1
|
Vázquez-Villa H, Rueda-Zubiaurre A, Fernández D, Foronda R, Parker CG, Cravatt BF, Martín-Fontecha M, Ortega-Gutiérrez S. Chemical probes for the identification of the molecular targets of honokiol. Eur J Med Chem 2025; 283:117102. [PMID: 39616692 DOI: 10.1016/j.ejmech.2024.117102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/03/2024] [Accepted: 11/12/2024] [Indexed: 01/03/2025]
Abstract
Honokiol is a natural product with an interesting array of biological effects, including significant anti-tumor properties. However, full exploration of its therapeutic potential is hampered by its modest pharmacokinetic profile and by the lack of synthetic methods that allow to obtain specifically designed derivatives with improved properties. In addition, the specific molecular targets of honokiol remain poorly understood, a fact that limits the search of alternative hits for subsequent optimization programs. In this work we describe an optimized series of synthetic routes that allow to access to a variety of honokiol derivatives, including a set of minimalist photoaffinity probes to map potential protein targets in live cells. Chemical proteomic studies of the most potent probe revealed a defined set of proteins as the cellular targets of honokiol. Significantly, up to the 62 % of the identified proteins have described roles in cancer, highlighting their potential relationship with the antitumor effects of honokiol. Furthermore, several of the top hits have been validated as direct binding partners of honokiol by cellular thermal shift assay (CETSA). In sum, the work described herein provides the first landscape of the cellular targets of honokiol in living cells and contributes to define the specific molecular pathways affected by this natural product.
Collapse
Affiliation(s)
- Henar Vázquez-Villa
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Plaza de las Ciencias s/n, Universidad Complutense de Madrid, E-28040, Madrid, Spain
| | - Ainoa Rueda-Zubiaurre
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Plaza de las Ciencias s/n, Universidad Complutense de Madrid, E-28040, Madrid, Spain
| | - Daniel Fernández
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Plaza de las Ciencias s/n, Universidad Complutense de Madrid, E-28040, Madrid, Spain
| | - Román Foronda
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Plaza de las Ciencias s/n, Universidad Complutense de Madrid, E-28040, Madrid, Spain
| | | | - Benjamin F Cravatt
- Department of Chemistry, Scripps Research, La Jolla, CA, 92037, United States
| | - Mar Martín-Fontecha
- Departamento de Química Orgánica, Facultad de Óptica y Optometría, Avda. Arcos de Jalón, 118, Universidad Complutense de Madrid, E-28037, Madrid, Spain.
| | - Silvia Ortega-Gutiérrez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Plaza de las Ciencias s/n, Universidad Complutense de Madrid, E-28040, Madrid, Spain.
| |
Collapse
|
2
|
Senthil Kumar KJ, Gokila Vani M, Dakpa G, Wang SY. Dietary limonene promotes gastrointestinal barrier function via upregulating tight/adherens junction proteins through cannabinoid receptor type-1 antagonistic mechanism and alters cellular metabolism in intestinal epithelial cells. Biofactors 2025; 51:e2106. [PMID: 39143845 DOI: 10.1002/biof.2106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/25/2024] [Indexed: 08/16/2024]
Abstract
Limonene, a dietary monocyclic monoterpene commonly found in citrus fruits and various aromatic plants, has garnered increasing interest as a gastrointestinal protectant. This study aimed to assess the effects of limonene on intestinal epithelial barrier function and investigate the involvement of cannabinoid receptor type-1 (CB1R) in vitro. Additionally, the study focused on examining the metabolomic changes induced by limonene in the intestinal epithelial cells (Caco-2). Initial analysis of transepithelial electrical resistance (TEER) revealed that both l-limonene and d-limonene, isomers of limonene, led to a dose- and time-dependent increase in TEER in normal cells and those inflamed by pro-inflammatory cytokines mixture (CytoMix). Furthermore, both types of limonene reduced CytoMix-induced paracellular permeability, as demonstrated by a decrease in Lucifer yellow flux. Moreover, d-limonene and l-limonene treatment increased the expression of tight junction molecules (TJs) such as occludin, claudin-1, and ZO-1, at both the transcriptional and translational levels. d-Limonene upregulates E-cadherin, a molecule involved in adherens junctions (AJs). Mechanistic investigations demonstrated that d-limonene and l-limonene treatment significantly inhibited CB1R at the protein, while the mRNA level remained unchanged. Notably, the inhibitory effect of d-limonene on CB1R was remarkably similar to that of pharmacological CB1R antagonists, such as rimonabant and ORG27569. d-limonene also alters Caco-2 cell metabolites. A substantial reduction in β-glucose and 2-succinamate was detected, suggesting limonene may impact intestinal epithelial cells' glucose uptake and glutamate metabolism. These findings suggest that d-limonene's CB1R antagonistic property could effectively aid in the recovery of intestinal barrier damage, marking it a promising gastrointestinal protectant.
Collapse
Affiliation(s)
- K J Senthil Kumar
- Bachelor Program of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Center for General Education, National Chung Hsing University, Taichung, Taiwan
| | - M Gokila Vani
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan
| | - Gyaltsen Dakpa
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Sheng-Yang Wang
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Special Crop and Metabolome Discipline Cluster, Academy of Circle Economy, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
3
|
Xu Y, Xue G, Zhou L, Wu G, Hu L, Ma S, Zhang J, Li X. KIF4A promotes epithelial-mesenchymal transition by activating the TGF-β/SMAD signaling pathway in glioma cells. Mol Cell Biochem 2025; 480:217-230. [PMID: 38411896 DOI: 10.1007/s11010-024-04943-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/14/2024] [Indexed: 02/28/2024]
Abstract
Gliomas are the most prevalent type of primary brain tumor, with poor prognosis reported in patients with high-grade glioma. Kinesin family member 4 A (KIF4A) stimulates the proliferation, migration, and invasion of tumor cells. However, its function in gliomas has not been clearly established. Therefore, this study aimed to investigate the effects of KIF4A on the epithelial-mesenchymal transition and invasion of glioma cells. We searched The Cancer Genome Atlas and Chinese Glioma Genome Atlas databases to identify KIF4A-related signaling pathways and downstream genes. We further validated them using western blotting, transwell migration and invasion, wound-healing scratch, and dual-luciferase reporter assays in U251 and U87 human glioblastoma cells. Our analysis of the Cancer Genome Atlas and Chinese Glioma Genome Atlas data showed elevated KIF4A expression in patients with gliomas and was associated with clinical grade. Here, KIF4A overexpression promoted the migration, invasion, and proliferation of glioma cells, whereas KIF4A knockdown showed contrasting results. Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) analyses demonstrated that KIF4A positively controls TGF-β/SMAD signaling in glioma cells. Additionally, genetic correlation analysis revealed that KIF4A transcriptionally controls benzimidazoles-1 expression in glioma cells. KIF4A promotes the epithelial-mesenchymal transition by regulating the TGF-β/SMAD signaling pathway via benzimidazoles-1 in glioma cells.
Collapse
Affiliation(s)
- Yao Xu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guangren Xue
- Department of Neurosurgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Lei Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gaotian Wu
- Laboratory of Cancer Molecular Genetics, Soochow University, Medical College of Soochow University, Suzhou, China
| | - Lingji Hu
- Laboratory of Cancer Molecular Genetics, Soochow University, Medical College of Soochow University, Suzhou, China
| | - Shuchen Ma
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Xiangdong Li
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
4
|
Ji Y, Lin Y, He J, Xie Y, An W, Luo X, Qiao X, Li Z. Research progress of mitochondria and cytoskeleton crosstalk in tumour development. Biochim Biophys Acta Rev Cancer 2024; 1880:189254. [PMID: 39732178 DOI: 10.1016/j.bbcan.2024.189254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
During tumour progression, organelle function undergoes dramatic changes, and crosstalk among organelles plays a significant role. Crosstalk between mitochondria and other organelles such as the endoplasmic reticulum and cytoskeleton has focussed attention on the mechanisms of tumourigenesis. This review demonstrates an overview of the molecular structure of the mitochondrial-cytoskeletal junction and its biological interactions. It also presents a detailed and comprehensive description of mitochondrial-cytoskeletal crosstalk in tumour occurrence and development, including tumour cell proliferation, apoptosis, autophagy, metabolic rearrangement, and metastasis. Finally, the application of crosstalk in tumour therapy, including drug combinations and chemoresistance, is discussed. This review offers a theoretical basis for establishing mitochondrial-cytoskeletal junctions as therapeutic targets, and offers novel insights into the future management of malignant tumours.
Collapse
Affiliation(s)
- Yue Ji
- Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang 110002, Liaoning Province, China
| | - Yingchi Lin
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China; Provincial key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China; Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, China
| | - Jing He
- Department of Oral Implantology, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Diseases, Shenyang 110002, Liaoning Province, China
| | - Yuanyuan Xie
- Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang 110002, Liaoning Province, China
| | - Wenmin An
- Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang 110002, Liaoning Province, China
| | - Xinyu Luo
- Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang 110002, Liaoning Province, China
| | - Xue Qiao
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang 110002, Liaoning Province, China; Department of Central Laboratory, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang 110002, Liaoning Province, China.
| | - Zhenning Li
- Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang 110002, Liaoning Province, China.
| |
Collapse
|
5
|
Fan Y, He Y, Sun L, Liu T, Shen Y. Mesonephric adenocarcinoma of the uterine cervix with a prominent spindle cell component. Oncol Lett 2024; 28:508. [PMID: 39233819 PMCID: PMC11369853 DOI: 10.3892/ol.2024.14641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024] Open
Abstract
Mesonephric adenocarcinomas (MAs) with spindle cell components are rare malignant cervical tumours. In the present study, a retrospective analysis of these tumours was performed. Clinicopathological data were gathered from electronic surgical pathology records, and both immunohistochemistry and targeted next-generation sequencing (NGS) were performed. The present study included three postmenopausal female patients diagnosed with primary uterine cervical MA with prominent spindle cell components, aged 51-60 years. All patients underwent hysterectomy with bilateral salpingo-oophorectomy and pelvic lymph node dissection. There were no recurrences or deaths after surgery. NGS analysis identified KRAS mutations in 2 cases and a PIK3-catalytic subunit α (PIK3CA) mutation in another. Spindle cell components may indicate MAs at an advanced stage. Spindle cell components in MAs are diagnostic pitfalls, and the use of immunohistochemical panels and molecular detection cases with overlapping morphological features is recommended. While KRAS mutations are the most common types of mutations in MAs with spindle cell components, the present study demonstrates that PIK3CA mutations can also occur independently in cases without KRAS mutations.
Collapse
Affiliation(s)
- Yingying Fan
- Department of Pathology, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610011, P.R. China
| | - Ying He
- Department of Pathology, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610011, P.R. China
| | - Liang Sun
- Department of Pathology, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610011, P.R. China
| | - Tianmin Liu
- Department of Pathology, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610011, P.R. China
| | - Yangmei Shen
- Department of Pathology, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610011, P.R. China
| |
Collapse
|
6
|
Wang Z, Yan S, Liao S, Zhang Y, Wu S, Zhou M, Jin W, Zhang Y, Qi X, Yang C, Yang J, Ding J. Dysregulated lncSNHG12 suppresses the invasion and migration of trophoblasts by regulating Dio2/Snail axis to involve in recurrent spontaneous abortion. Biochem Pharmacol 2024; 229:116459. [PMID: 39098733 DOI: 10.1016/j.bcp.2024.116459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Recurrent spontaneous abortion (RSA) is a complex pathological process involving diverse factors, in which the dysregulated functions of trophoblasts cannot be ignored. Long noncoding RNA (lncRNA) has been reported to play a significant role in regulating the functions of trophoblasts in RSA. However, the impact and potential mechanism of lncRNA small nucleolar RNA host gene 12 (lncSNHG12) remain unclear. The role of lncSNHG12 in RSA was investigated through in vivo experiments and clinical samples. Co-IP and RNA pull down were conducted to explore the molecular mechanisms in trophoblasts. Our results showed that lncSNHG12 promoted the migration and invasion of trophoblasts by interacting with Iodothyronine deiodinase 2 (Dio2), which regulating the EMT process of trophoblasts by interacting with Snail. Moreover, in vivo experiments confirmed that lncSNHG12 could improve the fetal absorption rate of the abortion mice. The clinical samples revealed that lncSNHG12, Dio2 and Snail were down-regulated in the villous tissues of RSA patients, and positive correlations were confirmed between lncSNHG12 and Dio2, as well as Dio2 and Snail. In summary, the lncSNHG12/Dio2/Snail axis might be involved in the development of RSA by regulating the invasion and migration of trophoblasts. Abbreviations: RSA, recurrent spontaneous abortion; EVTs, extravillous trophoblasts; EMT, epithelial-to-mesenchymal transition; lncRNA, long non-coding RNA; Dio2, iodothyronine deiodinase 2; SNHGs, small nuclear RNA host genes; snoRNAs, small nuclear cell RNAs; LPS, lipopolysaccharide; De, derived decidua; Jz, junctional zone; Lz, labyrinth zones; RIP, RNA Binding Protein Immunoprecipitation; Co-IP, Co-Immunoprecipitation; RPISeq, RNA-Protein Interaction Prediction.
Collapse
Affiliation(s)
- Zehao Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430060, China; Reproductive Medicine Center, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Sisi Yan
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430060, China; Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Shichong Liao
- Department of Thyroid and Breast Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shujuan Wu
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430060, China
| | - Mengqi Zhou
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430060, China
| | - Wenyi Jin
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430060, China
| | - Yi Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430060, China
| | - Xinyu Qi
- China Department of Obstetrics and Gynecology, Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Third Hospital, Peking University, Beijing 100191, China
| | - Chaogang Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center and The Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan 430071, China.
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430060, China.
| | - Jinli Ding
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430060, China.
| |
Collapse
|
7
|
de Andrade JP, Soares CF, Junqueira ALDM, Santos DR, de Carvalho MPN, Nakagaki KYR, Viscone ÉA, Borges L, Cassali GD, Horta RDS. Histopathological and immunohistochemical analysis of a suspected extraskeletal osteosarcoma in a rabbit ( Oryctolagus cuniculus). BRAZILIAN JOURNAL OF VETERINARY MEDICINE 2024; 46:e003324. [PMID: 39399861 PMCID: PMC11469577 DOI: 10.29374/2527-2179.bjvm003324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024] Open
Abstract
An 8-year-old male rabbit (Oryctolagus cuniculus) presented with a subcutaneous mass in the proximal region of the fourth and accessory digit measuring 5.5 x 3.5 x 5.2cm. The mass was non-alopecic and exhibited irregular surface, ulceration and necrosis with predominantly pale and light brown coloring. Radiography revealed no involvement of bone and adjacent periosteum. The mass was marginally resected and the electrochemotherapy (ECT) was performed on the surgical bed. Histopathology and immunohistochemical analysis revealed positive reactions for Vimentin, Runx-2 and ki-67, leading to a diagnosis of extraskeletal osteosarcoma (ESOS). This report described a case of ESOS in a rabbit, thereby delineating its clinical presentation, anatomopathological characteristics, diagnostic modalities and recommended therapeutic interventions.
Collapse
Affiliation(s)
- Julia Penna de Andrade
- Veterinarian, Resident. Programa de Residência em Saúde Única com Ênfase em Interface Saúde Humana e Silvestre- Escola de Veterinária da Universidade Federal de Minas Gerais (UFMG). Pampulha, Belo Horizonte, MG, Brazil.
| | - Camilla Faria Soares
- Veterinarian, Resident. Programa de Residência em Saúde Única com Ênfase em Interface Saúde Humana e Silvestre- Escola de Veterinária da Universidade Federal de Minas Gerais (UFMG). Pampulha, Belo Horizonte, MG, Brazil.
| | | | - Daniel Reis Santos
- Veterinarian, Resident. Programa de Residência em Saúde Única com Ênfase em Interface Saúde Humana e Silvestre- Escola de Veterinária da Universidade Federal de Minas Gerais (UFMG). Pampulha, Belo Horizonte, MG, Brazil.
| | | | | | - Érica Almeida Viscone
- Veterinarian, autonomous, Celulavet - Centro de Diagnóstico Veterinário, Belo Horizonte, MG, Brazil.
| | - Lize Borges
- Veterinarian. Laboratório de Patologia Comparada, Instituto de Ciências Biológicas, UFMG. Pampulha, Belo Horizonte, MG, Brazil.
| | - Geovanni Dantas Cassali
- Veterinarian. Laboratório de Patologia Comparada, Instituto de Ciências Biológicas, UFMG. Pampulha, Belo Horizonte, MG, Brazil.
| | - Rodrigo dos Santos Horta
- Veterinarian, DSc. Departamento de Clínica e Cirurgia Veterinária (DCCV), UFMG. Pampulha, Belo Horizonte, MG, Brazil.
| |
Collapse
|
8
|
Han Y, Liu C, Chen S, Sun H, Jia Z, Shi J, Wang L, Du K, Chang Y. Columbianadin ameliorates rheumatoid arthritis by attenuating synoviocyte hyperplasia through targeted vimentin to inhibit the VAV2/Rac-1 signaling pathway. J Adv Res 2024:S2090-1232(24)00432-6. [PMID: 39369957 DOI: 10.1016/j.jare.2024.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/13/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024] Open
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is an autoimmune disease pathologically characterized by synovial inflammation. The abnormal activation of synoviocytes seems to accompany the progression of RA. The role and exact molecular mechanism in RA of columbianadin (CBN) which is a natural coumarin is still unclear. OBJECTIVES The present research aimed to investigate the effect of vimentin on the abnormal growth characteristics of RA synoviocytes and the targeted regulatory role of CBN. METHODS Cell migration and invasion were detected using the wound healing and transwell method. Mechanistically, the direct molecular targets of CBN were screened and identified by activity-based protein profiling. The expression of relevant proteins and mRNA in cells and mouse synovium was detected by western blotting and qRT-PCR. Changes in the degree of paw swelling and body weight of mice were recorded. H&E staining, toluidine blue staining, and micro-CT were used to visualize the degree of pathological damage in the ankle joints of mice. Small interfering RNA and plasmid overexpression of vimentin were used to observe their effects on MH7A cell proliferation, migration, apoptosis, and downstream molecular signaling. RESULTS The TNF-α-induced proliferation and migration of MH7A cells could be significantly repressed by CBN (25,50 μM), and the expression of apoptosis and autophagy-associated proteins could be modulated. Furthermore, CBN could directly bind to vimentin and inhibit its expression and function in synoviocytes, thereby ameliorating foot and paw swelling and joint damage in CIA mice. Silencing and overexpression of vimentin might be involved in developing RA synovial hyperplasia and invasive cartilage by activating VAV2 phosphorylation-mediated expression of Rac-1, which affects abnormal growth characteristics, such as synoviocyte invasion and migration. CONCLUSION CBN-targeted vimentin restrains the overactivation of RA synoviocytes thereby delaying the pathological process in CIA mice, which provides valuable targets and insights for understanding the pathological mechanisms of RA synovial hyperplasia.
Collapse
Affiliation(s)
- Yuli Han
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Changqing Liu
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shujing Chen
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Huihui Sun
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhaoyu Jia
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jiaxin Shi
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lirong Wang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kunze Du
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yanxu Chang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
9
|
Doran BR, Moffitt LR, Wilson AL, Stephens AN, Bilandzic M. Leader Cells: Invade and Evade-The Frontline of Cancer Progression. Int J Mol Sci 2024; 25:10554. [PMID: 39408880 PMCID: PMC11476628 DOI: 10.3390/ijms251910554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Metastasis is the leading cause of cancer-related mortality; however, a complete understanding of the molecular programs driving the metastatic cascade is lacking. Metastasis is dependent on collective invasion-a developmental process exploited by many epithelial cancers to establish secondary tumours and promote widespread disease. The key drivers of collective invasion are "Leader Cells", a functionally distinct subpopulation of cells that direct migration, cellular contractility, and lead trailing or follower cells. While a significant body of research has focused on leader cell biology in the traditional context of collective invasion, the influence of metastasis-promoting leader cells is an emerging area of study. This review provides insights into the expanded role of leader cells, detailing emerging evidence on the hybrid epithelial-mesenchymal transition (EMT) state and the phenotypical plasticity exhibited by leader cells. Additionally, we explore the role of leader cells in chemotherapeutic resistance and immune evasion, highlighting their potential as effective and diverse targets for novel cancer therapies.
Collapse
Affiliation(s)
- Brittany R. Doran
- Hudson Institute of Medical Research, Clayton 3168, Australia; (B.R.D.); (L.R.M.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Laura R. Moffitt
- Hudson Institute of Medical Research, Clayton 3168, Australia; (B.R.D.); (L.R.M.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Amy L. Wilson
- Hudson Institute of Medical Research, Clayton 3168, Australia; (B.R.D.); (L.R.M.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Andrew N. Stephens
- Hudson Institute of Medical Research, Clayton 3168, Australia; (B.R.D.); (L.R.M.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Maree Bilandzic
- Hudson Institute of Medical Research, Clayton 3168, Australia; (B.R.D.); (L.R.M.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| |
Collapse
|
10
|
Williams AL, Bohnsack BL. Keratin 8/18a.1 Expression Influences Embryonic Neural Crest Cell Dynamics and Contributes to Postnatal Corneal Regeneration in Zebrafish. Cells 2024; 13:1473. [PMID: 39273043 PMCID: PMC11394277 DOI: 10.3390/cells13171473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
A complete understanding of neural crest cell mechanodynamics during ocular development will provide insight into postnatal neural crest cell contributions to ophthalmic abnormalities in adult tissues and inform regenerative strategies toward injury repair. Herein, single-cell RNA sequencing in zebrafish during early eye development revealed keratin intermediate filament genes krt8 and krt18a.1 as additional factors expressed during anterior segment development. In situ hybridization and immunofluorescence microscopy confirmed krt8 and krt18a.1 expression in the early neural plate border and migrating cranial neural crest cells. Morpholino oligonucleotide (MO)-mediated knockdown of K8 and K18a.1 markedly disrupted the migration of neural crest cell subpopulations and decreased neural crest cell marker gene expression in the craniofacial region and eye at 48 h postfertilization (hpf), resulting in severe phenotypic defects reminiscent of neurocristopathies. Interestingly, the expression of K18a.1, but not K8, is regulated by retinoic acid (RA) during early-stage development. Further, both keratin proteins were detected during postnatal corneal regeneration in adult zebrafish. Altogether, we demonstrated that both K8 and K18a.1 contribute to the early development and postnatal repair of neural crest cell-derived ocular tissues.
Collapse
Affiliation(s)
- Antionette L. Williams
- Division of Ophthalmology, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave., Chicago, IL 60611, USA;
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, 645 N. Michigan Ave., Chicago, IL 60611, USA
| | - Brenda L. Bohnsack
- Division of Ophthalmology, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave., Chicago, IL 60611, USA;
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, 645 N. Michigan Ave., Chicago, IL 60611, USA
| |
Collapse
|
11
|
Gu X, Wei S, Lv X. Circulating tumor cells: from new biological insights to clinical practice. Signal Transduct Target Ther 2024; 9:226. [PMID: 39218931 PMCID: PMC11366768 DOI: 10.1038/s41392-024-01938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/31/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
The primary reason for high mortality rates among cancer patients is metastasis, where tumor cells migrate through the bloodstream from the original site to other parts of the body. Recent advancements in technology have significantly enhanced our comprehension of the mechanisms behind the bloodborne spread of circulating tumor cells (CTCs). One critical process, DNA methylation, regulates gene expression and chromosome stability, thus maintaining dynamic equilibrium in the body. Global hypomethylation and locus-specific hypermethylation are examples of changes in DNA methylation patterns that are pivotal to carcinogenesis. This comprehensive review first provides an overview of the various processes that contribute to the formation of CTCs, including epithelial-mesenchymal transition (EMT), immune surveillance, and colonization. We then conduct an in-depth analysis of how modifications in DNA methylation within CTCs impact each of these critical stages during CTC dissemination. Furthermore, we explored potential clinical implications of changes in DNA methylation in CTCs for patients with cancer. By understanding these epigenetic modifications, we can gain insights into the metastatic process and identify new biomarkers for early detection, prognosis, and targeted therapies. This review aims to bridge the gap between basic research and clinical application, highlighting the significance of DNA methylation in the context of cancer metastasis and offering new avenues for improving patient outcomes.
Collapse
Affiliation(s)
- Xuyu Gu
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shiyou Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
12
|
Ji W, Zhang W, Zhang X, Ke Y. TRIM33 enhances the ubiquitination of TFRC to enhance the susceptibility of liver cancer cells to ferroptosis. Cell Signal 2024; 121:111268. [PMID: 38909931 DOI: 10.1016/j.cellsig.2024.111268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a common malignancy, and ferroptosis is a novel form of cell death driven by excessive lipid peroxidation. In recent years, ferroptosis has been widely utilized in cancer treatment, and the ubiquitination modification system has been recognized to play a crucial role in tumorigenesis and metastasis. Increasing evidence suggests that ubiquitin regulates ferroptosis-related substrates involved in this process. However, the precise mechanism of utilizing ubiquitination modification to regulate ferroptosis for HCC treatment remains unclear. METHODS In this study, we detected the expression of TRIM33 in HCC using immunohistochemistry and western blotting techniques. The functional role of TRIM33 was verified through both in vitro and in vivo experiments. To evaluate the level of ferroptosis, mitochondrial superoxide levels, MDA levels, Fe2+ levels, and cell viability were assessed. Downstream substrates of TRIM33 were screened and confirmed via immunoprecipitation, immunofluorescence staining, and ubiquitination modification experiments. RESULTS Our findings demonstrate that TRIM33 inhibits the growth and metastasis of HCC cells both in vitro and in vivo while promoting their susceptibility to ferroptosis. Mechanistically speaking, TRIM33 induces cellular ferroptosis through E3 ligase-dependent degradation of TFRC-a known inhibitor of this process-thus elucidating the specific type and site at which TFRC undergoes modification by TRIM33. CONCLUSION In summary, our study reveals an important role for TRIM33 in HCC treatment while providing mechanistic support for its function. Additionally highlighted is the significance of ubiquitination modification leading to TFRC degradation-an insight that may prove valuable for future targeted therapies.
Collapse
Affiliation(s)
- Wenjing Ji
- Department of Gastroenterology, the Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Weibin Zhang
- The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xin Zhang
- The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yue Ke
- Department of Gastroenterology, the Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
| |
Collapse
|
13
|
Ji PC, Xie YS, Guo WK, Fu B, Chen XM. p38 Signaling Mediates Naringin-Induced Osteogenic Differentiation of Porcine Metanephric Mesenchymal Cells. Chin J Integr Med 2024; 30:818-825. [PMID: 38850479 DOI: 10.1007/s11655-024-3761-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2024] [Indexed: 06/10/2024]
Abstract
OBJECTIVE To explore the potential of metanephric mesenchymal cells (MMCs) for osteogenesis and naringin's ability to enhance this process and its molecular mechanism. METHODS Porcine MMCs at 70 days of gestation were used as tool cells, cultured in osteogenic induction medium, identified by immunocytochemistry staining. Osteogenic potential of porcine MMCs and naringin's ability to enhance this process was tested by detecting changes in cell viability, alkaline phosphatase (ALP) activity, the expression of runt-related transcription factor 2 (Runx2), osteopontin (OPN) and osteocalcin (OCN), and the formation of mineralized nodules, and the application of the p38 signaling pathway inhibitor SB203580 vitiated the osteogenesis-promoting effect of naringin. RESULTS Immunocytochemical staining showed that the cells were Vimentin and Six2(+), E-cadherin and CK-18(-). Naringin can activate the p38 signaling pathway to enhance the osteogenesis of porcine MMCs by increasing cell viability, ALP activity, the expressions of Runx2, OPN and OCN, and the formation of mineralized nodules (P<0.05). The application of p38 signaling pathway inhibitor SB203580 vitiated the osteogenesis-promoting effect of naringin, manifested by decreased ALP activity, the expressions of Runx2, OPN and OCN, and the formation of mineralized nodules (P<0.05). CONCLUSION Naringin, the active ingredient of Chinese herbal medicine Rhizoma Drynariae for nourishing Shen (Kidney) and strengthening bone, enhances the osteogenic differentiation of renal MMCs through the p38 signaling pathway.
Collapse
Affiliation(s)
- Peng-Cheng Ji
- Chinese PLA Medical School, Beijing, 100853, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, 100853, China
| | - Yuan-Sheng Xie
- Chinese PLA Medical School, Beijing, 100853, China.
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, 100853, China.
- School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Wen-Kai Guo
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Bo Fu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, 100853, China
| | - Xiang-Mei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, 100853, China
| |
Collapse
|
14
|
Smout JL, Bain MM, McLaughlin M, Elmer KR. Common lizard primary oviduct cell culture: A model system for the genetic and cellular basis of oviparity and viviparity. Exp Cell Res 2024; 442:114196. [PMID: 39117090 DOI: 10.1016/j.yexcr.2024.114196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/16/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Reproduction by egg-laying (oviparity) or live-bearing (viviparity) is a genetically determined trait fundamental to the biology of amniotes. Squamates are an emerging model for the genetics of reproductive mode yet lack cell culture models valuable for exploring molecular mechanisms. Here, we report a novel primary culture model for reproductive biology: cell cultures derived from the oviduct tissues (infundibulum, uterus and vagina) of oviparous and viviparous common lizards (Lacertidae: Zootoca vivipara). We maintained and expanded these cultures for over 100 days, including repeated subculturing and successful revival of cryopreserved cells. Immunocytochemical investigation suggested expression of both epithelial and fibroblast-like proteins, and RNA sequencing of cultured cells as compared to in vivo oviduct tissue showed changes in gene expression in response to the cell culture environment. Despite this, we confirmed the maintenance of distinct gene expression patterns in viviparous and oviparous cells after 60+ days of cell culture, finding 354 differentially expressed genes between viviparous and oviparous cells. Furthermore, we confirmed the expression of 15 viviparity-associated candidate genes in cells maintained for 60+ days in culture. Our study demonstrates the feasibility and utility of oviduct cell culture for molecular analysis of reproductive mode and provides a tool for future genetic experiments.
Collapse
Affiliation(s)
- John Laurence Smout
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, Scotland, G12 8QQ, UK
| | - Maureen M Bain
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, Scotland, G12 8QQ, UK
| | - Mark McLaughlin
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, Scotland, G12 8QQ, UK
| | - Kathryn R Elmer
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, Scotland, G12 8QQ, UK.
| |
Collapse
|
15
|
Jiang S, Tang Y, Wang X, Guo H, Chen L, Hu G, Cui Y, Liang S, Zuo J, Luo Z, Chen X, Wang X. ARHGAP4 promotes colon cancer metastasis through the TGF-β signaling pathway and may be associated with T cell exhaustion. Biochem Biophys Res Commun 2024; 722:150172. [PMID: 38805788 DOI: 10.1016/j.bbrc.2024.150172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Colon cancer is a prevalent invasive neoplasm in the gastrointestinal system with a high degree of malignancy. Despite extensive research, the underlying mechanisms of its recurrence and metastasis remain elusive.Rho GTPase activating protein 4 (ARHGAP4), a member of the small GTPases protein family, may be closely related to tumor metastasis, and its expression is increased in colon cancer. However, the role of ARHGAP4 in colon cancer metastasis is uncertain. This study investigates the impact of ARHGAP4 on the metastasis of colon cancer cells. Our objective is to determine the role of ARHGAP4 in regulating the invasive behavior of colon cancer cells. METHODS We downloaded colon adenocarcinoma (COAD) data from the Cancer Genome Atlas (TCGA), and performed differential analysis and survival analysis. By using the CIBERSORT algorithm, we evaluated the proportion of infiltrating immune cells in colon cancer. We further analyzed whether ARHGAP4 is associated with T cell exhaustion. Finally, we investigated the impact of ARHGAP4 knockdown on the migration and invasion of colon cancer cells through in vitro cell experiments. Additionally, we utilized western blotting to assess the expression of protein related to the TGF-β signaling pathway and epithelial-mesenchymal transition (EMT). RESULTS We found that ARHGAP4 is upregulated in colon cancer. Subsequent survival analysis revealed that the high-expression group had significantly lower survival rates compared to the low-expression group. Immune infiltration analysis showed that ARHGAP4 was not only positively correlated with CD8+ T cells, but also positively correlated with T cell exhaustion markers programmed cell death 1 (PDCD-1), cytotoxic T-lymphocyte associated protein 4 (CTLA-4), and lymphocyte activating 3 (LAG-3). In vitro cell experiments, the knockdown of ARHGAP4 inhibited the migration and invasion of colon cancer cells. Among EMT-related proteins, when ARHGAP4 was knocked down, the expression of E-cadherin was increased, while the expression of N-cadherin and Vimentin was decreased. Meanwhile, the expression of TGF-β1, p-Smad2, and p-Smad3, which are associated with the TGF-β/Smad pathway, all decreased. CONCLUSION ARHGAP4 promotes colon cancer metastasis through the TGF-β/Smad signaling pathway and may be associated with T cell exhaustion. It plays an important role in the progression of colon cancer and may serve as a potential target for diagnosis and treatment of colon cancer.
Collapse
Affiliation(s)
- Shuanghong Jiang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China; Digestive Endoscopy Center, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Yong Tang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Xiaobo Wang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Haiyang Guo
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Lin Chen
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Guangbing Hu
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Yutong Cui
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Shiqi Liang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Ji Zuo
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Zichen Luo
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Xinrui Chen
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Xianfei Wang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China; Digestive Endoscopy Center, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China.
| |
Collapse
|
16
|
Sato N, Tsujimoto M, Nakatsuji M, Tsuji H, Sugama Y, Shimazu K, Shimoda M, Ishihara H. Flow cytometric analysis for Ki67 assessment in formalin-fixed paraffin-embedded breast cancer tissue. BMC Biol 2024; 22:181. [PMID: 39183273 PMCID: PMC11346000 DOI: 10.1186/s12915-024-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Pathologists commonly employ the Ki67 immunohistochemistry labelling index (LI) when deciding appropriate therapeutic strategies for patients with breast cancer. However, despite several attempts at standardizing the Ki67 LI, inter-observer and inter-laboratory bias remain problematic. We developed a flow cytometric assay that employed tissue dissociation, enzymatic treatment and a gating process to analyse Ki67 in formalin-fixed paraffin-embedded (FFPE) breast cancer tissue. RESULTS We demonstrated that mechanical homogenizations combined with thrombin treatment can be used to recover efficiently intact single-cell nuclei from FFPE breast cancer tissue. Ki67 in the recovered cell nuclei retained reactivity against the MIB-1 antibody, which has been widely used in clinical settings. Additionally, since the method did not alter the nucleoskeletal structure of tissues, the nuclei of cancer cells can be enriched in data analysis based on differences in size and complexity of nuclei of lymphocytes and normal mammary cells. In a clinical study using the developed protocol, Ki67 positivity was correlated with the Ki67 LI obtained by hot spot analysis by a pathologist in Japan (rho = 0.756, P < 0.0001). The number of cancer cell nuclei subjected to the analysis in our assay was more than twice the number routinely checked by pathologists in clinical settings. CONCLUSIONS The findings of this study showed the application of this new flow cytometry method could potentially be used to standardize Ki67 assessments in breast cancer.
Collapse
Affiliation(s)
- Natsuki Sato
- Nitto Boseki Co., Ltd, 2-4-1, Kojimachi, Chiyoda-ku, Tokyo, 102-8489, Japan
| | - Masahiko Tsujimoto
- Department of Diagnostic Pathology, Daini Osaka Police Hospital, 2-6-40 Karasugatsuji, Tennoji-Ku, Osaka, 543-8922, Japan
- Present Address: Osaka Pathology and Cytology Laboratory, 2-2-26 Kunijima, Higashiyodogawa-Ku, Osaka, 533-0024, Japan
| | - Masatoshi Nakatsuji
- Nitto Boseki Co., Ltd, 2-4-1, Kojimachi, Chiyoda-ku, Tokyo, 102-8489, Japan
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Hiromi Tsuji
- Department of Diagnostic Pathology, Osaka Police Hospital, 10-31 Kitayamacho, Tennoji-Ku, Osaka, Japan
| | - Yuji Sugama
- Nitto Boseki Co., Ltd, 2-4-1, Kojimachi, Chiyoda-ku, Tokyo, 102-8489, Japan
| | - Kenzo Shimazu
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masafumi Shimoda
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Hideki Ishihara
- Nitto Boseki Co., Ltd, 2-4-1, Kojimachi, Chiyoda-ku, Tokyo, 102-8489, Japan.
- Department of Research Support, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki City, Osaka, 567-0085, Japan.
| |
Collapse
|
17
|
Cao Y. Lack of basic rationale in epithelial-mesenchymal transition and its related concepts. Cell Biosci 2024; 14:104. [PMID: 39164745 PMCID: PMC11334496 DOI: 10.1186/s13578-024-01282-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/05/2024] [Indexed: 08/22/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is defined as a cellular process during which epithelial cells acquire mesenchymal phenotypes and behavior following the downregulation of epithelial features. EMT and its reversed process, the mesenchymal-epithelial transition (MET), and the special form of EMT, the endothelial-mesenchymal transition (EndMT), have been considered as mainstream concepts and general rules driving developmental and pathological processes, particularly cancer. However, discrepancies and disputes over EMT and EMT research have also grown over time. EMT is defined as transition between two cellular states, but it is unanimously agreed by EMT researchers that (1) neither the epithelial and mesenchymal states nor their regulatory networks have been clearly defined, (2) no EMT markers or factors can represent universally epithelial and mesenchymal states, and thus (3) EMT cannot be assessed on the basis of one or a few EMT markers. In contrast to definition and proposed roles of EMT, loss of epithelial feature does not cause mesenchymal phenotype, and EMT does not contribute to embryonic mesenchyme and neural crest formation, the key developmental events from which the EMT concept was derived. EMT and MET, represented by change in cell shapes or adhesiveness, or symbolized by EMT factors, are biased interpretation of the overall change in cellular property and regulatory networks during development and cancer progression. Moreover, EMT and MET are consequences rather than driving factors of developmental and pathological processes. The true meaning of EMT in some developmental and pathological processes, such as fibrosis, needs re-evaluation. EMT is believed to endow malignant features, such as migration, stemness, etc., to cancer cells. However, the core property of cancer (tumorigenic) cells is neural stemness, and the core EMT factors are components of the regulatory networks of neural stemness. Thus, EMT in cancer progression is misattribution of the roles of neural stemness to the unknown mesenchymal state. Similarly, neural crest EMT is misattribution of intrinsic property of neural crest cells to the unknown mesenchymal state. Lack of basic rationale in EMT and related concepts urges re-evaluation of their significance as general rules for understanding developmental and pathological processes, and re-evaluation of their significance in scientific research.
Collapse
Affiliation(s)
- Ying Cao
- The MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing, 210061, China.
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
- Shenzhen Research Institute of Nanjing University, Shenzhen, China.
| |
Collapse
|
18
|
Wang W, Sun X, Wang A, Lu Y, Han Y, Zhao J, Liu F, Tian Z. Expression and pathogenesis of insulin-like growth factor-1 and insulin-like growth factor binding protein 3 in a mouse model of ulcerative colitis. Heliyon 2024; 10:e34920. [PMID: 39166081 PMCID: PMC11333886 DOI: 10.1016/j.heliyon.2024.e34920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 08/22/2024] Open
Abstract
Background and aim Insulin-like growth factor-1 may be involved in the epithelial-to-mesenchymal transition process. It can mitigate adverse effects when interacting with insulin-like growth factor binding protein 3. This study aimed to explore alterations in the expression of these two factors in the colonic tissue of mice with ulcerative colitis. Method This study utilized animal models. Mice were randomly allocated into three distinct groups. Disease activity index assessment was performed first, followed by histological grading of colitis. Protein and mRNA expression levels were determined using Western blotting and RT-qPCR. Immunohistochemical detection was used to determine histochemistry scores. Pearson correlation and SPSS 25.0 software were used for data analysis. Results The findings indicated a reduction in the expression of the two investigated factors as well as in epithelial-to-mesenchymal transition epithelial markers during inflammation, while the expression of noninflammatory factors increased. These effects were notably amplified following treatment. Interestingly, the changes in epithelial-to-mesenchymal transition-inducing factors and mesenchymal markers contradicted this trend. Pearson correlation analysis revealed a correlation between molecular indicators of change and epithelial-to-mesenchymal transition. Conclusion Insulin-like growth factor-1 and insulin-like growth factor binding protein 3 may play a protective role in the development and progression of ulcerative colitis, potentially through their inhibition of the epithelial-to-mesenchymal transition. These factors hold promise as targets for the clinical diagnosis and treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Weihua Wang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Xuemei Sun
- Internal Medicine Department of Shangkou Central Health Hospital, Shandong, China
| | - Aina Wang
- Department of Gastroenterology, Shidao People's Hospital of Rongcheng, Shandong, China
| | - Yanyan Lu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Yue Han
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Jianjian Zhao
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Fuguo Liu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Zibin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Shandong, China
| |
Collapse
|
19
|
Coelho-Rato LS, Parvanian S, Andrs Salajkova S, Medalia O, Eriksson JE. Intermediate filaments at a glance. J Cell Sci 2024; 137:jcs261386. [PMID: 39206824 DOI: 10.1242/jcs.261386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Intermediate filaments (IFs) comprise a large family of versatile cytoskeletal proteins, divided into six subtypes with tissue-specific expression patterns. IFs have a wide repertoire of cellular functions, including providing structural support to cells, as well as active roles in mechanical support and signaling pathways. Consequently, defects in IFs are associated with more than 100 diseases. In this Cell Science at a Glance article, we discuss the established classes of IFs and their general features, their functions beyond structural support, and recent advances in the field. We also highlight their involvement in disease and potential use as clinical markers of pathological conditions. Finally, we provide our view on current knowledge gaps and the future directions of the IF field.
Collapse
Affiliation(s)
- Leila S Coelho-Rato
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland
| | - Sepideh Parvanian
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Sarka Andrs Salajkova
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - John E Eriksson
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland
- Euro-Bioimaging ERIC, 20520 Turku, Finland
| |
Collapse
|
20
|
Gong H, Zhang P, Liu Q, Tian Y, Chen F, Qian S, Tu C, Tan Y, Hu X, Zhang B. XRCC2 driven homologous recombination subtypes and therapeutic targeting in lung adenocarcinoma metastasis. NPJ Precis Oncol 2024; 8:169. [PMID: 39090304 PMCID: PMC11294482 DOI: 10.1038/s41698-024-00658-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 07/16/2024] [Indexed: 08/04/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is a leading cause of cancer mortality, with many patients facing poor prognosis, particularly those with metastatic or drug-resistant tumors. Homologous recombination genes (HRGs) are crucial in tumor progression and therapy resistance, but their clinical significance in LUAD is not well understood. In this study, we systematically characterize key HRGs in LUAD patients, identifying two distinct HR subtypes associated with different outcomes and biological functions. We establish a 5-gene scoring system (XRCC2, RAD51, BRCA1, FANCA, and CHEK1) that reliably predicts patient outcomes and immunotherapy responses in LUAD. Bioinformatics analysis and clinical validation highlight XRCC2 as a crucial biomarker in LUAD. Functional investigations through in vivo and in vitro experiments reveal the role of XRCC2 in promoting lung cancer migration and invasion. Mechanistically, XRCC2 stabilizes vimentin (VIM) protein expression through deubiquitylation. We predict c-MYC as a potential regulator of XRCC2 and demonstrate that inhibiting c-MYC with compound 10058-F4 reduces XRCC2 and VIM expression. Preclinical studies show the synergistic inhibition of metastasis in vivo when combining 10058-F4 with doxorubicin (Dox). Our findings present a potential personalized predictive tool for LUAD prognosis, identifying XRCC2 as a critical biomarker. The c-Myc-XRCC2-VIM axis emerges as a promising therapeutic target for overcoming lung metastasis. This study provides valuable insights into LUAD, proposing a prognostic tool for further clinical validation and unveiling a potential therapeutic strategy for combating lung metastasis by targeting c-Myc-XRCC2-VIM.
Collapse
Affiliation(s)
- Han Gong
- The 1st Department of Thoracic Surgery of Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 4100013, China
- Molecular Biology Research Center and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Peihe Zhang
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qiang Liu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yuxuan Tian
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Fuxin Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Siyi Qian
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Chaofeng Tu
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| | - Yueqiu Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xingming Hu
- The 1st Department of Thoracic Surgery of Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 4100013, China.
| | - Bin Zhang
- The 1st Department of Thoracic Surgery of Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 4100013, China.
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, China.
| |
Collapse
|
21
|
Čugura T, Boštjančič E, Uhan S, Hauptman N, Jeruc J. Epithelial-mesenchymal transition associated markers in sarcomatoid transformation of clear cell renal cell carcinoma. Exp Mol Pathol 2024; 138:104909. [PMID: 38876079 DOI: 10.1016/j.yexmp.2024.104909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 05/18/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Epithelial-mesenchymal transition (EMT) plays a pivotal role in the development and progression of many cancers. Partial EMT (pEMT) could represent a critical step in tumor migration and dissemination. Sarcomatoid renal cell carcinoma (sRCC) is an aggressive form of renal cell carcinoma (RCC) composed of a carcinomatous (sRCC-Ca) and sarcomatous (sRCC-Sa) component. The role of (p)EMT in the progression of RCC to sRCC remains unclear. The aim of this study was to investigate the involvement of (p)EMT in RCC and sRCC. Tissue samples from 10 patients with clear cell RCC (ccRCC) and 10 patients with sRCC were selected. The expression of main EMT markers (miR-200 family, miR-205, SNAI1/2, TWIST1/2, ZEB1/2, CDH1/2, VIM) was analyzed by qPCR in ccRCC, sRCC-Ca, and sRCC-Sa and compared to non-neoplastic tissue and between both groups. Expression of E-cadherin, N-cadherin, vimentin and ZEB2 was analyzed using immunohistochemistry. miR-200c was downregulated in sRCC-Ca compared to ccRCC, while miR-200a was downregulated in sRCC-Sa compared to ccRCC. CDH1 was downregulated in sRCC-Sa when compared to any other group. ZEB2 was downregulated in ccRCC and sRCC compared to corresponding non-neoplastic kidney. A positive correlation was observed between CDH1 expression and miR-200a/b/c. Our results suggest that full EMT is not present in sRCC. Instead, discreet molecular differences exist between ccRCC, sRCC-Ca, and sRCC-Sa, possibly representing distinct intermediary states undergoing pEMT.
Collapse
MESH Headings
- Humans
- Epithelial-Mesenchymal Transition/genetics
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Kidney Neoplasms/pathology
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- MicroRNAs/genetics
- Male
- Middle Aged
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Female
- Vimentin/metabolism
- Vimentin/genetics
- Zinc Finger E-box Binding Homeobox 2/genetics
- Zinc Finger E-box Binding Homeobox 2/metabolism
- Aged
- Cadherins/genetics
- Cadherins/metabolism
- Gene Expression Regulation, Neoplastic
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Twist-Related Protein 1/genetics
- Twist-Related Protein 1/metabolism
- Snail Family Transcription Factors/genetics
- Snail Family Transcription Factors/metabolism
- Zinc Finger E-box-Binding Homeobox 1/genetics
- Zinc Finger E-box-Binding Homeobox 1/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Cell Transformation, Neoplastic/metabolism
- Adult
- Nuclear Proteins
Collapse
Affiliation(s)
- Tanja Čugura
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Emanuela Boštjančič
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Sara Uhan
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nina Hauptman
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jera Jeruc
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
22
|
Sarry M, Laloy E, Relmy A, Romey A, Bernelin-Cottet C, Salomez AL, Huet H, Hägglund S, Valarcher JF, Bakkali Kassimi L, Blaise-Boisseau S. Susceptibility of primary ovine dorsal soft palate and palatine tonsil cells to FMDV infection. Front Vet Sci 2024; 11:1299379. [PMID: 39149149 PMCID: PMC11324873 DOI: 10.3389/fvets.2024.1299379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Foot and mouth disease (FMD) is a highly contagious viral disease affecting cloven-hoofed animals. This disease is one of the most important in animal health due to its significant socio-economic impact, especially in case of an outbreak. One important challenge associated with this disease is the ability of the FMD virus (FMDV) to persist in its hosts through still unresolved underlying mechanisms. The absence of relevant in vitro models is one factor preventing advancement in our understanding of FMDV persistence. While a primary bovine cell model has been established using cells from FMDV primary and persistence site in cattle, it appeared interesting to develop a similar model based on ovine anatomical sites of interest to compare host-pathogen interactions. Thus, epithelial cells derived from the palatine tonsils and the dorsal soft palate were isolated and cultured. Their epithelial nature was confirmed using immunofluorescence. Following monolayer infection with FMDV O/FRA/1/2001 Clone 2.2, the FMDV-sensitivity of these cells was evaluated. Dorsal soft palate (DSP) cells were also expanded in multilayers at the air-liquid interface to mimic a stratified epithelium sensitive to FMDV infection. Our investigation revealed the presence of infectious virus, as well as viral antigens and viral RNA, up to 35 days after infection of the cell multilayers. Further experiment with DSP cells from different individuals needs to be reproduced to confirm the robustness of the new model of persistence in multilayer DSP. The establishment of such primary cells creates new opportunities for FMDV research and analysis in sheep cells.
Collapse
Affiliation(s)
- Morgan Sarry
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d'Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
- AgroParistech, Paris, France
| | - Eve Laloy
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d'Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Anthony Relmy
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d'Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Aurore Romey
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d'Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Cindy Bernelin-Cottet
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d'Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Anne-Laure Salomez
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d'Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Hélène Huet
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d'Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Sara Hägglund
- Host Pathogen Interaction Group, Section of Ruminant Medicine, Department of Clinical Science, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Jean-François Valarcher
- Host Pathogen Interaction Group, Section of Ruminant Medicine, Department of Clinical Science, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Labib Bakkali Kassimi
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d'Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Sandra Blaise-Boisseau
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d'Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| |
Collapse
|
23
|
Tan J, Yang B, Qiu L, He R, Wu Z, Ye M, Zan L, Yang W. Bta-miR-200a Regulates Milk Fat Biosynthesis by Targeting IRS2 to Inhibit the PI3K/Akt Signal Pathway in Bovine Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16449-16460. [PMID: 38996051 DOI: 10.1021/acs.jafc.4c02508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Milk fat synthesis has garnered significant attention due to its influence on the quality of milk. Recently, an increasing amount of proofs have elucidated that microRNAs (miRNAs) are important post-transcriptional factor involved in regulating gene expression and play a significant role in milk fat synthesis. MiR-200a was differentially expressed in the mammary gland tissue of dairy cows during different lactation periods, which indicated that miR-200a was a candidate miRNA involved in regulating milk fat synthesis. In our research, we investigated the potential function of miR-200a in regulating milk fat biosynthesis in bovine mammary epithelial cells (BMECs). We discovered that miR-200a inhibited cellular triacylglycerol (TAG) synthesis and suppressed lipid droplet formation; at the same time, miR-200a overexpression suppressed the mRNA and protein expression of milk fat metabolism-related genes, such as fatty acid synthase (FASN), peroxisome proliferator-activated receptor gamma (PPARγ), sterol regulatory element-binding protein 1 (SREBP1), CCAAT enhancer binding protein alpha (CEBPα), etc. However, knocking down miR-200a displayed the opposite results. We uncovered that insulin receptor substrate 2 (IRS2) was a candidate target gene of miR-200a through the bioinformatics online program TargetScan. Subsequently, it was confirmed that miR-200a directly targeted the 3'-untranslated region (3'-UTR) of IRS2 via real-time fluorescence quantitative PCR (RT-qPCR), western blot analysis, and dual-luciferase reporter gene assay. Additionally, IRS2 knockdown in BMECs has similar effects to miR-200a overexpression. Our research set up the mechanism by which miR-200a interacted with IRS2 and discovered that miR-200a targeted IRS2 and modulated the activity of the PI3K/Akt signaling pathway, thereby taking part in regulating milk fat synthesis in BMECs. Our research results provided valuable information on the molecular mechanisms for enhancing milk quality from the view of miRNA-mRNA regulatory networks.
Collapse
Affiliation(s)
- Jianbing Tan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Benshun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Liang Qiu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Ruiying He
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhangqing Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Miaomiao Ye
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Wucai Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Northwest A&F University Shenzhen Research Institute, Shenzhen 518000, China
| |
Collapse
|
24
|
Unger BA, Wu CY, Choi AA, He C, Xu K. Hypersensitivity of the vimentin cytoskeleton to net-charge states and Coulomb repulsion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602555. [PMID: 39026705 PMCID: PMC11257561 DOI: 10.1101/2024.07.08.602555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
As with most intermediate filament systems, the hierarchical self-assembly of vimentin into nonpolar filaments requires no nucleators or energy input. Utilizing a set of live-cell, single-molecule, and super-resolution microscopy tools, here we show that in mammalian cells, the assembly and disassembly of the vimentin cytoskeleton is highly sensitive to the protein net charge state. Starting with the intriguing observation that the vimentin cytoskeleton fully disassembles under hypotonic stress yet reassembles within seconds upon osmotic pressure recovery, we pinpoint ionic strength as its underlying driving factor. Further modulating the pH and expressing differently charged constructs, we converge on a model in which the vimentin cytoskeleton is destabilized by Coulomb repulsion when its mass-accumulated negative charges (-18 per vimentin protein) along the filament are less screened or otherwise intensified, and stabilized when the charges are better screened or otherwise reduced. Generalizing this model to other intermediate filaments, we further show that whereas the negatively charged GFAP cytoskeleton is similarly subject to fast disassembly under hypotonic stress, the cytokeratin, as a copolymer of negatively and positively charged subunits, does not exhibit this behavior. Thus, in cells containing both vimentin and keratin cytoskeletons, hypotonic stress disassembles the former but not the latter. Together, our results both provide new handles for modulating cell behavior and call for new attention to the effects of net charges in intracellular protein interactions.
Collapse
Affiliation(s)
- Bret A. Unger
- Department of Chemistry & California Institute for Quantitative Biosciences
- University of California, Berkeley, California 94720, United States
| | - Chun Ying Wu
- Department of Chemistry & California Institute for Quantitative Biosciences
- University of California, Berkeley, California 94720, United States
| | - Alexander A. Choi
- Department of Chemistry & California Institute for Quantitative Biosciences
- University of California, Berkeley, California 94720, United States
| | - Changdong He
- Department of Chemistry & California Institute for Quantitative Biosciences
- University of California, Berkeley, California 94720, United States
| | - Ke Xu
- Corresponding author: (K.X.)
| |
Collapse
|
25
|
Rao Y, Li J, Shi L, Chen X, Hu Y, Mao Y, Zhang X, Liu X. Silencing CK19 regulates ferroptosis by affecting the expression of GPX4 and ACSL4 in oral squamous cell carcinoma in vivo and in vitro. Sci Rep 2024; 14:15968. [PMID: 38987531 PMCID: PMC11237079 DOI: 10.1038/s41598-024-65079-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024] Open
Abstract
To analyze the mechanism of how interfering with the cytokeratin 19 (CK19) pathway via the ferroptosis pathway affects tumor biological behaviors in the process of oral squamous cell carcinoma (OSCC) development. TCGA was used to analyze the expression of CK19 in pan-cancer and head and neck squamous cell carcinoma (HNSC) and to explore the ferroptosis-related genes related to HNSC. The effect of silencing CK19 on the migration ability of HSC-4 cells was verified by wound healing and migration assay. HSC-4 cells with silencing of CK19 and tumor-bearing nude mouse model were constructed. RT-qPCR, immunofluorescence and western blot were used to analyze the expression of ferroptosis-related genes. CK19 is highly expressed in human OSCC and nude mice. The migration ability of cells in the CK19-silenced group was lower than that of the control group. In vivo and in vitro, CK19 was negatively correlated with the expression of ACSL4 and positively correlated with the expression of GPX4. Compared with the control group, GPX4 expression was down-regulated and ACSL4 expression was up-regulated in the CK19-silenced group. Silencing CK19 also increased intracellular Fe2+ content and MDA content. Silencing CK19 can affect the expression of GPX4 and ACSL4 to regulate ferroptosis and at the same time increase the content of MDA, Fe2+ and ROS levels, thereby activating the regulation of ferroptosis pathway in the development of OSCC.
Collapse
Affiliation(s)
- Yong Rao
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, Sichuan, China
| | - Jingying Li
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, Sichuan, China
| | - Lijuan Shi
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, Sichuan, China
| | - Xiao Chen
- Department of Oral Medicine, Sichuan Vocational College of Traditional Chinese Medicine, Mianyang, 621000, Sichuan, China
- Department of Orthodontics, Mianyang Stomatological Hospital, Mianyang, 621000, Sichuan, China
| | - Yun Hu
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, Sichuan, China
| | - Yalin Mao
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, Sichuan, China
| | - Xiaoyan Zhang
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, Sichuan, China.
| | - Xuqian Liu
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, Sichuan, China.
| |
Collapse
|
26
|
Cheng K, Wan S, Yang JW, Chen SY, Wang HL, Xu CH, Qiao SH, Li XR, Li Y. Applications of Biosensors in Bladder Cancer. Crit Rev Anal Chem 2024:1-20. [PMID: 38978228 DOI: 10.1080/10408347.2024.2373923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Bladder cancer (BC) is the tenth most common cancer globally, predominantly affecting men. Early detection and treatment are crucial due to high recurrence rates and poor prognosis for advanced stages. Traditional diagnostic methods like cystoscopy and imaging have limitations, leading to the exploration of noninvasive methods such as liquid biopsy. This review highlights the application of biosensors in BC, including electrochemical and optical sensors for detecting tumor markers like proteins, nucleic acids, and other biomolecules, noting their clinical relevance. Emerging therapeutic approaches, such as antibody-drug conjugates, targeted therapy, immunotherapy, and gene therapy, are also explored, the role of biosensors in detecting corresponding biomarkers to guide these treatments is examined. Finally, the review addresses the current challenges and future directions for biosensor applications in BC, highlighting the need for large-scale clinical trials and the integration of advanced technologies like deep learning to enhance diagnostic accuracy and treatment efficacy.
Collapse
Affiliation(s)
- Kun Cheng
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Gansu Province Clinical Research Center for Urology, Lanzhou, P.R. China
| | - Shun Wan
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Gansu Province Clinical Research Center for Urology, Lanzhou, P.R. China
| | - Jian-Wei Yang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Gansu Province Clinical Research Center for Urology, Lanzhou, P.R. China
| | - Si-Yu Chen
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Gansu Province Clinical Research Center for Urology, Lanzhou, P.R. China
| | - Hai-Long Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Gansu Province Clinical Research Center for Urology, Lanzhou, P.R. China
| | - Chang-Hong Xu
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Gansu Province Clinical Research Center for Urology, Lanzhou, P.R. China
| | - Si-Hang Qiao
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Gansu Province Clinical Research Center for Urology, Lanzhou, P.R. China
| | - Xiao-Ran Li
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Gansu Province Clinical Research Center for Urology, Lanzhou, P.R. China
| | - Yang Li
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Gansu Province Clinical Research Center for Urology, Lanzhou, P.R. China
| |
Collapse
|
27
|
Chen J, Zhang C, Yang Z, Wu W, Zou W, Xin Z, Zheng S, Liu R, Yang L, Peng H. Intestinal microbiota imbalance resulted by anti-Toxoplasma gondii immune responses aggravate gut and brain injury. Parasit Vectors 2024; 17:284. [PMID: 38956725 PMCID: PMC11221008 DOI: 10.1186/s13071-024-06349-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Toxoplasma gondii infection affects a significant portion of the global population, leading to severe toxoplasmosis and, in immunocompromised patients, even death. During T. gondii infection, disruption of gut microbiota further exacerbates the damage to intestinal and brain barriers. Therefore, identifying imbalanced probiotics during infection and restoring their equilibrium can regulate the balance of gut microbiota metabolites, thereby alleviating tissue damage. METHODS Vimentin gene knockout (vim-/-) mice were employed as an immunocompromised model to evaluate the influence of host immune responses on gut microbiota balance during T. gondii infection. Behavioral experiments were performed to assess changes in cognitive levels and depressive tendencies between chronically infected vim-/- and wild-type (WT) mice. Fecal samples were subjected to 16S ribosomal RNA (rRNA) sequencing, and serum metabolites were analyzed to identify potential gut probiotics and their metabolites for the treatment of T. gondii infection. RESULTS Compared to the immunocompetent WT sv129 mice, the immunocompromised mice exhibited lower levels of neuronal apoptosis and fewer neurobehavioral abnormalities during chronic infection. 16S rRNA sequencing revealed a significant decrease in the abundance of probiotics, including several species of Lactobacillus, in WT mice. Restoring this balance through the administration of Lactobacillus murinus and Lactobacillus gasseri significantly suppressed the T. gondii burden in the intestine, liver, and brain. Moreover, transplantation of these two Lactobacillus spp. significantly improved intestinal barrier damage and alleviated inflammation and neuronal apoptosis in the central nervous system. Metabolite detection studies revealed that the levels of various Lactobacillus-related metabolites, including indole-3-lactic acid (ILA) in serum, decreased significantly after T. gondii infection. We confirmed that L. gasseri secreted much more ILA than L. murinus. Notably, ILA can activate the aromatic hydrocarbon receptor signaling pathway in intestinal epithelial cells, promoting the activation of CD8+ T cells and the secretion of interferon-gamma. CONCLUSION Our study revealed that host immune responses against T. gondii infection severely disrupted the balance of gut microbiota, resulting in intestinal and brain damage. Lactobacillus spp. play a crucial role in immune regulation, and the metabolite ILA is a promising therapeutic compound for efficient and safe treatment of T. gondii infection.
Collapse
Affiliation(s)
- Jiating Chen
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Chi Zhang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Zihan Yang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Weiling Wu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Weihao Zou
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Zixuan Xin
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Shuyu Zheng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Runchun Liu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Lili Yang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Hongjuan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|
28
|
Aydın N, Ketani MA, Sağsöz H. The expression of intermediate filaments in the abomasum of ruminants: A comparative study. Anat Histol Embryol 2024; 53:e13088. [PMID: 38979752 DOI: 10.1111/ahe.13088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
Intermediate filaments (IFs) are key molecular factors of the cell and have been reported to play an important role in maintaining the structural integrity and functionality of the abomasum. This study was designed to determine the regional distribution, cellular localization and expression of several IFs, including CK8, CK18, CK19, vimentin, desmin, peripherin and nestin, as well as the connective tissue component laminin, in the bovine, ovine and caprine abomasa. Immunohistochemical analyses demonstrated varying levels of expression of CK8, CK18, CK19, vimentin, desmin, nestin, peripherin and laminin in the bovine, ovine and caprine abomasa. CK8 immunoreactions were particularly evident in the luminal and glandular epithelia of the glands found in the abomasal cardia, fundus and pylorus in all three species. In the bovine abomasum, CK18 immunoreactions were stronger in the parietal cells, compared to the chief cells. In the abomasum of all three species, the smooth muscle as well as the smooth muscle cells of the vascular media in the cardiac, fundic and pyloric regions showed strong immunoreactivity. In all three species, the cardiac, fundic and pyloric regions of the abomasum showed strong peripherin and nestin immunoreactions in the luminal and glandular epithelial cells, stromal and smooth muscle cells, nervous plexuses and blood vessels. The expression patterns of IFs and laminin in the ruminant abomasum suggest that these proteins play a structural role in the cytoskeleton and are effective in maintaining abomasal tissue integrity and stability.
Collapse
Affiliation(s)
- Nurşin Aydın
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Dicle University, Diyarbakır, Turkey
| | - M Aydın Ketani
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Dicle University, Diyarbakır, Turkey
| | - Hakan Sağsöz
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Dicle University, Diyarbakır, Turkey
| |
Collapse
|
29
|
Laky K, Frischmeyer-Guerrerio PA. Development and dysfunction of structural cells in eosinophilic esophagitis. J Allergy Clin Immunol 2024; 153:1485-1499. [PMID: 38849184 PMCID: PMC11626564 DOI: 10.1016/j.jaci.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 06/09/2024]
Abstract
Eosinophilic esophagitis (EoE) is a disorder characterized by dysfunction and chronic local inflammation of the esophagus. The incidence and prevalence of EoE are increasing worldwide. The mechanisms responsible are poorly understood, and effective treatment options are limited. From the lumen outward, the esophagus comprises stratified squamous epithelium, lamina propria, and muscle. The tissue-specific nature of EoE strongly suggests that structural cells in the esophagus are involved in the EoE diathesis. Epithelial basal cell hyperplasia and dilated intercellular spaces are cardinal features of EoE. Some patients with EoE develop lamina propria fibrosis, strictures, or esophageal muscle dysmotility. Clinical symptoms of EoE are only weakly correlated with peak eosinophil count, implying that other cell types contribute to EoE pathogenesis. Epithelial, endothelial, muscle, and fibroblast cells can each initiate inflammation and repair, regulate tissue resident immune cells, recruit peripheral leukocytes, and tailor adaptive immune cell responses. A better understanding of how structural cells maintain tissue homeostasis, respond to cell-intrinsic and cell-extrinsic stressors, and exacerbate and/or resolve inflammatory responses in the esophagus is needed. This knowledge will facilitate the development of more efficacious treatment strategies for EoE that can restore homeostasis of both hematopoietic and structural elements in the esophagus.
Collapse
Affiliation(s)
- Karen Laky
- Food Allergy Research Section, Laboratory of Allergic Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| | - Pamela A Frischmeyer-Guerrerio
- Food Allergy Research Section, Laboratory of Allergic Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| |
Collapse
|
30
|
Zheng L, Boeren S, Liu C, Bakker W, Wang H, Rietjens IMCM, Saccenti E. Proteomics-based identification of biomarkers reflecting endogenous and exogenous exposure to the advanced glycation end product precursor methylglyoxal in SH-SY5Y human neuroblastoma cells. Int J Biol Macromol 2024; 272:132859. [PMID: 38838889 DOI: 10.1016/j.ijbiomac.2024.132859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Methylglyoxal (MGO), a highly reactive precursor of advanced glycation end products, is endogenously produced and prevalent in various food products. This study aimed to characterize protein modifications in SH-SY5Y human neuroblastoma cells induced by MGO and identify potential biomarkers for its exposure and toxicity. A shot-gun proteomic analysis was applied to characterize protein modifications in cells incubated with and without exogenous MGO. Seventy-seven proteins were identified as highly susceptible to MGO modification, among which eight, including vimentin and histone H2B type 2-F, showing concentration-dependent modifications by externally added MGO, were defined as biomarkers for exogenous MGO exposure. Remarkably, up to 10 modification sites were identified on vimentin. Myosin light polypeptide 6 emerged as a biomarker for MGO toxicity, with modifications exclusively observed under cytotoxic MGO levels. Additionally, proteins like serine/threonine-protein kinase SIK2 and calcyphosin, exhibiting comparable or even higher modification levels in control compared to exogenous MGO-treated cells, were defined as biomarkers for endogenous exposure. Bioinformatics analysis revealed that motor proteins, cytoskeleton components, and glycolysis proteins were overrepresented among those highly susceptible to MGO modification. These results identify biomarkers for both endogenous and exogenous MGO exposure and provide insights into the cellular effects of endogenously formed versus externally added MGO.
Collapse
Affiliation(s)
- Liang Zheng
- Division of Toxicology, Wageningen University and Research, 6708 WE Wageningen, the Netherlands.
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, 6708 WE Wageningen, the Netherlands
| | - Chen Liu
- Division of Toxicology, Wageningen University and Research, 6708 WE Wageningen, the Netherlands; Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Wouter Bakker
- Division of Toxicology, Wageningen University and Research, 6708 WE Wageningen, the Netherlands
| | - Haomiao Wang
- Division of Toxicology, Wageningen University and Research, 6708 WE Wageningen, the Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, 6708 WE Wageningen, the Netherlands
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, 6708 WE Wageningen, the Netherlands
| |
Collapse
|
31
|
Du G, Zhang C, Cao X, Li L, Zhang Y, Shang Y, Wu J. Generation and application of immortalized sheep fetal fibroblast cell line. BMC Vet Res 2024; 20:198. [PMID: 38745180 PMCID: PMC11092253 DOI: 10.1186/s12917-024-04054-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Primary sheep fetal fibroblasts (SFFCs) have emerged as a valuable resource for investigating the molecular and pathogenic mechanisms of orf viruses (ORFV). However, their utilization is considerably restricted due to the exorbitant expenses associated with their isolation and culture, their abbreviated lifespan, and the laborious procedure. RESULTS In our investigation, the primary SFFCs were obtained and immortalized by introducing a lentiviral recombinant plasmid containing the large T antigen from simian virus 40 (SV40). The expression of fibronectin and vimentin proteins, activity of SV40 large T antigen, cell proliferation assays, and analysis of programmed cell death revealed that the immortalized large T antigen SFFCs (TSFFCs) maintained the same physiological characteristics and biological functions as the primary SFFCs. Moreover, TSFFCs demonstrated robust resistance to apoptosis, extended lifespan, and enhanced proliferative activity compared to primary SFFCs. Notably, the primary SFFCs did not undergo in vitro transformation or exhibit any indications of malignancy in nude mice. Furthermore, the immortalized TSFFCs displayed live ORFV vaccine susceptibility. CONCLUSIONS Immortalized TSFFCs present valuable in vitro models for exploring the characteristics of ORFV using various techniques. This indicates their potential for secure utilization in future studies involving virus isolation, vaccine development, and drug screening.
Collapse
Affiliation(s)
- Guoyu Du
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730046, China
| | - Cheng Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Xiaoan Cao
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Lingxia Li
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730046, China
| | - Youjun Shang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| | - Jinyan Wu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| |
Collapse
|
32
|
Pradeau-Phélut L, Etienne-Manneville S. Cytoskeletal crosstalk: A focus on intermediate filaments. Curr Opin Cell Biol 2024; 87:102325. [PMID: 38359728 DOI: 10.1016/j.ceb.2024.102325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 02/17/2024]
Abstract
The cytoskeleton, comprising actin microfilaments, microtubules, and intermediate filaments, is crucial for cell motility and tissue integrity. While prior studies largely focused on individual cytoskeletal networks, recent research underscores the interconnected nature of these systems in fundamental cellular functions like adhesion, migration, and division. Understanding the coordination of these distinct networks in both time and space is essential. This review synthesizes current findings on the intricate interplay between these networks, emphasizing the pivotal role of intermediate filaments. Notably, these filaments engage in extensive crosstalk with microfilaments and microtubules through direct molecular interactions, cytoskeletal linkers, and molecular motors that form molecular bridges, as well as via more complex regulation of intracellular signaling.
Collapse
Affiliation(s)
- Lucas Pradeau-Phélut
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur - CNRS UMR 3691, Université Paris-Cité, Équipe Labellisée Ligue Nationale Contre le Cancer 2023, 25 rue du Docteur Roux, F-75015, Paris, France; Sorbonne Université, Collège Doctoral, 4 place Jussieu, F-75005 Paris, France
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur - CNRS UMR 3691, Université Paris-Cité, Équipe Labellisée Ligue Nationale Contre le Cancer 2023, 25 rue du Docteur Roux, F-75015, Paris, France.
| |
Collapse
|
33
|
Hong J, Du K, Jin H, Chen Y, Jiang Y, Zhang W, Chen D, Zheng S, Cao L. Evidence of promoting effects of 6:2 Cl-PFESA on hepatocellular carcinoma proliferation in humans: An ideal alternative for PFOS in terms of environmental health? ENVIRONMENT INTERNATIONAL 2024; 186:108582. [PMID: 38513556 DOI: 10.1016/j.envint.2024.108582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are synthetic chemicals, encompassing compounds like perfluorooctane sulfonate (PFOS), which have widespread applications across various industries, including food packaging and firefighting. In recent years, China has increasingly employed 6:2 Cl-PFESA as an alternative to PFOS. Although the association between PFAS exposure and hepatocellular carcinoma (HCC) has been demonstrated, the underlying mechanisms that promote HCC proliferation are uncleared. Therefore, we aimed to investigate the effects and differences of PFOS and 6:2 Cl-PFESA on HCC proliferation through in vivo and in vitro tumor models. Our results reveal that both PFOS and 6:2 Cl-PFESA significantly contribute to HCC proliferation in vitro and in vivo. Exposure led to reduced population doubling times, enlarged cell colony sizes, enhanced DNA synthesis efficiency, and a higher proportion of cells undergoing mitosis. Furthermore, both PFOS and 6:2 Cl-PFES) have been shown to activate the PI3K/AKT/mTOR signaling pathway and inhibit necroptosis. This action consequently enhances the proliferation of HCC cells. Our phenotypic assay findings suggest that the tumorigenic potential of 6:2 Cl-PFESA surpasses that of PFOS; in a subcutaneous tumor model using nude mice, the mean tumor weight for the 6:2 Cl-PFESA-treated cohort was 2.33 times that observed in the PFOS cohort (p < 0.01). Despite 6:2 Cl-PFESA being considered a safer substitute for PFOS, the pronounced effects of this chemical on HCC cell growth warrant a thorough assessment of hepatotoxicity risks linked to its usage.
Collapse
Affiliation(s)
- Jiawei Hong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Keyi Du
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China; Innovation Research Center of Advanced Environmental Technology, Eco-Industrial Innovation Institute ZJUT, Quzhou, Zhejiang 324400, China
| | - Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China; Innovation Research Center of Advanced Environmental Technology, Eco-Industrial Innovation Institute ZJUT, Quzhou, Zhejiang 324400, China
| | - Yifan Jiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Weichen Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Diyu Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Linping Cao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China.
| |
Collapse
|
34
|
Soboleva A, Arutyunyan I, Jumaniyazova E, Vishnyakova P, Zarubina D, Nimatov E, Elchaninov A, Fatkhudinov T. Gene-Expression Patterns of Tumor and Peritumor Tissues of Smoking and Non-Smoking HPV-Negative Patients with Head and Neck Squamous Cell Carcinoma. Biomedicines 2024; 12:696. [PMID: 38540309 PMCID: PMC10967845 DOI: 10.3390/biomedicines12030696] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 01/03/2025] Open
Abstract
We studied the gene-expression patterns in specimens of tumor and peritumor tissue biopsies of 26 patients with head and neck carcinomas depending on smoking status. Histological and immunohistochemical examinations verified that all tumors belonged to the "classical" subgroup of head and neck carcinomas, and the HPV-negative tumor status was confirmed. The expression of 28 tumor-associated genes determined by RT-PCR was independent of patients' sex or age, TNM status, degree of differentiation, or tissue localization. Moreover, in peritumor tissue, none of the 28 genes were differentially expressed between the groups of smoking and nonsmoking patients. During oncotransformation in both studied groups, there were similar processes typical for HNSCC progression: the expression levels of paired keratins 4 and 13 were reduced, while the expression levels of keratin 17 and CD44 were significantly increased. However, further investigation revealed some distinctive features: the expression of the genes EGFR and TP63 increased significantly only in the nonsmoking group, and the expression of IL6, CDKN2A, EGF, and PITX1 genes changed only in the smoking group. In addition, correlation analysis identified several clusters within which genes displayed correlations in their expression levels. The largest group included 10 genes: TIMP1, TIMP2, WEE1, YAP, HIF1A, PI3KCA, UTP14A, APIP, PTEN, and SLC26A6. The genetic signatures associated with smoking habits that we have found may serve as a prerequisite for the development of diagnostic panels/tests predicting responses to different therapeutic strategies for HNSCC.
Collapse
Affiliation(s)
- Anna Soboleva
- Research Institute of Molecular and Cellular Medicine, Patrice Lumumba Peoples’ Friendship University of Russia (RUDN), 117198 Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
| | - Irina Arutyunyan
- Research Institute of Molecular and Cellular Medicine, Patrice Lumumba Peoples’ Friendship University of Russia (RUDN), 117198 Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
- Federal State Budget Institution, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of the Russian Federation, 117513 Moscow, Russia
| | - Enar Jumaniyazova
- Research Institute of Molecular and Cellular Medicine, Patrice Lumumba Peoples’ Friendship University of Russia (RUDN), 117198 Moscow, Russia
| | - Polina Vishnyakova
- Research Institute of Molecular and Cellular Medicine, Patrice Lumumba Peoples’ Friendship University of Russia (RUDN), 117198 Moscow, Russia
- Federal State Budget Institution, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of the Russian Federation, 117513 Moscow, Russia
| | - Daria Zarubina
- P. Hertsen Moscow Oncology Research Institute, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 125284 Moscow, Russia
| | - Eldar Nimatov
- P. Hertsen Moscow Oncology Research Institute, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 125284 Moscow, Russia
| | - Andrey Elchaninov
- Research Institute of Molecular and Cellular Medicine, Patrice Lumumba Peoples’ Friendship University of Russia (RUDN), 117198 Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
- Federal State Budget Institution, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of the Russian Federation, 117513 Moscow, Russia
| | - Timur Fatkhudinov
- Research Institute of Molecular and Cellular Medicine, Patrice Lumumba Peoples’ Friendship University of Russia (RUDN), 117198 Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
- Federal State Budget Institution, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of the Russian Federation, 117513 Moscow, Russia
| |
Collapse
|
35
|
Tabatabaee A, Nafari B, Farhang A, Hariri A, Khosravi A, Zarrabi A, Mirian M. Targeting vimentin: a multifaceted approach to combatting cancer metastasis and drug resistance. Cancer Metastasis Rev 2024; 43:363-377. [PMID: 38012357 DOI: 10.1007/s10555-023-10154-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
This comprehensive review explores vimentin as a pivotal therapeutic target in cancer treatment, with a primary focus on mitigating metastasis and overcoming drug resistance. Vimentin, a key player in cancer progression, is intricately involved in processes such as epithelial-to-mesenchymal transition (EMT) and resistance mechanisms to standard cancer therapies. The review delves into diverse vimentin inhibition strategies. Precision tools, including antibodies and nanobodies, selectively neutralize vimentin's pro-tumorigenic effects. DNA and RNA aptamers disrupt vimentin-associated signaling pathways through their adaptable binding properties. Innovative approaches, such as vimentin-targeted vaccines and microRNAs (miRNAs), harness the immune system and post-transcriptional regulation to combat vimentin-expressing cancer cells. By dissecting vimentin inhibition strategies across these categories, this review provides a comprehensive overview of anti-vimentin therapeutics in cancer treatment. It underscores the growing recognition of vimentin as a pivotal therapeutic target in cancer and presents a diverse array of inhibitors, including antibodies, nanobodies, DNA and RNA aptamers, vaccines, and miRNAs. These multifaceted approaches hold substantial promise for tackling metastasis and overcoming drug resistance, collectively presenting new avenues for enhanced cancer therapy.
Collapse
Affiliation(s)
- Aliye Tabatabaee
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran
| | - Behjat Nafari
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran
| | - Armin Farhang
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran
| | - Amirali Hariri
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, 34959, Türkiye
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Türkiye.
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India.
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran.
| |
Collapse
|
36
|
Xie H, Rutz J, Maxeiner S, Grein T, Thomas A, Juengel E, Chun FKH, Cinatl J, Haferkamp A, Tsaur I, Blaheta RA. Sulforaphane Inhibits Adhesion and Migration of Cisplatin- and Gemcitabine-Resistant Bladder Cancer Cells In Vitro. Nutrients 2024; 16:623. [PMID: 38474751 DOI: 10.3390/nu16050623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Only 20% of patients with muscle-invasive bladder carcinoma respond to cisplatin-based chemotherapy. Since the natural phytochemical sulforaphane (SFN) exhibits antitumor properties, its influence on the adhesive and migratory properties of cisplatin- and gemcitabine-sensitive and cisplatin- and gemcitabine-resistant RT4, RT112, T24, and TCCSUP bladder cancer cells was evaluated. Mechanisms behind the SFN influence were explored by assessing levels of the integrin adhesion receptors β1 (total and activated) and β4 and their functional relevance. To evaluate cell differentiation processes, E- and N-cadherin, vimentin and cytokeratin (CK) 8/18 expression were examined. SFN down-regulated bladder cancer cell adhesion with cell line and resistance-specific differences. Different responses to SFN were reflected in integrin expression that depended on the cell line and presence of resistance. Chemotactic movement of RT112, T24, and TCCSUP (RT4 did not migrate) was markedly blocked by SFN in both chemo-sensitive and chemo-resistant cells. Integrin-blocking studies indicated β1 and β4 as chemotaxis regulators. N-cadherin was diminished by SFN, particularly in sensitive and resistant T24 and RT112 cells, whereas E-cadherin was increased in RT112 cells (not detectable in RT4 and TCCSup cells). Alterations in vimentin and CK8/18 were also apparent, though not the same in all cell lines. SFN exposure resulted in translocation of E-cadherin (RT112), N-cadherin (RT112, T24), and vimentin (T24). SFN down-regulated adhesion and migration in chemo-sensitive and chemo-resistant bladder cancer cells by acting on integrin β1 and β4 expression and inducing the mesenchymal-epithelial translocation of cadherins and vimentin. SFN does, therefore, possess potential to improve bladder cancer therapy.
Collapse
Affiliation(s)
- Hui Xie
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany
- Department of Urology, Goethe-University, 60590 Frankfurt am Main, Germany
| | - Jochen Rutz
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Sebastian Maxeiner
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Timothy Grein
- Department of Urology, Goethe-University, 60590 Frankfurt am Main, Germany
| | - Anita Thomas
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Eva Juengel
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Felix K-H Chun
- Department of Urology, Goethe-University, 60590 Frankfurt am Main, Germany
| | - Jindrich Cinatl
- Institute of Medical Virology, Goethe-University, 60596 Frankfurt am Main, Germany
| | - Axel Haferkamp
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Igor Tsaur
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Roman A Blaheta
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany
- Department of Urology, Goethe-University, 60590 Frankfurt am Main, Germany
| |
Collapse
|
37
|
Zhang Y, Liu Z, Zhong Z, Ji Y, Guo H, Wang W, Chen C. A tumor suppressor protein encoded by circKEAP1 inhibits osteosarcoma cell stemness and metastasis by promoting vimentin proteasome degradation and activating anti-tumor immunity. J Exp Clin Cancer Res 2024; 43:52. [PMID: 38383479 PMCID: PMC10880370 DOI: 10.1186/s13046-024-02971-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Osteosarcoma (OS) is one of most commonly diagnosed bone cancer. Circular RNAs (circRNAs) are a class of highly stable non-coding RNA, the majority of which have not been characterized functionally. The underlying function and molecular mechanisms of circRNAs in OS have not been fully demonstrated. METHOD Microarray analysis was performed to identify circRNAs that are differentially-expressed between OS and corresponding normal tissues. The biological function of circKEAP1 was confirmed in vitro and in vivo. Mass spectrometry and western blot assays were used to identify the circKEAP1-encoded protein KEAP1-259aa. The molecular mechanism of circKEAP1 was investigated by RNA sequencing and RNA immunoprecipitation analyses. RESULTS Here, we identified a tumor suppressor circKEAP1, originating from the back-splicing of exon2 of the KEAP1 gene. Clinically, circKEAP1 is downregulated in OS tumors and associated with better survival in cancer patients. N6-methyladenosine (m6A) at a specific adenosine leads to low expression of circKEAP1. Further analysis revealed that circKEAP1 contained a 777 nt long ORF and encoded a truncated protein KEAP1-259aa that reduces cell proliferation, invasion and tumorsphere formation of OS cells. Mechanistically, KEAP1-259aa bound to vimentin in the cytoplasm to promote vimentin proteasome degradation by interacting with the E3 ligase ARIH1. Moreover, circKEAP1 interacted with RIG-I to activate anti-tumor immunity via the IFN-γ pathway. CONCLUSION Taken together, our findings characterize a tumor suppressor circKEAP1 as a key tumor suppressor regulating of OS cell stemness, proliferation and migration, providing potential therapeutic targets for treatment of OS.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, Guangdong, 515041, PR China.
- Sports Medicine Center, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China.
| | - Zhaoyong Liu
- Department of Orthopaedics, First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, Guangdong, 515041, China
- Sports Medicine Center, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Zhigang Zhong
- Sports Medicine Center, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- Sports Medicine Institute, Shantou University Medical College, Shantou, 515041, China
| | - Yanchen Ji
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, Guangdong, 515041, PR China
| | - Huancheng Guo
- Department of Orthopaedics, First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, Guangdong, 515041, China
| | - Weidong Wang
- Department of Orthopaedics, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, Guangdong, 515041, China
| | - Chuangzhen Chen
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, Guangdong, 515041, PR China
| |
Collapse
|
38
|
Strippoli R, Niayesh-Mehr R, Adelipour M, Khosravi A, Cordani M, Zarrabi A, Allameh A. Contribution of Autophagy to Epithelial Mesenchymal Transition Induction during Cancer Progression. Cancers (Basel) 2024; 16:807. [PMID: 38398197 PMCID: PMC10886827 DOI: 10.3390/cancers16040807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Epithelial Mesenchymal Transition (EMT) is a dedifferentiation process implicated in many physio-pathological conditions including tumor transformation. EMT is regulated by several extracellular mediators and under certain conditions it can be reversible. Autophagy is a conserved catabolic process in which intracellular components such as protein/DNA aggregates and abnormal organelles are degraded in specific lysosomes. In cancer, autophagy plays a controversial role, acting in different conditions as both a tumor suppressor and a tumor-promoting mechanism. Experimental evidence shows that deep interrelations exist between EMT and autophagy-related pathways. Although this interplay has already been analyzed in previous studies, understanding mechanisms and the translational implications of autophagy/EMT need further study. The role of autophagy in EMT is not limited to morphological changes, but activation of autophagy could be important to DNA repair/damage system, cell adhesion molecules, and cell proliferation and differentiation processes. Based on this, both autophagy and EMT and related pathways are now considered as targets for cancer therapy. In this review article, the contribution of autophagy to EMT and progression of cancer is discussed. This article also describes the multiple connections between EMT and autophagy and their implication in cancer treatment.
Collapse
Affiliation(s)
- Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- National Institute for Infectious Diseases “Lazzaro Spallanzani”, I.R.C.C.S., 00149 Rome, Italy
| | - Reyhaneh Niayesh-Mehr
- Department of Clinical Biochemistry, Faculty of Medical Science, Tarbiat Modares University, Tehran P.O. Box 14115-331, Iran;
| | - Maryam Adelipour
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran;
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye;
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain;
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye;
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Science, Tarbiat Modares University, Tehran P.O. Box 14115-331, Iran;
| |
Collapse
|
39
|
Almangush A, Hagström J, Haglund C, Kowalski LP, Coletta RD, Mäkitie AA, Salo T, Leivo I. The prognostic role of single cell invasion and nuclear diameter in early oral tongue squamous cell carcinoma. BMC Cancer 2024; 24:213. [PMID: 38360653 PMCID: PMC10870554 DOI: 10.1186/s12885-024-11954-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/05/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND The clinical significance of single cell invasion and large nuclear diameter is not well documented in early-stage oral tongue squamous cell carcinoma (OTSCC). METHODS We used hematoxylin and eosin-stained sections to evaluate the presence of single cell invasion and large nuclei in a multicenter cohort of 311 cases treated for early-stage OTSCC. RESULTS Single cell invasion was associated in multivariable analysis with poor disease-specific survival (DSS) with a hazard ratio (HR) of 2.089 (95% CI 1.224-3.566, P = 0.007), as well as with disease-free survival (DFS) with a HR of 1.666 (95% CI 1.080-2.571, P = 0.021). Furthermore, large nuclei were associated with worse DSS (HR 2.070, 95% CI 1.216-3.523, P = 0.007) and with DFS in multivariable analysis (HR 1.645, 95% CI 1.067-2.538, P = 0.024). CONCLUSION Single cell invasion and large nuclei can be utilized for classifying early OTSCC into risk groups.
Collapse
Affiliation(s)
- Alhadi Almangush
- Department of Pathology, University of Helsinki, FI-00014, Helsinki, Haartmaninkatu, P.O. Box 21, Finland.
- Institute of Biomedicine, Pathology, University of Turku, Turku, Finland.
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Faculty of Dentistry, Misurata University, Misurata, Libya.
| | - Jaana Hagström
- Department of Pathology, University of Helsinki, FI-00014, Helsinki, Haartmaninkatu, P.O. Box 21, Finland
- Research Programs Unit, Translational Cancer Medicine, University of Helsinki, 00014, Helsinki, P.O. Box 63, Finland
- Department of Oral Pathology and Radiology, University of Turku, Turku, Finland
| | - Caj Haglund
- Research Programs Unit, Translational Cancer Medicine, University of Helsinki, 00014, Helsinki, P.O. Box 63, Finland
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Luiz Paulo Kowalski
- Department of Head and Neck Surgery and Otorhinolaryngology, A.C. Camargo Cancer Center, Department of Head and Neck Surgery, University of Sao Paulo Medical School, 05402-000, São Paulo, SP, Brazil
| | - Ricardo D Coletta
- Department of Oral Diagnosis and Graduate Program in Oral Biology, School of Dentistry, University of Campinas, 13414-018, Piracicaba, São Paulo, Brazil
| | - Antti A Mäkitie
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Otorhinolaryngology- Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, FI-00029 HUS, Helsinki, P.O. Box 263, Finland
- Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Tuula Salo
- Department of Pathology, University of Helsinki, FI-00014, Helsinki, Haartmaninkatu, P.O. Box 21, Finland
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Ilmo Leivo
- Institute of Biomedicine, Pathology, University of Turku, Turku University Central Hospital, 20520, Turku, Finland
| |
Collapse
|
40
|
Tang Y, Liu Y, Wang X, Guo H, Chen L, Hu G, Cui Y, Liang S, Zuo J, Luo Z, Chen X, Wang X. OLFM2 promotes epithelial-mesenchymal transition, migration, and invasion in colorectal cancer through the TGF-β/Smad signaling pathway. BMC Cancer 2024; 24:204. [PMID: 38350902 PMCID: PMC10865519 DOI: 10.1186/s12885-024-11925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/26/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is an aggressive tumor of the gastrointestinal tract, which is a major public health concern worldwide. Despite numerous studies, the precise mechanism of metastasis behind its progression remains elusive. As a member of the containing olfactomedin domains protein family, olfactomedin 2 (OLFM2) may play a role in tumor metastasis. It is highly expressed in colorectal cancer, and its role in the metastasis of CRC is still unclear. As such, this study seeks to explore the function of OLFM2 on CRC metastasis and its potential mechanisms. METHODS Real-time fluorescence quantitative PCR and western blotting were used to study the expression of OLFM2 in human CRC and adjacent normal tissues. Knockdown and overexpression OLFM2 cell lines were constructed using siRNA and overexpression plasmids to explore the role of OLFM2 in the migration and invasion of CRC through transwell, and wound healing experiments. Finally, the expression of epithelial-mesenchymal transition (EMT) -related proteins and TGF-β/Smad signaling pathway-related proteins was investigated using western blotting. RESULTS In this study, we observed an elevation of OLFM2 expression levels in CRC tissues. To investigate the function of OLFM2, we overexpressed and knocked down OLFM2. We discovered that OLFM2 knockdown inhibited migration and invasion of colon cancer cells. Furthermore, E-cadherin expression increased while N-cadherin and Vimentin expression were opposite. It is no surprise that overexpressing OLFM2 had the opposite effects. We also identified that OLFM2 knockdown resulted in reduced TGF-βR1 and downstream molecules p-Smad2 and p-Smad3, which are related to the TGF-β / Smad pathway. In contrast, overexpressing OLFM2 significantly boosted their expression levels. CONCLUSION The protein OLFM2 has been identified as a crucial determinant in the progression of CRC. Its mechanism of action involves the facilitation of EMT through the TGF-β/Smad signaling pathway. Given its pivotal role in CRC, OLFM2 has emerged as a promising diagnostic and therapeutic target for the disease. These results indicate the potential of OLFM2 as a valuable biomarker for CRC diagnosis and treatment and highlight the need for further research exploring its clinical significance.
Collapse
Affiliation(s)
- Yong Tang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Gastroenterology, Ziyang Yanjiang People's Hospital, Ziyang, China
| | - Yi Liu
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiaobo Wang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Haiyang Guo
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Lin Chen
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Guangbing Hu
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yutong Cui
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Shiqi Liang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Ji Zuo
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Zichen Luo
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xinrui Chen
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xianfei Wang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
- Digestive Endoscopy Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
41
|
Zhou SQ, Feng P, Ye ML, Huang SY, He SW, Zhu XH, Chen J, Zhang Q, Li YQ. The E3 ligase NEURL3 suppresses epithelial-mesenchymal transition and metastasis in nasopharyngeal carcinoma by promoting vimentin degradation. J Exp Clin Cancer Res 2024; 43:14. [PMID: 38191501 PMCID: PMC10775674 DOI: 10.1186/s13046-024-02945-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/30/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Metastasis has emerged as the major reason of treatment failure and mortality in patients with nasopharyngeal carcinoma (NPC). Growing evidence links abnormal DNA methylation to the initiation and progression of NPC. However, the precise regulatory mechanism behind these processes remains poorly understood. METHODS Bisulfite pyrosequencing, RT-qPCR, western blot, and immunohistochemistry were used to test the methylation and expression level of NEURL3 and its clinical significance. The biological function of NEURL3 was examined both in vitro and in vivo. Mass spectrometry, co-immunohistochemistry, immunofluorescence staining, and ubiquitin assays were performed to explore the regulatory mechanism of NEURL3. RESULTS The promoter region of NEURL3, encoding an E3 ubiquitin ligase, was obviously hypermethylated, leading to its downregulated expression in NPC. Clinically, NPC patients with a low NEURL3 expression indicated an unfavorable prognosis and were prone to develop distant metastasis. Overexpression of NEURL3 could suppress the epithelial mesenchymal transition and metastasis of NPC cells in vitro and in vivo. Mechanistically, NEURL3 promoted Vimentin degradation by increasing its K48-linked polyubiquitination at lysine 97. Specifically, the restoration of Vimentin expression could fully reverse the tumor suppressive effect of NEURL3 overexpression in NPC cells. CONCLUSIONS Collectively, our study uncovers a novel mechanism by which NEURL3 inhibits NPC metastasis, thereby providing a promising therapeutic target for NPC treatment.
Collapse
Affiliation(s)
- Shi-Qing Zhou
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- Otorhinolaryngology Head and Neck Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Ping Feng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Ming-Liang Ye
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Sheng-Yan Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Shi-Wei He
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Xun-Hua Zhu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Jun Chen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Qun Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou, 510080, People's Republic of China.
| | - Ying-Qing Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
42
|
Hernández-Reséndiz R, Villanueva-Castro E, Mateo-Nouel EDJ, Gómez-Apo E, Peñafiel-Salgado C, Salinas-Lara C, Tena-Suck ML. Calcified Pilocytic Astrocytomas and Calcifying Pseudoneoplasms of the Neuraxis: A Diagnostic Challenge. Cureus 2024; 16:e51765. [PMID: 38322074 PMCID: PMC10844034 DOI: 10.7759/cureus.51765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2024] [Indexed: 02/08/2024] Open
Abstract
Pilocytic astrocytoma (PA), recognized as the most prevalent central nervous system (CNS) tumor, has long been associated with calcifications, a characteristic often attributed to benign or indolent growth patterns. In this study, we explored the calcified attributes in these tumors that beckon a deeper understanding. This is a retrospective study, on a set of seven cases, with a histopathological diagnosis of pilocytic astrocytoma with calcifications and psammoma bodies (PB). Despite an encouraging overall survival outcome, the recurrence in four cases cast some doubt on the conventional classification. The histological study of these cases revealed a spectrum of calcifications, varying in size and morphology, all of which exhibited positive reactivity to glial fibrillary acidic protein (GFAP), osteoconduction, and osteopontin. Notably, the immunohistochemistry showed hyaline bodies displaying an atypical immune profile, strikingly negative for vimentin and GFAP, and a robust positivity for epidermal growth factor receptors (EGFR), tumor necrosis factor-alpha (TNF-α), and interleukin 1 beta (IL-1β). These results stimulated speculation that the identity of these calcified tumors may have extended and potentially embraced the realm of calcifying pseudoneoplasms of the neuraxis (CAPNON), underscored by intense pilot gliosis. This study transcends mere anatomical exploration; it delves into the intricacies of calcified tumors, casting a spotlight on the dynamic interplay between PA and CAPNON. As we traverse the frontiers of neuro-oncology, these findings pave the way for innovative avenues in the diagnostics and therapeutics of these tumors.
Collapse
Affiliation(s)
| | - Eliezer Villanueva-Castro
- Department of Neurosurgery, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, MEX
| | - Edgardo de Jesus Mateo-Nouel
- Department of Neurosurgery, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, MEX
| | - Erick Gómez-Apo
- Department of Pathology, Hospital General de México, Mexico City, MEX
| | - Carlos Peñafiel-Salgado
- Department of Neuropathology, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, MEX
| | - Citlaltepetl Salinas-Lara
- Department of Neuropathology, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, MEX
| | - Martha Lilia Tena-Suck
- Department of Neuropathology, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, MEX
| |
Collapse
|
43
|
Kuburich NA, den Hollander P, Castaneda M, Pietilä M, Tang X, Batra H, Martínez-Peña F, Visal TH, Zhou T, Demestichas BR, Dontula RV, Liu JY, Maddela JJ, Padmanabhan RS, Phi LTH, Rosolen MJ, Sabapathy T, Kumar D, Giancotti FG, Lairson LL, Raso MG, Soundararajan R, Mani SA. Stabilizing vimentin phosphorylation inhibits stem-like cell properties and metastasis of hybrid epithelial/mesenchymal carcinomas. Cell Rep 2023; 42:113470. [PMID: 37979166 PMCID: PMC11062250 DOI: 10.1016/j.celrep.2023.113470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/01/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) empowers epithelial cells with mesenchymal and stem-like attributes, facilitating metastasis, a leading cause of cancer-related mortality. Hybrid epithelial-mesenchymal (E/M) cells, retaining both epithelial and mesenchymal traits, exhibit heightened metastatic potential and stemness. The mesenchymal intermediate filament, vimentin, is upregulated during EMT, enhancing the resilience and invasiveness of carcinoma cells. The phosphorylation of vimentin is critical to its structure and function. Here, we identify that stabilizing vimentin phosphorylation at serine 56 induces multinucleation, specifically in hybrid E/M cells with stemness properties but not epithelial or mesenchymal cells. Cancer stem-like cells are especially susceptible to vimentin-induced multinucleation relative to differentiated cells, leading to a reduction in self-renewal and stemness. As a result, vimentin-induced multinucleation leads to sustained inhibition of stemness properties, tumor initiation, and metastasis. These observations indicate that a single, targetable phosphorylation event in vimentin is critical for stemness and metastasis in carcinomas with hybrid E/M properties.
Collapse
Affiliation(s)
- Nick A Kuburich
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Petra den Hollander
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Maria Castaneda
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mika Pietilä
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Janssen Pharmaceutical Companies of Johnson & Johnson, Espoo, Uusimaa, Finland
| | - Ximing Tang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Harsh Batra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Tanvi H Visal
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tieling Zhou
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Breanna R Demestichas
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Ritesh V Dontula
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jojo Y Liu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joanna Joyce Maddela
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Reethi S Padmanabhan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lan Thi Hanh Phi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Matthew J Rosolen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Thiru Sabapathy
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Dhiraj Kumar
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Cancer Metastasis Initiative, Herbert Irving Comprehensive Cancer Center, Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Filippo G Giancotti
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Cancer Metastasis Initiative, Herbert Irving Comprehensive Cancer Center, Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Luke L Lairson
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rama Soundararajan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sendurai A Mani
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
44
|
Neasham PJ, Pliasas VC, North JF, Johnson C, Tompkins SM, Kyriakis CS. Development and characterization of an immortalized swine respiratory cell line for influenza A virus research. Front Vet Sci 2023; 10:1258269. [PMID: 38179335 PMCID: PMC10765598 DOI: 10.3389/fvets.2023.1258269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/16/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction Swine serve as an important intermediate host species for generating novel influenza A viruses (IAVs) with pandemic potential because of the host's susceptibility to IAVs of swine, human and avian origin. Primary respiratory cell lines are used in IAV research to model the host's upper respiratory tract in vitro. However, primary cell lines are limited by their passaging capacity and are time-consuming for use in industry and research pipelines. We were interested in developing and characterizing a biologically relevant immortalized swine respiratory cell line that could be used for efficient propagation and characterization of swine IAV isolates. Methods Lung tissue for the generation of primary swine respiratory cells were isolated from the bronchi of an 8-week-old Yorkshire/Hampshire pig, which were immortalized by transduction of the SV40 T antigen using a lentivirus vector. The transduction of the SV40 T antigen was confirmed by Real Time RT-PCR in cells passaged greater than twenty times. Results Immortalized swine respiratory cells expressed primarily α2,6 sialic acid receptors and were susceptible to both swine and human IAVs, with swine viruses exhibiting higher replication rates. Notably, infection with a swine H3N2 isolate prompted increased IL-6 and IL-1α protein secretion compared to a seasonal human H3N2 virus. Even after 20 passages, the immortalized cells maintained the primary respiratory cell phenotype and remained permissive to IAV infection without exogenous trypsin. Discussion In summary, our developed immortalized swine respiratory cell line offers an alternative in vitro substrate for studying IAV replication and transmission dynamics in pigs, overcoming the limitations of primary respiratory cells in terms of low passage survivability and cost.
Collapse
Affiliation(s)
- Peter J. Neasham
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
| | - Vasilis C. Pliasas
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
| | - J. Fletcher North
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
| | - Celeste Johnson
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - S. Mark Tompkins
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| | - Constantinos S. Kyriakis
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| |
Collapse
|
45
|
Ibáñez-Cortés M, Martín-Piedra MÁ, Blanco-Elices C, García-García ÓD, España-López A, Fernández-Valadés R, Sánchez-Quevedo MDC, Alaminos M, Chato-Astrain J, Garzón I. Histological characterization of the human masticatory oral mucosa. A histochemical and immunohistochemical study. Microsc Res Tech 2023; 86:1712-1724. [PMID: 37650503 DOI: 10.1002/jemt.24398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/19/2023] [Accepted: 08/06/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Histology of human oral mucosa is closely related with its function and anatomical location, and a proper characterization of the human masticatory oral mucosa could be very useful in periodontal pathology. OBJECTIVE In the present work, we have carried out a comprehensive study in order to determine the main histological features of parakeratinized (POM) and orthokeratinized (OOM) masticatory human oral mucosa using light and electron microscopy. METHODS To perform this, we have used several histological, histochemical and immunohistochemical methods to detect key markets at the epithelial, basement membrane and connective tissue levels. RESULTS Our results demonstrated that POM and OOM share many histological similarities, as expected. However, important differences were observed at the epithelial layer of POM, that was significantly thicker than the epithelial layer found in OOM, especially due to a higher number of cells at the stratum spinosum. The expression pattern of CK10 and filaggrin revealed intense signal expression in OOM as compared to POM. Collagen and proteoglycans were more abundant in OOM stroma than in POM. No differences were found for blood vessels and basement membrane. CONCLUSION These results may contribute to a better understanding of the pathological conditions affecting the human masticatory oral mucosa. In addition, these findings could be useful for the generation of different types of oral mucosa by tissue engineering techniques. RESEARCH HIGHLIGHTS Microscopical features of parakeratinized and orthokeratinized masticatory human oral mucosa showed important differences at both, epithelial and stromal levels. Parakeratinized masticatory human oral mucosa exert thicker epithelial layer, especially, at the stratum spinosum in comparison to orthokeratinized human oral mucosa. Cytokeratin 10 and filaggrin human epithelial markers were intensively expressed in orthokeratinized masticatory human oral mucosa in comparison to parakeratinized masticatory human oral mucosa. At the stromal level, orthokeratinized masticatory human oral mucosa exhibit higher levels of collagen and proteoglycans than parakeratinized masticatory oral mucosa. The deep knowledge of histological features of masticatory oral mucosa could lead to a better understanding of oral mucosa pathology and advanced treatments.
Collapse
Affiliation(s)
- Miguel Ibáñez-Cortés
- Tissue Engineering Group, Department of Histology, University of Granada, Granada, Spain
- Doctoral Program in Biomedicine, University of Granada, Granada, Spain
| | - Miguel Ángel Martín-Piedra
- Tissue Engineering Group, Department of Histology, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Cristina Blanco-Elices
- Tissue Engineering Group, Department of Histology, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Óscar Darío García-García
- Tissue Engineering Group, Department of Histology, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Antonio España-López
- Craniofacial Malformations and Cleft Lip and Palate Management Unit, University Hospital Virgen de las Nieves, Granada, Spain
| | - Ricardo Fernández-Valadés
- Tissue Engineering Group, Department of Histology, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- Division of Pediatric Surgery, University Hospital Virgen de las Nieves, Granada, Spain
| | - María Del Carmen Sánchez-Quevedo
- Tissue Engineering Group, Department of Histology, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Jesús Chato-Astrain
- Tissue Engineering Group, Department of Histology, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Ingrid Garzón
- Tissue Engineering Group, Department of Histology, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| |
Collapse
|
46
|
Liu Y, Zhao S, Chen Y, Ma W, Lu S, He L, Chen J, Chen X, Zhang X, Shi Y, Jiang X, Zhao K. Vimentin promotes glioma progression and maintains glioma cell resistance to oxidative phosphorylation inhibition. Cell Oncol (Dordr) 2023; 46:1791-1806. [PMID: 37646965 DOI: 10.1007/s13402-023-00844-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 09/01/2023] Open
Abstract
PURPOSE Glioma has been demonstrated as one of the most malignant intracranial tumors and currently there is no effective treatment. Based on our previous RNA-sequencing data for oxidative phosphorylation (OXPHOS)-inhibition resistant and OXPHOS-inhibition sensitive cancer cells, we found that vimentin (VIM) is highly expressed in the OXPHOS-inhibition resistant cancer cells, especially in glioma cancer cells. Further study of VIM in the literature indicates that it plays important roles in cancer progression, immunotherapy suppression, cancer stemness and drug resistance. However, its role in glioma remains elusive. This study aims to decipher the role of VIM in glioma, especially its role in OXPHOS-inhibition sensitivity, which may provide a promising therapeutic target for glioma treatment. METHODS The expression of VIM in glioma and the normal tissue has been obtained from The Cancer Genome Atlas (TCGA) database, and further validated in Human Protein Atlas (HPA) and Chinese Glioma Genome Atlas (CGGA). And the single-cell sequencing data was obtained from TISCH2. The immune infiltration was calculated via Tumor Immune Estimation Resource (TIMER), Estimation of Stromal and Immune Cells in Malignant Tumors using Expression Data (ESTIMATE) and ssGSEA, and the Immunophenoscore (IPS) was calculated via R package. The differentiated expressed genes were analyzed including GO/KEGG and Gene Set Enrichment Analysis (GSEA) between the VIM-high and -low groups. The methylation of VIM was checked at the EWAS and Methsurv. The correlation between VIM expression and cancer stemness was obtained from SangerBox. We also employed DepMap data and verified the role of VIM by knocking down it in VIM-high glioma cell and over-expressing it in VIM-low glioma cells to check the cell viability. RESULTS Vim is highly expressed in the glioma patients compared to normal samples and its high expression negatively correlates with patients' survival. The DNA methylation in VIM promoters in glioma patients is lower than that in the normal samples. High VIM expression positively correlates with the immune infiltration and tumor progression. Furthermore, Vim is expressed high in the OXPHOS-inhibition glioma cancer cells and low in the OXPHOS-inhibition sensitive ones and its expression maintains the OXPHOS-inhibition resistance. CONCLUSIONS In conclusion, we comprehensively deciphered the role of VIM in the progression of glioma and its clinical outcomes. Thus provide new insights into targeting VIM in glioma cancer immunotherapy in combination with the current treatment.
Collapse
Affiliation(s)
- Yu'e Liu
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Shu Zhao
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Yi Chen
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Wencong Ma
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Shiping Lu
- Center for Translational Research in Infection and Inflammation, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Le He
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Jie Chen
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Xi Chen
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xiaoling Zhang
- National Joint Engineering Laboratory for Human Disease Animal Models, Key Laboratory of Organ Regeneration and Transplantation, First Hospital of Jilin University, Changchun, China
| | - Yufeng Shi
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, Clinical Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xuan Jiang
- Department of Oncology, Huai'an Second People's Hospital, Affiliated to Xuzhou Medical University, Huai'an, Jiangsu, China.
| | - Kaijun Zhao
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
47
|
Nicolazzo C, Francescangeli F, Magri V, Giuliani A, Zeuner A, Gazzaniga P. Is cancer an intelligent species? Cancer Metastasis Rev 2023; 42:1201-1218. [PMID: 37540301 PMCID: PMC10713722 DOI: 10.1007/s10555-023-10123-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/26/2023] [Indexed: 08/05/2023]
Abstract
Some relevant emerging properties of intelligent systems are "adaptation to a changing environment," "reaction to unexpected situations," "capacity of problem solving," and "ability to communicate." Single cells have remarkable abilities to adapt, make adequate context-dependent decision, take constructive actions, and communicate, thus theoretically meeting all the above-mentioned requirements. From a biological point of view, cancer can be viewed as an invasive species, composed of cells that move from primary to distant sites, being continuously exposed to changes in the environmental conditions. Blood represents the first hostile habitat that a cancer cell encounters once detached from the primary site, so that cancer cells must rapidly carry out multiple adaptation strategies to survive. The aim of this review was to deepen the adaptation mechanisms of cancer cells in the blood microenvironment, particularly referring to four adaptation strategies typical of animal species (phenotypic adaptation, metabolic adaptation, niche adaptation, and collective adaptation), which together define the broad concept of biological intelligence. We provided evidence that the required adaptations (either structural, metabolic, and related to metastatic niche formation) and "social" behavior are useful principles allowing putting into a coherent frame many features of circulating cancer cells. This interpretative frame is described by the comparison with analog behavioral traits typical of various animal models.
Collapse
Affiliation(s)
- Chiara Nicolazzo
- Department of Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - Federica Francescangeli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Valentina Magri
- Department of Pathology, Oncology and Radiology, Sapienza University of Rome, 00161, Rome, Italy
| | - Alessandro Giuliani
- Environment and Health Department, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Ann Zeuner
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Paola Gazzaniga
- Department of Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy.
| |
Collapse
|
48
|
Lin LP, Tan MTT. Biosensors for the detection of lung cancer biomarkers: A review on biomarkers, transducing techniques and recent graphene-based implementations. Biosens Bioelectron 2023; 237:115492. [PMID: 37421797 DOI: 10.1016/j.bios.2023.115492] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 07/10/2023]
Abstract
Lung cancer remains the leading cause of cancer-related death. In addition to chest X-rays and computerised tomography, the detection of cancer biomarkers serves as an emerging diagnostic tool for lung cancer. This review explores biomarkers including the rat sarcoma gene, the tumour protein 53 gene, the epidermal growth factor receptor, the neuron-specific enolase, the cytokeratin-19 fragment 21-1 and carcinoembryonic antigen as potential indicators of lung cancer. Biosensors, which utilise various transduction techniques, present a promising solution for the detection of lung cancer biomarkers. Therefore, this review also explores the working principles and recent implementations of transducers in the detection of lung cancer biomarkers. The transducing techniques explored include optical techniques, electrochemical techniques and mass-based techniques for detecting biomarkers and cancer-related volatile organic compounds. Graphene has outstanding properties in terms of charge transfer, surface area, thermal conductivity and optical characteristics, on top of allowing easy incorporation of other nanomaterials. Exploiting the collective merits of both graphene and biosensor is an emerging trend, as evidenced by the growing number of studies on graphene-based biosensors for the detection of lung cancer biomarkers. This work provides a comprehensive review of these studies, including information on modification schemes, nanomaterials, amplification strategies, real sample applications, and sensor performance. The paper concludes with a discussion of the challenges and future outlook of lung cancer biosensors, including scalable graphene synthesis, multi-biomarker detection, portability, miniaturisation, financial support, and commercialisation.
Collapse
Affiliation(s)
- Lih Poh Lin
- Faculty of Engineering and Technology, Tunku Abdul Rahman University of Management and Technology, 53300, Kuala Lumpur, Malaysia; Centre for Multimodal Signal Processing, Tunku Abdul Rahman University of Management and Technology, 53300, Kuala Lumpur, Malaysia
| | - Michelle Tien Tien Tan
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Malaysia.
| |
Collapse
|
49
|
Sarry M, Bernelin-Cottet C, Michaud C, Relmy A, Romey A, Salomez AL, Renson P, Contrant M, Berthaud M, Huet H, Jouvion G, Hägglund S, Valarcher JF, Bakkali Kassimi L, Blaise-Boisseau S. Development of a primary cell model derived from porcine dorsal soft palate for foot-and-mouth disease virus research and diagnosis. Front Microbiol 2023; 14:1215347. [PMID: 37840704 PMCID: PMC10570842 DOI: 10.3389/fmicb.2023.1215347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious viral disease of cloven-hoofed animals that has a significant socio-economic impact. One concern associated with this disease is the ability of its etiological agent, the FMD virus (FMDV), to persist in its hosts through underlying mechanisms that remain to be elucidated. While persistence has been described in cattle and small ruminants, it is unlikely to occur in pigs. One of the factors limiting the progress in understanding FMDV persistence and, in particular, differential persistence is the lack of suitable in vitro models. A primary bovine cell model derived from the dorsal soft palate, which is the primary site of replication and persistence of FMDV in cattle, has been developed, and it seemed relevant to develop a similar porcine model. Cells from two sites of FMDV replication in pigs, namely, the dorsal soft palate and the oropharyngeal tonsils, were isolated and cultured. The epithelial character of the cells from the dorsal soft palate was then assessed by immunofluorescence. The FMDV-sensitivity of these cells was assessed after monolayer infection with FMDV O/FRA/1/2001 Clone 2.2. These cells were also grown in multilayers at the air-liquid interface to mimic a stratified epithelium susceptible to FMDV infection. Consistent with what has been shown in vivo in pigs, our study showed no evidence of persistence of FMDV in either the monolayer or multilayer model, with no infectious virus detected 28 days after infection. The development of such a model opens up new possibilities for the study and diagnosis of FMDV in porcine cells.
Collapse
Affiliation(s)
- Morgan Sarry
- UMR VIROLOGIE, INRAe, EnvA, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
- AgroParistech, Paris, France
| | - Cindy Bernelin-Cottet
- UMR VIROLOGIE, INRAe, EnvA, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Caroline Michaud
- UMR VIROLOGIE, INRAe, EnvA, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Anthony Relmy
- UMR VIROLOGIE, INRAe, EnvA, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Aurore Romey
- UMR VIROLOGIE, INRAe, EnvA, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Anne-Laure Salomez
- UMR VIROLOGIE, INRAe, EnvA, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Patricia Renson
- ANSES Laboratoire de Ploufragan-Plouzané-Niort, Ploufragan, France
| | - Maud Contrant
- ANSES Laboratoire de Ploufragan-Plouzané-Niort, Ploufragan, France
| | - Maxime Berthaud
- ANSES Laboratoire de Ploufragan-Plouzané-Niort, Ploufragan, France
| | - Hélène Huet
- UMR VIROLOGIE, INRAe, EnvA, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Grégory Jouvion
- Dynamyc Research Team, Université Paris-Est Créteil, Ecole Nationale Vétérinaire d’Alfort, ANSES, Créteil, France
- Unité d’Histologie et d’Anatomie Pathologique, Ecole Nationale Vétérinaire d’Alfort, Maisons-Alfort, France
| | - Sara Hägglund
- Host Pathogen Interaction Group, Section of Ruminant Medicine, Department of Clinical Science, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Jean-François Valarcher
- Host Pathogen Interaction Group, Section of Ruminant Medicine, Department of Clinical Science, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Labib Bakkali Kassimi
- UMR VIROLOGIE, INRAe, EnvA, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| | - Sandra Blaise-Boisseau
- UMR VIROLOGIE, INRAe, EnvA, ANSES Laboratoire de Santé Animale, Université Paris-Est, Maisons-Alfort, France
| |
Collapse
|
50
|
Zhu Z, Cheng K, Yun Z, Zhang X, Hu X, Liu J, Wang F, Fu Z, Yue J. [ 18F] AlF-NOTA-FAPI-04 PET/CT can predict treatment response and survival in patients receiving chemotherapy for inoperable pancreatic ductal adenocarcinoma. Eur J Nucl Med Mol Imaging 2023; 50:3425-3438. [PMID: 37328622 DOI: 10.1007/s00259-023-06271-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/18/2023] [Indexed: 06/18/2023]
Abstract
PURPOSE We investigated whether uptake of [18F] AlF-NOTA-FAPI-04 on positron emission tomography/computed tomography (PET/CT) could predict treatment response and survival in patients with pancreatic ductal adenocarcinoma (PDAC). METHODS We prospectively evaluated 47 patients with histopathologically confirmed primary PDAC who provided pretreatment [18F] AlF-NOTA-FAPI-04 scans to detect fibroblast activation protein (FAP) on the tumor surface by uptake of [18F] AlF-NOTA-FAPI-04. PDAC specimens were immunohistochemically stained with cancer-associated fibroblast (CAF) markers. We obtained a second PET scan after one cycle of chemotherapy to study changes in FAPI uptake variables from before to during treatment. Correlations between baseline PET variables and CAF-related immunohistochemical markers were assessed with Spearman's rank test. Cox regression and Kaplan-Meier methods were used to assess relationships between disease progression and potential predictors. Receiver operating characteristic (ROC) curve analysis was used to define the optimal cut-off points for distinguishing patients according to good response vs. poor response per RECIST v.1.1. RESULTS The FAPI PET variables maximum and mean standardized uptake values (SUVmax, SUVmean), metabolic tumor volume (MTV), and total lesion FAP expression (TLF) were positively correlated with CAF markers (FAP, α-smooth muscle actin, vimentin, S100A4, and platelet-derived growth factor receptor α/β, all P < 0.05). MTV was associated with survival in patients with inoperable PDAC (all P < 0.05). Cox multivariate regression showed that MTV was associated with overall survival (MTV hazard ratio [HR] = 1.016, P = 0.016). Greater changes from before to during chemotherapy in SUVmax, MTV, and TLF were associated with good treatment response (all P < 0.05). ΔMTV, ΔTLF, and ΔSUVmax had larger areas under the curve than ΔCA19-9 for predicting treatment response. Kaplan-Meier analysis showed that the extent of change in MTV and TLF from before to after treatment predicted progression-free survival, with cut-off values (based on medians) of - 4.95 for ΔMTV (HR = 8.09, P = 0.013) and - 77.83 for ΔTLF (HR = 4.62, P = 0.012). CONCLUSIONS A higher baseline MTV on [18F] AlF-NOTA-FAPI-04 scans was associated with poorer survival in patients with inoperable PDAC. ΔMTV was more sensitive for predicting response than ΔCA19-9. These results are clinically meaningful for identifying patients with PDAC who are at high risk of disease progression.
Collapse
Affiliation(s)
- Ziyuan Zhu
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, Shandong, China
| | - Kai Cheng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, Shandong, China
- PET/CT Center, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhang Yun
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, Shandong, China
| | - Xiang Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, Shandong, China
| | - Xiaoyu Hu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, Shandong, China
| | - Jing Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, Shandong, China
| | - Fuhao Wang
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Zheng Fu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, Shandong, China.
- PET/CT Center, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Jinbo Yue
- School of Clinical Medicine, Weifang Medical University, Weifang, China.
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, Shandong, China.
| |
Collapse
|