1
|
He KJ, Gong G. Global trends and projections of colorectal, esophageal and stomach cancer burden among youth associated with diet: A analysis of 204 countries and territories from 1990 to 2019 and until 2040. Transl Oncol 2024; 46:101984. [PMID: 38824874 PMCID: PMC11170277 DOI: 10.1016/j.tranon.2024.101984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/11/2024] [Accepted: 04/30/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Unhealthy diets significantly contribute to stomach, colorectal and esophageal cancer burden globally. Western diets high in processed and red meats promote carcinogenesis in these gastrointestinal cancers. However, adolescent and young adult (AYA) patients' unique needs regarding these cancers have been neglected. METHODS Data from the 2019 Global Burden of Disease study was used to quantify stomach, colorectal and esophageal cancer burden among AYAs from 1990 to 2040 across 204 countries. Correlations between the burden of these cancers and the Socio-demographic Index were examined. RESULTS High SDI locations experienced the largest reduction in cancer DALY rate change from 1990 to 2019 (-22% [-12 to -33]), compared to a small increase in low-middle SDI regions. Middle SDI areas saw the largest reduction in DALY rate change from 1990 to 2019 (-62% [-32 to -75]), compared to a small decrease in low-middle SDI locations (-9% [-27 to 10]) in esophageal cancer. From 1990-2019, stomach cancer deaths and DALYs declined across all SDI regions, with the largest reductions in high SDI locations (-61% [-57 to -69]) and smallest in low-middle SDI areas (-25% [-13 to -34]). Colorectal cancer deaths and DALYs rose across all SDI regions except high SDI locations, which showed a slight decrease. CONCLUSION This study demonstrates the evolving global burden of stomach, colorectal and esophageal cancers among AYAs. The highest burden was in high-middle and high SDI regions, underscoring the need to prioritize initiatives targeting these gastrointestinal malignancies in youth.
Collapse
Affiliation(s)
- Ke-Jie He
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou city, Zhejiang Province, China.
| | - Guoyu Gong
- School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
2
|
Kang M, Wilkens LR, Wirth MD, Shivappa N, Hébert JR, Haiman CA, Le Marchand L, Park SY. Diet Quality and Risk of Bladder Cancer in the Multiethnic Cohort Study. Nutrients 2024; 16:1965. [PMID: 38931318 PMCID: PMC11206544 DOI: 10.3390/nu16121965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
This study analyzed the overall quality of the diet using predefined indices, including the Healthy Eating Index-2015 (HEI-2015), the Alternative Healthy Eating Index-2010 (AHEI-2010), the alternate Mediterranean Diet (aMED) score, the Dietary Approaches to Stop Hypertension (DASH) score, and the Dietary Inflammatory Index (DII®), to explore their association with the risk of bladder cancer in the Multiethnic Cohort Study. Data were taken from 186,979 African American, Japanese American, Latino, Native Hawaiian, and non-Hispanic White participants aged 45-75 years, with 1152 incident cases of invasive bladder cancer during a mean follow-up period of 19.2 ± 6.6 years. Cox models were used to calculate hazard ratios (HRs) and 95% confidence intervals (CIs) with comprehensive adjustment for smoking. Comparing the highest vs. lowest diet quality score quintile, HRs (95% CIs) in men was 1.08 (0.86-1.36) for HEI-2015, 1.05 (0.84-1.30) for AHEI-2010, 1.01 (0.80-1.27) for aMED, 1.13 (0.90-1.41) for DASH, and 0.96 (0.76-1.21) for DII®, whereas the corresponding HRs for women were 0.75 (0.53-1.07), 0.64 (0.45-0.92), 0.60 (0.40-0.88), 0.66 (0.46-0.95), and 0.63 (0.43-0.90) with all p values for trend <0.05. The inverse association found in women did not vary by smoking status or race and ethnicity. Our findings suggest that adopting high-quality diets may reduce the risk of invasive bladder cancer among women in a multiethnic population.
Collapse
Affiliation(s)
- Minji Kang
- Department of Food and Nutrition, Duksung Women’s University, Seoul 01369, Republic of Korea
| | - Lynne R. Wilkens
- Population Sciences in the Pacific Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA; (L.R.W.); (L.L.M.); (S.-Y.P.)
| | - Michael D. Wirth
- College of Nursing, University of South Carolina, Columbia, SC 29208, USA;
- Department of Epidemiology and Biostatistics, Cancer Prevention and Control Program, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (N.S.); (J.R.H.)
| | - Nitin Shivappa
- Department of Epidemiology and Biostatistics, Cancer Prevention and Control Program, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (N.S.); (J.R.H.)
- Department of Nutrition, Connecting Health Innovations LLC, Columbia, SC 29201, USA
| | - James R. Hébert
- Department of Epidemiology and Biostatistics, Cancer Prevention and Control Program, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (N.S.); (J.R.H.)
- Department of Nutrition, Connecting Health Innovations LLC, Columbia, SC 29201, USA
| | - Christopher A. Haiman
- Department of Population and Public Health Sciences, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA;
| | - Loïc Le Marchand
- Population Sciences in the Pacific Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA; (L.R.W.); (L.L.M.); (S.-Y.P.)
| | - Song-Yi Park
- Population Sciences in the Pacific Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA; (L.R.W.); (L.L.M.); (S.-Y.P.)
| |
Collapse
|
3
|
Wang Q, Li D, Liu L, Shan Y, Bao Y. Dietary isothiocyanates and anticancer agents: exploring synergism for improved cancer management. Front Nutr 2024; 11:1386083. [PMID: 38919393 PMCID: PMC11196812 DOI: 10.3389/fnut.2024.1386083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
Human studies have shown the anticancer effects of dietary isothiocyanates (ITCs), but there are some inconsistencies, and more evidence supports that such anticancer effect is from higher doses of ITCs. The inconsistencies found in epidemiological studies may be due to many factors, including the biphasic dose-response (so called hormetic effect) of ITCs, which was found to be more profound under hypoxia conditions. In this comprehensive review, we aim to shed light on the intriguing synergistic interactions between dietary ITCs, focusing on sulforaphane (SFN) and various anticancer drugs. Our exploration is motivated by the potential of these combinations to enhance cancer management strategies. While the anticancer properties of ITCs have been recognized, our review delves deeper into understanding the mechanisms and emphasizing the significance of the hormetic effect of ITCs, characterized by lower doses stimulating both normal cells and cancer cells, whereas higher doses are toxic to cancer cells and inhibit their growth. We have examined a spectrum of studies unraveling the multifaceted interaction and combinational effects of ITCs with anticancer agents. Our analysis reveals the potential of these synergies to augment therapeutic efficacy, mitigate chemoresistance, and minimize toxic effects, thereby opening avenues for therapeutic innovation. The review will provide insights into the underlying mechanisms of action, for example, by spotlighting the pivotal role of Nrf2 and antioxidant enzymes in prevention. Finally, we glimpse ongoing research endeavors and contemplate future directions in this dynamic field. We believe that our work contributes valuable perspectives on nutrition and cancer and holds promise for developing novel and optimized therapeutic strategies.
Collapse
Affiliation(s)
- Qi Wang
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Dan Li
- Department of Nutrition, School of Public Health, Sun Yat-Sen University (Northern Campus), Guangzhou, China
| | - Lihua Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Yujuan Shan
- Department of Nutrition and Food Hygiene, School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
4
|
Wang H, Zhu W, Hong Y, Wei W, Zheng N, He X, Bao Y, Gao X, Huang W, Sheng L, Li M, Li H. Astragalus polysaccharides attenuate chemotherapy-induced immune injury by modulating gut microbiota and polyunsaturated fatty acid metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155492. [PMID: 38479258 DOI: 10.1016/j.phymed.2024.155492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/02/2024] [Accepted: 02/26/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND The damage of chemotherapy drugs to immune function and intestinal mucosa is a common side effect during chemotherapy. Astragalus polysaccharides (APS) exhibit immunomodulatory properties and are recognized for preserving the integrity of the human intestinal barrier. Nevertheless, their application and mechanisms of action in chemotherapy-induced immune damage and intestinal barrier disruption remain insufficiently explored. PURPOSE This study delved into investigating how APS mitigates chemotherapy-induced immune dysfunction and intestinal mucosal injury, while also providing deeper insights into the underlying mechanisms. METHODS In a chemotherapy mice model induced by 5-fluorouracil (5-Fu), the assessment of APS's efficacy encompassed evaluations of immune organ weight, body weight, colon length, and histopathology. The regulation of different immune cells in spleen was detected by flow cytometry. 16S rRNA gene sequencings, ex vivo microbiome assay, fecal microbiota transplantation (FMT), and targeted metabolomics analysis were applied to explore the mechanisms of APS effected on chemotherapy-induced mice. RESULTS APS ameliorated chemotherapy-induced damage to immune organs and regulated immune cell differentiation disorders, including CD4+T, CD8+T, CD19+B, F4/80+CD11B+ macrophages. APS also alleviated colon shortening and upregulated the expression of intestinal barrier proteins. Furthermore, APS significantly restored structure of gut microbiota following chemotherapy intervention. Ex vivo microbiome assays further demonstrated the capacity of APS to improve 5-Fu-induced microbiota growth inhibition and compositional change. FMT demonstrated that the regulation of gut microbiota by APS could promote the recovery of immune functions and alleviate shortening of the colon length. Remarkably, APS significantly ameliorated the imbalance of linoleic acid (LA) and α-linolenic acid in polyunsaturated fatty acid (PUFA) metabolism. Further in vitro experiments showed that LA could promote splenic lymphocyte proliferation. In addition, both LA and DGLA down-regulated the secretion of NO and partially up-regulated the percentage of F4/80+CD11B+CD206+ cells. CONCLUSION APS can effectively ameliorate chemotherapy-induced immune damage and intestinal mucosal disruption by regulating the composition of the gut microbiota and further restoring PUFA metabolism. These findings indicate that APS can serve as an adjuvant to improve the side effects such as intestinal and immune damage caused by chemotherapy.
Collapse
Affiliation(s)
- Hao Wang
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Weize Zhu
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Hong
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenjing Wei
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ningning Zheng
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaofang He
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yiyang Bao
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinxin Gao
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenjin Huang
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lili Sheng
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mingxiao Li
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Houkai Li
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
5
|
Hoyt M, Song Y, Gao S, O'Palka J, Zhang J. Associations between Two Dietary Quality Scores and Pancreatic Cancer Risk in a US National Prospective Cohort Study. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:345-355. [PMID: 38096044 DOI: 10.1080/27697061.2023.2289520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/26/2023] [Indexed: 04/25/2024]
Abstract
OBJECTIVE Most previous studies investigated the associations between intake of individual nutrients and risk of disease, which failed to consider the potential interactions and correlations between various nutrients contained in food. Although dietary quality scores provide a comprehensive evaluation of the entire diet, it remains elusive whether they are associated with the risk of pancreatic cancer. METHODS Dietary intake data collected with the Dietary Questionnaire (DQX) and Diet History Questionnaire (DHQ) were used to calculate HEI-2015 and DQI-R scores for participants in the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. A high score indicates an increased intake of adequacy components and a decreased intake of moderation components. This study included 252 cases of pancreatic cancer documented from 58,477 persons during a median follow-up of 12.2 years in the DQX cohort and 372 cases of pancreatic cancer ascertained from 101,721 persons during a median follow-up of 8.9 years in the DHQ cohort. Cox proportional hazards regression analysis was performed to calculate hazard ratios (HR) and 95% confidence intervals (CI) for the associations between the two dietary quality scores and pancreatic cancer risk. RESULTS After adjustment for confounders, HEI-2015 and DQI-R scores were not significantly associated with pancreatic cancer risk. However, a significantly lower risk was observed for overweight persons with a higher HEI-2015 score in the DQX cohort (HR [95% CI] comparing the highest with lowest tertile: 0.52 [0.32, 0.85], p for trend = 0.009) and those with higher scores of some individual components. CONCLUSION Collectively, overall dietary quality is not associated with an altered risk of pancreatic cancer in this US population.
Collapse
Affiliation(s)
- Margaret Hoyt
- Department of Epidemiology, Indiana University Richard M. Fairbanks School of Public Health, Indianapolis, IN, USA
| | - Yiqing Song
- Department of Epidemiology, Indiana University Richard M. Fairbanks School of Public Health, Indianapolis, IN, USA
| | - Sujuan Gao
- Department of Biostatistics and Health Data Science, Indiana University Richard M. Fairbanks School of Public Health and School of Medicine, Indianapolis, IN, USA
| | - Jacquelynn O'Palka
- Department of Nutrition and Dietetics, Indiana University School of Health and Human Sciences, Indianapolis, IN, USA
| | - Jianjun Zhang
- Department of Epidemiology, Indiana University Richard M. Fairbanks School of Public Health, Indianapolis, IN, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| |
Collapse
|
6
|
Zou Y, Wang S, Zhang H, Gu Y, Chen H, Huang Z, Yang F, Li W, Chen C, Men L, Tian Q, Xie T. The triangular relationship between traditional Chinese medicines, intestinal flora, and colorectal cancer. Med Res Rev 2024; 44:539-567. [PMID: 37661373 DOI: 10.1002/med.21989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/05/2023] [Accepted: 08/05/2023] [Indexed: 09/05/2023]
Abstract
Over the past decade, colorectal cancer has reported a higher incidence in younger adults and a lower mortality rate. Recently, the influence of the intestinal flora in the initiation, progression, and treatment of colorectal cancer has been extensively studied, as well as their positive therapeutic impact on inflammation and the cancer microenvironment. Historically, traditional Chinese medicine (TCM) has been widely used in the treatment of colorectal cancer via promoted cancer cell apoptosis, inhibited cancer metastasis, and reduced drug resistance and side effects. The present research is more on the effect of either herbal medicine or intestinal flora on colorectal cancer. The interactions between TCM and intestinal flora are bidirectional and the combined impacts of TCM and gut microbiota in the treatment of colon cancer should not be neglected. Therefore, this review discusses the role of intestinal bacteria in the progression and treatment of colorectal cancer by inhibiting carcinogenesis, participating in therapy, and assisting in healing. Then the complex anticolon cancer effects of different kinds of TCM monomers, TCM drug pairs, and traditional Chinese prescriptions embodied in apoptosis, metastasis, immune suppression, and drug resistance are summarized separately. In addition, the interaction between TCM and intestinal flora and the combined effect on cancer treatment were analyzed. This review provides a mechanistic reference for the application of TCM and intestinal flora in the clinical treatment of colorectal cancer and paves the way for the combined development and application of microbiome and TCM.
Collapse
Affiliation(s)
- Yuqing Zou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Shuling Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Honghua Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yuxin Gu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Huijuan Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zhihua Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Feifei Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Wenqi Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Cheng Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Lianhui Men
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Qingchang Tian
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Luo S, Lin D, Lai S, Lin S, Zhong L, Huang X, Xu X, Weng X. Dietary consumption trend and its correlation with global cancer burden: A quantitative and comprehensive analysis from 1990 to 2019. Nutrition 2024; 117:112225. [PMID: 37951049 DOI: 10.1016/j.nut.2023.112225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/08/2023] [Accepted: 09/16/2023] [Indexed: 11/13/2023]
Abstract
OBJECTIVE The aim of this study was to estimate the effect of dietary consumption on cancer burden and formulate an effective solution. METHODS Dietary consumption, number of cancer deaths, disability-adjusted life years, and corresponding age-standardized rates were extracted from the Global Burden of Disease Study 2019. The annual percentage change was used to quantify the temporal trends in cancer burden and dietary consumption. Age, sex, location, and sociodemographic index were stratified to further analyze the discrepancy in cancer burden attributable to dietary intake. RESULTS Five cancers (breast, colon and rectal, tracheal, bronchus and lung, esophageal, and stomach) were documented to be associated with dietary consumption in the Global Burden of Disease database. The age-standardized death rate and age-standardized disability-adjusted life years rate in 2019 were 7.56 and 1168.77 per 100 000 population, respectively. For most cancers, the age-standardized death rate and age-standardized disability-adjusted life years rate displayed a decreasing tendency, with annual percentage change varying from -3.60 to -0.29 and from -3.64 to -0.03 from 1990 to 2019, respectively. The age-standardized death rate and age-standardized standardized disability-adjusted life years rate were higher in men than in women (9.68 vs 5.79 and 213.16 vs 129.18, respectively). In addition, the diet-related cancer burden in higher sociodemographic index regions exceeded that in lower sociodemographic index regions. CONCLUSION Dietary consumption has a considerable influence on cancer burden, among which colon and rectal cancer burden account for the largest proportion. Increasing the intake of whole grains, milk, fiber, calcium, vegetables, and fruits and reducing the consumption of processed meat and sodium are instrumental in lowering the disease burden of cancer. The quantitative analysis of dietary consumption would provide a more detailed reference for diet-related decision makers and raise awareness of healthy dietary habits in diet management departments, food production enterprises, and the general public.
Collapse
Affiliation(s)
- Shaohong Luo
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Dong Lin
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Shufei Lai
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Shen Lin
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Lixian Zhong
- Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, Texas
| | - Xiaoting Huang
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiongwei Xu
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiuhua Weng
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
| |
Collapse
|
8
|
Chen Z, Guan D, Wang Z, Li X, Dong S, Huang J, Zhou W. Microbiota in cancer: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2023; 4:e417. [PMID: 37937304 PMCID: PMC10626288 DOI: 10.1002/mco2.417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023] Open
Abstract
The diverse bacterial populations within the symbiotic microbiota play a pivotal role in both health and disease. Microbiota modulates critical aspects of tumor biology including cell proliferation, invasion, and metastasis. This regulation occurs through mechanisms like enhancing genomic damage, hindering gene repair, activating aberrant cell signaling pathways, influencing tumor cell metabolism, promoting revascularization, and remodeling the tumor immune microenvironment. These microbiota-mediated effects significantly impact overall survival and the recurrence of tumors after surgery by affecting the efficacy of chemoradiotherapy. Moreover, leveraging the microbiota for the development of biovectors, probiotics, prebiotics, and synbiotics, in addition to utilizing antibiotics, dietary adjustments, defensins, oncolytic virotherapy, and fecal microbiota transplantation, offers promising alternatives for cancer treatment. Nonetheless, due to the extensive and diverse nature of the microbiota, along with tumor heterogeneity, the molecular mechanisms underlying the role of microbiota in cancer remain a subject of intense debate. In this context, we refocus on various cancers, delving into the molecular signaling pathways associated with the microbiota and its derivatives, the reshaping of the tumor microenvironmental matrix, and the impact on tolerance to tumor treatments such as chemotherapy and radiotherapy. This exploration aims to shed light on novel perspectives and potential applications in the field.
Collapse
Affiliation(s)
- Zhou Chen
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Defeng Guan
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Zhengfeng Wang
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Xin Li
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Shi Dong
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Junjun Huang
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Wence Zhou
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| |
Collapse
|
9
|
Ayakdaş G, Ağagündüz D. Microbiota-accessible carbohydrates (MACs) as novel gut microbiome modulators in noncommunicable diseases. Heliyon 2023; 9:e19888. [PMID: 37809641 PMCID: PMC10559293 DOI: 10.1016/j.heliyon.2023.e19888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
The gut microbiota has a significant role in human health and is affected by many factors. Diet and dietary components have profound impacts on the composition of the gut microbiome and largely contribute to the change in bacterial flora. A high-fiber diet increased dietary fiber (DF) fermentation and the production of short-chain fatty acids (SCFAs), which increased the number of microorganisms. Microbiota-accessible carbohydrates (MACs), a subgroup of fermentable carbohydrates such as DF, are defined as indigestible carbohydrates metabolized by microbes. These carbohydrates are important components to sustain the microbial environment of the complicated digestive tract and avoid intestinal dysbiosis. Each MAC has a unique property and can therefore be used as a sensitive output microbiota modulator to support host homeostasis and modulate health. In addition to the overall health-developing effects, MACs are thought to have a promising effect on the prevention of non-communicable diseases (NCDs), which are major health problems worldwide. The aim of the manuscript was to describe microbiota-accessible carbohydrates and summarize their effects on gut modulation and NCDs.
Collapse
Affiliation(s)
- Gamze Ayakdaş
- Department of Nutrition and Dietetics, Acıbadem University, Kerem Aydınlar Campus, Ataşehir, İstanbul, 34755, Turkey
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Gazi University, Emek, Ankara, 06490, Turkey
| |
Collapse
|
10
|
Daschner PJ, Ross S, Seifried H, Kumar A, Flores R. Nutrition and Microbiome Interactions in Human Cancer. J Acad Nutr Diet 2023; 123:504-514. [PMID: 36208721 DOI: 10.1016/j.jand.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 09/28/2022] [Accepted: 10/02/2022] [Indexed: 11/11/2022]
Abstract
Individual physiologic responses to changes in dietary patterns can vary widely to affect cancer risk, which is driven by multiple host-specific factors (eg, genetics, epigenetics, inflammatory and metabolic states, and the colonizing microbiome). Emerging evidence indicates that diet-induced microbiota alterations are key modulators of several host functions important to tumor etiology, progression, and response to cancer therapy. Thus, diet may potentially be used to target alterations of the microbiota as an effective means to improve outcomes across the cancer continuum (from cancer prevention to tumor development and progression, to effects on treatment and survivorship). This review will focus on recent examples of functional interactions between dietary components (nutrients and non-nutrients) and the gastrointestinal microbiome, which are 2 critical and malleable environmental variables in cancer risk that affect host immune, metabolic, and cell signaling functions and may provide insights for novel cancer therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Phillip J Daschner
- Division of Cancer Biology, National Cancer Institute, Bethesda, Maryland.
| | - Sharon Ross
- Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland
| | - Harold Seifried
- Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland
| | - Amit Kumar
- Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland
| | - Roberto Flores
- Office of Nutrition Research, Division of Program Coordination, Planning and Strategic Initiatives, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
11
|
Long Y, Tang L, Zhou Y, Zhao S, Zhu H. Causal relationship between gut microbiota and cancers: a two-sample Mendelian randomisation study. BMC Med 2023; 21:66. [PMID: 36810112 PMCID: PMC9945666 DOI: 10.1186/s12916-023-02761-6] [Citation(s) in RCA: 118] [Impact Index Per Article: 118.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Evidence from observational studies and clinical trials suggests that the gut microbiota is associated with cancer. However, the causal association between gut microbiota and cancer remains to be determined. METHODS We first identified two sets of gut microbiota based on phylum, class, order, family, and genus level information, and cancer data were obtained from the IEU Open GWAS project. We then performed two-sample Mendelian randomisation (MR) to determine whether the gut microbiota is causally associated with eight cancer types. Furthermore, we performed a bi-directional MR analysis to examine the direction of the causal relations. RESULTS We identified 11 causal relationships between genetic liability in the gut microbiome and cancer, including those involving the genus Bifidobacterium. We found 17 strong associations between genetic liability in the gut microbiome and cancer. Moreover, we found 24 associations between genetic liability in the gut microbiome and cancer using multiple datasets. CONCLUSIONS Our MR analysis revealed that the gut microbiota was causally associated with cancers and may be useful in providing new insights for further mechanistic and clinical studies of microbiota-mediated cancer.
Collapse
Affiliation(s)
- Yiwen Long
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Lanhua Tang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Yangying Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Shushan Zhao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China. .,Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
| | - Hong Zhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
| |
Collapse
|
12
|
Mahmood R, Voisin A, Olof H, Khorasaniha R, Lawal SA, Armstrong HK. Host Microbiomes Influence the Effects of Diet on Inflammation and Cancer. Cancers (Basel) 2023; 15:521. [PMID: 36672469 PMCID: PMC9857231 DOI: 10.3390/cancers15020521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Cancer is the second leading cause of death globally, and there is a growing appreciation for the complex involvement of diet, microbiomes, and inflammatory processes culminating in tumorigenesis. Although research has significantly improved our understanding of the various factors involved in different cancers, the underlying mechanisms through which these factors influence tumor cells and their microenvironment remain to be completely understood. In particular, interactions between the different microbiomes, specific dietary factors, and host cells mediate both local and systemic immune responses, thereby influencing inflammation and tumorigenesis. Developing an improved understanding of how different microbiomes, beyond just the colonic microbiome, can interact with dietary factors to influence inflammatory processes and tumorigenesis will support our ability to better understand the potential for microbe-altering and dietary interventions for these patients in future.
Collapse
Affiliation(s)
- Ramsha Mahmood
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Athalia Voisin
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Hana Olof
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Reihane Khorasaniha
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Samuel A. Lawal
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Heather K. Armstrong
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
13
|
Prescott SL, Logan AC, Bristow J, Rozzi R, Moodie R, Redvers N, Haahtela T, Warber S, Poland B, Hancock T, Berman B. Exiting the Anthropocene: Achieving personal and planetary health in the 21st century. Allergy 2022; 77:3498-3512. [PMID: 35748742 PMCID: PMC10083953 DOI: 10.1111/all.15419] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/10/2022] [Accepted: 06/20/2022] [Indexed: 01/28/2023]
Abstract
Planetary health provides a perspective of ecological interdependence that connects the health and vitality of individuals, communities, and Earth's natural systems. It includes the social, political, and economic ecosystems that influence both individuals and whole societies. In an era of interconnected grand challenges threatening health of all systems at all scales, planetary health provides a framework for cross-sectoral collaboration and unified systems approaches to solutions. The field of allergy is at the forefront of these efforts. Allergic conditions are a sentinel measure of environmental impact on human health in early life-illuminating how ecological changes affect immune development and predispose to a wider range of inflammatory noncommunicable diseases (NCDs). This shows how adverse macroscale ecology in the Anthropocene penetrates to the molecular level of personal and microscale ecology, including the microbial systems at the foundations of all ecosystems. It provides the basis for more integrated efforts to address widespread environmental degradation and adverse effects of maladaptive urbanization, food systems, lifestyle behaviors, and socioeconomic disadvantage. Nature-based solutions and efforts to improve nature-relatedness are crucial for restoring symbiosis, balance, and mutualism in every sense, recognizing that both personal lifestyle choices and collective structural actions are needed in tandem. Ultimately, meaningful ecological approaches will depend on placing greater emphasis on psychological and cultural dimensions such as mindfulness, values, and moral wisdom to ensure a sustainable and resilient future.
Collapse
Affiliation(s)
- Susan L Prescott
- Medical School, University of Western Australia, Nedlands, WA, Australia.,Nova Institute for Health, Baltimore, Maryland, USA.,ORIGINS Project, Telethon Kids Institute at Perth Children's Hospital, Nedlands, WA, Australia
| | - Alan C Logan
- Nova Institute for Health, Baltimore, Maryland, USA
| | | | - Ricardo Rozzi
- Cape Horn International Center (CHIC), University of Magallanes, Puerto Williams, Chile.,Philosophy and Religion, University of North Texas, Denton, Texas, USA
| | - Rob Moodie
- School of Population and Global Health (MSPGH), University of Melbourne, Parkville, Vic., Australia
| | - Nicole Redvers
- School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Sara Warber
- Nova Institute for Health, Baltimore, Maryland, USA.,Department of Family Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Blake Poland
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Trevor Hancock
- School of Public Health and Social Policy, University of Victoria, Victoria, BC, Canada
| | - Brian Berman
- Nova Institute for Health, Baltimore, Maryland, USA.,Department of Family and Community Medicine, Center for Integrative Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Shi T, Feng Y, Liu W, Liu H, Li T, Wang M, Li Z, Lu J, Abudurexiti A, Maimaitireyimu A, Hu J, Gao F. Characteristics of gut microbiota and fecal metabolomes in patients with celiac disease in Northwest China. Front Microbiol 2022; 13:1020977. [PMID: 36519162 PMCID: PMC9742481 DOI: 10.3389/fmicb.2022.1020977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/14/2022] [Indexed: 06/30/2024] Open
Abstract
Celiac disease (CD) is an autoimmune small bowel disease. The pattern of gut microbiota is closely related to dietary habits, genetic background, and geographical factors. There is a lack of research on CD-related gut microbiota in China. This study aimed to use 16S rDNA sequencing and metabolomics to analyze the fecal microbial composition and metabolome characteristics in patients diagnosed with CD in Northwest China, and to screen potential biomarkers that could be used for its diagnosis. A significant difference in the gut microbiota composition was observed between the CD and healthy controls groups. At the genus level, the abundance of Streptococcus, Lactobacillus, Veillonella, and Allisonella communities in the CD group were increased (Q < 0.05). Furthermore, the abundance of Ruminococcus, Faecalibacterium, Blautia, Gemmiger, and Anaerostipes community in this group were decreased (Q < 0.05). A total of 222 different fecal metabolites were identified in the two groups, suggesting that CD patients have a one-carbon metabolism defect. Four species of bacteria and six metabolites were selected as potential biomarkers using a random forest model. Correlation analysis showed that changes in the gut microbiota were significantly correlated with changes in fecal metabolite levels. In conclusion, the patterns of distribution of gut microbiota and metabolomics in patients with CD in Northwest China were found to be unique to these individuals. This has opened up a new way to explore potential beneficial effects of supplementing specific nutrients and potential diagnostic and therapeutic targets in the future.
Collapse
Affiliation(s)
- Tian Shi
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, China
| | - Yan Feng
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, China
| | - Weidong Liu
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, China
| | - Huan Liu
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, China
| | - Ting Li
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, China
| | - Man Wang
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, China
| | - Ziqiong Li
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, China
| | - Jiajie Lu
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, China
| | - Adilai Abudurexiti
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, China
| | - Ayinuer Maimaitireyimu
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, China
| | - Jiali Hu
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, China
| | - Feng Gao
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, China
| |
Collapse
|
15
|
The microbiota and aging microenvironment in pancreatic cancer: Cell origin and fate. Biochim Biophys Acta Rev Cancer 2022; 1877:188826. [DOI: 10.1016/j.bbcan.2022.188826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/30/2022]
|
16
|
Xia Q, Zhao Q, Zhu H, Cao Y, Yang K, Sun P, Cai M. Physicochemical characteristics of Ganoderma lucidum oligosaccharide and its regulatory effect on intestinal flora in vitro fermentation. Food Chem X 2022; 15:100421. [PMID: 36211736 PMCID: PMC9532794 DOI: 10.1016/j.fochx.2022.100421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/01/2022] Open
Abstract
G. lucidum oligosaccharide was obtained by ultrasonic enzymatic hydrolysis and Sephadex G25. GLO was a chain-like homogeneous oligosaccharide with a molecular weight of 1280 Da. GLO could not be easily degraded by digestion in the mouth, gastric and small intestine. GLO could be utilized and had good regulatory effects on intestinal flora.
This study explored the structure characteristics of an oligosaccharide from Ganoderma lucidum (GLO) and its regulatory functions on intestinal flora fermentation in vitro. GLO was extracted by ultrasonic-assisted enzymatic hydrolysis, and purified with a dextran gel column. Digestion properties and intestinal flora regulation effects of GLO were investigated by both simulation models. Results showed that GLO was a chain-like homogeneous oligosaccharide, composed of → 6)-β-d-Glcp-(1→, →4)-α-d-Glcp-(1→, β-d-Glcp-(1→, α-d-Manp-(1 →. Its structure could not be easily degraded by digestion in the mouth, gastric and small intestine. Accordingly, they can be utilized by the intestinal flora in large intestine. By evaluating the gas, short chain fatty acids, pH and flora abundance in vitro fermentation, it indicated that GLO had good regulatory effects on intestinal flora. Accordingly, GLO might be a potential prebiotic applied in functional foods.
Collapse
|
17
|
Inamura K, Hamada T, Bullman S, Ugai T, Yachida S, Ogino S. Cancer as microenvironmental, systemic and environmental diseases: opportunity for transdisciplinary microbiomics science. Gut 2022; 71:gutjnl-2022-327209. [PMID: 35820782 PMCID: PMC9834441 DOI: 10.1136/gutjnl-2022-327209] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023]
Abstract
Cancer is generally regarded as a localised disease, with the well-established role of the tumour microenvironment. However, the realm of cancer goes beyond the tumour microenvironment, and cancer should also be regarded as a systemic and environmental disease. The exposome (ie, the totality of exposures), which encompasses diets, supplements, smoking, alcohol, other lifestyle factors, medications, etc, likely alters the microbiome (inclusive of bacteria, viruses, archaea, fungi, parasites, etc) and immune system in various body sites and influences tumour phenotypes. The systemic metabolic/inflammatory status, which is likely influenced by exposures and intestinal physiological changes, may affect tissue microenvironment of colorectum and any other organs. Germline genomic factors can modify disease phenotypes via gene-by-environment interactions. Although challenges exist, it is crucial to advance not only basic experimental research that can analyse the effects of exposures, microorganisms and microenvironmental components on tumour evolution but also interdisciplinary human population research that can dissect the complex pathogenic roles of the exposome, microbiome and immunome. Metagenomic, metatranscriptomic and metabolomic analyses should be integrated into well-designed population research combined with advanced methodologies of artificial intelligence and molecular pathological epidemiology. Ideally, a prospective cohort study design that enables biospecimen (such as stool) collection before disease detection should be considered to address reverse causation and recall biases. Robust experimental and observational research together can provide insights into dynamic interactions between environmental exposures, microbiota, tumour and immunity during carcinogenesis processes, thereby helping us develop precision prevention and therapeutic strategies to ultimately reduce the cancer burden.
Collapse
Affiliation(s)
- Kentaro Inamura
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tsuyoshi Hamada
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Hepato-Biliary-Pancreatic Medicine, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Susan Bullman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Tomotaka Ugai
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shinichi Yachida
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
- Division of Genomic Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Shuji Ogino
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Tsiantas K, Konteles SJ, Kritsi E, Sinanoglou VJ, Tsiaka T, Zoumpoulakis P. Effects of Non-Polar Dietary and Endogenous Lipids on Gut Microbiota Alterations: The Role of Lipidomics. Int J Mol Sci 2022; 23:ijms23084070. [PMID: 35456888 PMCID: PMC9024800 DOI: 10.3390/ijms23084070] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/25/2022] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
Advances in sequencing technologies over the past 15 years have led to a substantially greater appreciation of the importance of the gut microbiome to the health of the host. Recent outcomes indicate that aspects of nutrition, especially lipids (exogenous or endogenous), can influence the gut microbiota composition and consequently, play an important role in the metabolic health of the host. Thus, there is an increasing interest in applying holistic analytical approaches, such as lipidomics, metabolomics, (meta)transcriptomics, (meta)genomics, and (meta)proteomics, to thoroughly study the gut microbiota and any possible interplay with nutritional or endogenous components. This review firstly summarizes the general background regarding the interactions between important non-polar dietary (i.e., sterols, fat-soluble vitamins, and carotenoids) or amphoteric endogenous (i.e., eicosanoids, endocannabinoids-eCBs, and specialized pro-resolving mediators-SPMs) lipids and gut microbiota. In the second stage, through the evaluation of a vast number of dietary clinical interventions, a comprehensive effort is made to highlight the role of the above lipid categories on gut microbiota and vice versa. In addition, the present status of lipidomics in current clinical interventions as well as their strengths and limitations are also presented. Indisputably, dietary lipids and most phytochemicals, such as sterols and carotenoids, can play an important role on the development of medical foods or nutraceuticals, as they exert prebiotic-like effects. On the other hand, endogenous lipids can be considered either prognostic indicators of symbiosis or dysbiosis or even play a role as specialized mediators through dietary interventions, which seem to be regulated by gut microbiota.
Collapse
Affiliation(s)
- Konstantinos Tsiantas
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (K.T.); (S.J.K.); (E.K.); (V.J.S.)
| | - Spyridon J. Konteles
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (K.T.); (S.J.K.); (E.K.); (V.J.S.)
| | - Eftichia Kritsi
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (K.T.); (S.J.K.); (E.K.); (V.J.S.)
| | - Vassilia J. Sinanoglou
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (K.T.); (S.J.K.); (E.K.); (V.J.S.)
| | - Thalia Tsiaka
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (K.T.); (S.J.K.); (E.K.); (V.J.S.)
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vas. Constantinou Ave., 11635 Athens, Greece
- Correspondence: (T.T.); (P.Z.)
| | - Panagiotis Zoumpoulakis
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (K.T.); (S.J.K.); (E.K.); (V.J.S.)
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vas. Constantinou Ave., 11635 Athens, Greece
- Correspondence: (T.T.); (P.Z.)
| |
Collapse
|
19
|
Sędzikowska A, Szablewski L. Human Gut Microbiota in Health and Selected Cancers. Int J Mol Sci 2021; 22:13440. [PMID: 34948234 PMCID: PMC8708499 DOI: 10.3390/ijms222413440] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022] Open
Abstract
The majority of the epithelial surfaces of our body, and the digestive tract, respiratory and urogenital systems, are colonized by a vast number of bacteria, archaea, fungi, protozoans, and viruses. These microbiota, particularly those of the intestines, play an important, beneficial role in digestion, metabolism, and the synthesis of vitamins. Their metabolites stimulate cytokine production by the human host, which are used against potential pathogens. The composition of the microbiota is influenced by several internal and external factors, including diet, age, disease, and lifestyle. Such changes, called dysbiosis, may be involved in the development of various conditions, such as metabolic diseases, including metabolic syndrome, type 2 diabetes mellitus, Hashimoto's thyroidis and Graves' disease; they can also play a role in nervous system disturbances, such as multiple sclerosis, Alzheimer's disease, Parkinson's disease, and depression. An association has also been found between gut microbiota dysbiosis and cancer. Our health is closely associated with the state of our microbiota, and their homeostasis. The aim of this review is to describe the associations between human gut microbiota and cancer, and examine the potential role of gut microbiota in anticancer therapy.
Collapse
Affiliation(s)
| | - Leszek Szablewski
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, ul. Chalubinskiego 5, 02-004 Warsaw, Poland;
| |
Collapse
|
20
|
Design of an In Vitro Model to Screen the Chemical Reactivity Induced by Polyphenols and Vitamins during Digestion: An Application to Processed Meat. Foods 2021; 10:foods10092230. [PMID: 34574340 PMCID: PMC8468892 DOI: 10.3390/foods10092230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 01/08/2023] Open
Abstract
Processed meats’ nutritional quality may be enhanced by bioactive vegetable molecules, by preventing the synthesis of nitrosamines from N-nitrosation, and harmful aldehydes from lipid oxidation, through their reformulation. Both reactions occur during digestion. The precise effect of these molecules during processed meats’ digestion must be deepened to wisely select the most efficient vegetable compounds. The aim of this study was to design an in vitro experimental method, allowing to foresee polyphenols and vitamins’ effects on the chemical reactivity linked to processed meats’ digestion. The method measured the modulation of end products formation (specific nitroso-tryptophan and thiobarbituric acid reactive substances (TBARS)), by differential UV-visible spectrophotometry, according to the presence or not of phenolic compounds (chlorogenic acid, rutin, naringin, naringenin) or vitamins (ascorbic acid and trolox). The reactional medium was supported by an oil in water emulsion mimicking the physico-chemical environment of the gastric compartment. The model was optimized to uphold the reactions in a stable and simplified model featuring processed meat composition. Rutin, chlorogenic acid, naringin, and naringenin significantly inhibited lipid oxidation. N-nitrosation was inhibited by the presence of lipids and ascorbate. This methodology paves the way for an accurate selection of molecules within the framework of processed meat products reformulation.
Collapse
|
21
|
Sikorska-Zimny K, Beneduce L. The Metabolism of Glucosinolates by Gut Microbiota. Nutrients 2021; 13:2750. [PMID: 34444909 PMCID: PMC8401010 DOI: 10.3390/nu13082750] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/30/2021] [Accepted: 08/08/2021] [Indexed: 02/08/2023] Open
Abstract
Glucosinolates (GLS) and their derivatives are secondary plant metabolites abundant in Brassicaceae. Due to the enzymatic reaction between GLS and myrosinase enzyme, characteristic compounds with a pungent taste are formed, used by plants to defend themselves against insect herbivores. These GLS derivatives have an important impact on human health, including anti-inflammation and anti-cancer effects. However, GLS derivatives' formation needs previous enzymatic reactions catalyzed by myrosinase enzyme. Many of the brassica-based foods are processed at a high temperature that inactivates enzymes, hindering its bioavailability. In the last decade, several studies showed that the human gut microbiome can provide myrosinase activity that potentially can raise the beneficial effects of consumption of vegetables rich in GLS. The variability of the human gut microbiome (HGM) in human populations and the diverse intake of GLS through the diet may lead to greater variability of the real dose of pro-healthy compounds absorbed by the human body. The exploitation of the genetic and biochemical potential of HGM and correct ecological studies of both isolated strains and mixed population are of great interest. This review focuses on the most recent advances in this field.
Collapse
Affiliation(s)
- Kalina Sikorska-Zimny
- Fruit and Vegetables Storage and Processing Department, Division of Fruit and Vegetable Storage and Postharvest Physiology, The National Institute of Horticultural Research, Pomologiczna 13a Street, 96-100 Skierniewice, Poland
- Medical, Natural and Technical College, Institute of Health Sciences, Stefan Batory State University, Batorego 64c Street, 96-100 Skierniewice, Poland
| | - Luciano Beneduce
- Department of the Sciences of Agriculture, Food, Natural Resources, and Engineering (DAFNE) the University of Foggia, Via Napoli 25, 71122 Foggia, Italy;
| |
Collapse
|
22
|
Huang X, Chen L, Li Z, Zheng B, Liu N, Fang Q, Jiang J, Rao T, Ouyang D. The efficacy and toxicity of antineoplastic antimetabolites: Role of gut microbiota. Toxicology 2021; 460:152858. [PMID: 34273448 DOI: 10.1016/j.tox.2021.152858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/01/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
The incidence and mortality of cancer are rapidly growing all over the world. Nowadays, antineoplastic antimetabolites still play a key role in the chemotherapy of cancer. However, the interindividual variations in the efficacy and toxicity of antineoplastic antimetabolites are nonnegligible challenges to their clinical applications. Although many studies have focused on genetic variation, the reasons for these interindividual variations have still not been fully understood. Gut microbiota is reported to be associated with the efficacy and toxicity of antineoplastic antimetabolites. In this review, we summarize the interaction of antineoplastic antimetabolites on gut microbiota and the influences of shifted gut microbiota profiles on the efficacy and toxicity of antineoplastic antimetabolites. The factors affecting the efficacy and toxicity of antineoplastic antimetabolites via gut microbiota are also discussed. In addition, we present our viewpoints that regulating the gut microbiota may increase the efficacy and decrease the toxicity of antineoplastic antimetabolites. This will help us better understand the new mechanism via gut microbiota and promote individualized use of antineoplastic antimetabolites.
Collapse
Affiliation(s)
- Xinyi Huang
- Institute of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China
| | - Lulu Chen
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, 411000, PR China
| | - Zhenyu Li
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, PR China; Department of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China
| | - Binjie Zheng
- Institute of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China
| | - Na Liu
- Institute of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China
| | - Qing Fang
- Institute of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China
| | - Jinsheng Jiang
- Institute of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China; Sanjin Group Hunan Sanjin Pharmaceutical Co., Ltd., 320 Deshan Road, Hunan, 415000, PR China
| | - Tai Rao
- Institute of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China.
| | - Dongsheng Ouyang
- Institute of Clinical Pharmacology, Xiangya Hospital, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, PR China.
| |
Collapse
|
23
|
Kefir and Its Biological Activities. Foods 2021; 10:foods10061210. [PMID: 34071977 PMCID: PMC8226494 DOI: 10.3390/foods10061210] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 02/01/2023] Open
Abstract
Kefir is a fermented beverage with renowned probiotics that coexist in symbiotic association with other microorganisms in kefir grains. This beverage consumption is associated with a wide array of nutraceutical benefits, including anti-inflammatory, anti-oxidative, anti-cancer, anti-microbial, anti-diabetic, anti-hypertensive, and anti-hypercholesterolemic effects. Moreover, kefir can be adapted into different substrates which allow the production of new functional beverages to provide product diversification. Being safe and inexpensive, there is an immense global interest in kefir’s nutritional potential. Due to their promising benefits, kefir and kefir-like products have a great prospect for commercialization. This manuscript reviews the therapeutic aspects of kefir to date, and potential applications of kefir products in the health and food industries, along with the limitations. The literature reviewed here demonstrates that there is a growing demand for kefir as a functional food owing to a number of health-promoting properties.
Collapse
|