regulate gap junctional intercellular communication by modulating Connexin 43, thereby impacting the response of GBM cells to TMZ chemotherapy. Downregulation of NEAT1 resulted in enhanced chemosensitivity to TMZ and extended the survival of mice. CONCLUSIONS Overall, these results indicated that the NEAT1/miR-454-3p/Connexin 43 pathway influences GBM cell response to TMZ and could offer a potential new strategy for treating GBM.
Collapse
Affiliation(s)
- Jinxing Liang
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Research Center of Traditional Chinese Medicine and Ethnic MedicineGuangxi Institute of Chinese Medicine and Pharmaceutical ScienceNanningChina
- Pharmaceutical CollegeGuangxi Medical UniversityNanningChina
| | - Jia‐xiu Xie
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Research Center of Traditional Chinese Medicine and Ethnic MedicineGuangxi Institute of Chinese Medicine and Pharmaceutical ScienceNanningChina
| | - Junhui He
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Research Center of Traditional Chinese Medicine and Ethnic MedicineGuangxi Institute of Chinese Medicine and Pharmaceutical ScienceNanningChina
| | - Yi Li
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Research Center of Traditional Chinese Medicine and Ethnic MedicineGuangxi Institute of Chinese Medicine and Pharmaceutical ScienceNanningChina
| | - Dongmei Wei
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Research Center of Traditional Chinese Medicine and Ethnic MedicineGuangxi Institute of Chinese Medicine and Pharmaceutical ScienceNanningChina
| | - Rongfei Zhou
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Research Center of Traditional Chinese Medicine and Ethnic MedicineGuangxi Institute of Chinese Medicine and Pharmaceutical ScienceNanningChina
- Pharmaceutical CollegeGuangxi Medical UniversityNanningChina
| | - Guining Wei
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Research Center of Traditional Chinese Medicine and Ethnic MedicineGuangxi Institute of Chinese Medicine and Pharmaceutical ScienceNanningChina
| | - Xuehua Liu
- Department of CardiologySir Run Run Hospital of Nanjing Medical UniversityNanjingChina
| | - Qiudan Chen
- Department of Clinical Laboratory, Central Laboratory, Jing'an District Center Hospital of ShanghaiFudan UniversityShanghaiChina
| | - Dongmei Li
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Research Center of Traditional Chinese Medicine and Ethnic MedicineGuangxi Institute of Chinese Medicine and Pharmaceutical ScienceNanningChina
- School of Chemistry & Pharmaceutical Sciences, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal ResourcesGuangxi Normal UniversityGuilinChina
| |
Collapse
|
12
|
Singh H, Mishra AK, Mohanto S, Kumar A, Mishra A, Amin R, Darwin CR, Emran TB. A recent update on the connection between dietary phytochemicals and skin cancer: emerging understanding of the molecular mechanism. Ann Med Surg (Lond) 2024; 86:5877-5913. [PMID: 39359831 PMCID: PMC11444613 DOI: 10.1097/ms9.0000000000002392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/08/2024] [Indexed: 10/04/2024] Open
Abstract
Constant exposure to harmful substances from both inside and outside the body can mess up the body's natural ways of keeping itself in balance. This can cause severe skin damage, including basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma. However, plant-derived compounds found in fruits and vegetables have been shown to protect against skin cancer-causing free radicals and other harmful substances. It has been determined that these dietary phytochemicals are effective in preventing skin cancer and are widely available, inexpensive, and well-tolerated. Studies have shown that these phytochemicals possess anti-inflammatory, antioxidant, and antiangiogenic properties that can aid in the prevention of skin cancers. In addition, they influence crucial cellular processes such as angiogenesis and cell cycle control, which can halt the progression of skin cancer. The present paper discusses the benefits of specific dietary phytochemicals found in fruits and vegetables, as well as the signaling pathways they regulate, the molecular mechanisms involved in the prevention of skin cancer, and their drawbacks.
Collapse
Affiliation(s)
- Harpreet Singh
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh
| | | | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka
| | - Arvind Kumar
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh
| | - Amrita Mishra
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi
| | - Ruhul Amin
- Faculty of Pharmaceutical Science, Assam downtown University, Panikhaiti, Gandhinagar, Guwahati, Assam
| | | | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
13
|
Chen Y, Li H, Liu N, Feng D, Wu W, Gu K, Wu A, Li C, Wang X. Multi-mechanism antitumor/antibacterial effects of Cu-EGCG self-assembling nanocomposite in tumor nanotherapy and drug-resistant bacterial wound infections. J Colloid Interface Sci 2024; 671:751-769. [PMID: 38824748 DOI: 10.1016/j.jcis.2024.05.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 06/04/2024]
Abstract
Chemotherapy and surgery stand as primary cancer treatments, yet the unique traits of the tumor microenvironment hinder their effectiveness. The natural compound epigallocatechin gallate (EGCG) possesses potent anti-tumor and antibacterial traits. However, the tumor's adaptability to chemotherapy due to its acidic pH and elevated glutathione (GSH) levels, coupled with the challenges posed by drug-resistant bacterial infections post-surgery, impede treatment outcomes. To address these challenges, researchers strive to explore innovative treatment strategies, such as multimodal combination therapy. This study successfully synthesized Cu-EGCG, a metal-polyphenol network, and detailly characterized it by using synchrotron radiation and high-resolution mass spectrometry (HRMS). Through chemodynamic therapy (CDT), photothermal therapy (PTT), and photodynamic therapy (PDT), Cu-EGCG showed robust antitumor and antibacterial effects. Cu+ in Cu-EGCG actively participates in a Fenton-like reaction, generating hydroxyl radicals (·OH) upon exposure to hydrogen peroxide (H2O2) and converting to Cu2+. This Cu2+ interacts with GSH, weakening the oxidative stress response of bacteria and tumor cells. Density functional theory (DFT) calculations verified Cu-EGCG's efficient GSH consumption during its reaction with GSH. Additionally, Cu-EGCG exhibited outstanding photothermal conversion when exposed to 808 nm near-infrared (NIR) radiation and produced singlet oxygen (1O2) upon laser irradiation. In both mouse tumor and wound models, Cu-EGCG showcased remarkable antitumor and antibacterial properties.
Collapse
Affiliation(s)
- Yinyin Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Haoran Li
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Nana Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Dongju Feng
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Wei Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Ke Gu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, Shandong, China.
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
14
|
Ovcharenko D, Mukhin D, Ovcharenko G. Alternative Cancer Therapeutics: Unpatentable Compounds and Their Potential in Oncology. Pharmaceutics 2024; 16:1237. [PMID: 39339273 PMCID: PMC11435428 DOI: 10.3390/pharmaceutics16091237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Cancer remains a leading cause of death globally. Cancer patients often seek alternative therapies in addition to, or instead of, conventional treatments like chemotherapy, radiation, and surgery. The progress in medical advancements and early detection provides more treatment options; however, the development of cancer drugs requires a significant amount of time, demands substantial investments, and results in an overall low percent of regulatory approval. The complex relationship between patent protection and pharmaceutical innovation complicates cancer drug development and contributes to high mortality rates. Adjusting patent criteria for alternative cancer therapeutics could stimulate innovation, enhance treatment options, and ultimately improve outcomes for cancer patients. This article explores the potential of alternative cancer therapeutics, chemopreventive agents, natural products, off-patent drugs, generic unpatentable chemicals, and repurposed drugs in cancer treatment, emphasizing the mechanisms and therapeutic potential of these unconventional compounds as combinatorial cancer therapies. The biological pathways, therapeutic effects, and potential to enhance existing therapies are reviewed, demonstrating their cost-effective and accessible options as adjuvant cancer therapies.
Collapse
Affiliation(s)
| | - Dmitry Mukhin
- Altogen Labs, 11200 Menchaca Road, Austin, TX 78748, USA
| | | |
Collapse
|
15
|
Chen L, Li F, Li R, Zheng K, Zhang X, Ma H, Li K, Nie L. Thermo-Responsive Hydrogel Based on Lung Decellularized Extracellular Matrix for 3D Culture Model to Enhance Cancer Stem Cell Characteristics. Molecules 2024; 29:4385. [PMID: 39339380 PMCID: PMC11433703 DOI: 10.3390/molecules29184385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Cancer stem cells (CSCs) are most likely the main cause of lung cancer formation, metastasis, drug resistance, and genetic heterogeneity. Three-dimensional (3D) ex vivo cell culture models can facilitate stemness improvement and CSC enrichment. Considering the critical role of extracellular matrix (ECM) on CSC properties, the present study developed a thermo-responsive hydrogel using the porcine decellularized lung for 3D cell culture, and the cell-laden hydrogel culturing model was used to explore the CSC characteristics and potential utilization in CSC-specific drug evaluation. Results showed that the lung dECM hydrogel (LEH) was composed of the main ECM components and displayed excellent cellular compatibility. In addition, lung cancer cells 3D cultured in LEH displayed the overexpression of metastasis-related genes and enhanced migration properties, as compared with those in two-dimensional (2D) conditions. Notably, the CSC features, including the expression level of stemness-associated genes, colony formation capability, drug resistance, and the proportion of cancer stem-like cells (CD133+), were also enhanced in 3D cells. Furthermore, the attenuation effect of epigallocatechin gallate (EGCG) on CSC properties in the 3D model was observed, confirming the potential practicability of the 3D culture on CSC-targeted drug screening. Overall, our results suggest that the fabricated LEH is an effective and facile platform for 3D cell culture and CSC-specific drug evaluation.
Collapse
Affiliation(s)
- Lei Chen
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Fanglu Li
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Ruobing Li
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Ke Zheng
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Xinyi Zhang
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Huijing Ma
- Library, Xinyang Normal University, Xinyang 464000, China
| | - Kaiming Li
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Lei Nie
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
16
|
Fakhri S, Moradi SZ, Moradi SY, Piri S, Shiri Varnamkhasti B, Piri S, Khirehgesh MR, Bishayee A, Casarcia N, Bishayee A. Phytochemicals regulate cancer metabolism through modulation of the AMPK/PGC-1α signaling pathway. BMC Cancer 2024; 24:1079. [PMID: 39223494 PMCID: PMC11368033 DOI: 10.1186/s12885-024-12715-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Due to the complex pathophysiological mechanisms involved in cancer progression and metastasis, current therapeutic approaches lack efficacy and have significant adverse effects. Therefore, it is essential to establish novel strategies for combating cancer. Phytochemicals, which possess multiple biological activities, such as antioxidant, anti-inflammatory, antimutagenic, immunomodulatory, antiproliferative, anti-angiogenesis, and antimetastatic properties, can regulate cancer progression and interfere in various stages of cancer development by suppressing various signaling pathways. METHODS The current systematic and comprehensive review was conducted based on Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) criteria, using electronic databases, including PubMed, Scopus, and Science Direct, until the end of December 2023. After excluding unrelated articles, 111 related articles were included in this systematic review. RESULTS In this current review, the major signaling pathways of cancer metabolism are highlighted with the promising anticancer role of phytochemicals. This was through their ability to regulate the AMP-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) signaling pathway. The AMPK/PGC-1α signaling pathway plays a crucial role in cancer cell metabolism via targeting energy homeostasis and mitochondria biogenesis, glucose oxidation, and fatty acid oxidation, thereby generating ATP for cell growth. As a result, targeting this signaling pathway may represent a novel approach to cancer treatment. Accordingly, alkaloids, phenolic compounds, terpene/terpenoids, and miscellaneous phytochemicals have been introduced as promising anticancer agents by regulating the AMPK/PGC-1α signaling pathway. Novel delivery systems of phytochemicals targeting the AMPK/PGC-1α pathway in combating cancer are also highlighted in this review.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran.
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Yahya Moradi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Sarina Piri
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Behrang Shiri Varnamkhasti
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Sana Piri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Mohammad Reza Khirehgesh
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | | | - Nicolette Casarcia
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
17
|
Khan DA, Adhikary T, Sultana MT, Toukir IA. A comprehensive identification of potential molecular targets and small drugs candidate for melanoma cancer using bioinformatics and network-based screening approach. J Biomol Struct Dyn 2024; 42:7349-7369. [PMID: 37534476 DOI: 10.1080/07391102.2023.2240409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023]
Abstract
Melanoma is the third most common malignant skin tumor and has increased in morbidity and mortality over the previous decade due to its rapid spread into the bloodstream or lymphatic system. This study used integrated bioinformatics and network-based methodologies to reliably identify molecular targets and small molecular medicines that may be more successful for Melanoma diagnosis, prognosis and treatment. The statistical LIMMA approach utilized for bioinformatics analysis in this study found 246 common differentially expressed genes (cDEGs) between case and control samples from two microarray gene-expression datasets (GSE130244 and GSE15605). Protein-protein interaction network study revealed 15 cDEGs (PTK2, STAT1, PNO1, CXCR4, WASL, FN1, RUNX2, SOCS3, ITGA4, GNG2, CDK6, BRAF, AGO2, GTF2H1 and AR) to be critical in the development of melanoma (KGs). According to regulatory network analysis, the most important transcriptional and post-transcriptional regulators of DEGs and hub-DEGs are ten transcription factors and three miRNAs. We discovered the pathogenetic mechanisms of MC by studying DEGs' biological processes, molecular function, cellular components and KEGG pathways. We used molecular docking and dynamics modeling to select the four most expressed genes responsible for melanoma malignancy to identify therapeutic candidates. Then, utilizing the Connectivity Map (CMap) database, we analyzed the top 4-hub-DEGs-guided repurposable drugs. We validated four melanoma cancer drugs (Fisetin, Epicatechin Gallate, 1237586-97-8 and PF 431396) using molecular dynamics simulation with their target proteins. As a result, the results of this study may provide resources to researchers and medical professionals for the wet-lab validation of MC diagnosis, prognosis and treatments.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dhrubo Ahmed Khan
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Tonmoy Adhikary
- Department of Mathematics, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Mst Tania Sultana
- Department of Mathematics, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Imran Ahamed Toukir
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
18
|
Ma Z, Zhao J, Zou Y, Mao X. The enhanced affinity of moderately hydrolyzed whey protein to EGCG promotes the isoelectric separation and unlocks the protective effects on polyphenols. Food Chem 2024; 450:138833. [PMID: 38653053 DOI: 10.1016/j.foodchem.2024.138833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 04/25/2024]
Abstract
The instability and discoloration of (-)-epigallocatechin-3-gallate (EGCG) constrain its application in functional dairy products. Concurrently, challenges persist in the separation and utilization of whey in the dairy industry. By harnessing the interactions between polyphenols and whey proteins or their hydrolysates, this study proposed a method that involved limited enzymatic hydrolysis followed by the addition of EGCG and pH adjustment around the isoelectric point to obtain whey protein hydrolysates (WPH)-EGCG. Over 92 % of protein-EGCG complexes recovered from whey while ensuring the preservation of α-lactalbumin. The combination between EGCG and WPH depended on hydrogen bonding and hydrophobic interactions, significantly enhanced the thermal stability and storage stability of EGCG. Besides, the intestinal phase retention rate of EGCG in WPH-EGCG complex was significantly increased by 23.67 % compared to free EGCG. This work represents an exploratory endeavor in the improvement of EGCG stability and expanding the utilization approaches of whey.
Collapse
Affiliation(s)
- Zhiyuan Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| | - Jiale Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| | - Yang Zou
- Tianjin Haihe Dairy Co., LTD, China
| | - Xueying Mao
- College of Food Science and Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China.
| |
Collapse
|
19
|
Sharma V, Chaudhary AA, Bawari S, Gupta S, Mishra R, Khan SUD, Ali MAM, Shahid M, Srivastava S, Verma D, Gupta A, Kumar S, Kumar S. Unraveling cancer progression pathways and phytochemical therapeutic strategies for its management. Front Pharmacol 2024; 15:1414790. [PMID: 39246660 PMCID: PMC11377287 DOI: 10.3389/fphar.2024.1414790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/09/2024] [Indexed: 09/10/2024] Open
Abstract
Cancer prevention is currently envisioned as a molecular-based approach to prevent carcinogenesis in pre-cancerous stages, i.e., dysplasia and carcinoma in situ. Cancer is the second-leading cause of mortality worldwide, and a more than 61% increase is expected by 2040. A detailed exploration of cancer progression pathways, including the NF-kβ signaling pathway, Wnt-B catenin signaling pathway, JAK-STAT pathway, TNF-α-mediated pathway, MAPK/mTOR pathway, and apoptotic and angiogenic pathways and effector molecules involved in cancer development, has been discussed in the manuscript. Critical evaluation of these effector molecules through molecular approaches using phytomolecules can intersect cancer formation and its metastasis. Manipulation of effector molecules like NF-kβ, SOCS, β-catenin, BAX, BAK, VEGF, STAT, Bcl2, p53, caspases, and CDKs has played an important role in inhibiting tumor growth and its spread. Plant-derived secondary metabolites obtained from natural sources have been extensively studied for their cancer-preventing potential in the last few decades. Eugenol, anethole, capsaicin, sanguinarine, EGCG, 6-gingerol, and resveratrol are some examples of such interesting lead molecules and are mentioned in the manuscript. This work is an attempt to put forward a comprehensive approach to understanding cancer progression pathways and their management using effector herbal molecules. The role of different plant metabolites and their chronic toxicity profiling in modulating cancer development pathways has also been highlighted.
Collapse
Affiliation(s)
- Vikas Sharma
- Metro College of Health Sciences and Research, Greater Noida, India
- School of Pharmacy, Sharda University, Greater Noida, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Sweta Bawari
- Amity Institute of Pharmacy, Amity University, Noida, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, India
| | - Richa Mishra
- Department of Computer Engineering, Parul University, Vadodara, India
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Mohamed A M Ali
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | - Devvrat Verma
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - Arti Gupta
- Lloyd School of Pharmacy, Greater Noida, India
| | - Sanjay Kumar
- Biological and Bio-computational Laboratory, Department of Life Science, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Sandeep Kumar
- School of Pharmacy, Sharda University, Greater Noida, India
- DST-FIST Laboratory, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| |
Collapse
|
20
|
León D, Reyes ME, Weber H, Gutiérrez Á, Tapia C, Silva R, Viscarra T, Buchegger K, Ili C, Brebi P. In Vitro Effect of Epigallocatechin Gallate on Heme Synthesis Pathway and Protoporphyrin IX Production. Int J Mol Sci 2024; 25:8683. [PMID: 39201369 PMCID: PMC11354225 DOI: 10.3390/ijms25168683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Photodynamic therapy (PDT) treats nonmelanoma skin cancer. PDT kills cells through reactive oxygen species (ROS), generated by interaction among cellular O2, photosensitizer and specific light. Protoporphyrin IX (PpIX) is a photosensitizer produced from methyl aminolevulinate (MAL) by heme group synthesis (HGS) pathway. In PDT-resistant cells, PDT efficacy has been improved by addition of epigallocatechin gallate (EGCG). Therefore, the aim of this work is to evaluate the effect of EGCG properties over MAL-TFD and PpIX production on A-431 cell line. EGCG's role over cell proliferation (flow cytometry and wound healing assay) and clonogenic capability (clonogenic assay) was evaluated in A-431 cell line, while the effect of EGCG over MAL-PDT was determined by cell viability assay (MTT), PpIX and ROS detection (flow cytometry), intracellular iron quantification and gene expression of HGS enzymes (RT-qPCR). Low concentrations of EGCG (<50 µM) did not have an antiproliferative effect over A-431 cells; however, EGCG inhibited clonogenic cell capability. Furthermore, EGCG (<50 µM) improved MAL-PDT cytotoxicity, increasing PpIX and ROS levels, exerting a positive influence on PpIX synthesis, decreasing intracellular iron concentration and modifying HGS enzyme gene expression such as PGB (upregulated) and FECH (downregulated). EGCG inhibits clonogenic capability and modulates PpIX synthesis, enhancing PDT efficacy in resistant cells.
Collapse
Affiliation(s)
- Daniela León
- Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4780000, Chile; (D.L.); (Á.G.); (C.T.); (T.V.)
- Millennium Institute of Immunology and Immunotherapy, Santiago 8320165, Chile;
- BMRC, Biomedical Reasearch Consortium-Chile, Santiago 8320165, Chile
- Departamento de Ciencias Básicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4780000, Chile
| | - María Elena Reyes
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco 4810101, Chile; (M.E.R.); (R.S.)
| | - Helga Weber
- Biomedicine and Traslational Research Laboratory, Centro de Excelencia en Medicina Traslacional (CEMT), Universidad de La Frontera, Temuco 4780000, Chile;
| | - Álvaro Gutiérrez
- Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4780000, Chile; (D.L.); (Á.G.); (C.T.); (T.V.)
- Millennium Institute of Immunology and Immunotherapy, Santiago 8320165, Chile;
- BMRC, Biomedical Reasearch Consortium-Chile, Santiago 8320165, Chile
- Doctorado en Ciencias Mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, Temuco 4780000, Chile
| | - Claudio Tapia
- Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4780000, Chile; (D.L.); (Á.G.); (C.T.); (T.V.)
- Millennium Institute of Immunology and Immunotherapy, Santiago 8320165, Chile;
- Carrera de Biotecnología, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4780000, Chile
| | - Ramón Silva
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco 4810101, Chile; (M.E.R.); (R.S.)
| | - Tamara Viscarra
- Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4780000, Chile; (D.L.); (Á.G.); (C.T.); (T.V.)
- Millennium Institute of Immunology and Immunotherapy, Santiago 8320165, Chile;
- BMRC, Biomedical Reasearch Consortium-Chile, Santiago 8320165, Chile
- Biomedicine and Traslational Research Laboratory, Centro de Excelencia en Medicina Traslacional (CEMT), Universidad de La Frontera, Temuco 4780000, Chile;
| | - Kurt Buchegger
- Millennium Institute of Immunology and Immunotherapy, Santiago 8320165, Chile;
- BMRC, Biomedical Reasearch Consortium-Chile, Santiago 8320165, Chile
- Departamento de Ciencias Básicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4780000, Chile
| | - Carmen Ili
- Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4780000, Chile; (D.L.); (Á.G.); (C.T.); (T.V.)
- Millennium Institute of Immunology and Immunotherapy, Santiago 8320165, Chile;
- BMRC, Biomedical Reasearch Consortium-Chile, Santiago 8320165, Chile
| | - Priscilla Brebi
- Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4780000, Chile; (D.L.); (Á.G.); (C.T.); (T.V.)
- Millennium Institute of Immunology and Immunotherapy, Santiago 8320165, Chile;
- BMRC, Biomedical Reasearch Consortium-Chile, Santiago 8320165, Chile
| |
Collapse
|
21
|
Nag S, Bhunia A, Mohanto S, Ahmed MG, Subramaniyan V. Rising potentials of epigallocatechin gallate (EGCG) loaded lipid-based delivery platforms for breast cancer. DISCOVER APPLIED SCIENCES 2024; 6:426. [DOI: 10.1007/s42452-024-05878-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/08/2024] [Indexed: 11/04/2024]
Abstract
AbstractBreast cancer is a major global health concern that requires the development of innovative treatment strategies. Epigallocatechin gallate (EGCG), a polyphenolic phytocompound found abundantly in green tea, has exhibited potential anti-cancer properties, including anti-inflammatory, anti-oxidant, anti-angiogenic, and anti-proliferative effects. However, the clinical translation of EGCG is hindered by its poor bioavailability and stability. Lipid-based nanocarriers have materialized as an optimistic platform for encapsulating various therapeutics due to their high drug-loading capacity, stability, biocompatibility, and versatility. The rationale for encapsulating EGCG-loaded lipid nanoparticles is to enhance the therapeutic efficacy, bioavailability, and targeted delivery of EGCG for breast cancer treatment. This targeted delivery minimizes off-target effects and enhances the accumulation of EGCG within tumors or diseased tissues in a controlled or sustained manner, reducing systemic toxicity. In addition, co-delivery of EGCG with synergistic agents can enhance therapeutic efficacy through complementary mechanisms of action, overcome biological barriers, and can be combined with other treatment modalities, i.e., radiation therapy, immunotherapy, chemotherapy, etc., to achieve synergistic effectiveness and overcome resistance mechanisms. The advancement of EGCG-loaded lipid nanoparticles exhibits the potential effectiveness of EGCG-based treatments, can overcome the challenges of administering EGCG, and can transform cancer therapy and other biomedical applications.
Graphical abstract
Understanding the potential role of Epigallocatechin gallate (EGCG) in breast cancer treatment through various signaling pathways and further loaded into the lipid-based delivery system for the improvement of mechanical and biological characteristics of the EGCG.
Collapse
|
22
|
Hossain MR, Tareq MMI, Biswas P, Tauhida SJ, Bibi S, Zilani MNH, Albadrani GM, Al‐Ghadi MQ, Abdel‐Daim MM, Hasan MN. Identification of molecular targets and small drug candidates for Huntington's disease via bioinformatics and a network-based screening approach. J Cell Mol Med 2024; 28:e18588. [PMID: 39153206 PMCID: PMC11330274 DOI: 10.1111/jcmm.18588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/07/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024] Open
Abstract
Huntington's disease (HD) is a gradually severe neurodegenerative ailment characterised by an increase of a specific trinucleotide repeat sequence (cytosine-adenine-guanine, CAG). It is passed down as a dominant characteristic that worsens over time, creating a significant risk. Despite being monogenetic, the underlying mechanisms as well as biomarkers remain poorly understood. Furthermore, early detection of HD is challenging, and the available diagnostic procedures have low precision and accuracy. The research was conducted to provide knowledge of the biomarkers, pathways and therapeutic targets involved in the molecular processes of HD using informatic based analysis and applying network-based systems biology approaches. The gene expression profile datasets GSE97100 and GSE74201 relevant to HD were studied. As a consequence, 46 differentially expressed genes (DEGs) were identified. 10 hub genes (TPM1, EIF2S3, CCN2, ACTN1, ACTG2, CCN1, CSRP1, EIF1AX, BEX2 and TCEAL5) were further differentiated in the protein-protein interaction (PPI) network. These hub genes were typically down-regulated. Additionally, DEGs-transcription factors (TFs) connections (e.g. GATA2, YY1 and FOXC1), DEG-microRNA (miRNA) interactions (e.g. hsa-miR-124-3p and has-miR-26b-5p) were also comprehensively forecast. Additionally, related gene ontology concepts (e.g. sequence-specific DNA binding and TF activity) connected to DEGs in HD were identified using gene set enrichment analysis (GSEA). Finally, in silico drug design was employed to find candidate drugs for the treatment HD, and while the possible modest therapeutic compounds (e.g. cortistatin A, 13,16-Epoxy-25-hydroxy-17-cheilanthen-19,25-olide, Hecogenin) against HD were expected. Consequently, the results from this study may give researchers useful resources for the experimental validation of Huntington's diagnosis and therapeutic approaches.
Collapse
Affiliation(s)
- Md Ridoy Hossain
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and BiotechnologyJashore University of Science and TechnologyJessoreBangladesh
| | - Md. Mohaimenul Islam Tareq
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and BiotechnologyJashore University of Science and TechnologyJessoreBangladesh
| | - Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and BiotechnologyJashore University of Science and TechnologyJessoreBangladesh
| | - Sadia Jannat Tauhida
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and BiotechnologyJashore University of Science and TechnologyJessoreBangladesh
| | - Shabana Bibi
- Department of BiosciencesShifa Tameer‐e‐Millat UniversityIslamabadPakistan
- Department of Health SciencesNovel Global Community Educational FoundationHebershamNew South WalesAustralia
| | | | - Ghadeer M. Albadrani
- Department of Biology, College of SciencePrincess Nourah bint Abdulrahman UniversityRiyadhSaudi Arabia
| | - Muath Q. Al‐Ghadi
- Department of Zoology, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Mohamed M. Abdel‐Daim
- Department of Pharmaceutical Sciences, Pharmacy ProgramBatterjee Medical CollegeJeddahSaudi Arabia
- Pharmacology Department, Faculty of Veterinary MedicineSuez Canal UniversityIsmailiaEgypt
| | - Md. Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and BiotechnologyJashore University of Science and TechnologyJessoreBangladesh
| |
Collapse
|
23
|
Ghosh S, Das SK, Sinha K, Ghosh B, Sen K, Ghosh N, Sil PC. The Emerging Role of Natural Products in Cancer Treatment. Arch Toxicol 2024; 98:2353-2391. [PMID: 38795134 DOI: 10.1007/s00204-024-03786-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/08/2024] [Indexed: 05/27/2024]
Abstract
The exploration of natural products as potential agents for cancer treatment has garnered significant attention in recent years. In this comprehensive review, we delve into the diverse array of natural compounds, including alkaloids, carbohydrates, flavonoids, lignans, polyketides, saponins, tannins, and terpenoids, highlighting their emerging roles in cancer therapy. These compounds, derived from various botanical sources, exhibit a wide range of mechanisms of action, targeting critical pathways involved in cancer progression such as cell proliferation, apoptosis, angiogenesis, and metastasis. Through a meticulous examination of preclinical and clinical studies, we provide insights into the therapeutic potential of these natural products across different cancer types. Furthermore, we discuss the advantages and challenges associated with their use in cancer treatment, emphasizing the need for further research to optimize their efficacy, pharmacokinetics, and delivery methods. Overall, this review underscores the importance of natural products in advancing cancer therapeutics and paves the way for future investigations into their clinical applications.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Zoology, Ramakrishna Mission Vidyamandira, Belur Math, Howrah, 711202, India
- Division of Molecular Medicine, Bose Institute, Kolkata, 700054, India
| | - Sanjib Kumar Das
- Department of Zoology, Jhargram Raj College, Jhargram, 721507, India
| | - Krishnendu Sinha
- Department of Zoology, Jhargram Raj College, Jhargram, 721507, India.
| | - Biswatosh Ghosh
- Department of Zoology, Bidhannagar College, Kolkata, 700064, India
| | - Koushik Sen
- Department of Zoology, Jhargram Raj College, Jhargram, 721507, India
| | - Nabanita Ghosh
- Department of Zoology, Maulana Azad College, Kolkata, 700013, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, Kolkata, 700054, India.
| |
Collapse
|
24
|
Almaraz-Postigo S, Sanz E, Pandiella A, Díaz-Rodríguez E. Ocoxin Oral Solution Triggers DNA Damage and Cell Death in Ovarian Cancer. Nutrients 2024; 16:2416. [PMID: 39125297 PMCID: PMC11313973 DOI: 10.3390/nu16152416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Ovarian cancer is the most fatal of all the reproductive cancers within the female population, mainly due to its late diagnosis that limits surgery and medical treatment. Classically, ovarian cancer therapy has included conventional chemotherapy, and other therapeutic approaches are now being used to treat these patients, but the outcomes of the disease are still poor. Therefore, new strategies are needed to improve life expectancy and life quality of ovarian cancer patients. Considering that, we investigated the effect of the nutritional supplement Ocoxin Oral Solution (OOS) in ovarian cancer models. OOS contains several nutritional supplements, some of them with demonstrated antitumoral action. In vitro studies showed that OOS inhibited the proliferation of several ovarian cancer cell lines, especially of those representative of the endometrioid subtype, in a time- and dose-dependent manner. A fast cell death induction after OOS treatment was observed, and when the molecular mechanisms leading to this effect were investigated, an activation of the DNA damage checkpoint was detected, as shown by activation (phosphorylation) of CHK1 and CHK2 kinases that was followed by the phosphorylation of the target protein histone H2AX. When tested in animal models of ovarian cancer, OOS reduced tumor growth without any observed secondary effects. Moreover, such reduction in tumor proliferation was caused by the induction of DNA damage as corroborated by the in vivo phosphorylation of CHK2 and Histone H2AX. Finally, OOS potentiated the action of carboplatin or olaparib, the standard of care treatments used in ovarian clinics, opening the possibility of including OOS in combination with those standard of care agents in patients with ovarian cancer.
Collapse
Affiliation(s)
- Sheila Almaraz-Postigo
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Investigación Biomédica de Salamanca (IBSAL) and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Campus Miguel de Unamuno, 37007 Salamanca, Spain; (S.A.-P.); (A.P.)
| | | | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Investigación Biomédica de Salamanca (IBSAL) and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Campus Miguel de Unamuno, 37007 Salamanca, Spain; (S.A.-P.); (A.P.)
| | - Elena Díaz-Rodríguez
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Investigación Biomédica de Salamanca (IBSAL) and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Campus Miguel de Unamuno, 37007 Salamanca, Spain; (S.A.-P.); (A.P.)
- Department of Biochemistry, Universidad de Salamanca, 37008 Salamanca, Spain
| |
Collapse
|
25
|
Qu J, Pei H, Li XZ, Li Y, Chen JM, Zhang M, Lu ZQ. Erythrocyte membrane biomimetic EGCG nanoparticles attenuate renal injury induced by diquat through the NF-κB/NLRP3 inflammasome pathway. Front Pharmacol 2024; 15:1414918. [PMID: 39045044 PMCID: PMC11263105 DOI: 10.3389/fphar.2024.1414918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/14/2024] [Indexed: 07/25/2024] Open
Abstract
Diquat (DQ) poisoning can cause multiple organ damage, and the kidney is considered to be the main target organ. Increasing evidence shows that alleviating oxidative stress and inflammatory response has promising application prospects. Epigallocatechin gallate (EGCG) has potent antioxidant and anti-inflammatory effects. In this study, red blood cell membrane (RBCm)-camouflaged polylactic-co-glycolic acid (PLGA) nanoparticles (NPs) were synthesized to deliver EGCG (EGCG-RBCm/NPs) for renal injury induced by DQ. Human renal tubular epithelial cells (HK-2 cells) were stimulated with 600 μM DQ for 12 h and mice were intraperitoneally injected with 50 mg/kg b.w. DQ, followed by 20 mg/kg b.w./day EGCG or EGCG-RBCM/NPs for 3 days. The assessment of cellular vitality was carried out using the CCK-8 assay, while the quantification of reactive oxygen species (ROS) was performed through ROS specific probes. Apoptosis analysis was conducted by both flow cytometry and TUNEL staining methods. Pathological changes in renal tissue were observed. The expressions of NLRP3, IL-1β, IL-18, NFκB and Caspase1 were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR), immunohistochemistry, immunofluorescence, and Western blot. The results showed that the DQ group had increased ROS expression, increased the level of oxidative stress, and increased apoptosis rate compared with the control group. Histopathological analysis of mice in the DQ group showed renal tubular injury and elevated levels of blood urea nitrogen (BUN), serum creatinine (SCr), kidney injury molecule-1 (KIM-1), and cystatin C (Cys C). Furthermore, the DQ group exhibited heightened expression of NLRP3, p-NFκB p65, Caspase1 p20, IL-1β, and IL-18. However, EGCG-RBCm/NPs treatment mitigated DQ-induced increases in ROS, apoptosis, and oxidative stress, as well as renal toxicity and decreases in renal biomarker levels. Meanwhile, the expression of the above proteins were significantly decreased, and the survival rate of mice was ultimately improved, with an effect better than that of the EGCG treatment group. In conclusion, EGCG-RBCm/NPs can improve oxidative stress, inflammation, and apoptosis induced by DQ. This effect is related to the NF-κB/NLRP3 inflammasome pathway. Overall, this study provides a new approach for treating renal injury induced by DQ.
Collapse
Affiliation(s)
- Jie Qu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Hui Pei
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Xin-Ze Li
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Yan Li
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Jian-Ming Chen
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Min Zhang
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Zhong-Qiu Lu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| |
Collapse
|
26
|
Chen Y, Chen C, Xiang J, Gao R, Wang G, Yu W. Functional Tea Extract Inhibits Cell Growth, Induces Apoptosis, and Causes G0/G1 Arrest in Human Hepatocellular Carcinoma Cell Line Possibly through Reduction in Telomerase Activity. Foods 2024; 13:1867. [PMID: 38928812 PMCID: PMC11203311 DOI: 10.3390/foods13121867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The functional tea CFT-1 has been introduced into China as a nutraceutical beverage according to the "Healthy China" national project. The effects on human hepatocellular carcinoma (HCC) cells remain unclear and were investigated with the functional tea extract (purity > 98%). The morphological changes in the cells were observed with microscopes. Cell proliferation, migration, cycle distribution, and apoptotic effects were assessed by MTT, Transwell assays, and flow cytometry, respectively, while telomerase inhibition was evaluated with telomerase PCR ELISA assay kits. The CFT-1 treatment resulted in cell shrinkage, nuclear pyknosis, and chromatin condensation. CFT-1 suppressed the growth of Hep3B cells with IC50 of 143 μg/mL by inducing apoptosis and G0/G1 arrest in Hep3B cells. As for the molecular mechanism, CFT-1 treatment can effectively reduce the telomerase activity. The functional tea extract inhibits cell growth in human HCC by inducing apoptosis and G0/G1 arrest, possibly through a reduction in telomerase activity. These results indicate that CFT-1 extract exhibited in vitro anticancer activities and provided insights into the future development and utilization of CFT-1 as functional foods to inhibit the proliferation of HCC cells.
Collapse
Affiliation(s)
- Yuan Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (Y.C.); (J.X.); (R.G.)
- Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- Agricultural Product Processing Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Changsong Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (Y.C.); (J.X.); (R.G.)
- Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Jiaxing Xiang
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (Y.C.); (J.X.); (R.G.)
- Horticulture College, Fujian Agriculture and Forestry University, Fuzhou 350003, China
| | - Ruizhen Gao
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (Y.C.); (J.X.); (R.G.)
- Horticulture College, Fujian Agriculture and Forestry University, Fuzhou 350003, China
| | - Guojun Wang
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 U.S. 1, Fort Pierce, FL 34946, USA;
| | - Wenquan Yu
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (Y.C.); (J.X.); (R.G.)
- Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| |
Collapse
|
27
|
Wang M, Yu A, Han W, Chen J, Lu C, Tu X. Self-assembled metal-phenolic nanocomplexes comprised of green tea catechin for tumor-specific ferroptosis. Mater Today Bio 2024; 26:101040. [PMID: 38590984 PMCID: PMC10999486 DOI: 10.1016/j.mtbio.2024.101040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/10/2024] Open
Abstract
Ferroptosis, a newly discovered form of regulated cell death, has garnered significant attention in the field of tumor therapy. However, the presence of overexpressed glutathione (GSH) and insufficient levels of H2O2 in the tumor microenvironment (TME) hinders the occurrence of ferroptosis. In response to these challenges, here we have constructed the self-assembled nanocomplexes (FeE NPs) utilizing epigallocatechin-3-gallate (EGCG) from green tea polyphenols and metal ions (Fe3+) as components. After grafting PEG, the nanocomplexes (FeE@PEG NPs) exhibit good biocompatibility and synergistically enhanced tumor-inhibitory properties. FeE@PEG NPs can be disassembled by H2O2 in the TME, leading to the rapid release of Fe3+ and EGCG. The released Fe3+ produces large amounts of toxic •OH by the Fenton reactions while having minimal impact on normal cells. The generated •OH effectively induces lipid peroxidation, which leads to ferroptosis in tumor cells. Meanwhile, the released EGCG can autoxidize to produce H2O2, which further promotes the production of •OH radicals and increases lipid peroxide levels. Moreover, EGCG also depletes the high levels of intracellular GSH, leading to an intracellular redox imbalance and triggering ferroptosis. This study provides new insights into advancing anticancer ferroptosis through rational material design, offering promising avenues for future research.
Collapse
Affiliation(s)
- Min Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Aoling Yu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Wen Han
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Jingyi Chen
- Department of Neurosurgery, Fujian Medical University Union Hospital, Neurosurgery Research Institute of Fujian Province, Fuzhou, Fujian, 350001, China
| | - Chunhua Lu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Xiankun Tu
- Department of Neurosurgery, Fujian Medical University Union Hospital, Neurosurgery Research Institute of Fujian Province, Fuzhou, Fujian, 350001, China
| |
Collapse
|
28
|
Zhang M, Li Y, Han C, Chu S, Yu P, Cheng W. Biosynthesis of Nanoparticles with Green Tea for Inhibition of β-Amyloid Fibrillation Coupled with Ligands Analysis. Int J Nanomedicine 2024; 19:4299-4317. [PMID: 38766654 PMCID: PMC11102095 DOI: 10.2147/ijn.s451070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/17/2024] [Indexed: 05/22/2024] Open
Abstract
Background Inhibition of amyloid β protein fragment (Aβ) aggregation is considered to be one of the most effective strategies for the treatment of Alzheimer's disease. (-)-Epigallocatechin-3-gallate (EGCG) has been found to be effective in this regard; however, owing to its low bioavailability, nanodelivery is recommended for practical applications. Compared to chemical reduction methods, biosynthesis avoids possible biotoxicity and cumbersome preparation processes. Materials and Methods The interaction between EGCG and Aβ42 was simulated by molecular docking, and green tea-conjugated gold nanoparticles (GT-Au NPs) and EGCG-Au NPs were synthesized using EGCG-enriched green tea and EGCG solutions, respectively. Surface active molecules of the particles were identified and analyzed using various liquid chromatography-tandem triple quadrupole mass spectrometry methods. ThT fluorescence assay, circular dichroism, and TEM were used to investigate the effect of synthesized particles on the inhibition of Aβ42 aggregation. Results EGCG as well as apigenin, quercetin, baicalin, and glutathione were identified as capping ligands stabilized on the surface of GT-Au NPs. They more or less inhibited Aβ42 aggregation or promoted fibril disaggregation, with EGCG being the most effective, which bound to Aβ42 through hydrogen bonding, hydrophobic interactions, etc. resulting in 39.86% and 88.50% inhibition of aggregation and disaggregation effects, respectively. EGCG-Au NPs were not as effective as free EGCG, whereas multiple thiols and polyphenols in green tea accelerated and optimized heavy metal detoxification. The synthesized GT-Au NPs conferred the efficacy of diverse ligands to the particles, with inhibition of aggregation and disaggregation effects of 54.69% and 88.75%, respectively, while increasing the yield, enhancing water solubility, and decreasing cost. Conclusion Biosynthesis of nanoparticles using green tea is a promising simple and economical drug-carrying approach to confer multiple pharmacophore molecules to Au NPs. This could be used to design new drug candidates to treat Alzheimer's disease.
Collapse
Affiliation(s)
- Mai Zhang
- Mass Spectrometry Application Center, Tianjin Guoke Medical Technology Development Co., Ltd, Tianjin, People’s Republic of China
| | - Yan Li
- Mass Spectrometry Application Center, Tianjin Guoke Medical Technology Development Co., Ltd, Tianjin, People’s Republic of China
- Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences (CAS), Suzhou, People’s Republic of China
| | - Chunli Han
- Mass Spectrometry Application Center, Shandong CAS Intelligent Manufacturing Medical Device Technology Co., Ltd, Zaozhuang, People’s Republic of China
| | - Shiying Chu
- Mass Spectrometry Application Center, Tianjin Guoke Medical Technology Development Co., Ltd, Tianjin, People’s Republic of China
| | - Peng Yu
- Mass Spectrometry Application Center, Tianjin Guoke Medical Technology Development Co., Ltd, Tianjin, People’s Republic of China
| | - Wenbo Cheng
- Mass Spectrometry Application Center, Tianjin Guoke Medical Technology Development Co., Ltd, Tianjin, People’s Republic of China
- Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences (CAS), Suzhou, People’s Republic of China
| |
Collapse
|
29
|
Yamaguchi T, Ishikawa H, Fukuda M, Sugita Y, Furuie M, Nagano R, Suzawa T, Yamamoto K, Wakamatsu K. Catechins prevent monoclonal antibody fragmentation during production via fed-batch culture of Chinese hamster ovary cells. Biotechnol Prog 2024; 40:e3447. [PMID: 38415979 DOI: 10.1002/btpr.3447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 02/29/2024]
Abstract
Chinese hamster ovary (CHO) cells are widely used for the industrial production of therapeutic monoclonal antibodies (mAbs). To meet the increasing market demands, high productivity, and quality are required in cell culture. One of the critical attributes of mAbs, from a safety perspective, is mAb fragmentation. However, methods for preventing mAbs fragmentation in CHO cell culture are limited. In this study, we observed that the antibody fragment content increased with increasing titers in fed-batch cultures for all three cell lines expressing recombinant antibodies. Adding copper sulfate to the culture medium further increased the fragment content, suggesting the involvement of reactive oxygen species (ROS) in the fragmentation process. Though antioxidants may be helpful to scavenge ROS, several antioxidants are reported to decrease the productivity of CHO cells. Among the antioxidants examined, we observed that the addition of catechin or (-)-epigallocatechin gallate to the culture medium prevented fragmentation content by about 20% and increased viable cell density and titer by 30% and 10%, respectively. Thus, the addition of catechins or compounds of equivalent function would be beneficial for manufacturing therapeutic mAbs with a balance between high titers and good quality.
Collapse
Affiliation(s)
- Tsuyoshi Yamaguchi
- Graduate School of Science and Technology, Gunma University, Gunma, Japan
- Bio Process Research and Development Laboratories, Production Division, Kyowa Kirin Co. Ltd., Takasaki, Gunma, Japan
| | - Hiroko Ishikawa
- Bio Process Research and Development Laboratories, Production Division, Kyowa Kirin Co. Ltd., Takasaki, Gunma, Japan
| | - Mie Fukuda
- Bio Process Research and Development Laboratories, Production Division, Kyowa Kirin Co. Ltd., Takasaki, Gunma, Japan
| | - Yumi Sugita
- Bio Process Research and Development Laboratories, Production Division, Kyowa Kirin Co. Ltd., Takasaki, Gunma, Japan
| | - Misaki Furuie
- Bio Process Research and Development Laboratories, Production Division, Kyowa Kirin Co. Ltd., Takasaki, Gunma, Japan
| | - Ryuma Nagano
- Bio Process Research and Development Laboratories, Production Division, Kyowa Kirin Co. Ltd., Takasaki, Gunma, Japan
| | | | - Koichi Yamamoto
- Bio Process Research and Development Laboratories, Production Division, Kyowa Kirin Co. Ltd., Takasaki, Gunma, Japan
| | - Kaori Wakamatsu
- Graduate School of Science and Technology, Gunma University, Gunma, Japan
| |
Collapse
|
30
|
Hou Y, Chen M, Bian Y, Hu Y, Chuan J, Zhong L, Zhu Y, Tong R. Insights into vaccines for elderly individuals: from the impacts of immunosenescence to delivery strategies. NPJ Vaccines 2024; 9:77. [PMID: 38600250 PMCID: PMC11006855 DOI: 10.1038/s41541-024-00874-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
Immunosenescence increases the risk and severity of diseases in elderly individuals and leads to impaired vaccine-induced immunity. With aging of the global population and the emerging risk of epidemics, developing adjuvants and vaccines for elderly individuals to improve their immune protection is pivotal for healthy aging worldwide. Deepening our understanding of the role of immunosenescence in vaccine efficacy could accelerate research focused on optimizing vaccine delivery for elderly individuals. In this review, we analyzed the characteristics of immunosenescence at the cellular and molecular levels. Strategies to improve vaccination potency in elderly individuals are summarized, including increasing the antigen dose, preparing multivalent antigen vaccines, adding appropriate adjuvants, inhibiting chronic inflammation, and inhibiting immunosenescence. We hope that this review can provide a review of new findings with regards to the impacts of immunosenescence on vaccine-mediated protection and inspire the development of individualized vaccines for elderly individuals.
Collapse
Affiliation(s)
- Yingying Hou
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Min Chen
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yuan Bian
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yuan Hu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Junlan Chuan
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lei Zhong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Yuxuan Zhu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
31
|
Fakhri S, Moradi SZ, Faraji F, Kooshki L, Webber K, Bishayee A. Modulation of hypoxia-inducible factor-1 signaling pathways in cancer angiogenesis, invasion, and metastasis by natural compounds: a comprehensive and critical review. Cancer Metastasis Rev 2024; 43:501-574. [PMID: 37792223 DOI: 10.1007/s10555-023-10136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023]
Abstract
Tumor cells employ multiple signaling mediators to escape the hypoxic condition and trigger angiogenesis and metastasis. As a critical orchestrate of tumorigenic conditions, hypoxia-inducible factor-1 (HIF-1) is responsible for stimulating several target genes and dysregulated pathways in tumor invasion and migration. Therefore, targeting HIF-1 pathway and cross-talked mediators seems to be a novel strategy in cancer prevention and treatment. In recent decades, tremendous efforts have been made to develop multi-targeted therapies to modulate several dysregulated pathways in cancer angiogenesis, invasion, and metastasis. In this line, natural compounds have shown a bright future in combating angiogenic and metastatic conditions. Among the natural secondary metabolites, we have evaluated the critical potential of phenolic compounds, terpenes/terpenoids, alkaloids, sulfur compounds, marine- and microbe-derived agents in the attenuation of HIF-1, and interconnected pathways in fighting tumor-associated angiogenesis and invasion. This is the first comprehensive review on natural constituents as potential regulators of HIF-1 and interconnected pathways against cancer angiogenesis and metastasis. This review aims to reshape the previous strategies in cancer prevention and treatment.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Farahnaz Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6714415153, Iran
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA.
| |
Collapse
|
32
|
Fakhri S, Moradi SZ, Abbaszadeh F, Faraji F, Amirian R, Sinha D, McMahon EG, Bishayee A. Targeting the key players of phenotypic plasticity in cancer cells by phytochemicals. Cancer Metastasis Rev 2024; 43:261-292. [PMID: 38169011 DOI: 10.1007/s10555-023-10161-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Plasticity of phenotypic traits refers to an organism's ability to change in response to environmental stimuli. As a result, the response may alter an organism's physiological state, morphology, behavior, and phenotype. Phenotypic plasticity in cancer cells describes the considerable ability of cancer cells to transform phenotypes through non-genetic molecular signaling activities that promote therapy evasion and tumor metastasis via amplifying cancer heterogeneity. As a result of metastable phenotypic state transitions, cancer cells can tolerate chemotherapy or develop transient adaptive resistance. Therefore, new findings have paved the road in identifying factors and agents that inhibit or suppress phenotypic plasticity. It has also investigated novel multitargeted agents that may promise new effective strategies in cancer treatment. Despite the efficiency of conventional chemotherapeutic agents, drug toxicity, development of resistance, and high-cost limit their use in cancer therapy. Recent research has shown that small molecules derived from natural sources are capable of suppressing cancer by focusing on the plasticity of phenotypic responses. This systematic, comprehensive, and critical review analyzes the current state of knowledge regarding the ability of phytocompounds to target phenotypic plasticity at both preclinical and clinical levels. Current challenges/pitfalls, limitations, and future perspectives are also discussed.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farahnaz Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6517838678, Iran
| | - Roshanak Amirian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Dona Sinha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, 700 026, West Bengal, India
| | - Emily G McMahon
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
33
|
Wadaan MA, Baabbad A, Farooq Khan M. Assessment of antidiabetic, anti-inflammatory, antioxidant and anticancer activity competence of methonolic extracts of Trianthema ortulacastrum and Andrographis paniculata. ENVIRONMENTAL RESEARCH 2024; 242:117764. [PMID: 38029820 DOI: 10.1016/j.envres.2023.117764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
An in-vitro investigation was performed to evaluate and compare the phytochemical, antioxidant, antidiabetic, anti-inflammatory, and anti-lung cancer activities of methanol extracts of aerial parts of Andrographis paniculata and Trianthema portulacastrum. Furthermore studied major functional groups of phytochemicals present in the methanol extracts of these plants through Fourier transform infrared (FTIR) analysis. The results showed that the methanol extract of A. paniculata contain more number of pharmaceutically valuable phytochemicals such as alkaloids, flavonoids, terpenoids, saponin, glycoside, phytosterol, and tannin than T. portulacastrum. Similar way the methanol extract of A. paniculata showed considerable dose dependent antioxidant (DPPH: 63%), antidiabetic (α-amylase: 82.31% and α-glucosidase inhibitions: 72.34%), and anti-inflammatory (albumin-denaturation inhibition: 76.3% and anti-lipoxygenase: 61.2%) activities (at 900 μg mL-1 concentration) than T. portulacastrum. However, the anti-lung cancer activities of these test plants against A549 cells were not considerable. According to FTIR analysis, the A. paniculata methanol extract has a larger number of characteristic peaks attributed to the active functional groups of pharmaceutically valuable bioactive components that belong to different types of phytochemicals. These findings imply that A. paniculata methanol extracts can be used for additional research, such as bioactive compound screening and purification, as well as assessing their potential biomedical uses in various in-vitro and in-research settings.
Collapse
Affiliation(s)
- Mohammad Ahmad Wadaan
- Bio-Products Research Chair, Department of Zoology, College of Sciences, King Saud University, P.O. Box, 2455, Riyadh, 11451, Saudi Arabia.
| | - Almohannad Baabbad
- Bio-Products Research Chair, Department of Zoology, College of Sciences, King Saud University, P.O. Box, 2455, Riyadh, 11451, Saudi Arabia
| | - Muhammad Farooq Khan
- Bio-Products Research Chair, Department of Zoology, College of Sciences, King Saud University, P.O. Box, 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
34
|
Chunarkar-Patil P, Kaleem M, Mishra R, Ray S, Ahmad A, Verma D, Bhayye S, Dubey R, Singh HN, Kumar S. Anticancer Drug Discovery Based on Natural Products: From Computational Approaches to Clinical Studies. Biomedicines 2024; 12:201. [PMID: 38255306 PMCID: PMC10813144 DOI: 10.3390/biomedicines12010201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/01/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Globally, malignancies cause one out of six mortalities, which is a serious health problem. Cancer therapy has always been challenging, apart from major advances in immunotherapies, stem cell transplantation, targeted therapies, hormonal therapies, precision medicine, and palliative care, and traditional therapies such as surgery, radiation therapy, and chemotherapy. Natural products are integral to the development of innovative anticancer drugs in cancer research, offering the scientific community the possibility of exploring novel natural compounds against cancers. The role of natural products like Vincristine and Vinblastine has been thoroughly implicated in the management of leukemia and Hodgkin's disease. The computational method is the initial key approach in drug discovery, among various approaches. This review investigates the synergy between natural products and computational techniques, and highlights their significance in the drug discovery process. The transition from computational to experimental validation has been highlighted through in vitro and in vivo studies, with examples such as betulinic acid and withaferin A. The path toward therapeutic applications have been demonstrated through clinical studies of compounds such as silvestrol and artemisinin, from preclinical investigations to clinical trials. This article also addresses the challenges and limitations in the development of natural products as potential anti-cancer drugs. Moreover, the integration of deep learning and artificial intelligence with traditional computational drug discovery methods may be useful for enhancing the anticancer potential of natural products.
Collapse
Affiliation(s)
- Pritee Chunarkar-Patil
- Department of Bioinformatics, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth (Deemed to be University), Pune 411046, Maharashtra, India
| | - Mohammed Kaleem
- Department of Pharmacology, Dadasaheb Balpande, College of Pharmacy, Nagpur 440037, Maharashtra, India;
| | - Richa Mishra
- Department of Computer Engineering, Parul University, Ta. Waghodia, Vadodara 391760, Gujarat, India;
| | - Subhasree Ray
- Department of Life Science, Sharda School of Basic Sciences and Research, Greater Noida 201310, Uttar Pradesh, India
| | - Aftab Ahmad
- Health Information Technology Department, The Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Pharmacovigilance and Medication Safety Unit, Center of Research Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Devvret Verma
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, Uttarkhand, India;
| | - Sagar Bhayye
- Department of Bioinformatics, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth (Deemed to be University), Pune 411046, Maharashtra, India
| | - Rajni Dubey
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Himanshu Narayan Singh
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sanjay Kumar
- Biological and Bio-Computational Lab, Department of Life Science, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| |
Collapse
|
35
|
Dinesh H, Sundar S, Kannan S, Ramadoss R, Selvam SP, Ramani P. Synthesis and Characterization of Epigallocatechin Gallate-mediated Hydroxyapatite. Pharm Nanotechnol 2024; 12:165-170. [PMID: 37287296 DOI: 10.2174/2211738511666230607113610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/11/2023] [Accepted: 05/10/2023] [Indexed: 06/09/2023]
Abstract
INTRODUCTION Hydroxyapatite is a significant material that finds its application in the field of dental and bone tissue engineering. METHODS The formulation of nanohydroxyapatite with the aid of bioactive compounds has gained importance in recent years due to the beneficial activity contributed by them. The present work focuses on the formulation of nanohydroxyapatite synthesis using epigallocatechin gallate, an active biochemical component of green tea. RESULTS The prepared epigallocatechin gallate-mediated nanohydroxyapatite (epi-HAp) was nanoglobular in shape and composed of calcium, phosphorous, carbon and oxygen, which was confirmed by Scanning electron microscope- energy dispersive X-ray analysis (SEM-EDX). The Attenuated Total Reflection- Infra red spectroscopy (ATR-IR) and X-ray photoelectron spectroscopy (XPS) assured that the reduction and stabilisation of nanohydroxyapatite were mediated by epigallocatechin gallate. CONCLUSION The epi-HAp exhibited anti-inflammatory behaviour along with nil effect on cytotoxicity. To be precise, the epi-HAp can be an effective biomaterial in bone and dental applications.
Collapse
Affiliation(s)
- Hanish Dinesh
- Department of Oral Pathology & Oral Biology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Sandhya Sundar
- Department of Oral Pathology & Oral Biology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Saranya Kannan
- Functional Nanomaterials Laboratory (Green Lab), Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Tamil Nadu, Chennai, 600077, India
| | - Ramya Ramadoss
- Department of Oral Pathology & Oral Biology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Suganya Panneer Selvam
- Department of Oral Pathology & Oral Biology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Pratibha Ramani
- Department of Oral Pathology & Oral Biology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| |
Collapse
|
36
|
Wang S, Mo L, Wu B, Ma C, Wang H. Effect of structural stability of lipase in acetonitrile on its catalytic activity in EGCG esterification reaction: FTIR and MD simulation. Int J Biol Macromol 2024; 255:128266. [PMID: 37984584 DOI: 10.1016/j.ijbiomac.2023.128266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/05/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
In this study, (-)-Epigallocatechin-3-O-gallate (EGCG) esterification reaction was catalyzed by Novozym 435, Lipozyme RM, Lipozyme TLIM, and lipase Amano 30SD in acetonitrile. Fourier transform infrared spectroscopy (FTIR) and molecular dynamic (MD) simulations were used to analyze the structural stability of different lipases in acetonitrile and their effect on EGCG esterification reaction. The results showed that conversion rate of EGCG catalyzed by Lipozyme RM was the highest, followed by Lipozyme TLIM. FTIR indicated that the secondary structure of Lipozyme RM was the most stable. MD simulations suggested that whole structural stability of Lipozyme RM in acetonitrile was superior to Novozym 435 and lipase Amano 30SD and similar to Lipozyme TLIM due to their similar conformation, while the active site of Lipozyme RM is more flexible than that of Lipozyme TLIM, which indicated that lipase with stable whole structure and flexible active site may be more conducive to the esterification of EGCG in acetonitrile. This study provided a direction for rapidly screening lipase to synthetize EGCG or other polyphenols esterified derivatives.
Collapse
Affiliation(s)
- Shan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ling Mo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Guilin Medical University, No.1 Zhiyuan Road, Lingui District, Guilin City, Guangxi 541004, China
| | - Beiqi Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chaoyang Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Hongxin Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
37
|
Zhang T, Li N, Wang R, Sun Y, He X, Lu X, Chu L, Sun K. Enhanced therapeutic efficacy of doxorubicin against multidrug-resistant breast cancer with reduced cardiotoxicity. Drug Deliv 2023; 30:2189118. [PMID: 36919676 PMCID: PMC10026743 DOI: 10.1080/10717544.2023.2189118] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Doxorubicin (DOX), a commonly used anti-cancer drug, is limited by its cardiotoxicity and multidrug resistance (MDR) of tumor cells. Epigallocatechin gallate (EGCG), a natural antioxidant component, can effectively reduce the cardiotoxicity of DOX. Meanwhile, EGCG can inhibit the expression of P-glycoprotein (P-gp) and reverse the MDR of tumor cells. In this study, DOX is connected with low molecular weight polyethyleneimine (PEI) via hydrazone bond to get the pH-sensitive PEI-DOX, which is then combined with EGCG to prevent the cardiotoxicity of DOX and reverse the MDR of cancer cells. In addition, folic acid (FA) modified polyethylene glycol (PEG) (PEG-FA) is added to get the targeted system PEI-DOX/EGCG/FA. The MDR reversal and targeting ability of PEI-DOX/EGCG/FA is performed by cytotoxicity and in vivo anti-tumor activity on multidrug resistant MCF-7 cells (MCF-7/ADR). Additionally, we investigate the anti-drug resistant mechanism by Western Blot. The ability of EGCG to reduce DOX cardiotoxicity is confirmed by cardiotoxicity assay. In conclusion, PEI-DOX/EGCG/FA can inhibit the expression of P-gp and reverse the MDR in tumor cells. It also shows the ability of remove oxygen free radicals effectively to prevent the cardiotoxicity of DOX.
Collapse
Affiliation(s)
- Tianyu Zhang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| | - Nuannuan Li
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| | - Ru Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| | - Yiying Sun
- Yantai Saipute Analyzing Service Co. Ltd, Yantai, Shandong Province, China
| | - Xiaoyan He
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| | - Xiaoyan Lu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| | - Liuxiang Chu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| | - Kaoxiang Sun
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, China
| |
Collapse
|
38
|
Zhang H, Song T, Kang R, Ren F, Liu J, Wang J. Plant bioactive compounds alleviate photoinduced retinal damage and asthenopia: Mechanisms, synergies, and bioavailability. Nutr Res 2023; 120:115-134. [PMID: 37980835 DOI: 10.1016/j.nutres.2023.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/21/2023]
Abstract
The retina, an important tissue of the eye, is essential in visual transmission and sustaining adequate eyesight. However, oxidative stress and inflammatory reactions can harm retinal structure and function. Recent studies have demonstrated that exposure to light can induce oxidative stress and inflammatory reactions in retinal cells, thereby facilitating the progression of retinal damage-related diseases and asthenopia. Plant bioactive compounds such as anthocyanin, curcumin, resveratrol, lutein, zeaxanthin, epigallocatechin gallate, and quercetin are effective in alleviating retinal damage and asthenopia. Their strong oxidation resistance and unique chemical structure can prevent the retina from producing reactive oxygen species and regulating eye muscle relaxation, thus alleviating retinal damage and asthenopia. Additionally, the combination of these active ingredients produces a stronger antioxidant effect. Consequently, understanding the mechanism of retinal damage caused by light and the regulation mechanism of bioactive compounds can better protect the retina and reduce asthenopia.
Collapse
Affiliation(s)
- Huijuan Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China.
| | - Tiancong Song
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Rui Kang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Feiyue Ren
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China.
| |
Collapse
|
39
|
Burcher JT, DeLiberto LK, Allen AM, Kilpatrick KL, Bishayee A. Bioactive phytocompounds for oral cancer prevention and treatment: A comprehensive and critical evaluation. Med Res Rev 2023; 43:2025-2085. [PMID: 37143373 DOI: 10.1002/med.21969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023]
Abstract
The high incidence of oral cancer combined with excessive treatment cost underscores the need for novel oral cancer preventive and therapeutic options. The value of natural agents, including plant secondary metabolites (phytochemicals), in preventing carcinogenesis and representing expansive source of anticancer drugs have been established. While fragmentary research data are available on antioral cancer effects of phytochemicals, a comprehensive and critical evaluation of the potential of these agents for the prevention and intervention of human oral malignancies has not been conducted according to our knowledge. This study presents a complete and critical analysis of current preclinical and clinical results on the prevention and treatment of oral cancer using phytochemicals. Our in-depth analysis highlights anticancer effects of various phytochemicals, such as phenolics, terpenoids, alkaloids, and sulfur-containing compounds, against numerous oral cancer cells and/or in vivo oral cancer models by antiproliferative, proapoptotic, cell cycle-regulatory, antiinvasive, antiangiogenic, and antimetastatic effects. Bioactive phytochemicals exert their antineoplastic effects by modulating various signaling pathways, specifically involving the epidermal growth factor receptor, cytokine receptors, toll-like receptors, and tumor necrosis factor receptor and consequently alter the expression of downstream genes and proteins. Interestingly, phytochemicals demonstrate encouraging effects in clinical trials, such as reduction of oral lesion size, cell growth, pain score, and development of new lesions. While most phytochemicals displayed minimal toxicity, concerns with bioavailability may limit their clinical application. Future directions for research include more in-depth mechanistic in vivo studies, administration of phytochemicals using novel formulations, investigation of phytocompounds as adjuvants to conventional treatment, and randomized clinical trials.
Collapse
Affiliation(s)
- Jack T Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Lindsay K DeLiberto
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Andrea M Allen
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Kaitlyn L Kilpatrick
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| |
Collapse
|
40
|
Hwang SY, Wi K, Yoon G, Lee CJ, Lee SI, Jung JG, Jeong HW, Kim JS, Choi CH, Na CS, Shim JH, Lee MH. Licochalcone D Inhibits Skin Epidermal Cells Transformation through the Regulation of AKT Signaling Pathways. Biomol Ther (Seoul) 2023; 31:682-691. [PMID: 37899745 PMCID: PMC10616519 DOI: 10.4062/biomolther.2023.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/31/2023] Open
Abstract
Cell transformation induced by epidermal growth factor (EGF) and 12-O-tetradecanoylphorbol-13-acetate (TPA) is a critical event in cancer initiation and progression, and understanding the underlying mechanisms is essential for the development of new therapeutic strategies. Licorice extract contains various bioactive compounds, which have been reported to have anticancer and anti-inflammatory effects. This study investigated the cancer preventive efficacy of licochalcone D (LicoD), a chalcone derivative in licorice extract, in EGF and TPA-induced transformed skin keratinocyte cells. LicoD effectively suppressed EGF-induced cell proliferation and anchorage-independent colony growth. EGF and TPA promoted the S phase of cell cycle, while LicoD treatment caused G1 phase arrest and down-regulated cyclin D1 and up-regulated p21 expression associated with the G1 phase. LicoD also induced apoptosis and increased apoptosis-related proteins such as cleaved-caspase-3, cleaved-caspase-7, and Bax (Bcl-2-associated X protein). We further investigated the effect of LicoD on the AKT signaling pathway involved in various cellular processes and found decreased p-AKT, p-GSK3β, and p-NFκB expression. Treatment with MK-2206, an AKT pharmacological inhibitor, suppressed EGF-induced cell proliferation and transformed colony growth. In conclusion, this study demonstrated the potential of LicoD as a preventive agent for skin carcinogenesis.
Collapse
Affiliation(s)
- Sun-Young Hwang
- College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea
| | - Kwanhwan Wi
- College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Cheol-Jung Lee
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon 34133, Republic of Korea
| | - Soong-In Lee
- College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea
| | - Jong-gil Jung
- College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea
| | - Hyun-Woo Jeong
- College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea
| | - Jeong-Sang Kim
- College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea
| | - Chan-Heon Choi
- College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea
| | - Chang-Su Na
- College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Mee-Hyun Lee
- College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea
| |
Collapse
|
41
|
Zhang M, Su Y, Li J, Chang C, Gu L, Yang Y. Fabrication of phosphatidylcholine-EGCG nanoparticles with sustained release in simulated gastrointestinal digestion and their transcellular permeability in a Caco-2 monolayer model. Food Chem 2023; 437:137580. [PMID: 39491254 DOI: 10.1016/j.foodchem.2023.137580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/24/2023] [Accepted: 09/21/2023] [Indexed: 11/05/2024]
Abstract
In this study, we prepared phosphatidylcholine (PC)-EGCG complex nanoparticles (P-E NPs) by solvent reflux method. The physicochemical properties, in vitro digestion, uptake in Caco-2 cells, and bidirectional permeability of P-E NPs were systematically investigated. The constructed P-E1.5:1 NPs had an average particle size of 118 nm, a ζ-potential of -37.8 mV, and a polymerization dispersion index (PDI) of 0.16. The encapsulation efficiency (EE) of EGCG was 85.0% and the loading capacity (LC) was 24.4%. UV spectra, FTIR, XRD and intermolecular force results indicated that hydrophobic, electrostatic and hydrogen bonding interactions contributed to formate P-E1.5:1 NPs. P-E1.5:1 NPs exhibited first-order kinetics sustained release properties in simulated gastrointestinal digestion. Furthermore, P-E1.5:1 NPs were able to enhance absorptive transport and inhibit efflux transport mediated by MRP2 and P-gp compared to EGCG. These results indicated that P-E1.5:1 NPs may be a potential strategy to ameliorate EGCG bioavailability.
Collapse
Affiliation(s)
- Mengya Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yujie Su
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Junhua Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Cuihua Chang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Luping Gu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
42
|
Casarcia N, Rogers P, Guld E, Iyer S, Li Y, Burcher JT, DeLiberto LK, Banerjee S, Bishayee A. Phytochemicals for the prevention and treatment of pancreatic cancer: Current progress and future prospects. Br J Pharmacol 2023. [PMID: 37740585 DOI: 10.1111/bph.16249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023] Open
Abstract
Pancreatic cancer is the third leading cause of cancer-related deaths in the United States, owing to its aggressive nature and suboptimal treatment options, emphasizing the need for novel therapeutic approaches. Emerging studies have exhibited promising results regarding the therapeutic utility of plant-derived compounds (phytochemicals) in pancreatic cancer. The purpose of this review is to evaluate the potential of phytochemicals in the treatment and prevention of pancreatic cancer. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses was applied to collect articles for this review. Scholarly databases, including PubMed, Scopus and ScienceDirect, were queried for relevant studies using the following keywords: phytochemicals, phenolics, terpenoids, alkaloids, sulfur-containing compounds, in vitro, in vivo, clinical studies, pancreatic cancer, tumour, treatment and prevention. Aggregate results pooled from qualified studies indicate phytochemicals can inhibit pancreatic cancer cell growth or decrease tumour size and volume in animal models. These effects have been attributed to various mechanisms, such as increasing proapoptotic factors, decreasing antiapoptotic factors, or inducing cell death and cell cycle arrest. Notable signalling pathways modulated by phytochemicals include the rat sarcoma/mitogen activated protein kinase, wingless-related integration site/β-catenin and phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signal transduction pathways. Clinically, phytochemicals have been found to increase survival while being well-tolerated and safe, though research is scarce. While these promising results have produced great interest in this field, further in-depth studies are required to characterize the anticancer activities of phytochemicals before they can be utilized to prevent or treat pancreatic cancer in clinical practice.
Collapse
Affiliation(s)
- Nicolette Casarcia
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Patrick Rogers
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Emma Guld
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Samvit Iyer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Yutong Li
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Jack T Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Lindsay K DeLiberto
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| |
Collapse
|
43
|
Sandomierski M, Chojnacka M, Ratajczak M, Voelkel A. Zeolites with Divalent Ions as Carriers in the Delivery of Epigallocatechin Gallate. ACS Biomater Sci Eng 2023; 9:5322-5331. [PMID: 37540564 PMCID: PMC10498421 DOI: 10.1021/acsbiomaterials.3c00599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/25/2023] [Indexed: 08/06/2023]
Abstract
Epigallocatechin gallate (EGCG) is a compound with very high therapeutic potential in the treatment of osteoporosis and cancer. The disadvantages of this compound are its low stability and low bioavailability. Therefore, carriers for EGCG are sought to increase its use. In this work, new carriers are proposed, i.e., zeolites containing divalent ions of magnesium, calcium, strontium, and zinc in their structure. EGCG is retained on the carrier surface by strong interactions with divalent ions. Due to the presence of strong interactions, EGCG is released in a controlled manner from the carrier-ion-EGCG drug delivery system. The results obtained in this work confirm the effectiveness of the preparation of new carriers. EGCG is released from the carriers depending on the pH; hence, it can be used both in osteoporosis and in the treatment of cancer. The divalent ion used affects the sorption and release of the drug. The obtained results indicate the great potential of the proposed carriers and their advantage over the carriers described in the literature.
Collapse
Affiliation(s)
- Mariusz Sandomierski
- Institute
of Chemical Technology and Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznań, Poland
| | - Martyna Chojnacka
- Institute
of Chemical Technology and Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznań, Poland
| | - Maria Ratajczak
- Institute
of Building Engineering, Poznan University
of Technology, ul. Piotrowo
5, 60-965 Poznań, Poland
| | - Adam Voelkel
- Institute
of Chemical Technology and Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznań, Poland
| |
Collapse
|
44
|
Choudhary N, Bawari S, Burcher JT, Sinha D, Tewari D, Bishayee A. Targeting Cell Signaling Pathways in Lung Cancer by Bioactive Phytocompounds. Cancers (Basel) 2023; 15:3980. [PMID: 37568796 PMCID: PMC10417502 DOI: 10.3390/cancers15153980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Lung cancer is a heterogeneous group of malignancies with high incidence worldwide. It is the most frequently occurring cancer in men and the second most common in women. Due to its frequent diagnosis and variable response to treatment, lung cancer was reported as the top cause of cancer-related deaths worldwide in 2020. Many aberrant signaling cascades are implicated in the pathogenesis of lung cancer, including those involved in apoptosis (B cell lymphoma protein, Bcl-2-associated X protein, first apoptosis signal ligand), growth inhibition (tumor suppressor protein or gene and serine/threonine kinase 11), and growth promotion (epidermal growth factor receptor/proto-oncogenes/phosphatidylinositol-3 kinase). Accordingly, these pathways and their signaling molecules have become promising targets for chemopreventive and chemotherapeutic agents. Recent research provides compelling evidence for the use of plant-based compounds, known collectively as phytochemicals, as anticancer agents. This review discusses major contributing signaling pathways involved in the pathophysiology of lung cancer, as well as currently available treatments and prospective drug candidates. The anticancer potential of naturally occurring bioactive compounds in the context of lung cancer is also discussed, with critical analysis of their mechanistic actions presented by preclinical and clinical studies.
Collapse
Affiliation(s)
- Neeraj Choudhary
- Department of Pharmacognosy, GNA School of Pharmacy, GNA University, Phagwara 144 401, India
| | - Sweta Bawari
- Amity Institute of Pharmacy, Amity University, Noida 201 301, India
| | - Jack T. Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Dona Sinha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, India
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110 017, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
45
|
Ye J, Li Q, Zhang Y, Su Q, Feng Z, Huang P, Zhang C, Zhai Y, Wang W. ROS scavenging and immunoregulative EGCG@Cerium complex loaded in antibacterial polyethylene glycol-chitosan hydrogel dressing for skin wound healing. Acta Biomater 2023; 166:155-166. [PMID: 37230435 DOI: 10.1016/j.actbio.2023.05.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/29/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
The elevation of oxidative stress and inflammatory response after injury remains a substantial challenge that can deteriorate the wound microenvironment and compromise the success of wound healing. Herein, the assembly of naturally derived epigallocatechin-3-gallate (EGCG) and Cerium microscale complex (EGCG@Ce) was prepared as reactive oxygen species (ROS) scavenger, which was further loaded in antibacterial hydrogels as wound dressing. EGCG@Ce shows superior antioxidation capacity towards various ROS including free radical, O2- and H2O2 through superoxide dismutase-like or catalase-mimicking catalytic activity. Importantly, EGCG@Ce could provide mitochondrial protective effect against oxidative stress damages, reverse the polarization of M1 macrophages and reduce the secretion of pro-inflammatory cytokines. Furtherly, EGCG@Ce was loaded into the PEG-chitosan hydrogel with dynamic, porous, injectable and antibacterial properties as wound dressing, which accelerated the regeneration of both epidermal layer and dermis, resulting in improved healing process of full-thickness skin wounds in vivo. Mechanistically, EGCG@Ce re-shaped the detrimental tissue microenvironment and augmented the pro-reparative response through reducing ROS accumulation, alleviating inflammatory response, enhancing the M2 macrophage polarization and angiogenesis. Collectively, antioxidative and immunomodulatory metal-organic complex-loaded hydrogel is a promising multifunctional dressing for the repair and regeneration of cutaneous wounds without additional drugs, exogenous cytokines, or cells. STATEMENT OF SIGNIFICANCE: (1) We reported an effective antioxidant through self-assembly coordination of EGCG and Cerium for managing the inflammatory microenvironment at the wound site, which not only showed high catalytic capacity towards multiple ROS, but also could provide mitochondrial protective effect against oxidative stress damage, reverse the polarization of M1 macrophages and downregulate pro-inflammatory cytokines. EGCG@Ce was further loaded into porous and bactericidal PEG-chitosan (PEG-CS) hydrogel as a versatile wound dressing, which accelerated wound healing and angiogenesis. (2) The applicability of alleviating sustainable inflammation and regulating macrophage polarization through ROS scavenging is a promising strategy for tissue repair and regeneration without additional drugs, cytokines, or cells.
Collapse
Affiliation(s)
- Jing Ye
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qinghua Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yushan Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Qi Su
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Zujian Feng
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Chuangnian Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yinglei Zhai
- Department of Biomedical Engineering, School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
46
|
Croley CR, Pumarol J, Delgadillo BE, Cook AC, Day F, Kaceli T, Ward CC, Husain I, Husain A, Banerjee S, Bishayee A. Signaling pathways driving ocular malignancies and their targeting by bioactive phytochemicals. Pharmacol Ther 2023:108479. [PMID: 37330112 DOI: 10.1016/j.pharmthera.2023.108479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Ocular cancers represent a rare pathology. The American Cancer Society estimates that 3,360 cases of ocular cancer occur annually in the United States. The major types of cancers of the eye include ocular melanoma (also known as uveal melanoma), ocular lymphoma, retinoblastoma, and squamous cell carcinoma. While uveal melanoma is one of the primary intraocular cancers with the highest occurrence in adults, retinoblastoma remains the most common primary intraocular cancer in children, and squamous cell carcinoma presents as the most common conjunctival cancer. The pathophysiology of these diseases involves specific cell signaling pathways. Oncogene mutations, tumor suppressor mutations, chromosome deletions/translocations and altered proteins are all described as causal events in developing ocular cancer. Without proper identification and treatment of these cancers, vision loss, cancer spread, and even death can occur. The current treatments for these cancers involve enucleation, radiation, excision, laser treatment, cryotherapy, immunotherapy, and chemotherapy. These treatments present a significant burden to the patient that includes a possible loss of vision and a myriad of side effects. Therefore, alternatives to traditional therapy are urgently needed. Intercepting the signaling pathways for these cancers with the use of naturally occurring phytochemicals could be a way to relieve both cancer burden and perhaps even prevent cancer occurrence. This research aims to present a comprehensive review of the signaling pathways involved in various ocular cancers, discuss current therapeutic options, and examine the potential of bioactive phytocompounds in the prevention and targeted treatment of ocular neoplasms. The current limitations, challenges, pitfalls, and future research directions are also discussed.
Collapse
Affiliation(s)
- Courtney R Croley
- Healthcare Corporation of America, Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Hudson, FL 34667, USA
| | - Joshua Pumarol
- Ross University School of Medicine, Miramar, FL 33027, USA
| | - Blake E Delgadillo
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Andrew C Cook
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Faith Day
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Tea Kaceli
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Caroline C Ward
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Imran Husain
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
| | - Ali Husain
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol 713 301, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
47
|
Wang Q, Liu P, Wen Y, Li K, Bi B, Li BB, Qiu M, Zhang S, Li Y, Li J, Chen H, Yin Y, Zeng L, Zhang C, He Y, Zhao J. Metal-enriched HSP90 nanoinhibitor overcomes heat resistance in hyperthermic intraperitoneal chemotherapy used for peritoneal metastases. Mol Cancer 2023; 22:95. [PMID: 37316830 DOI: 10.1186/s12943-023-01790-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/16/2023] [Indexed: 06/16/2023] Open
Abstract
Clinical hyperthermic intraperitoneal chemotherapy (HIPEC) is regarded as a potential treatment that can prolong survival of patients with peritoneal metastases after cytoreductive surgery. However, treated tumor cells are prone to becoming heat resistant to HIPEC therapy through high expression of heat shock proteins (HSPs). Here, a carrier-free bifunctional nanoinhibitor was developed for HIPEC therapy in the management of peritoneal metastases. Self-assembly of the nanoinhibitor was formed by mixing Mn ion and epigallocatechin gallate (EGCG) in a controllable manner. Such nanoinhibitor directly inhibited HSP90 and impaired the HSP90 chaperone cycle by reduced intracellular ATP level. Additionally, heat and Mn ion synergistically induced oxidative stress and expression of caspase 1, which activated GSDMD by proteolysis and caused pyroptosis in tumor cells, triggering immunogenic inflammatory cell death and induced maturation of dendritic cells through the release of tumor antigens. This strategy to inhibit heat resistance in HIPEC presented an unprecedented paradigm for converting "cold" tumors into "hot" ones, thus significantly eradicating disseminated tumors located deep in the abdominal cavity and stimulating immune response in peritoneal metastases of a mouse model. Collectively, the nanoinhibitor effectively induced pyroptosis of colon tumor cells under heat conditions by inhibiting heat stress resistance and increasing oxidative stress, which may provide a new strategy for treatment of colorectal peritoneal metastases.
Collapse
Affiliation(s)
- Qiang Wang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Peng Liu
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yingfei Wen
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Kuan Li
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Bo Bi
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Bin-Bin Li
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
| | - Miaojuan Qiu
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
| | - Shiqiang Zhang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - You Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Jia Li
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
| | - Hengxing Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
| | - Yuan Yin
- Gastric Cancer Center, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Sichuan, China
| | - Leli Zeng
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China.
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China.
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China.
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China.
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China.
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China.
| | - Yulong He
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China.
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China.
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China.
| | - Jing Zhao
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China.
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China.
| |
Collapse
|
48
|
Jing F, Zhu L, Bai J, Cai X, Zhou X, Zhang J, Zhang H, Li T. Molecular mechanisms underlying the epigallocatechin-3-gallate-mediated inhibition of oral squamous cell carcinogenesis. Arch Oral Biol 2023; 153:105740. [PMID: 37354753 DOI: 10.1016/j.archoralbio.2023.105740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/14/2023] [Accepted: 06/03/2023] [Indexed: 06/26/2023]
Abstract
OBJECTIVES To reveal the mechanisms underlying the epigallocatechin-3-gallate (EGCG)-mediated inhibition of carcinogenesis and the related regulatory signaling pathways. DESIGN The effect of EGCG on the proliferation of OSCC cells was examined. SuperPred, ChEMBL, Swiss TargetPrediction, DisGeNET, GeneCards, and National Center for Biotechnology Information databases were used to predict the EGCG target genes and oral leukoplakia (OL)-related, oral submucosal fibrosis (OSF)-related, and OSCC-related genes. The binding of EGCG to the target proteins was simulated using AutoDock and PyMOL. The Cancer Genome Atlas (TCGA) dataset was subjected to consensus clustering analysis to predict the downstream molecules associated with these targets, as well as their potential functions and pathways. RESULTS EGCG significantly inhibited OSCC cell proliferation (p < 0.001). By comparing EGCG target genes with genes linked to oral potentially malignant disorder (OPMD) and OSCC, a total of eleven potential EGCG target genes were identified. Furthermore, EGCG has the capacity to bind to eleven proteins. Based on consensus clustering and enrichment analysis, it is suggested that EGCG may hinder the progression of cancer by altering the cell cycle and invasive properties in precancerous lesions of the oral cavity. Some possible strategies for modifying the cell cycle and invasive properties may include EGCG-mediated suppression of specific genes and proteins, which are associated with cancer development. CONCLUSIONS This study investigated the molecular mechanisms and signaling pathways associated with the EGCG-induced suppression of OSCC. The identification of specific pharmacological targets of EGCG during carcinogenesis is crucial for the development of innovative combination therapies involving EGCG.
Collapse
Affiliation(s)
- Fengyang Jing
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China
| | - Lijing Zhu
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China
| | - Jiaying Bai
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Xinjia Cai
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China
| | - Xuan Zhou
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China
| | - Jianyun Zhang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China.
| | - Heyu Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China.
| | - Tiejun Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China.
| |
Collapse
|
49
|
Adeyi OE, Somade OT, James AS, Adeyi AO, Ogbonna-Eze SN, Salako OQ, Makinde TV, Ajadi OM, Nosiru SA. Ferulic acid mitigates 2-methoxyethanol-induced testicular oxidative stress via combined downregulation of FoxO1, PTEN, and modulation of Nrf2-Hmox1-NQO1 signaling pathway in rats. PHARMACOLOGICAL RESEARCH - MODERN CHINESE MEDICINE 2023; 7:100257. [DOI: 10.1016/j.prmcm.2023.100257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
50
|
Datta S, Bishayee A, Sinha D. Black tea bioactive phytoconstituents realign NRF2 for anticancer activity in lung adenocarcinoma. Front Pharmacol 2023; 14:1176819. [PMID: 37305533 PMCID: PMC10247968 DOI: 10.3389/fphar.2023.1176819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Constitutive activation of nuclear factor erythroid 2-related factor 2 (NRF2) is pivotal in bestowing therapy resistance in cancer cells. Several phytochemicals have been reported with the potential of modulating NRF2. Therefore, it was hypothesized that NRF2-deregulated chemoresistance in lung adenocarcinoma (LUAD) may be counteracted by theaflavin-rich black tea (BT). A non-responsive LUAD cell line, A549, was the best sensitized towards cisplatin upon pre-treatment with BT. BT-mediated NRF2 reorientation was observed to be dependent on concentration and duration of treatment as well as on the mutational profile of NRF2 in A549 cells. Transient exposure of low-concentration BT hormetically downregulated NRF2, its downstream antioxidants, and drug transporter. BT also influenced the Kelch-like ECH-associated protein (KEAP1)-dependent cullin 3 (Cul3) and KEAP-1-independent signaling through epidermal growth factor receptor (EGFR) - rat sarcoma virus (RAS) - rapidly accelerated fibrosarcoma (RAF) - extracellular signal-regulated kinase 1/2 (ERK) - matrix metalloproteinase (MMP)-2 and MMP-9. The realignment of NRF2 in KEAP1-suppressed A549 cells enhanced the chemotherapeutic outcome. But a higher concentration of the same BT surprisingly upregulated NRF2 and its transcriptional targets with a subsequent decrease in the NRF2-regulatory machinery in NCI-H23 cells (a KEAP1-overexpressed LUAD cell line), ultimately resulting in a better anticancer response. The BT-mediated bidirectional NRF2 modulation was reconfirmed upon comparison with the action of a pharmacological NRF2 inhibitor, ML-385, in A549 and a known NRF2 activator, tertiary-butylhydroquinone, in NCI-H23 respectively. BT-mediated regulation of NRF2-KEAP1 and their upstream networks (EGFR/RAS/RAF/ERK) sufficed as a better anticancer agent than synthetic NRF2 modulators. Therefore, BT may be indicated as a potent multi-modal small molecule for increasing drug responsiveness in LUAD cells by maintaining NRF2/KEAP1 axis at an optimum level.
Collapse
Affiliation(s)
- Suchisnigdha Datta
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, United States
| | - Dona Sinha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| |
Collapse
|