1
|
Ono SF, Cordeiro IR, Kishida O, Ochi H, Tanaka M. Air-breathing behavior underlies the cell death in limbs of Rana pirica tadpoles. ZOOLOGICAL LETTERS 2023; 9:2. [PMID: 36624534 PMCID: PMC9830891 DOI: 10.1186/s40851-022-00199-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Amphibians shape their limbs by differential outgrowth of digits and interdigital regions. In contrast, amniotes employ cell death, an additional developmental system, to determine the final shape of limbs. Previous work has shown that high oxygen availability is correlated with the induction of cell death in developing limbs. Given the diversity of life histories of amphibians, it is conceivable that some amphibians are exposed to a high-oxygen environment during the tadpole phase and exhibit cell death in their limbs. Here, we examined whether air-breathing behavior underlies the cell death in limbs of aquatic tadpoles of the frog species Rana pirica. Our experimental approach revealed that R. pirica tadpoles exhibit cell death in their limbs that is likely to be induced by oxidative stress associated with their frequent air-breathing behavior.
Collapse
Affiliation(s)
- Satomi F Ono
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Ingrid Rosenburg Cordeiro
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Osamu Kishida
- Tomakomai Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Tomakomai, Hokkaido, 053-0035, Japan
| | - Haruki Ochi
- Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, Yamagata, 990-9585, Japan
| | - Mikiko Tanaka
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.
| |
Collapse
|
2
|
Díaz-Hernández ME, Galván-Hernández CI, Marín-Llera JC, Camargo-Sosa K, Bustamante M, Wischin S, Chimal-Monroy J. Activation of the WNT-BMP-FGF Regulatory Network Induces the Onset of Cell Death in Anterior Mesodermal Cells to Establish the ANZ. Front Cell Dev Biol 2021; 9:703836. [PMID: 34820367 PMCID: PMC8606791 DOI: 10.3389/fcell.2021.703836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
The spatiotemporal control of programmed cell death (PCD) plays a significant role in sculpting the limb. In the early avian limb bud, the anterior necrotic zone (ANZ) and the posterior necrotic zone are two cell death regions associated with digit number reduction. In this study, we evaluated the first events triggered by the FGF, BMP, and WNT signaling interactions to initiate cell death in the anterior margin of the limb to establish the ANZ. This study demonstrates that in a period of two to 8 h after the inhibition of WNT or FGF signaling or the activation of BMP signaling, cell death was induced in the anterior margin of the limb concomitantly with the regulation of Dkk, Fgf8, and Bmp4 expression. Comparing the gene expression profile between the ANZ and the undifferentiated zone at 22HH and 25HH and between the ANZ of 22HH and 25HH stages correlates with functional programs controlled by the regulatory network FGF, BMP, and WNT signaling in the anterior margin of the limb. This work provides novel insights to recognize a negative feedback loop between FGF8, BMP4, and DKK to control the onset of cell death in the anterior margin of the limb to the establishment of the ANZ.
Collapse
Affiliation(s)
- Martha Elena Díaz-Hernández
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, Mexico
| | - Claudio Iván Galván-Hernández
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, Mexico
| | - Jessica Cristina Marín-Llera
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, Mexico
| | - Karen Camargo-Sosa
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, Mexico
| | - Marcia Bustamante
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, Mexico
| | - Sabina Wischin
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, Mexico
| | - Jesús Chimal-Monroy
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, Mexico
| |
Collapse
|
3
|
Wang Z, Cao K, Wang D, Hua B, Zhang H, Xie X. Cadmium sulfate induces apoptosis in planarians. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:39308-39316. [PMID: 32648224 DOI: 10.1007/s11356-020-09991-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
With rapid socio-economic development, heavy metal pollution in water has become common and affects both environment and human health. Cadmium (Cd) has been recognized as one of the heavy metals which cause acute or chronic toxic effects if ingested. Although its toxicity is undisputed, the underlying molecular mechanisms in vivo are not fully understood. Planarians, a model organism famous for their regenerative prowess, have long been utilized to study the effects of chemical exposure. In this study, we observed apoptosis with TUNEL assay in planarians induced by cadmium sulfate (CdSO4) in a dose-dependent manner. The apoptosis-related genes were detected with quantitative RT-PCR. Significant changes in c-Myc, P53, and BcL-2 were indicated, which may play a partial role in the regulation of the process of apoptosis in the planarians. H&E staining showed that Cd had obvious biological toxicity in the planarians. Here, new insights on metal toxicity mechanisms are provided, contributing to understand how CdSO4 induces the pathological and physiological processes of apoptosis in the living bodies. Meanwhile, planarians are proved to be a freshwater pollution indicator and toxicological research model.
Collapse
Affiliation(s)
- Zhiyang Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Keqing Cao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Dan Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Bingjie Hua
- GeWu Medical Research Institute (GMRI), Xi'an, China
| | - Haiyan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China.
- GeWu Medical Research Institute (GMRI), Xi'an, China.
| | - Xin Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China.
- GeWu Medical Research Institute (GMRI), Xi'an, China.
- Department of Translational Medicine, Institute of Integrated Medical Information, Xi'an, China.
| |
Collapse
|
4
|
Cordeiro IR, Tanaka M. Environmental Oxygen is a Key Modulator of Development and Evolution: From Molecules to Ecology. Bioessays 2020; 42:e2000025. [DOI: 10.1002/bies.202000025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/09/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Ingrid Rosenburg Cordeiro
- Department of Life Science and Technology Tokyo Institute of Technology B‐17, 4259 Nagatsuta‐cho, Midori‐ku Yokohama 226‐8501 Japan
| | - Mikiko Tanaka
- Department of Life Science and Technology Tokyo Institute of Technology B‐17, 4259 Nagatsuta‐cho, Midori‐ku Yokohama 226‐8501 Japan
| |
Collapse
|
5
|
Cordeiro IR, Kabashima K, Ochi H, Munakata K, Nishimori C, Laslo M, Hanken J, Tanaka M. Environmental Oxygen Exposure Allows for the Evolution of Interdigital Cell Death in Limb Patterning. Dev Cell 2019; 50:155-166.e4. [PMID: 31204171 DOI: 10.1016/j.devcel.2019.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/01/2019] [Accepted: 05/10/2019] [Indexed: 01/04/2023]
Abstract
Amphibians form fingers without webbing by differential growth between digital and interdigital regions. Amniotes, however, employ interdigital cell death (ICD), an additional mechanism that contributes to a greater variation of limb shapes. Here, we investigate the role of environmental oxygen in the evolution of ICD in tetrapods. While cell death is restricted to the limb margin in amphibians with aquatic tadpoles, Eleutherodactylus coqui, a frog with terrestrial-direct-developing eggs, has cell death in the interdigital region. Chicken requires sufficient oxygen and reactive oxygen species to induce cell death, with the oxygen tension profile itself being distinct between the limbs of chicken and Xenopus laevis frogs. Notably, increasing blood vessel density in X. laevis limbs, as well as incubating tadpoles under high oxygen levels, induces ICD. We propose that the oxygen available to terrestrial eggs was an ecological feature crucial for the evolution of ICD, made possible by conserved autopod-patterning mechanisms.
Collapse
Affiliation(s)
- Ingrid Rosenburg Cordeiro
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Kaori Kabashima
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Haruki Ochi
- Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, Yamagata 990-9585, Japan
| | - Keijiro Munakata
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Chika Nishimori
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Mara Laslo
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - James Hanken
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Mikiko Tanaka
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
6
|
Pickering J, Rich CA, Stainton H, Aceituno C, Chinnaiya K, Saiz-Lopez P, Ros MA, Towers M. An intrinsic cell cycle timer terminates limb bud outgrowth. eLife 2018; 7:37429. [PMID: 30175958 PMCID: PMC6143340 DOI: 10.7554/elife.37429] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/02/2018] [Indexed: 12/24/2022] Open
Abstract
The longstanding view of how proliferative outgrowth terminates following the patterning phase of limb development involves the breakdown of reciprocal extrinsic signalling between the distal mesenchyme and the overlying epithelium (e-m signalling). However, by grafting distal mesenchyme cells from late stage chick wing buds to the epithelial environment of younger wing buds, we show that this mechanism is not required. RNA sequencing reveals that distal mesenchyme cells complete proliferative outgrowth by an intrinsic cell cycle timer in the presence of e-m signalling. In this process, e-m signalling is required permissively to allow the intrinsic cell cycle timer to run its course. We provide evidence that a temporal switch from BMP antagonism to BMP signalling controls the intrinsic cell cycle timer during limb outgrowth. Our findings have general implications for other patterning systems in which extrinsic signals and intrinsic timers are integrated.
Collapse
Affiliation(s)
- Joseph Pickering
- Department of Biomedical Science, The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Constance A Rich
- Department of Biomedical Science, The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Holly Stainton
- Department of Biomedical Science, The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Cristina Aceituno
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC-Universidad de Cantabria), Santander, Spain
| | - Kavitha Chinnaiya
- Department of Biomedical Science, The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Patricia Saiz-Lopez
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC-Universidad de Cantabria), Santander, Spain
| | - Marian A Ros
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC-Universidad de Cantabria), Santander, Spain.,Departamento de Anatomía y Biología Celular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Matthew Towers
- Department of Biomedical Science, The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
7
|
Kumar JP. The fly eye: Through the looking glass. Dev Dyn 2017; 247:111-123. [PMID: 28856763 DOI: 10.1002/dvdy.24585] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/14/2017] [Accepted: 08/14/2017] [Indexed: 12/20/2022] Open
Abstract
The developing eye-antennal disc of Drosophila melanogaster has been studied for more than a century, and it has been used as a model system to study diverse processes, such as tissue specification, organ growth, programmed cell death, compartment boundaries, pattern formation, cell fate specification, and planar cell polarity. The findings that have come out of these studies have informed our understanding of basic developmental processes as well as human disease. For example, the isolation of a white-eyed fly ultimately led to a greater appreciation of the role that sex chromosomes play in development, sex determination, and sex linked genetic disorders. Similarly, the discovery of the Sevenless receptor tyrosine kinase pathway not only revealed how the fate of the R7 photoreceptor is selected but it also helped our understanding of how disruptions in similar biochemical pathways result in tumorigenesis and cancer onset. In this article, I will discuss some underappreciated areas of fly eye development that are fertile for investigation and are ripe for producing exciting new breakthroughs. The topics covered here include organ shape, growth control, inductive signaling, and right-left symmetry. Developmental Dynamics 247:111-123, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Justin P Kumar
- Department of Biology, Indiana University, Bloomington, Indiana
| |
Collapse
|
8
|
Fujii K, Shi Z, Zhulyn O, Denans N, Barna M. Pervasive translational regulation of the cell signalling circuitry underlies mammalian development. Nat Commun 2017; 8:14443. [PMID: 28195124 PMCID: PMC5316868 DOI: 10.1038/ncomms14443] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 12/29/2016] [Indexed: 12/11/2022] Open
Abstract
The degree and dynamics of translational control during mammalian development remain poorly understood. Here we monitored translation of the mammalian genome as cells become specified and organize into tissues in vivo. This identified unexpected and pervasive translational regulation of most of the core signalling circuitry including Shh, Wnt, Hippo, PI3K and MAPK pathways. We further identify and functionally characterize a complex landscape of upstream open reading frames (uORFs) across 5'-untranslated regions (UTRs) of key signalling components. Focusing on the Shh pathway, we demonstrate the importance of uORFs within the major SHH receptor, Ptch1, in control of cell signalling and neuronal differentiation. Finally, we show that the expression of hundreds of mRNAs underlying critical tissue-specific developmental processes is largely regulated at the translation but not transcript levels. Altogether, this work reveals a new layer of translational control to major signalling components and gene regulatory networks that diversifies gene expression spatially across developing tissues.
Collapse
Affiliation(s)
- Kotaro Fujii
- Department of Developmental Biology, Stanford University, Stanford, California 94305, USA.,Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Zhen Shi
- Department of Developmental Biology, Stanford University, Stanford, California 94305, USA.,Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Olena Zhulyn
- Department of Developmental Biology, Stanford University, Stanford, California 94305, USA.,Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Nicolas Denans
- Department of Developmental Biology, Stanford University, Stanford, California 94305, USA.,Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Maria Barna
- Department of Developmental Biology, Stanford University, Stanford, California 94305, USA.,Department of Genetics, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
9
|
Diogo R, Guinard G, Diaz RE. Dinosaurs, Chameleons, Humans, and Evo-Devo Path: Linking Étienne Geoffroy's Teratology, Waddington's Homeorhesis, Alberch's Logic of "Monsters," and Goldschmidt Hopeful "Monsters". JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 328:207-229. [PMID: 28422426 DOI: 10.1002/jez.b.22709] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/29/2016] [Accepted: 10/03/2016] [Indexed: 12/12/2022]
Abstract
Since the rise of evo-devo (evolutionary developmental biology) in the 1980s, few authors have attempted to combine the increasing knowledge obtained from the study of model organisms and human medicine with data from comparative anatomy and evolutionary biology in order to investigate the links between development, pathology, and macroevolution. Fortunately, this situation is slowly changing, with a renewed interest in evolutionary developmental pathology (evo-devo-path) in the past decades, as evidenced by the idea to publish this special, and very timely, issue on "Developmental Evolution in Biomedical Research." As all of us have recently been involved, independently, in works related in some way or another with evolution and developmental anomalies, we decided to join our different perspectives and backgrounds in the present contribution for this special issue. Specifically, we provide a brief historical account on the study of the links between evolution, development, and pathologies, followed by a review of the recent work done by each of us, and then by a general discussion on the broader developmental and macroevolutionary implications of our studies and works recently done by other authors. Our primary aims are to highlight the strength of studying developmental anomalies within an evolutionary framework to understand morphological diversity and disease by connecting the recent work done by us and others with the research done and broader ideas proposed by authors such as Étienne Geoffroy Saint-Hilaire, Waddington, Goldschmidt, Gould, and Per Alberch, among many others to pave the way for further and much needed work regarding abnormal development and macroevolution.
Collapse
Affiliation(s)
- Rui Diogo
- Department of Anatomy, College of Medicine, Howard University, Washington, District of Columbia
| | - Geoffrey Guinard
- UMR CNRS 5561, Biogéosciences, Université de Bourgogne, Dijon, France
| | - Raul E Diaz
- Department of Biology, La Sierra University, Riverside, California.,Natural History Museum of Los Angeles County, Los Angeles, California
| |
Collapse
|
10
|
Prenatal exposure to environmental factors and congenital limb defects. ACTA ACUST UNITED AC 2016; 108:243-273. [DOI: 10.1002/bdrc.21140] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 12/26/2022]
|
11
|
Svandova EB, Vesela B, Lesot H, Poliard A, Matalova E. Expression of Fas, FasL, caspase-8 and other factors of the extrinsic apoptotic pathway during the onset of interdigital tissue elimination. Histochem Cell Biol 2016; 147:497-510. [DOI: 10.1007/s00418-016-1508-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2016] [Indexed: 01/24/2023]
|
12
|
Kaltcheva MM, Anderson MJ, Harfe BD, Lewandoski M. BMPs are direct triggers of interdigital programmed cell death. Dev Biol 2016; 411:266-276. [PMID: 26826495 DOI: 10.1016/j.ydbio.2015.12.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/09/2015] [Accepted: 12/18/2015] [Indexed: 12/25/2022]
Abstract
During vertebrate embryogenesis the interdigital mesenchyme is removed by programmed cell death (PCD), except in species with webbed limbs. Although bone morphogenetic proteins (BMPs) have long been known to be players in this process, it is unclear if they play a direct role in the interdigital mesenchyme or if they only act indirectly, by affecting fibroblast growth factor (FGF) signaling. A series of genetic studies have shown that BMPs act indirectly by regulating the withdrawal of FGF activity from the apical ectodermal ridge (AER); this FGF activity acts as a cell survival factor for the underlying mesenchyme. Other studies using exogenous factors to inhibit BMP activity in explanted mouse limbs suggest that BMPs do not act directly in the mesenchyme. To address the question of whether BMPs act directly, we used an interdigit-specific Cre line to inactivate several genes that encode components of the BMP signaling pathway, without perturbing the normal downregulation of AER-FGF activity. Of three Bmps expressed in the interdigital mesenchyme, Bmp7 is necessary for PCD, but Bmp2 and Bmp4 both have redundant roles, with Bmp2 being the more prominent player. Removing BMP signals to the interdigit by deleting the receptor gene, Bmpr1a, causes a loss of PCD and syndactyly, thereby unequivocally proving that BMPs are direct triggers of PCD in this tissue. We present a model in which two events must occur for normal interdigital PCD: the presence of a BMP death trigger and the absence of an FGF survival activity. We demonstrate that neither event is required for formation of the interdigital vasculature, which is necessary for PCD. However, both events converge on the production of reactive oxygen species that activate PCD.
Collapse
Affiliation(s)
- Maria M Kaltcheva
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Lab, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Matthew J Anderson
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Lab, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Brian D Harfe
- Department of Molecular Genetics and Microbiology, The Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Mark Lewandoski
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Lab, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| |
Collapse
|
13
|
Diaz RE, Trainor PA. Hand/foot splitting and the 're-evolution' of mesopodial skeletal elements during the evolution and radiation of chameleons. BMC Evol Biol 2015; 15:184. [PMID: 26382964 PMCID: PMC4574539 DOI: 10.1186/s12862-015-0464-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/21/2015] [Indexed: 01/07/2023] Open
Abstract
Background One of the most distinctive traits found within Chamaeleonidae is their split/cleft autopodia and the simplified and divergent morphology of the mesopodial skeleton. These anatomical characteristics have facilitated the adaptive radiation of chameleons to arboreal niches. To better understand the homology of chameleon carpal and tarsal elements, the process of syndactyly, cleft formation, and how modification of the mesopodial skeleton has played a role in the evolution and diversification of chameleons, we have studied the Veiled Chameleon (Chamaeleo calyptratus). We analysed limb patterning and morphogenesis through in situ hybridization, in vitro whole embryo culture and pharmacological perturbation, scoring for apoptosis, clefting, and skeletogenesis. Furthermore, we framed our data within a phylogenetic context by performing comparative skeletal analyses in 8 of the 12 currently recognized genera of extant chameleons. Results Our study uncovered a previously underappreciated degree of mesopodial skeletal diversity in chameleons. Phylogenetically derived chameleons exhibit a ‘typical’ outgroup complement of mesopodial elements (with the exception of centralia), with twice the number of currently recognized carpal and tarsal elements considered for this clade. In contrast to avians and rodents, mesenchymal clefting in chameleons commences in spite of the maintenance of a robust apical ectodermal ridge (AER). Furthermore, Bmp signaling appears to be important for cleft initiation but not for maintenance of apoptosis. Interdigital cell death therefore may be an ancestral characteristic of the autopodium, however syndactyly is an evolutionary novelty. In addition, we find that the pisiform segments from the ulnare and that chameleons lack an astragalus-calcaneum complex typical of amniotes and have evolved an ankle architecture convergent with amphibians in phylogenetically higher chameleons. Conclusion Our data underscores the importance of comparative and phylogenetic approaches when studying development. Body size may have played a role in the characteristic mesopodial skeletal architecture of chameleons by constraining deployment of the skeletogenic program in the smaller and earliest diverged and basal taxa. Our study challenges the ‘re-evolution’ of osteological features by showing that ‘re-evolving’ a ‘lost’ feature de novo (contrary to Dollo’s Law) may instead be due to so called ‘missing structures’ being present but underdeveloped and/or fused to other adjacent elements (cryptic features) whose independence may be re-established under changes in adaptive selective pressure. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0464-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Raul E Diaz
- Department of Biology, La Sierra University, Riverside, CA, 92515, USA. .,Natural History Museum of Los Angeles County, Los Angeles, CA, 90007, USA.
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA. .,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
14
|
Li A, Lai YC, Figueroa S, Yang T, Widelitz RB, Kobielak K, Nie Q, Chuong CM. Deciphering principles of morphogenesis from temporal and spatial patterns on the integument. Dev Dyn 2015; 244:905-20. [PMID: 25858668 PMCID: PMC4520785 DOI: 10.1002/dvdy.24281] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/04/2015] [Accepted: 04/03/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND How tissue patterns form in development and regeneration is a fundamental issue remaining to be fully understood. The integument often forms repetitive units in space (periodic patterning) and time (cyclic renewal), such as feathers and hairs. Integument patterns are visible and experimentally manipulatable, helping us reveal pattern formative processes. Variability is seen in regional phenotypic specificities and temporal cycling at different physiological stages. RESULTS Here we show some cellular/molecular bases revealed by analyzing integument patterns. (1) Localized cellular activity (proliferation, rearrangement, apoptosis, differentiation) transforms prototypic organ primordia into specific shapes. Combinatorial positioning of different localized activity zones generates diverse and complex organ forms. (2) Competitive equilibrium between activators and inhibitors regulates stem cells through cyclic quiescence and activation. CONCLUSIONS Dynamic interactions between stem cells and their adjacent niche regulate regenerative behavior, modulated by multi-layers of macro-environmental factors (dermis, body hormone status, and external environment). Genomics studies may reveal how positional information of localized cellular activity is stored. In vivo skin imaging and lineage tracing unveils new insights into stem cell plasticity. Principles of self-assembly obtained from the integumentary organ model can be applied to help restore damaged patterns during regenerative wound healing and for tissue engineering to rebuild tissues. Developmental Dynamics 244:905-920, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ang Li
- Department of Pathology, University of Southern California, Los Angeles, California
| | - Yung-Chih Lai
- Department of Pathology, University of Southern California, Los Angeles, California
- Center for Developmental Biology and Regenerative Medicine, Taiwan University, Taipei, Taiwan
| | - Seth Figueroa
- Department of Biomedical Engineering, University of California, Irvine, California
| | - Tian Yang
- Department of Cell Biology, College of Basic Medicine, Third Military Medical University, Chongqing, China
| | - Randall B Widelitz
- Department of Pathology, University of Southern California, Los Angeles, California
| | - Krzysztof Kobielak
- Department of Pathology, University of Southern California, Los Angeles, California
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, California
| | - Cheng Ming Chuong
- Department of Pathology, University of Southern California, Los Angeles, California
- Center for Developmental Biology and Regenerative Medicine, Taiwan University, Taipei, Taiwan
- Stem Cell and Regenerative Medicine Center, China Medical University, Taichung, Taiwan
| |
Collapse
|
15
|
Saias L, Swoger J, D’Angelo A, Hayes P, Colombelli J, Sharpe J, Salbreux G, Solon J. Decrease in Cell Volume Generates Contractile Forces Driving Dorsal Closure. Dev Cell 2015; 33:611-21. [DOI: 10.1016/j.devcel.2015.03.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 08/18/2014] [Accepted: 03/16/2015] [Indexed: 01/06/2023]
|
16
|
Huang BL, Mackem S. Tamoxifen-dependent, inducible Bmp2CreER drives selective recombinase activity in early interdigital mesenchyme and digit collateral ligaments. PLoS One 2015; 10:e0123325. [PMID: 25850076 PMCID: PMC4388723 DOI: 10.1371/journal.pone.0123325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/19/2015] [Indexed: 11/18/2022] Open
Abstract
During limb development, the interdigital mesenchyme has been proposed to play a signaling role instructing morphogenesis of different digit types, as well as undergoing programmed cell death necessary to free digits in animals not adapted for swimming or flying. We have generated a conditional, tamoxifen-dependent Cre line, Bmp2CreER, which drives highly selective recombination restricted to the distal limb mesoderm, largely restricted to the interdigits, and selectively active in digit ligament but not tendon progenitors at later stages. The Bmp2CreER provides a valuable new tool to dissect roles of interdigital mesenchyme and potentially investigate divergence of ligament and tendon lineages.
Collapse
Affiliation(s)
- Bau-Lin Huang
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, NCI-Frederick, Frederick, Maryland, United States of America
| | - Susan Mackem
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, NCI-Frederick, Frederick, Maryland, United States of America
- * E-mail:
| |
Collapse
|
17
|
Francisco-Morcillo J, Bejarano-Escobar R, Rodríguez-León J, Navascués J, Martín-Partido G. Ontogenetic cell death and phagocytosis in the visual system of vertebrates. Dev Dyn 2014; 243:1203-25. [PMID: 25130286 DOI: 10.1002/dvdy.24174] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/04/2014] [Accepted: 07/25/2014] [Indexed: 12/25/2022] Open
Abstract
Programmed cell death (PCD), together with cell proliferation, cell migration, and cell differentiation, is an essential process during development of the vertebrate nervous system. The visual system has been an excellent model on which to investigate the mechanisms involved in ontogenetic cell death. Several phases of PCD have been reported to occur during visual system ontogeny. During these phases, comparative analyses demonstrate that dying cells show similar but not identical spatiotemporally restricted patterns in different vertebrates. Additionally, the chronotopographical coincidence of PCD with the entry of specialized phagocytes in some regions of the developing vertebrate visual system suggests that factors released from degenerating cells are involved in the cell migration of macrophages and microglial cells. Contradicting this hypothesis however, in many cases the cell corpses generated during degeneration are rapidly phagocytosed by neighboring cells, such as neuroepithelial cells or Müller cells. In this review, we describe the occurrence and the sites of PCD during the morphogenesis and differentiation of the retina and optic pathways of different vertebrates, and discuss the possible relationship between PCD and phagocytes during ontogeny.
Collapse
|
18
|
Cooper KL, Sears KE, Uygur A, Maier J, Baczkowski KS, Brosnahan M, Antczak D, Skidmore JA, Tabin CJ. Patterning and post-patterning modes of evolutionary digit loss in mammals. Nature 2014; 511:41-5. [PMID: 24990742 PMCID: PMC4228958 DOI: 10.1038/nature13496] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 05/22/2014] [Indexed: 11/09/2022]
Abstract
A reduction in the number of digits has evolved many times in tetrapods, particularly in cursorial mammals that travel over deserts and plains, yet the underlying developmental mechanisms have remained elusive. Here we show that digit loss can occur both during early limb patterning and at later post-patterning stages of chondrogenesis. In the 'odd-toed' jerboa (Dipus sagitta) and horse and the 'even-toed' camel, extensive cell death sculpts the tissue around the remaining toes. In contrast, digit loss in the pig is orchestrated by earlier limb patterning mechanisms including downregulation of Ptch1 expression but no increase in cell death. Together these data demonstrate remarkable plasticity in the mechanisms of vertebrate limb evolution and shed light on the complexity of morphological convergence, particularly within the artiodactyl lineage.
Collapse
Affiliation(s)
- Kimberly L Cooper
- 1] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA. [3]
| | - Karen E Sears
- 1] Department of Animal Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA [2]
| | - Aysu Uygur
- 1] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA [2]
| | - Jennifer Maier
- Department of Animal Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | - Margaret Brosnahan
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Doug Antczak
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | - Clifford J Tabin
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
19
|
|
20
|
Kiso H, Takahashi K, Saito K, Togo Y, Tsukamoto H, Huang B, Sugai M, Shimizu A, Tabata Y, Economides AN, Slavkin HC, Bessho K. Interactions between BMP-7 and USAG-1 (uterine sensitization-associated gene-1) regulate supernumerary organ formations. PLoS One 2014; 9:e96938. [PMID: 24816837 PMCID: PMC4016158 DOI: 10.1371/journal.pone.0096938] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/13/2014] [Indexed: 11/26/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are highly conserved signaling molecules that are part of the transforming growth factor (TGF)-beta superfamily, and function in the patterning and morphogenesis of many organs including development of the dentition. The functions of the BMPs are controlled by certain classes of molecules that are recognized as BMP antagonists that inhibit BMP binding to their cognate receptors. In this study we tested the hypothesis that USAG-1 (uterine sensitization-associated gene-1) suppresses deciduous incisors by inhibition of BMP-7 function. We learned that USAG-1 and BMP-7 were expressed within odontogenic epithelium as well as mesenchyme during the late bud and early cap stages of tooth development. USAG-1 is a BMP antagonist, and also modulates Wnt signaling. USAG-1 abrogation rescued apoptotic elimination of odontogenic mesenchymal cells. BMP signaling in the rudimentary maxillary incisor, assessed by expressions of Msx1 and Dlx2 and the phosphorylation of Smad protein, was significantly enhanced. Using explant culture and subsequent subrenal capsule transplantation of E15 USAG-1 mutant maxillary incisor tooth primordia supplemented with BMP-7 demonstrated in USAG-1+/- as well as USAG-1-/- rescue and supernumerary tooth development. Based upon these results, we conclude that USAG-1 functions as an antagonist of BMP-7 in this model system. These results further suggest that the phenotypes of USAG-1 and BMP-7 mutant mice reported provide opportunities for regenerative medicine and dentistry.
Collapse
Affiliation(s)
- Honoka Kiso
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Katsu Takahashi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Kazuyuki Saito
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Yumiko Togo
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Hiroko Tsukamoto
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Boyen Huang
- Department of Paediatric Dentistry, School of Medicine and Dentistry, James Cook University, Cairns, Australia
| | - Manabu Sugai
- Translational Research Center, Kyoto University Hospital, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Akira Shimizu
- Laboratory of Host Defense, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Yasuhiko Tabata
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Aris N. Economides
- Regeneron Pharmaceuticals, Tarrytown, New York, United States of America
| | - Harold C. Slavkin
- Center for Craniofacial Molecular Biology, Division of Biomedical Sciences, Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Kazuhisa Bessho
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
21
|
Molecular Control of Interdigital Cell Death and Cell Differentiation by Retinoic Acid during Digit Development. J Dev Biol 2014. [DOI: 10.3390/jdb2020138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
22
|
Yee M, Buczynski BW, O’Reilly MA. Neonatal hyperoxia stimulates the expansion of alveolar epithelial type II cells. Am J Respir Cell Mol Biol 2014; 50:757-66. [PMID: 24188066 PMCID: PMC4068921 DOI: 10.1165/rcmb.2013-0207oc] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 10/29/2013] [Indexed: 01/02/2023] Open
Abstract
Supplemental oxygen used to treat infants born prematurely disrupts angiogenesis and is a risk factor for persistent pulmonary disease later in life. Although it is unclear how neonatal oxygen affects development of the respiratory epithelium, alveolar simplification and depletion of type II cells has been observed in adult mice exposed to hyperoxia between postnatal Days 0 and 4. Because hyperoxia inhibits cell proliferation, we hypothesized that it depleted the adult lung of type II cells by inhibiting their proliferation at birth. Newborn mice were exposed to room air (RA) or hyperoxia, and the oxygen-exposed mice were recovered in RA. Hyperoxia stimulated mRNA expressed by type II (Sftpc, Abca3) and type I (T1α, Aquaporin 5) cells and inhibited Pecam expressed by endothelial cells. 5-Bromo-2'-deoxyuridine labeling and fate mapping with enhanced green fluorescence protein controlled statically by the Sftpc promoter or conditionally by the Scgb1a1 promoter revealed increased Sftpc and Abca3 mRNA seen on Day 4 reflected an increase in expansion of type II cells shortly after birth. When mice were returned to RA, this expanded population of type II cells was slowly depleted until few were detected by 8 weeks. These findings reveal that hyperoxia stimulates alveolar epithelial cell expansion when it disrupts angiogenesis. The loss of type II cells during recovery in RA may contribute to persistent pulmonary diseases such as those reported in children born preterm who were exposed to supplemental oxygen.
Collapse
Affiliation(s)
- Min Yee
- Department of Pediatrics and
| | - Bradley W. Buczynski
- Department of Environmental Medicine, School of Medicine and Dentistry, The University of Rochester, Rochester New York
| | | |
Collapse
|
23
|
Nomura N, Yokoyama H, Tamura K. Altered developmental events in the anterior region of the chick forelimb give rise to avian-specific digit loss. Dev Dyn 2014; 243:741-52. [PMID: 24616028 DOI: 10.1002/dvdy.24117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 01/23/2014] [Accepted: 02/04/2014] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Avian forelimb (wing) contains only three digits, and the three-digit formation in the bird forelimb is one of the avian-specific limb characteristics that have been evolutionarily inherited from the common ancestral form in dinosaurs. Despite many studies on digit formation in the chick limb bud, the developmental mechanisms giving rise to the three-digit forelimb in birds have not been completely clarified. RESULTS To identify which cell populations of the early limb bud contribute to digit formation in the late limb bud, fate maps of the early fore- and hindlimb buds were prepared. Based on these fate maps, we found that the digit-forming region in the forelimb bud is narrower than that in the hindlimb bud, suggesting that some developmental mechanisms on the anterior-most region lead to a reduced number of digits in the forelimb. We also found temporal differences in the onset of appearance of the ANZ (anterior necrotic zone) as well as differences in the position of the anterior edge of the AER. CONCLUSIONS Forelimb-specific events in the anterior limb bud are possible developmental mechanisms that might generate the different cell fates in the fore- and hindlimb buds, regulating the number of digits in birds.
Collapse
Affiliation(s)
- Naoki Nomura
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | | |
Collapse
|
24
|
Nonomura K, Yamaguchi Y, Hamachi M, Koike M, Uchiyama Y, Nakazato K, Mochizuki A, Sakaue-Sawano A, Miyawaki A, Yoshida H, Kuida K, Miura M. Local Apoptosis Modulates Early Mammalian Brain Development through the Elimination of Morphogen-Producing Cells. Dev Cell 2013; 27:621-34. [DOI: 10.1016/j.devcel.2013.11.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 11/05/2013] [Accepted: 11/20/2013] [Indexed: 02/07/2023]
|
25
|
Interdigital cell death in the embryonic limb is associated with depletion of Reelin in the extracellular matrix. Cell Death Dis 2013; 4:e800. [PMID: 24030152 PMCID: PMC3789180 DOI: 10.1038/cddis.2013.322] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/08/2013] [Accepted: 07/30/2013] [Indexed: 01/01/2023]
Abstract
Interdigital cell death is a physiological regression process responsible for sculpturing the digits in the embryonic vertebrate limb. Changes in the intensity of this degenerative process account for the different patterns of interdigital webbing among vertebrate species. Here, we show that Reelin is present in the extracellular matrix of the interdigital mesoderm of chick and mouse embryos during the developmental stages of digit formation. Reelin is a large extracellular glycoprotein which has important functions in the developing nervous system, including neuronal survival; however, the significance of Reelin in other systems has received very little attention. We show that reelin expression becomes intensely downregulated in both the chick and mouse interdigits preceding the establishment of the areas of interdigital cell death. Furthermore, fibroblast growth factors, which are cell survival signals for the interdigital mesoderm, intensely upregulated reelin expression, while BMPs, which are proapototic signals, downregulate its expression in the interdigit. Gene silencing experiments of reelin gene or its intracellular effector Dab-1 confirmed the implication of Reelin signaling as a survival factor for the limb undifferentiated mesoderm. We found that Reelin activates canonical survival pathways in the limb mesoderm involving protein kinase B and focal adhesion kinase. Our findings support that Reelin plays a role in interdigital cell death, and suggests that anoikis (apoptosis secondary to loss of cell adhesion) may be involved in this process.
Collapse
|
26
|
Bourgine PE, Pippenger BE, Todorov A, Tchang L, Martin I. Tissue decellularization by activation of programmed cell death. Biomaterials 2013; 34:6099-108. [DOI: 10.1016/j.biomaterials.2013.04.058] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 04/27/2013] [Indexed: 01/10/2023]
|
27
|
Abstract
Tumor suppressors are so named because cancers occur in their absence, but these genes also have important functions in development, metabolism and tissue homeostasis. Here, we discuss known and potential functions of tumor suppressor genes during tissue regeneration, focusing on the evolutionarily conserved tumor suppressors pRb1, p53, Pten and Hippo. We propose that their activity is essential for tissue regeneration. This is in contrast to suggestions that tumor suppression is a trade-off for regenerative capacity. We also hypothesize that certain aspects of tumor suppressor pathways inhibit regenerative processes in mammals, and that transient targeted modification of these pathways could be fruitfully exploited to enhance processes that are important to regenerative medicine.
Collapse
Affiliation(s)
- Jason H Pomerantz
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of California, San Francisco, CA 94143, USA.
| | | |
Collapse
|
28
|
Nath K, Fisher C, Elinson RP. Expression of cyclin D1, cyclin D2, and N-myc in embryos of the direct developing frog Eleutherodactylus coqui, with a focus on limbs. Gene Expr Patterns 2013; 13:142-9. [PMID: 23473789 PMCID: PMC3657300 DOI: 10.1016/j.gep.2013.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/18/2013] [Accepted: 02/23/2013] [Indexed: 11/16/2022]
Abstract
Species of frogs that develop directly have removed the tadpole from their ontogeny and form adult structures precociously. To see whether cell cycle regulators could be involved in this altered embryogenesis, we examined the expression of ccnd1, ccnd2, and mycn in embryos of the direct developing frog, Eleutherodactylus coqui. Notable differences compared to embryos of Xenopus laevis, a species with a tadpole, included prominent expression of ccnd2 in the midbrain and ccnd1 in the mandibular neural crest. The former may contribute to the precocious appearance of the adult-type visual system and the latter to the adult-type jaw. Large domains of ccnd2 and mycn presage the early appearance of limb buds, and ccnd1 and mycn are implicated in digit development.
Collapse
Affiliation(s)
- Kimberly Nath
- Department of Biological Sciences, Duquesne University, 600 Forbes
Avenue, Pittsburgh, PA 15282, U.S.A
| | - Cara Fisher
- Department of Biological Sciences, Duquesne University, 600 Forbes
Avenue, Pittsburgh, PA 15282, U.S.A
| | - Richard P. Elinson
- Department of Biological Sciences, Duquesne University, 600 Forbes
Avenue, Pittsburgh, PA 15282, U.S.A
| |
Collapse
|
29
|
Yang MJ, Liu JY, Wang YF, Lang HY, Miao X, Zhang LY, Zeng LH, Guo GZ. Effects of electromagnetic pulse on polydactyly of mouse fetuses. Theriogenology 2013; 80:18-23. [PMID: 23623167 DOI: 10.1016/j.theriogenology.2013.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 03/18/2013] [Accepted: 03/18/2013] [Indexed: 12/18/2022]
Abstract
There is an increasing public concern regarding potential health impacts from electromagnetic radiation exposure. Embryonic development is sensitive to the external environment, and limb development is vital for life quality. To determine the effects of electromagnetic pulse (EMP) on polydactyly of mouse fetuses, pregnant mice were sham-exposed or exposed to EMP (400 kV/m with 400 pulses) from Days 7 to 10 of pregnancy (Day 0 = day of detection of vaginal plug). As a positive control, mice were treated with 5-bromodeoxyuridine on Days 9 and 10. On Days 11 or 18, the fetuses were isolated. Compared with the sham-exposed group, the group exposed to EMP had increased rates of polydactyly fetuses (5.1% vs. 0.6%, P < 0.05) and abnormal gene expression (22.2% vs. 2.8%, P < 0.05). Ectopic expression of Fgf4 was detected in the apical ectodermal ridge, whereas overexpression and ectopic expression of Shh were detected in the zone of polarizing activity of limbs in the EMP-exposed group and in the positive control group. However, expression of Gli3 decreased in mesenchyme cells in those two groups. The percentages of programmed cell death of limbs in EMP-exposed and positive control group were decreased (3.57% and 2.94%, respectively, P < 0.05, compared with 7.76% in sham-exposed group). In conclusion, polydactyly induced by EMP was accompanied by abnormal expression of the above-mentioned genes and decreased percentage of programmed cell death during limb development.
Collapse
Affiliation(s)
- Ming-Juan Yang
- Department of Radiation Medicine and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Dahal GR, Rawson J, Gassaway B, Kwok B, Tong Y, Ptácek LJ, Bates E. An inwardly rectifying K+ channel is required for patterning. Development 2012; 139:3653-64. [PMID: 22949619 DOI: 10.1242/dev.078592] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mutations that disrupt function of the human inwardly rectifying potassium channel KIR2.1 are associated with the craniofacial and digital defects of Andersen-Tawil Syndrome, but the contribution of Kir channels to development is undefined. Deletion of mouse Kir2.1 also causes cleft palate and digital defects. These defects are strikingly similar to phenotypes that result from disrupted TGFβ/BMP signaling. We use Drosophila melanogaster to show that a Kir2.1 homolog, Irk2, affects development by disrupting BMP signaling. Phenotypes of irk2 deficient lines, a mutant irk2 allele, irk2 siRNA and expression of a dominant-negative Irk2 subunit (Irk2DN) all demonstrate that Irk2 function is necessary for development of the adult wing. Compromised Irk2 function causes wing-patterning defects similar to those found when signaling through a Drosophila BMP homolog, Decapentaplegic (Dpp), is disrupted. To determine whether Irk2 plays a role in the Dpp pathway, we generated flies in which both Irk2 and Dpp functions are reduced. Irk2DN phenotypes are enhanced by decreased Dpp signaling. In wild-type flies, Dpp signaling can be detected in stripes along the anterior/posterior boundary of the larval imaginal wing disc. Reducing function of Irk2 with siRNA, an irk2 deletion, or expression of Irk2DN reduces the Dpp signal in the wing disc. As Irk channels contribute to Dpp signaling in flies, a similar role for Kir2.1 in BMP signaling may explain the morphological defects of Andersen-Tawil Syndrome and the Kir2.1 knockout mouse.
Collapse
Affiliation(s)
- Giri Raj Dahal
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Mendelsohn C. Using mouse models to understand normal and abnormal urogenital tract development. Organogenesis 2012; 5:306-14. [PMID: 19568352 DOI: 10.4161/org.8173] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 04/02/2009] [Indexed: 02/02/2023] Open
Abstract
Removal of toxic substances from the blood depends on patent connections between the kidneys, ureters and bladder that are established when the ureter is transposed from its original insertion site in the Wolffian duct, to the bladder, its final insertion site. The Ureteral Bud Theory of Mackie and Stephens suggests that repositioning of the ureter orifice occurs as the trigone forms from the common nephric duct (CND), the caudal-most Wolffian duct segment. According to this model, insertion of the CND into the bladder and its expansion into the trigone both repositions the ureter in the bladder and enables it to separate from the Wolffian duct. The availability of new mouse models has enabled to re-examine this hypothesis using morphological analysis and lineage studies to follow the fate of the ureter and CND during the maturation process. We find that in contrast to what has been previously thought, the CND does not differentiate into the trigone but instead, undergoes apoptosis, a step that enables the ureter to separate from the Wolffian duct. Apoptosis occurs as the CND and ureter merge with the urogenital sinus positioning the ureter orifice at a site close to the Wolffian duct. Finally, expansion of the bladder moves the ureter orifice which is now fused with epithelium to its final position which is at the bladder neck. Interestingly, CND apoptosis appears to depend on close proximity to the bladder, suggesting that the bladder may be a source of signals that induce cell death. Together, these studies provide new insights into the normal process of ureter maturation, and shed light on possible causes of obstruction and reflux, ureteral abnormalities that affect 1-2% of the human population.
Collapse
Affiliation(s)
- Cathy Mendelsohn
- Departments of Urology; Genetics and Development and Pathology; Columbia University; New York, New York USA
| |
Collapse
|
32
|
Abstract
The development of multicellular organisms relies on a small set of construction techniques-assembly, sculpting, and folding-that are spatially and temporally regulated in a combinatorial manner to produce the diversity of tissues within the body. These basic processes are well conserved across tissue types and species at the level of both genes and mechanisms. Here we review the signaling, patterning, and biomechanical transformations that occur in two well-studied model systems of epithelial folding to illustrate both the complexity and modularity of tissue development. In particular, we discuss the possibility of a spatial code specifying morphogenesis. To decipher this code, engineers and scientists need to establish quantitative experimental systems and to develop models that address mechanisms at multiple levels of organization, from gene sequence to tissue biomechanics. In turn, quantitative models of embryogenesis can inspire novel methods for creating synthetic organs and treating degenerative tissue diseases.
Collapse
Affiliation(s)
- Jeremiah J Zartman
- Department of Chemical Engineering, Carl Icahn Laboratory, Princeton University, Princeton, NJ 08544, USA.
| | | |
Collapse
|
33
|
Shimizu-Nishikawa K, Nishimatsu SI, Nishikawa A. Strategies to detect interdigital cell death in the frog, Xenopus laevis: T3 accerelation, BMP application, and mesenchymal cell cultivation. In Vitro Cell Dev Biol Anim 2012; 48:313-25. [DOI: 10.1007/s11626-012-9508-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 04/03/2012] [Indexed: 10/28/2022]
|
34
|
Wong YL, Behringer RR, Kwan KM. Smad1/Smad5 signaling in limb ectoderm functions redundantly and is required for interdigital programmed cell death. Dev Biol 2012; 363:247-57. [PMID: 22240098 DOI: 10.1016/j.ydbio.2011.12.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 12/17/2011] [Accepted: 12/22/2011] [Indexed: 11/30/2022]
Abstract
Bone morphogenetic proteins (BMPs) are secreted signals that regulate apical ectodermal ridge (AER) functions and interdigital programmed cell death (PCD) of developing limb. However the identities of the intracellular mediators of these signals are unknown. To investigate the role of Smad proteins in BMP-regulated AER functions in limb development, we inactivated Smad1 and Smad5 selectively in AER and ventral ectoderm of developing limb, using Smad1 or/and Smad5 floxed alleles and an En1(Cre/+) knock-in allele. Single inactivation of either Smad1 or Smad5 did not result in limb abnormalities. However, the Smad1/Smad5 double mutants exhibited syndactyly due to a reduction in interdigital PCD and an increase in interdigital cell proliferation. Cell tracing experiments in the Smad1/Smad5 double mutants showed that ventral ectoderm became thicker and the descendents of ventral En1(Cre/+) expressing ectodermal cells were located at dorsal interdigital regions. At the molecular level, Fgf8 expression was prolonged in the interdigital ectoderm of embryonic day (E) 13 Smad1/Smad5 double mutants, suggesting that the ectopic Fgf8 expression may serve as a survival signal for interdigital epithelial and mesenchymal cells. Our result suggests that Smad1 and Smad5 are required and function redundantly as intracellular mediators for BMP signaling in the AER and ventral ectoderm. Smad1/Smad5 signaling in the AER and ventral ectoderm regulates interdigital tissue regression of developing limb. Our mutants with defects in interdigital PCD could also serve as a valuable model for investigation of PCD regulation machinery.
Collapse
Affiliation(s)
- Yuk Lau Wong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, PR China
| | | | | |
Collapse
|
35
|
Defining the earliest transcriptional steps of chondrogenic progenitor specification during the formation of the digits in the embryonic limb. PLoS One 2011; 6:e24546. [PMID: 21931747 PMCID: PMC3172225 DOI: 10.1371/journal.pone.0024546] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 08/12/2011] [Indexed: 12/12/2022] Open
Abstract
The characterization of genes involved in the formation of cartilage is of key importance to improve cell-based cartilage regenerative therapies. Here, we have developed a suitable experimental model to identify precocious chondrogenic events in vivo by inducing an ectopic digit in the developing embryo. In this model, only 12 hr after the implantation of a Tgfβ bead, in the absence of increased cell proliferation, cartilage forms in undifferentiated interdigital mesoderm and in the course of development, becomes a structurally and morphologically normal digit. Systematic quantitative PCR expression analysis, together with other experimental approaches allowed us to establish 3 successive periods preceding the formation of cartilage. The “pre-condensation stage”, occurring within the first 3 hr of treatment, is characterized by the activation of connective tissue identity transcriptional factors (such as Sox9 and Scleraxis) and secreted factors (such as Activin A and the matricellular proteins CCN-1 and CCN-2) and the downregulation of the galectin CG-8. Next, the “condensation stage” is characterized by intense activation of Smad 1/5/8 BMP-signaling and increased expression of extracellular matrix components. During this period, the CCN matricellular proteins promote the expression of extracellular matrix and cell adhesion components. The third period, designated the “pre-cartilage period”, precedes the formation of molecularly identifiable cartilage by 2–3 hr and is characterized by the intensification of Sox 9 gene expression, along with the stimulation of other pro-chondrogenic transcription factors, such as HifIa. In summary, this work establishes a temporal hierarchy in the regulation of pro-chondrogenic genes preceding cartilage differentiation and provides new insights into the relative roles of secreted factors and cytoskeletal regulators that direct the first steps of this process in vivo.
Collapse
|
36
|
Abarca-Buis RF, Bustamante M, Cuervo R, Aguilar-Fernández-de-Lara D, Chimal-Monroy J. Smad8 is expressed in the anterior necrotic zone: evidence for a role of bone morphogenetic proteins/SMAD signaling in the activation of a molecular cascade that culminates in cell death. Dev Growth Differ 2011; 53:780-92. [PMID: 21711459 DOI: 10.1111/j.1440-169x.2011.01285.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bone morphogenetic proteins (BMPs) play a crucial role in programmed cell death (PCD), a biological process required for the sculpturing of the embryonic limbs. However, it is unknown if BMP signaling directly promotes cell death, or if it induces a molecular cascade that culminates in cell death. Given that Smad8, which encodes one component of BMP signaling, is expressed during the regression of interdigital tissue and responds to BMPs, we presumed that it may be expressed in other cell death areas during chick limb development such as the anterior and posterior necrotic zones (ANZ and PNZ). The present study found that the Smad8 expression pattern in the anterior mesoderm of the hindlimb is very similar to that observed in limbs stained to detect cell death. Also, BMPs and retinoic acid, which act as apoptosis-promoting factors, induced expression of Smad8 before the onset of cell death, while sonic hedgehog protein, acting as a survival factor, inhibited Smad8 expression in the ANZ. However, although there was correlation between Smad8 expression patterns and PCD in the ANZ, phosphorylated forms of SMAD1/5/8 and TUNEL staining did not co-localize in dying cells. Interestingly, a short pulse of BMP was sufficient to trigger cell death. On the other hand, most dying cells were located in the avascular region, while many cells expressing Smad8 were located in the vascular region of the ANZ. These results suggest that BMPs mediated by SMAD signaling activate a molecular cascade that culminates in PCD.
Collapse
Affiliation(s)
- René F Abarca-Buis
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City
| | | | | | | | | |
Collapse
|
37
|
Brancati F, Fortugno P, Bottillo I, Lopez M, Josselin E, Boudghene-Stambouli O, Agolini E, Bernardini L, Bellacchio E, Iannicelli M, Rossi A, Dib-Lachachi A, Stuppia L, Palka G, Mundlos S, Stricker S, Kornak U, Zambruno G, Dallapiccola B. Mutations in PVRL4, encoding cell adhesion molecule nectin-4, cause ectodermal dysplasia-syndactyly syndrome. Am J Hum Genet 2010; 87:265-73. [PMID: 20691405 PMCID: PMC2917716 DOI: 10.1016/j.ajhg.2010.07.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Revised: 06/28/2010] [Accepted: 07/08/2010] [Indexed: 11/20/2022] Open
Abstract
Ectodermal dysplasias form a large disease family with more than 200 members. The combination of hair and tooth abnormalities, alopecia, and cutaneous syndactyly is characteristic of ectodermal dysplasia-syndactyly syndrome (EDSS). We used a homozygosity mapping approach to map the EDSS locus to 1q23 in a consanguineous Algerian family. By candidate gene analysis, we identified a homozygous mutation in the PVRL4 gene that not only evoked an amino acid change but also led to exon skipping. In an Italian family with two siblings affected by EDSS, we further detected a missense and a frameshift mutation. PVRL4 encodes for nectin-4, a cell adhesion molecule mainly implicated in the formation of cadherin-based adherens junctions. We demonstrated high nectin-4 expression in hair follicle structures, as well as in the separating digits of murine embryos, the tissues mainly affected by the EDSS phenotype. In patient keratinocytes, mutated nectin-4 lost its capability to bind nectin-1. Additionally, in discrete structures of the hair follicle, we found alterations of the membrane localization of nectin-afadin and cadherin-catenin complexes, which are essential for adherens junction formation, and we found reorganization of actin cytoskeleton. Together with cleft lip and/or palate ectodermal dysplasia (CLPED1, or Zlotogora-Ogur syndrome) due to an impaired function of nectin-1, EDSS is the second known "nectinopathy" caused by mutations in a nectin adhesion molecule.
Collapse
Affiliation(s)
- Francesco Brancati
- Department of Biomedical Sciences, Gabriele d'Annunzio University, Chieti, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Coordinated and sequential activation of neutral and acidic DNases during interdigital cell death in the embryonic limb. Apoptosis 2010; 15:1197-210. [DOI: 10.1007/s10495-010-0523-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
39
|
de Pontual L, Lyonnet S, Amiel J. [Malformation syndromes associated with childhood cancer: an update]. Arch Pediatr 2010; 17:1220-7. [PMID: 20598868 DOI: 10.1016/j.arcped.2010.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 04/16/2010] [Accepted: 05/25/2010] [Indexed: 10/19/2022]
Abstract
Biology, genetics and environment of childhood solid tumours set them apart from adult solid tumours. The nature of the progenitor cells from which these tumours arise, and their immature tissue environment, allows childhood solid tumours to develop with fewer defects in cell regulatory processes. Constitutional molecular defects are known to play a role in childhood solid tumours, as shown by the increased incidence of embryonic cancers in children carrying malformations associated with childhood cancer. These rare diagnoses are commonly missed. In this article, we reviewed the spectrum of these tumour predisposition syndromes.
Collapse
Affiliation(s)
- L de Pontual
- Service de pédiatrie, hôpital Jean-Verdier, AP-HP, université Paris XIII, 14, avenue du 14-Juillet, 93143 Bondy, France.
| | | | | | | |
Collapse
|
40
|
Sato K, Seki R, Noro M, Yokoyama H, Tamura K. Morphogenetic change of the limb bud in the hand plate formation. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 314:539-51. [DOI: 10.1002/jez.b.21359] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 04/19/2010] [Accepted: 04/24/2010] [Indexed: 11/09/2022]
|
41
|
Abstract
Adult planarians are capable of undergoing regeneration and body remodelling in order to adapt to physical damage or extreme environmental conditions. Moreover, most planarians can tolerate long periods of starvation and during this time, they shrink from an adult size to, and sometimes beyond, the initial size at hatching. Indeed, these properties have made them a classic model to study stem cells and regeneration. Under such stressful conditions, food reserves from the gastrodermis and parenchyma are first used up and later the testes, copulatory organs and ovaries are digested. More surprisingly, when food is again made available to shrunken individuals, they grow back to adult size and all their reproductive structures reappear. These cycles of growth and shrinkage may occur over long periods without any apparent impairment to the individual, or to its future maturation and breeding capacities. This plasticity resides in a mesoderm tissue known as the parenchyma, which is formed by several differentiated non-proliferating cell types and only one mitotically active cell type, the neoblasts, which represent approximately 20-30% of the cells in the parenchyma. Neoblasts are generally thought to be somatic stem-cells that participate in the normal continuous turnover of all cell types in planarians. Hence, planarians are organisms that continuously adapt their bodies (morphallaxis) to different environmental stresses (i.e.: injury or starvation). This adaptation involves a variety of processes including proliferation, differentiation, apoptosis and autophagy, all of which are perfectly orchestrated and tightly regulated to remodel or restore the body pattern. While neoblast biology and body re-patterning are currently the subject of intense research, apoptosis and autophagy remain much less studied. In this review we will summarize our current understanding and hypotheses regarding where and when apoptosis and autophagy occur and fulfil an essential role in planarians.
Collapse
|
42
|
Abstract
Physiological cell death is a key mechanism that ensures appropriate development and maintenance of tissues and organs in multicellular organisms. Most structures in the vertebrate embryo exhibit defined areas of cell death at precise stages of development. In this regard the areas of interdigital cell death during limb development provide a paradigmatic model of massive cell death with an evident morphogenetic role in digit morphogenesis. Physiological cell death has been proposed to occur by apoptosis, cellular phenomena genetically controlled to orchestrate cell suicide following two main pathways, cytochrome C liberation from the mitochondria or activation of death receptors. Such pathways converge in the activation of cysteine proteases known as caspases, which execute the cell death program, leading to typical morphologic changes within the cell, termed apoptosis. According to these findings it would be expected that caspases loss of function experiments could cause inhibition of interdigital cell death promoting syndactyly phenotypes. A syndactyly phenotype is characterized by absence of digit freeing during development that, when caused by absence of interdigital cell death, is accompanied by the persistence of an interdigital membrane. However this situation has not been reported in any of the KO mice or chicken loss of function experiments ever performed. Moreover histological analysis of dying cells within the interdigit reveals the synchronic occurrence of different types of cell death. All these findings are indicative of caspase alternative and/or complementary mechanisms responsible for physiological interdigital cell death. Characterization of alternative cell death pathways is required to explain vertebrate morphogenesis. Today there is great interest in cell death via autophagy, which could substitute or act synergistically to the apoptotic pathway. Here we discuss what is known about physiological cell death in the developing interdigital tissue of vertebrate embryos, paying special attention to the avian species.
Collapse
|
43
|
Spatial p21 expression profile in the mid-term mouse embryo. Transgenic Res 2010; 20:23-8. [DOI: 10.1007/s11248-010-9385-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 03/08/2010] [Indexed: 11/27/2022]
|
44
|
Norden J, Grieskamp T, Lausch E, van Wijk B, van den Hoff MJB, Englert C, Petry M, Mommersteeg MTM, Christoffels VM, Niederreither K, Kispert A. Wt1 and retinoic acid signaling in the subcoelomic mesenchyme control the development of the pleuropericardial membranes and the sinus horns. Circ Res 2010; 106:1212-20. [PMID: 20185795 DOI: 10.1161/circresaha.110.217455] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE The cardiac venous pole is a common focus of congenital malformations and atrial arrhythmias, yet little is known about the cellular and molecular mechanisms that regulate its development. The systemic venous return myocardium (sinus node and sinus horns) forms only late in cardiogenesis from a pool of pericardial mesenchymal precursor cells. OBJECTIVE To analyze the cellular and molecular mechanisms directing the formation of the fetal sinus horns. METHODS AND RESULTS We analyzed embryos deficient for the Wt1 (Wilms tumor 1) gene and observed a failure to form myocardialized sinus horns. Instead, the cardinal veins become embedded laterally in the pleuropericardial membranes that remain tethered to the lateral body wall by the persisting subcoelomic mesenchyme, a finding that correlates with decreased apoptosis in this region. We show by expression analysis and lineage tracing studies that Wt1 is expressed in the subcoelomic mesenchyme surrounding the cardinal veins, but that this Wt1-positive mesenchyme does not contribute cells to the sinus horn myocardium. Expression of the Raldh2 (aldehyde dehydrogenase family 1, subfamily A2) gene was lost from this mesenchyme in Wt1(-/-) embryos. Phenotypic analysis of Raldh2 mutant mice rescued from early cardiac defects by retinoic acid food supply revealed defects of the venous pole and pericardium highly similar to those of Wt1(-/-) mice. CONCLUSIONS Pericardium and sinus horn formation are coupled and depend on the expansion and correct temporal release of pleuropericardial membranes from the underlying subcoelomic mesenchyme. Wt1 and downstream Raldh2/retinoic acid signaling are crucial regulators of this process. Thus, our results provide novel insight into the genetic and cellular pathways regulating the posterior extension of the mammalian heart and the formation of its coelomic lining.
Collapse
Affiliation(s)
- Julia Norden
- Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str.1, D-30625 Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Gourevitch DL, Clark L, Bedelbaeva K, Leferovich J, Heber-Katz E. Dynamic changes after murine digit amputation: the MRL mouse digit shows waves of tissue remodeling, growth, and apoptosis. Wound Repair Regen 2009; 17:447-55. [PMID: 19660054 DOI: 10.1111/j.1524-475x.2009.00492.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Digit regrowth following amputation injury proximal to the first phalangeal joint is not a property of mammalian wound healing. However, the regenerative potential observed in the MRL mouse invites a reexamination of this rule. In this study, healing was assessed in three mouse strains after amputation midway through the second phalangeal bone. Three distinct outcomes were observed though evidence for regrowth was observed only in the MRL mouse. Here, a blastema-like structure was seen along with apparent chondrogenesis, consistent with a histological profile of a regenerative response to injury. Analysis of trichrome staining and basement membrane changes, proliferation and apoptosis indicated that these processes contributed to the formation of new digit tissue. On the other hand, SW and B6 digits did not show evidence of growth with little mesenchymal BrdU incorporation or phosphorylation of H3.
Collapse
|
46
|
Talamillo A, Delgado I, Nakamura T, de-Vega S, Yoshitomi Y, Unda F, Birchmeier W, Yamada Y, Ros MA. Role of Epiprofin, a zinc-finger transcription factor, in limb development. Dev Biol 2009; 337:363-74. [PMID: 19913006 DOI: 10.1016/j.ydbio.2009.11.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 11/03/2009] [Accepted: 11/04/2009] [Indexed: 11/29/2022]
Abstract
The formation and maintenance of the apical ectodermal ridge (AER) is critical for the outgrowth and patterning of the vertebrate limb. In the present work, we have investigated the role of Epiprofin (Epfn/Sp6), a member of the SP/KLF transcription factor family that is expressed in the limb ectoderm and the AER, during limb development. Epfn mutant mice have a defective autopod that shows mesoaxial syndactyly in the forelimb and synostosis (bony fusion) in the hindlimb and partial bidorsal digital tips. Epfn mutants also show a defect in the maturation of the AER that appears flat and broad, with a double ridge phenotype. By genetic analysis, we also show that Epfn is controlled by WNT/b-CATENIN signaling in the limb ectoderm. Since the less severe phenotypes of the conditional removal of b-catenin in the limb ectoderm strongly resemble the limb phenotype of Epfn mutants, we propose that EPFN very likely functions as a modulator of WNT signaling in the limb ectoderm.
Collapse
Affiliation(s)
- Ana Talamillo
- Departamento de Anatomía y Biología Celular. Facultad de Medicina. Universidad de Cantabria, 39011 Santander, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Suzuki D, Yamada A, Amano T, Yasuhara R, Kimura A, Sakahara M, Tsumaki N, Takeda S, Tamura M, Nakamura M, Wada N, Nohno T, Shiroishi T, Aiba A, Kamijo R. Essential mesenchymal role of small GTPase Rac1 in interdigital programmed cell death during limb development. Dev Biol 2009; 335:396-406. [PMID: 19766620 DOI: 10.1016/j.ydbio.2009.09.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 09/10/2009] [Accepted: 09/11/2009] [Indexed: 10/20/2022]
Abstract
Developing vertebrate limbs are often utilized as a model for studying pattern formation and morphogenetic cell death. Herein, we report that conditional deletion of Rac1, a member of the Rho family of proteins, in mouse limb bud mesenchyme led to skeletal deformities in the autopod and soft tissue syndactyly, with the latter caused by a complete absence of interdigital programmed cell death. Furthermore, the lack of interdigital programmed cell death and associated syndactyly was related to down-regulated gene expression of Bmp2, Bmp7, Msx1, and Msx2, which are known to promote apoptosis in the interdigital mesenchyme. Our findings from Rac1 conditional mutants indicate crucial roles for Rac1 in limb bud morphogenesis, especially interdigital programmed cell death.
Collapse
Affiliation(s)
- Dai Suzuki
- Department of Biochemistry, Showa University, Hatanodai, Shinagawa, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Witten PE, Huysseune A. A comparative view on mechanisms and functions of skeletal remodelling in teleost fish, with special emphasis on osteoclasts and their function. Biol Rev Camb Philos Soc 2009; 84:315-46. [PMID: 19382934 DOI: 10.1111/j.1469-185x.2009.00077.x] [Citation(s) in RCA: 211] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Resorption and remodelling of skeletal tissues is required for development and growth, mechanical adaptation, repair, and mineral homeostasis of the vertebrate skeleton. Here we review for the first time the current knowledge about resorption and remodelling of the skeleton in teleost fish, the largest and most diverse group of extant vertebrates. Teleost species are increasingly used in aquaculture and as models in biomedical skeletal research. Thus, detailed knowledge is required to establish the differences and similarities between mammalian and teleost skeletal remodelling, and between distantly related species such as zebrafish (Danio rerio) and medaka (Oryzias latipes). The cellular mechanisms of differentiation and activation of osteoclasts and the functions of teleost skeletal remodelling are described. Several characteristics, related to skeletal remodelling, distinguish teleosts from mammals. These characteristics include (a) the absence of osteocytes in most species; (b) the absence of haematopoietic bone marrow tissue; (c) the abundance of small mononucleated osteoclasts performing non-lacunar (smooth) bone resorption, in addition to or instead of multinucleated osteoclasts; and (d) a phosphorus- rather than calcium-driven mineral homeostasis (mainly affecting the postcranial dermal skeleton). Furthermore, (e) skeletal resorption is often absent from particular sites, due to sparse or lacking endochondral ossification. Based on the mode of skeletal remodelling in early ontogeny of all teleosts and in later stages of development of teleosts with acellular bone we suggest a link between acellular bone and the predominance of mononucleated osteoclasts, on the one hand, and cellular bone and multinucleated osteoclasts on the other. The evolutionary origin of skeletal remodelling is discussed and whether mononucleated osteoclasts represent an ancestral type of resorbing cells. Revealing the differentiation and activation of teleost skeletal resorbing cells, in the absence of several factors that trigger mammalian osteoclast differentiation, is a current challenge. Understanding which characters of teleost bone remodelling are derived and which characters are conserved should enhance our understanding of the process in fish and may provide insights into alternative pathways of bone remodelling in mammals.
Collapse
|
49
|
Vlangos CN, O'Connor BC, Morley MJ, Krause AS, Osawa GA, Keegan CE. Caudal regression in adrenocortical dysplasia (acd) mice is caused by telomere dysfunction with subsequent p53-dependent apoptosis. Dev Biol 2009; 334:418-28. [PMID: 19660449 DOI: 10.1016/j.ydbio.2009.07.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 07/22/2009] [Accepted: 07/29/2009] [Indexed: 12/16/2022]
Abstract
Adrenocortical dysplasia (acd) is a spontaneous autosomal recessive mouse mutation that exhibits a pleiotropic phenotype with perinatal lethality. Mutant acd embryos have caudal truncation, vertebral segmentation defects, hydronephrosis, and limb hypoplasia, resembling humans with Caudal Regression syndrome. Acd encodes Tpp1, a component of the shelterin complex that maintains telomere integrity, and consequently acd mutant mice have telomere dysfunction and genomic instability. While the association between genomic instability and cancer is well documented, the association between genomic instability and birth defects is unexplored. To determine the relationship between telomere dysfunction and embryonic malformations, we investigated mechanisms leading to the caudal dysgenesis phenotype of acd mutant embryos. We report that the caudal truncation is caused primarily by apoptosis, not altered cell proliferation. We show that the apoptosis and consequent skeletal malformations in acd mutants are dependent upon the p53 pathway by genetic rescue of the limb hypoplasia and vertebral anomalies with p53 null mice. Furthermore, rescue of the acd phenotype by p53 deficiency is a dosage-sensitive process, as acd/acd, p53(-/-) double mutants exhibit preaxial polydactyly. These findings demonstrate that caudal dysgenesis in acd embryos is secondary to p53-dependent apoptosis. Importantly, this study reinforces a significant link between genomic instability and birth defects.
Collapse
|
50
|
Huang C, Hales BF. Teratogen responsive signaling pathways in organogenesis stage mouse limbs. Reprod Toxicol 2009; 27:103-10. [PMID: 19429390 DOI: 10.1016/j.reprotox.2009.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 01/14/2009] [Accepted: 01/30/2009] [Indexed: 10/21/2022]
|