1
|
Jin X, Huang J, Wang H, Wang K, Yan N. A versatile residue numbering scheme for Na v and Ca v channels. Cell Chem Biol 2024; 31:1394-1404. [PMID: 39151406 DOI: 10.1016/j.chembiol.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/01/2024] [Accepted: 07/18/2024] [Indexed: 08/19/2024]
Abstract
Voltage-gated sodium (Nav) and calcium (Cav) channels are responsible for the initiation of electrical signals. They have long been targeted for the treatment of various diseases. The mounting number of cryoelectron microscopy (cryo-EM) structures for diverse subtypes of Nav and Cav channels from multiple organisms necessitates a generic residue numbering system to establish the structure-function relationship and to aid rational drug design or optimization. Here we suggest a structure-based residue numbering scheme, centering around the most conserved residues on each of the functional segments. We elaborate the generic numbers through illustrative examples, focusing on representative drug-binding sites of eukaryotic Nav and Cav channels. We also extend the numbering scheme to compare common disease mutations among different Nav subtypes. Application of the generic residue numbering scheme affords immediate insights into hotspots for pathogenic mutations and critical loci for drug binding and will facilitate drug discovery targeting Nav and Cav channels.
Collapse
Affiliation(s)
- Xueqin Jin
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Jian Huang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Huan Wang
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kan Wang
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Nieng Yan
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation, Guangming District, Shenzhen, Guangdong Province 518107, China; Shenzhen Bay Laboratory, Guangming District, Shenzhen, Guangdong Province 518132, China.
| |
Collapse
|
2
|
Zhou YP, Zhang LL, Sun Y, Brugarolas P. Imaging of Pain using Positron Emission Tomography. IRADIOLOGY 2024; 2:339-361. [PMID: 39440326 PMCID: PMC11493400 DOI: 10.1002/ird3.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/06/2024] [Indexed: 10/25/2024]
Abstract
Positron emission tomography (PET) is a noninvasive molecular imaging technique that utilizes biologically active radiolabeled compounds to image biochemical processes. As such, PET can provide important pathophysiological information associated with pain of different etiologies. As such, the information obtained using PET often combined with MRI or CT can provide useful information for diagnosing and monitoring changes associated with pain. This review covers the most important PET tracers that have been used to image pain including tracers for fundamental biological processes such as glucose metabolism and cerebral blood flow to receptor-specific tracers such as ion channels and neurotransmitters. For tracer type, we describe the structure and radiochemical synthesis of the tracer followed by a brief summary of the available preclinical and clinical studies. By providing a summary of the PET tracers that have been employed for PET imaging of pain, this review aims to serve as a reference for preclinical, translational and clinical investigators interested in molecular imaging of pain. Finally, the review ends with an outlook of the needs and opportunities in this area.
Collapse
Affiliation(s)
- Yu-Peng Zhou
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Lauren L Zhang
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Yang Sun
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Pedro Brugarolas
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
3
|
McBenedict B, Goh KS, Yau RCC, Elamin S, Yusuf WH, Verly G, Thomas A, Alphonse B, Ouabicha K, Valentim G, Hauwanga WN, Lima Pessôa B. Neuropathic Pain Secondary to Multiple Sclerosis: A Narrative Review. Cureus 2024; 16:e61587. [PMID: 38962595 PMCID: PMC11221503 DOI: 10.7759/cureus.61587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease that affects the central nervous system (CNS). Neuropathic pain in MS is a debilitating symptom that significantly impairs the quality of life for a substantial proportion of MS patients. Neuropathic pain in MS stems primarily from demyelination, axonal loss, CNS inflammation, and direct damage to the myelin sheath, leading to pain manifestations such as ongoing extremity pain, Lhermitte's phenomenon, and trigeminal neuralgia (TN). The pathophysiological mechanisms behind MS-related neuropathic pain are explored in this review, highlighting central sensitization, neural dysfunction, spinal thalamic tract dysfunction, and inflammatory processes that exacerbate neuronal damage. Neuropathic pain in MS necessitates comprehensive assessment tools and neurophysiological tests to differentiate neuropathic pain from other MS symptoms accurately. Treatment strategies for MS-related neuropathic pain encompass pharmacological interventions, including anticonvulsants and antidepressants, and emerging therapies targeting specific inflammatory processes. The review advocates for a holistic approach to management, incorporating innovative treatments and multidisciplinary strategies to address both the physical symptoms and psychosocial aspects of this disorder. This comprehensive overview underscores the importance of ongoing research into targeted therapies to improve patient outcomes and enhance the quality of life for those affected by MS.
Collapse
Affiliation(s)
| | - Kang Suen Goh
- Internal Medicine, Monash University Malaysia, Johor Bahru, MYS
| | | | - Sara Elamin
- Medicine, University of Medical Sciences and Technology, Khartoum, SDN
| | | | - Gabriel Verly
- Neurology, Federal University of Rio de Janeiro, Rio de Janeiro, BRA
| | - Anusha Thomas
- Neurology, Christian Medical College & Hospital, Ludhiana, IND
| | - Berley Alphonse
- Internal Medicine, University Notre Dame of Haiti, Port-au-Prince, HTI
| | | | | | | | | |
Collapse
|
4
|
Kan P, Zhu YF, Ma J, Singh G. Computational modeling to study the impact of changes in Nav1.8 sodium channel on neuropathic pain. Front Comput Neurosci 2024; 18:1327986. [PMID: 38784679 PMCID: PMC11111952 DOI: 10.3389/fncom.2024.1327986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Objective Nav1.8 expression is restricted to sensory neurons; it was hypothesized that aberrant expression and function of this channel at the site of injury contributed to pathological pain. However, the specific contributions of Nav1.8 to neuropathic pain are not as clear as its role in inflammatory pain. The aim of this study is to understand how Nav1.8 present in peripheral sensory neurons regulate neuronal excitability and induce various electrophysiological features on neuropathic pain. Methods To study the effect of changes in sodium channel Nav1.8 kinetics, Hodgkin-Huxley type conductance-based models of spiking neurons were constructed using the NEURON v8.2 simulation software. We constructed a single-compartment model of neuronal soma that contained Nav1.8 channels with the ionic mechanisms adapted from some existing small DRG neuron models. We then validated and compared the model with our experimental data from in vivo recordings on soma of small dorsal root ganglion (DRG) sensory neurons in animal models of neuropathic pain (NEP). Results We show that Nav1.8 is an important parameter for the generation and maintenance of abnormal neuronal electrogenesis and hyperexcitability. The typical increased excitability seen is dominated by a left shift in the steady state of activation of this channel and is further modulated by this channel's maximum conductance and steady state of inactivation. Therefore, modified action potential shape, decreased threshold, and increased repetitive firing of sensory neurons in our neuropathic animal models may be orchestrated by these modulations on Nav1.8. Conclusion Computational modeling is a novel strategy to understand the generation of chronic pain. In this study, we highlight that changes to the channel functions of Nav1.8 within the small DRG neuron may contribute to neuropathic pain.
Collapse
Affiliation(s)
- Peter Kan
- Department of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Yong Fang Zhu
- Department of Health Sciences, Redeemer University, Hamilton, ON, Canada
| | - Junling Ma
- Department of Mathematics and Statistics, University of Victoria, Victoria, BC, Canada
| | - Gurmit Singh
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
5
|
Wang Q, Ye Y, Yang L, Xiao L, Liu J, Zhang W, Du G. Painful diabetic neuropathy: The role of ion channels. Biomed Pharmacother 2024; 173:116417. [PMID: 38490158 DOI: 10.1016/j.biopha.2024.116417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024] Open
Abstract
Painful diabetic neuropathy (PDN) is a common chronic complication of diabetes that causes neuropathic pain and negatively affects the quality of life. The management of PDN is far from satisfactory. At present, interventions are primarily focused on symptomatic treatment. Ion channel disorders are a major cause of PDN, and a complete understanding of their roles and mechanisms may provide better options for the clinical treatment of PDN. Therefore, this review summarizes the important role of ion channels in PDN and the current drug development targeting these ion channels.
Collapse
Affiliation(s)
- Qi Wang
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yifei Ye
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Linghui Yang
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Lifan Xiao
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Liu
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Wensheng Zhang
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Guizhi Du
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Ma K, Cheng Z, Jiang H, Lin Z, Liu C, Liu X, Lu L, Lu Y, Tao W, Wang S, Yang X, Yi Q, Zhang X, Zhang Y, Liu Y. Expert Consensus on Ion Channel Drugs for Chronic Pain Treatment in China. J Pain Res 2024; 17:953-963. [PMID: 38476873 PMCID: PMC10929561 DOI: 10.2147/jpr.s445171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/22/2024] [Indexed: 03/14/2024] Open
Abstract
Ion channel drugs have been increasing used for chronic pain management with progress in the development of selective calcium channel modulators. Although ion channel drugs have been proven safe and effective in clinical practice, uncertainty remains regarding its use to treat chronic pain. To standardize the clinical practice of ion channel drug for the treatment of chronic pain, the National Health Commission Capacity Building and Continuing Education Center for Pain Diagnosis and Treatment Special Ability Training Project established an expert group to form an expert consensus on the use of ion channel drugs for the treatment of chronic pain after repeated discussions on existing medical evidence combined with the well clinical experience of experts. The consensus provided information on the mechanism of action of ion channel drugs and their recommendations, caution use, contraindications, and precautions for their use in special populations to support doctors in their clinical decision-making.
Collapse
Affiliation(s)
- Ke Ma
- Department of Algology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Zhixiang Cheng
- Department of Algology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Hao Jiang
- Department of Algology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| | - Zhangya Lin
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| | - Chuansheng Liu
- Department of Algology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Xianguo Liu
- Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Lijuan Lu
- Department of Pain Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Yan Lu
- Department of Algology, Xijing Hospital, The Fourth Military Medical University, Xian, People’s Republic of China
| | - Wei Tao
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen, People’s Republic of China
| | - Suoliang Wang
- Department of Algology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Xiaoqiu Yang
- Department of Algology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Qishan Yi
- Department of Algology, The Yibin First People’s Hospital Affiliated Chongqing Medical University, Yibin, People’s Republic of China
| | - Xiaomei Zhang
- Department of Algology, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Ying Zhang
- Department of Algology. Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, People’s Republic of China
| | - Yanqing Liu
- Department of Algology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
7
|
Monte FBDM, Montagnoli TL, Dematté BE, Gubert F, Ventura VS, da Silva JS, Trachez MM, Mendez-Otero R, Zapata-Sudo G. Antinociceptive Effect of the Combination of a Novel α4β2* Agonist with Donepezil in a Chronic Pain Model. Biomedicines 2023; 11:3249. [PMID: 38137470 PMCID: PMC10740638 DOI: 10.3390/biomedicines11123249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Chronic pain presents a major challenge in contemporary medicine, given the limited effectiveness and numerous adverse effects linked to available treatments. Recognizing the potential of the cholinergic pathway as a therapeutic target, the present work evaluates the antinociceptive activity of a combination of Cris-104, a novel α4β2* receptor agonist, and donepezil, a central anticholinesterase agent. Isobolographic analysis revealed that equimolar combination was approximately 10 times more potent than theoretically calculated equipotent additive dose. Administration of Cris-104 and donepezil combination (3 μmol/kg) successfully reversed hyperalgesia and mechanical allodynia observed in rats subjected to spinal nerve ligation (SNL). The combination also modulated neuroinflammation by reducing astrocyte activation, evident in the decreased expression of glial fibrillary acidic protein (GFAP) in the spinal cord. The observed synergism in combining a nicotinic receptor agonist with an anticholinesterase agent underscores its potential for treating chronic pain. This alternative therapeutic distinct advantage, including dose reduction and high selectivity for the receptor, contribute to a more favorable profile with minimized adverse effects.
Collapse
Affiliation(s)
- Fernanda B. de M. Monte
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-617, Brazil; (F.B.d.M.M.); (T.L.M.); (J.S.d.S.)
| | - Tadeu L. Montagnoli
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-617, Brazil; (F.B.d.M.M.); (T.L.M.); (J.S.d.S.)
| | - Bruno E. Dematté
- Programa de Pós-Graduação em Cardiologia, Instituto do Coração Edson Saad, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-617, Brazil;
| | - Fernanda Gubert
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-617, Brazil;
| | - Vitória S. Ventura
- Instituto do Coração Edson Saad, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-617, Brazil; (V.S.V.); (M.M.T.)
| | - Jaqueline S. da Silva
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-617, Brazil; (F.B.d.M.M.); (T.L.M.); (J.S.d.S.)
- Programa de Pós-Graduação em Cardiologia, Instituto do Coração Edson Saad, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-617, Brazil;
| | - Margarete M. Trachez
- Instituto do Coração Edson Saad, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-617, Brazil; (V.S.V.); (M.M.T.)
| | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-617, Brazil;
| | - Gisele Zapata-Sudo
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-617, Brazil; (F.B.d.M.M.); (T.L.M.); (J.S.d.S.)
- Programa de Pós-Graduação em Cardiologia, Instituto do Coração Edson Saad, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-617, Brazil;
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-617, Brazil;
- Instituto do Coração Edson Saad, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-617, Brazil; (V.S.V.); (M.M.T.)
| |
Collapse
|
8
|
Cerni F, Oliveira I, Cordeiro F, Bordon K, Ferreira I, Monteiro W, Arantes E, Cunha T, Pucca M. The nociceptive response induced by different classes of Tityus serrulatus neurotoxins: The important role of Ts5 in venom-induced nociception. PLoS Negl Trop Dis 2023; 17:e0011057. [PMID: 36716327 PMCID: PMC9886245 DOI: 10.1371/journal.pntd.0011057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/23/2022] [Indexed: 02/01/2023] Open
Abstract
Scorpion sting envenomations (SSE) are feared by the intense pain that they produce in victims. Pain from SSE is triggered mainly by the presence of neurotoxins in the scorpion venom that modulates voltage-gated ion channels. In Brazil, SSE is mostly caused by Tityus serrulatus, popularly known as yellow scorpion. Here, we evaluated experimental spontaneous nociception induced by T. serrulatus venom as well as its isolated neurotoxins Ts1, Ts5, Ts6, Ts8, and Ts19 frag II, evidencing different degrees of pain behavior in mice. In addition, we developed a mice-derived polyclonal antibody targeting Ts5 able to neutralize the effect of this neurotoxin, showing that Ts5 presents epitopes capable of activating the immune response, which decreased considerably the nociception produced by the whole venom. This is the pioneer study to explore nociception using different classes of T. serrulatus neurotoxins on nociception (α-NaTx, β-NaTx, α-KTx, and β-KTx), targeting potassium and sodium voltage-gated channels, besides demonstrating that Ts5 plays an important role in the scorpion sting induced-pain.
Collapse
Affiliation(s)
- Felipe Cerni
- Health and Sciences Postgraduate Program, Federal University of Roraima, Boa Vista, Roraima, Brazil
| | - Isadora Oliveira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Francielle Cordeiro
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Karla Bordon
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Isabela Ferreira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Wuelton Monteiro
- Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Amazonas, Brazil,Department of Medicine and Nursing, School of Health Sciences, Amazonas State University, Manaus, Amazonas, Brazil
| | - Eliane Arantes
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Thiago Cunha
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Manuela Pucca
- Health and Sciences Postgraduate Program, Federal University of Roraima, Boa Vista, Roraima, Brazil,Medical School, Federal University of Roraima, Boa Vista, Roraima, Brazil,* E-mail:
| |
Collapse
|
9
|
Bigsby S, Neapetung J, Campanucci VA. Voltage-gated sodium channels in diabetic sensory neuropathy: Function, modulation, and therapeutic potential. Front Cell Neurosci 2022; 16:994585. [PMID: 36467605 PMCID: PMC9713017 DOI: 10.3389/fncel.2022.994585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/11/2022] [Indexed: 10/29/2023] Open
Abstract
Voltage-gated sodium channels (Na V ) are the main contributors to action potential generation and essential players in establishing neuronal excitability. Na V channels have been widely studied in pain pathologies, including those that develop during diabetes. Diabetic sensory neuropathy (DSN) is one of the most common complications of the disease. DSN is the result of sensory nerve damage by the hyperglycemic state, resulting in a number of debilitating symptoms that have a significant negative impact in the quality of life of diabetic patients. Among those symptoms are tingling and numbness of hands and feet, as well as exacerbated pain responses to noxious and non-noxious stimuli. DSN is also a major contributor to the development of diabetic foot, which may lead to lower limb amputations in long-term diabetic patients. Unfortunately, current treatments fail to reverse or successfully manage DSN. In the current review we provide an updated report on Na V channels including structure/function and contribution to DSN. Furthermore, we summarize current research on the therapeutic potential of targeting Na V channels in pain pathologies, including DSN.
Collapse
Affiliation(s)
| | | | - Verónica A. Campanucci
- Department of Anatomy, Physiology and Pharmacology (APP), College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
10
|
Scorpion Neurotoxin Syb-prII-1 Exerts Analgesic Effect through Nav1.8 Channel and MAPKs Pathway. Int J Mol Sci 2022; 23:ijms23137065. [PMID: 35806068 PMCID: PMC9266357 DOI: 10.3390/ijms23137065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 02/06/2023] Open
Abstract
Trigeminal neuralgia (TN) is a common type of peripheral neuralgia in clinical practice, which is usually difficult to cure. Common analgesic drugs are difficult for achieving the desired analgesic effect. Syb-prII-1 is a β-type scorpion neurotoxin isolated from the scorpion venom of Buthus martensi Karsch (BmK). It has an important influence on the voltage-gated sodium channel (VGSCs), especially closely related to Nav1.8 and Nav1.9. To explore whether Syb-prII-1 has a good analgesic effect on TN, we established the Sprague Dawley (SD) rats’ chronic constriction injury of the infraorbital nerve (IoN-CCI) model. Behavioral, electrophysiological, Western blot, and other methods were used to verify the model. It was found that Syb-prII-1 could significantly relieve the pain behavior of IoN-CCI rats. After Syb-prII-1 was given, the phosphorylation level of the mitogen-activated protein kinases (MAPKs) pathway showed a dose-dependent decrease after IoN-CCI injury. Moreover, Syb-prII-1(4.0 mg/kg) could significantly change the steady-state activation and inactivation curves of Nav1.8. The steady-state activation and inactivation curves of Nav1.9 were similar to those of Nav1.8, but there was no significant difference. It was speculated that it might play an auxiliary role. The binding mode, critical residues, and specific interaction type of Syb-prII-1 and VSD2rNav1.8 were clarified with computational simulation methods. Our results indicated that Syb-prII-1 could provide a potential treatment for TN by acting on the Nav1.8 target.
Collapse
|
11
|
Felix R, Muñoz-Herrera D, Corzo-López A, Fernández-Gallardo M, Leyva-Leyva M, González-Ramírez R, Sandoval A. Ion channel long non-coding RNAs in neuropathic pain. Pflugers Arch 2022; 474:457-468. [PMID: 35235008 DOI: 10.1007/s00424-022-02675-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023]
Abstract
Neuropathic pain is one of the primary forms of chronic pain and is the consequence of the somatosensory system's direct injury or disease. It is a relevant public health problem that affects about 10% of the world's general population. In neuropathic pain, alteration in neurotransmission occurs at various levels, including the dorsal root ganglia, the spinal cord, and the brain, resulting from the malfunction of diverse molecules such as receptors, ion channels, and elements of specific intracellular signaling pathways. In this context, there have been exciting advances in elucidating neuropathic pain's cellular and molecular mechanisms in the last decade, including the possible role that long non-coding RNAs (lncRNAs) may play, which open up new alternatives for the development of diagnostic and therapeutic strategies for this condition. This review focuses on recent studies associated with the possible relevance of lncRNAs in the development and maintenance of neuropathic pain through their actions on the functional expression of ion channels. Recognizing the changes in the function and spatio-temporal patterns of expression of these membrane proteins is crucial to understanding the control of neuronal excitability in chronic pain syndromes.
Collapse
Affiliation(s)
- Ricardo Felix
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), 07360, Mexico City, Mexico.
| | - David Muñoz-Herrera
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), 07360, Mexico City, Mexico
| | - Alejandra Corzo-López
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), 07360, Mexico City, Mexico
| | | | - Margarita Leyva-Leyva
- Department of Molecular Biology and Histocompatibility, "Dr. Manuel Gea González" General Hospital, Mexico City, Mexico
| | - Ricardo González-Ramírez
- Department of Molecular Biology and Histocompatibility, "Dr. Manuel Gea González" General Hospital, Mexico City, Mexico
| | - Alejandro Sandoval
- School of Medicine FES Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla, Mexico
| |
Collapse
|
12
|
Kwon M, Jung IY, Cha M, Lee BH. Inhibition of the Nav1.7 Channel in the Trigeminal Ganglion Relieves Pulpitis Inflammatory Pain. Front Pharmacol 2021; 12:759730. [PMID: 34955831 PMCID: PMC8694709 DOI: 10.3389/fphar.2021.759730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/15/2021] [Indexed: 11/29/2022] Open
Abstract
Pulpitis causes significant changes in the peripheral nervous system, which induce hyperalgesia. However, the relationship between neuronal activity and Nav1.7 expression following pulpal noxious pain has not yet been investigated in the trigeminal ganglion (TG). The aim of our study was to verify whether experimentally induced pulpitis activates the expression of Nav1.7 peripherally and the neuronal activities of the TGs can be affected by Nav1.7 channel inhibition. Acute pulpitis was induced through allyl isothiocyanate (AITC) application to the rat maxillary molar tooth pulp. Three days after AITC application, abnormal pain behaviors were recorded, and the rats were euthanized to allow for immunohistochemical, optical imaging, and western blot analyses of the Nav1.7 expression in the TG. A significant increase in AITC-induced pain-like behaviors and histological evidence of pulpitis were observed. In addition, histological and western blot data showed that Nav1.7 expressions in the TGs were significantly higher in the AITC group than in the naive and saline group rats. Optical imaging showed that the AITC group showed higher neuronal activity after electrical stimulation of the TGs. Additionally, treatment of ProTxII, selective Nav1.7 blocker, on to the TGs in the AITC group effectively suppressed the hyperpolarized activity after electrical stimulation. These findings indicate that the inhibition of the Nav1.7 channel could modulate nociceptive signal processing in the TG following pulp inflammation.
Collapse
Affiliation(s)
- Minjee Kwon
- Department of Nursing, Kyungil University, Gyeongsan, South Korea
| | - Il Young Jung
- Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, Seoul, South Korea
| | - Myeounghoon Cha
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Bae Hwan Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
13
|
Gupta H, Patel A, Eswani Z, Moore P, Steib M, Lee C, Kaye AD. Role of Intravenous Lidocaine Infusion in the Treatment of Peripheral Neuropathy. Orthop Rev (Pavia) 2021; 13:25567. [PMID: 34745482 PMCID: PMC8567794 DOI: 10.52965/001c.25567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 12/25/2022] Open
Abstract
PURPOSE OF REVIEW This is a comprehensive review of the literature regarding intravenous lidocaine infusion to treat peripheral neuropathy. The clinical symptoms of peripheral neuropathy occur on a broad spectrum and stem from many etiologies resulting in complex treatment approaches. This review presents the background, evidence, and indications for the use of intravenous lidocaine infusions as a treatment option for this condition. RECENT FINDINGS The clinical range of peripheral neuropathy symptoms includes pain, numbness, muscle weakness, paresthesia, balance difficulty, and autonomic dysfunction. However, severe neuropathic pain remains one of the most debilitating symptoms that significantly affects the quality of life. Current treatment options include antidepressants, anticonvulsants, and, in some cases, opiates, but these are often ineffective, creating the need for other therapeutic approaches.The pathophysiology of neuropathic pain involves sodium channels which create abnormal pain responses. Intravenous lidocaine primarily functions by inhibiting membrane sodium channels which desensitize peripheral nociceptors, thus creating an analgesic effect. The research in using intravenous lidocaine for neuropathic pain is not fully complete and requires further evaluation. SUMMARY Peripheral neuropathy is a manifestation commonly resulting from diabetes, alcohol abuse, vitamin deficiencies, and chemotherapy, among other causes. One of the most significant complications is neuropathic pain which is often resistant to multi-modal therapeutic regimens. Intravenous lidocaine infusions are a newer treatment option for neuropathic pain, which have additional anti-inflammatory effects with a minimal side effect profile. Studies have concluded it effectively treats neuropathic pain for weeks after administration, but results are variable depending on specific procedures. Further research, including additional direct comparison studies, should be conducted to fully evaluate this drug's usefulness.
Collapse
Affiliation(s)
| | | | - Zahaan Eswani
- Louisiana State University Health Science Center Shreveport
| | - Peyton Moore
- Louisiana State University Health Science Center Shreveport
| | - Mattie Steib
- Louisiana State University Health Science Center Shreveport
| | - Christopher Lee
- Creighton University School of Medicine-Phoenix Regional Campus
| | - Alan D Kaye
- Louisiana State University Health Science Center Shreveport
| |
Collapse
|
14
|
Differences in the antinociceptive effects of serotonin-noradrenaline reuptake inhibitors via sodium channel blockade using the veratrine test in mice. Neuroreport 2021; 32:797-802. [PMID: 33994525 DOI: 10.1097/wnr.0000000000001658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Antidepressants exert their analgesic effects by inhibiting the reuptake of noradrenaline. Several antidepressants have been shown to block the sodium channels, which might contribute to their analgesic potency. The aim of this study was to determine whether serotonin-noradrenaline reuptake inhibitors (SNRIs) could produce antinociceptive effects via sodium channel blockade using the veratrine test in mice. Furthermore, the effects of these agents on the veratrine test were examined to elucidate the effects of several antidepressants and tramadol on sodium channels. The administration of duloxetine (10 mg/kg) and venlafaxine (30 mg/kg) suppressed cuff-induced mechanical allodynia; however, these antinociceptive effects were only partially suppressed by atipamezole. Furthermore, duloxetine and venlafaxine demonstrated antinociceptive effects via sodium channel blockade, as assayed by the veratrine test. In addition, several antidepressants, including amitriptyline, paroxetine and mirtazapine, reduced veratrine-induced nociception. In contrast, milnacipran and tramadol did not alter the veratrine-induced nociception. These results indicated that, in addition to the primary action of SNRIs on monoamine transporters, sodium channel blockade might be involved in the antinociceptive activities of duloxetine and venlafaxine, but not milnacipran.
Collapse
|
15
|
Joshi HP, Jo HJ, Kim YH, An SB, Park CK, Han I. Stem Cell Therapy for Modulating Neuroinflammation in Neuropathic Pain. Int J Mol Sci 2021; 22:ijms22094853. [PMID: 34063721 PMCID: PMC8124149 DOI: 10.3390/ijms22094853] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Neuropathic pain (NP) is a complex, debilitating, chronic pain state, heterogeneous in nature and caused by a lesion or disease affecting the somatosensory system. Its pathogenesis involves a wide range of molecular pathways. NP treatment is extremely challenging, due to its complex underlying disease mechanisms. Current pharmacological and nonpharmacological approaches can provide long-lasting pain relief to a limited percentage of patients and lack safe and effective treatment options. Therefore, scientists are focusing on the introduction of novel treatment approaches, such as stem cell therapy. A growing number of reports have highlighted the potential of stem cells for treating NP. In this review, we briefly introduce NP, current pharmacological and nonpharmacological treatments, and preclinical studies of stem cells to treat NP. In addition, we summarize stem cell mechanisms—including neuromodulation in treating NP. Literature searches were conducted using PubMed to provide an overview of the neuroprotective effects of stem cells with particular emphasis on recent translational research regarding stem cell-based treatment of NP, highlighting its potential as a novel therapeutic approach.
Collapse
Affiliation(s)
- Hari Prasad Joshi
- Department of Neurosurgery, School of Medicine, CHA University, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (H.P.J.); (S.-B.A.)
- Spinal Cord Research Centre, Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Hyun-Jung Jo
- Gachon Pain Center, Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Gyeonggi-do, Korea; (H.-J.J.); (Y.-H.K.)
| | - Yong-Ho Kim
- Gachon Pain Center, Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Gyeonggi-do, Korea; (H.-J.J.); (Y.-H.K.)
| | - Seong-Bae An
- Department of Neurosurgery, School of Medicine, CHA University, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (H.P.J.); (S.-B.A.)
| | - Chul-Kyu Park
- Gachon Pain Center, Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Gyeonggi-do, Korea; (H.-J.J.); (Y.-H.K.)
- Correspondence: (C.-K.P.); (I.H.)
| | - Inbo Han
- Department of Neurosurgery, School of Medicine, CHA University, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (H.P.J.); (S.-B.A.)
- Correspondence: (C.-K.P.); (I.H.)
| |
Collapse
|
16
|
Nava-Mesa MO, Aispuru Lanche GR. [Role of B vitamins, thiamine, pyridoxine, and cyanocobalamin in back pain and other musculoskeletal conditions: a narrative review]. Semergen 2021; 47:551-562. [PMID: 33865694 DOI: 10.1016/j.semerg.2021.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/12/2021] [Indexed: 12/25/2022]
Abstract
Low back pain, as well as other musculoskeletal disorders (neck pain, osteoarthritis, etc.), are a very frequent cause of consultation both in primary care and in other hospital specialties and are usually associated with high functional and work disability. Acute low back pain can present different nociceptive, neuropathic and nonciplastic components, which leads to consider it as a mixed type pain. The importance of the concept of mixed pain is due to the fact that the symptomatic relief of these pathologies requires a multimodal therapeutic approach to various pharmacological targets. The antinociceptive role of the B vitamin complex has been recognized for several decades, specifically the combination of Thiamine, Pyridoxine and Cyanocobalamin (TPC). Likewise, there is accumulated evidence that indicates an adjuvant analgesic action in low back pain. The aim of the present review is to present the existing evidence and the latest findings on the therapeutic effects of the TPC combination in low back pain. Likewise, some of the most relevant mechanisms of action involved that can explain these effects are analyzed. The reviewed evidence indicates that the combined use of PCT has an adjuvant analgesic effect in mixed pain, specifically in low back pain and other musculoskeletal disorders with nociceptive and neuropathic components. This effect can be explained by an anti-inflammatory, antinociceptive, neuroprotective and neuromodulatory action of the TPC combination on the descending pain system.
Collapse
Affiliation(s)
- M O Nava-Mesa
- Grupo de Investigación en Neurociencias (NEUROS), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - G R Aispuru Lanche
- Grupo de Trabajo Aparato Locomotor Semergen. Gerencia de Atención Primaria de Burgos, Castilla y León, España.
| |
Collapse
|
17
|
Qiu J, Zhang L, Hong J, Ni X, Li J, Li G, Zhang G. Magnolol inhibits sodium currents in freshly isolated mouse dorsal root ganglion neurons. Clin Exp Pharmacol Physiol 2021; 48:347-354. [PMID: 33064853 DOI: 10.1111/1440-1681.13422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022]
Abstract
The voltage-gated sodium channel (VGSC) currents in dorsal root ganglion (DRG) neurons contain mainly TTX-sensitive (TTX-S) and TTX-resistant (TTX-R) Na+ currents. Magnolol (Mag), a hydroxylated biphenyl compound isolated from the bark of Magnolia officinalis, has been well documented to exhibit analgesic effects, but its mechanism is not yet fully understood. The aim of the present study was to investigate whether the antinociceptive effects of Mag is through inhibition of Na+ currents. Na+ currents in freshly isolated mouse DRG neurons were recorded with the whole cell patch clamp technique. Results showed that Mag inhibited TTX-S and TTX-R Na+ currents in a concentration-dependent manner. The IC50 values for block of TTX-S and TTX-R Na+ currents were 9.4 and 7.0 μmol/L, respectively. Therefore, TTX-R Na+ current was more susceptible to Mag than TTX-S Na+ current. For TTX-S Na+ channel, 10 μmol/L Mag shifted the steady state inactivation curve toward more negative by 9.8 mV, without affecting the activation curve. For TTX-R Na+ channel, 7 μmol/L Mag shifted the steady state activation and inactivation curves toward more positive and negative potentials by 6.5 and 11.7 mV, respectively. In addition, Mag significantly postponed recovery of TTX-S and TTX-R Na+ currents from inactivation, and produced frequency dependent blocks of both subtypes of Na+ currents. These results suggest that the inhibitory effects of Mag on Na+ channels may contribute to its analgesic effect.
Collapse
Affiliation(s)
- Jie Qiu
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lulu Zhang
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jiangru Hong
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiao Ni
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research of Southwest, Medical University, Luzhou, China
| | - Jun Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research of Southwest, Medical University, Luzhou, China
| | - Guang Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research of Southwest, Medical University, Luzhou, China
| | - Guangqin Zhang
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
18
|
Lee JH, Gang J, Yang E, Kim W, Jin YH. Bee Venom Acupuncture Attenuates Oxaliplatin-Induced Neuropathic Pain by Modulating Action Potential Threshold in A-Fiber Dorsal Root Ganglia Neurons. Toxins (Basel) 2020; 12:toxins12120737. [PMID: 33255279 PMCID: PMC7760131 DOI: 10.3390/toxins12120737] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Oxaliplatin is a third-generation platinum-based chemotherapeutic drug widely used in colorectal cancer treatment. Although potent against this tumor, it can induce cold and mechanical allodynia even after a single injection. The currently used drugs to attenuate this allodynia can also cause unwanted effects, which limit their use. Bee venom acupuncture (BVA) is widely used in Korean medicine to treat pain. Although the effect of BVA on oxaliplatin-induced neuropathic pain has been addressed in many studies, its action on dorsal root ganglia (DRG) neurons has never been investigated. A single oxaliplatin injection (6 mg/kg, intraperitoneally) induced cold and mechanical allodynia, and BVA (0.1 and 1 mg/kg, subcutaneous, ST36) dose-dependently decreased allodynia in rats. On acutely dissociated lumbar 4-6 DRG neurons, 10 min application of oxaliplatin (100 μM) shifted the voltage-dependence of sodium conductance toward negative membrane potentials in A- but not C-fibers. The resting membrane potential remained unchanged, but the action potential threshold decreased significantly compared to that of the control (p < 0.05). However, 0.1 μg/mL of BVA administration increased the lowered action potential threshold. In conclusion, these results suggest that BVA may attenuate oxaliplatin-induced neuropathic pain by altering the action potential threshold in A-fiber DRG neurons.
Collapse
Affiliation(s)
- Ji Hwan Lee
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Korea;
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02453, Korea
| | - Juan Gang
- Department of East-West Medicine, Graduate School, Kyung Hee University, Seoul 02453, Korea;
| | - Eunhee Yang
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02453, Korea;
| | - Woojin Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Korea;
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02453, Korea
- Department of East-West Medicine, Graduate School, Kyung Hee University, Seoul 02453, Korea;
- Correspondence: (W.K.); (Y.-H.J.)
| | - Young-Ho Jin
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02453, Korea;
- Correspondence: (W.K.); (Y.-H.J.)
| |
Collapse
|
19
|
Costa GMF, Rocha LPC, Siqueira SRDTD, Moreira PR, Almeida-Leite CM. No Association of Polymorphisms in Nav1.7 or Nerve Growth Factor Receptor Genes with Trigeminal Neuralgia. PAIN MEDICINE 2020; 20:1362-1369. [PMID: 30307573 DOI: 10.1093/pm/pny191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Trigeminal neuralgia is defined as a sudden severe shock-like pain within the distribution of the trigeminal nerve. Pain is a subjective experience that is influenced by gender, culture, environment, psychological traits, and genes. Sodium channels and nerve growth factor play important roles in the transmission of nociceptive signals and pain. The aim of this study was to investigate the occurrence of Nav1.7 sodium channel and nerve growth factor receptor TrkA gene polymorphisms (SCN9A/rs6746030 and NTRK1/rs633, respectively) in trigeminal neuralgia patients. METHODS Ninety-six subjects from pain specialty centers in the southeastern region of Brazil were divided into 2 groups: 48 with classical trigeminal neuralgia diagnosis and 48 controls. Pain was evaluated using the visual analog scale and multidimensional McGill Pain Questionnaire. Genomic DNA was obtained from oral swabs in all individuals and was analyzed by real-time polymerase chain reaction. RESULTS No association was observed between evaluated polymorphisms and trigeminal neuralgia. For allele analyses, patients and controls had similar frequencies for both genes. Genotype distribution or allele frequencies of polymorphisms analyzed here did not correlate to pain scores. CONCLUSIONS Although no association of evaluated polymorphisms and trigeminal neuralgia diagnosis or pain severity was observed, our data do not exclude the possibility that other genotypes affecting the expression of Nav1.7 or TrkA are associated with the disease. Further studies should investigate distinct genetic polymorphisms and epigenetic factors that may be important in expression of these molecules.
Collapse
Affiliation(s)
- Grazielle Mara Ferreira Costa
- Programa de Pós-Graduação em Patologia, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Luiz Paulo C Rocha
- Programa de Pós-Graduação em Biologia Celular, Instituto de Ciências Biológicas (ICB), UFMG, Belo Horizonte, MG, Brazil
| | | | - Paula Rocha Moreira
- Programa de Pós-Graduação em Biologia Celular, Instituto de Ciências Biológicas (ICB), UFMG, Belo Horizonte, MG, Brazil.,Departamento de Morfologia, ICB, UFMG, Belo Horizonte, MG, Brazil
| | - Camila Megale Almeida-Leite
- Programa de Pós-Graduação em Patologia, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.,Departamento de Morfologia, ICB, UFMG, Belo Horizonte, MG, Brazil
| |
Collapse
|
20
|
Geroin C, Di Vico IA, Squintani G, Segatti A, Bovi T, Tinazzi M. Effects of safinamide on pain in Parkinson's disease with motor fluctuations: an exploratory study. J Neural Transm (Vienna) 2020; 127:1143-1152. [PMID: 32572581 DOI: 10.1007/s00702-020-02218-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/12/2020] [Indexed: 12/16/2022]
Abstract
Pain is a common and disabling non-motor symptom (NMS) of Parkinson's disease (PD), which occurs through the course of the disease, often unrecognized and undertreated. For this study, we evaluated the efficacy and safety of safinamide to reduce pain in PD patients with motor fluctuations. A total of 13 PD patients with pain receiving safinamide (Xadago®, 100 mg/daily) were prospectively evaluated for 12 weeks. The primary outcome measures were changes in the total score of the King's Pain Scale for Parkinson's Disease (KPPS), Brief Pain Inventory (BPI) Intensity and Interference, and the Numeric Rating Scale (NRS). Secondary outcomes were the proportion of pain responders, changes in the Clinical Global Impression of Change (CGI), the Parkinson's disease Quality of Life 39 (PDQ39), the Unified Parkinson's Disease Rating Scale parts III and IV (UPDRS III and IV), and laser-evoked potentials (LEPs). LEPs were used to assess potential changes in the central processing of nociceptive inputs. The safety profile was evaluated based on the occurrence of treatment-emergent side effects and the dropout rate. After 12 weeks of add-on safinamide therapy, a significant improvement was noted in the primary (KPPS, BPI Intensity and interference, and NRS) and the secondary outcomes (UPDRS III, IV, CGI, and PDQ39). No significant changes in LEP complexes were observed. All patients completed the study and no treatment-emergent side effects were reported. Our preliminary findings suggest that safinamide 100 mg/day may be effective for the management of pain in PD patients with motor fluctuations and is safe. Further randomized controlled trials are needed to confirm its efficacy.
Collapse
Affiliation(s)
- Christian Geroin
- Neurology Unit, Movement Disorders Division, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, P.le Scuro 10, 37134, Verona, Italy.
| | - Ilaria A Di Vico
- Neurology Unit, Movement Disorders Division, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, P.le Scuro 10, 37134, Verona, Italy
| | - Giovanna Squintani
- UOC Neurologia A, Department of Neurosciences, AOUI Verona, Verona, Italy
| | - Alessia Segatti
- UOC Neurologia A, Department of Neurosciences, AOUI Verona, Verona, Italy
| | - Tommaso Bovi
- UOC Neurologia A, Department of Neurosciences, AOUI Verona, Verona, Italy
| | - Michele Tinazzi
- Neurology Unit, Movement Disorders Division, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, P.le Scuro 10, 37134, Verona, Italy.
| |
Collapse
|
21
|
Pathophysiological roles and therapeutic potential of voltage-gated ion channels (VGICs) in pain associated with herpesvirus infection. Cell Biosci 2020; 10:70. [PMID: 32489585 PMCID: PMC7247163 DOI: 10.1186/s13578-020-00430-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
Herpesvirus is ranked as one of the grand old members of all pathogens. Of all the viruses in the superfamily, Herpes simplex virus type 1 (HSV-1) is considered as a model virus for a variety of reasons. In a permissive non-neuronal cell culture, HSV-1 concludes the entire life cycle in approximately 18–20 h, encoding approximately 90 unique transcriptional units. In latency, the robust viral gene expression is suppressed in neurons by a group of noncoding RNA. Historically the lesions caused by the virus can date back to centuries ago. As a neurotropic pathogen, HSV-1 is associated with painful oral lesions, severe keratitis and lethal encephalitis. Transmission of pain signals is dependent on the generation and propagation of action potential in sensory neurons. T-type Ca2+ channels serve as a preamplifier of action potential generation. Voltage-gated Na+ channels are the main components for action potential production. This review summarizes not only the voltage-gated ion channels in neuropathic disorders but also provides the new insights into HSV-1 induced pain.
Collapse
|
22
|
Alam U, Sloan G, Tesfaye S. Treating Pain in Diabetic Neuropathy: Current and Developmental Drugs. Drugs 2020; 80:363-384. [DOI: 10.1007/s40265-020-01259-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
23
|
Scholzen E, Zeng AM, Schroeder KM. Perioperative Management and Analgesia for Patients Taking Buprenorphine and Other Forms of Medication-Assisted Treatment for Substance Abuse Disorders. Adv Anesth 2019; 37:65-86. [PMID: 31677660 DOI: 10.1016/j.aan.2019.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Elizabeth Scholzen
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, 600 Highland Avenue, B6/319 CSC, Madison, WI 53792, USA
| | - Angela M Zeng
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, 600 Highland Avenue, B6/319 CSC, Madison, WI 53792, USA
| | - Kristopher M Schroeder
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, 600 Highland Avenue, B6/319 CSC, Madison, WI 53792, USA.
| |
Collapse
|
24
|
Zhu B, Zhou X, Zhou Q, Wang H, Wang S, Luo K. Intra-Venous Lidocaine to Relieve Neuropathic Pain: A Systematic Review and Meta-Analysis. Front Neurol 2019; 10:954. [PMID: 31620064 PMCID: PMC6759769 DOI: 10.3389/fneur.2019.00954] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/20/2019] [Indexed: 12/25/2022] Open
Abstract
Background: The prevalence of neuropathic pain is estimated to be between 7 and 10% in the general population. The efficacy of intravenous (IV) lidocaine has been studied by numerous clinical trials on patients with neuropathic pain. The aim of this systematic review and meta-analysis was to evaluate the efficacy of IV lidocaine compared with a placebo for neuropathic pain and secondly to assess the safety of its administration. Methods: A literature search on PubMed, Scopus, CENTRAL (Cochrane Central Register of Controlled Trials), and Google scholar databases was performed for relevant studies published up to February 2019. Randomized controlled trials (RCTs) evaluating IV lidocaine treatment for pain relief in patients with neuropathic pain were included. Results: 26 articles met the inclusion criteria. Patients with varied etiology of neuropathic pain were among the patient samples of these studies. Fifteen articles were included for quantitative analysis. Lidocaine was superior to a placebo in relieving neuropathic pain in the early post-infusion period [Mean Difference (MD) = -11.9; 95% Confidence interval (CI): -16.8 to -7; p < 0.00001]. Multiple infusions of lidocaine over a period of 4 weeks, however, had no significant effect on reliving neuropathic pain (MD = -0.96; 95% CI: -2.02 to 0.11; p = 0.08). IV lidocaine was also associated with a significant number of adverse events compared to a placebo [Odds Ratio (OR) = 7.75; 95% CI: 3.18-18.92; p < 0.00001]. Conclusion: Our study indicates that while IV lidocaine is effective in pain control among patients with neuropathic pain in the immediate post-infusion period, it does not have a long-lasting, persistent effect. IV infusions of the drug are associated with an increased risk of side effects compared to a placebo. However, the risk of serious adverse events is negligible. Further, well-designed RCTs evaluating the effects of various dosages and infusion periods of IV lidocaine are required to provide clear guidelines on its clinical use.
Collapse
Affiliation(s)
- Bo Zhu
- Department of Anesthesiology, Zhejiang Chinese Medical University Affiliated Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Xiayun Zhou
- Department of Anesthesiology, Zhejiang Chinese Medical University Affiliated Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Qinghe Zhou
- Department of Anesthesiology, Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Haiyan Wang
- Department of Anesthesiology, Zhejiang Chinese Medical University Affiliated Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Shougen Wang
- Department of Anesthesiology, Zhejiang Chinese Medical University Affiliated Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Kaitao Luo
- Department of Acupuncture, Zhejiang Chinese Medical University Affiliated Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| |
Collapse
|
25
|
Nav1.7 via Promotion of ERK in the Trigeminal Ganglion Plays an Important Role in the Induction of Pulpitis Inflammatory Pain. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6973932. [PMID: 31032358 PMCID: PMC6458889 DOI: 10.1155/2019/6973932] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/17/2019] [Indexed: 12/19/2022]
Abstract
The trigeminal ganglion (TG) refers to sensory neurons bodies that innervate the spinal cord and peripheral axons that innervate teeth. The tetrodotoxin-sensitive sodium (NA) channels (Nav1.7) play important roles in the pathophysiology of pain. In this study, we investigated the TG expression of Nav1.7 and extracellular signal-regulated kinase (ERK) in a rat model of pulpitis to explore the correlation between these channels and inflammatory pain. Pulpitis was confirmed by hematoxylin-eosin staining. In this study, we demonstrated that the reflex of rats to mechanical stimulation increases after pulp exposure and that the exposed rat molar pulp can upregulate the expression of Nav1.7 and ERK in the rat TG. Three days after rat pulp exposure, the expression levels of the two ion channels in the TG increased. TG target injection of PF04856264, a Nav1.7 inhibitor, dose-dependently increased the mechanical pain threshold and was able to inhibit ERK expression. TG target injection of PD98059, an ERK inhibitor, dose-dependently increased the mechanical pain threshold. These factors simultaneously resulted in the highest production. In this study, with the established link to inflammatory pain, we found that Nav1.7 and ERK both play important roles in the induction of inflammatory pain caused by pulpitis. We also found a correlation between the expression levels of Nav1.7 and ERK and the degree of inflammatory pain. Furthermore, ERK signaling pathways were promoted by the Nav1.7 in TG after pulpitis.
Collapse
|
26
|
Maatuf Y, Geron M, Priel A. The Role of Toxins in the Pursuit for Novel Analgesics. Toxins (Basel) 2019; 11:toxins11020131. [PMID: 30813430 PMCID: PMC6409898 DOI: 10.3390/toxins11020131] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
Abstract
Chronic pain is a major medical issue which reduces the quality of life of millions and inflicts a significant burden on health authorities worldwide. Currently, management of chronic pain includes first-line pharmacological therapies that are inadequately effective, as in just a portion of patients pain relief is obtained. Furthermore, most analgesics in use produce severe or intolerable adverse effects that impose dose restrictions and reduce compliance. As the majority of analgesic agents act on the central nervous system (CNS), it is possible that blocking pain at its source by targeting nociceptors would prove more efficient with minimal CNS-related side effects. The development of such analgesics requires the identification of appropriate molecular targets and thorough understanding of their structural and functional features. To this end, plant and animal toxins can be employed as they affect ion channels with high potency and selectivity. Moreover, elucidation of the toxin-bound ion channel structure could generate pharmacophores for rational drug design while favorable safety and analgesic profiles could highlight toxins as leads or even as valuable therapeutic compounds themselves. Here, we discuss the use of plant and animal toxins in the characterization of peripherally expressed ion channels which are implicated in pain.
Collapse
Affiliation(s)
- Yossi Maatuf
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| | - Matan Geron
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| | - Avi Priel
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| |
Collapse
|
27
|
Yang CH, Yip HK, Chen HF, Yin TC, Chiang JY, Sung PH, Lin KC, Tsou YH, Chen YL, Li YC, Huang TH, Huang CR, Luo CW, Chen KH. Long-term Therapeutic Effects of Extracorporeal Shock Wave-Assisted Melatonin Therapy on Mononeuropathic Pain in Rats. Neurochem Res 2019; 44:796-810. [PMID: 30632086 DOI: 10.1007/s11064-018-02713-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/31/2018] [Indexed: 01/21/2023]
Abstract
We evaluated the ability of extracorporeal shock wave (ECSW)-assisted melatonin (Mel) therapy to offer an additional benefit for alleviating the neuropathic pain (NP) in rats. Left sciatic nerve was subjected to chronic constriction injury (CCI) to induce NP. Animals (n = 30) were randomized into group 1 (sham-operated control), group 2 (CCI only), group 3 (CCI + ECSW), group 4 (CCI + Mel) and group 5 (CCI + ECSW + Mel). By days 15, 22 and 29 after CCI, the thermal paw withdrawal latency (TPWL) and mechanical paw withdrawal threshold (MPWT) were highest in group 1, lowest in group 2, significantly higher in group 5 than in groups 3 and 4, but they showed no difference between the later two groups (all p < 0.0001). The protein expressions of inflammatory (TNF-α, NF-κB, MMP-9, IL-1ß), oxidative-stress (NOXs-1, -2, -4, oxidized protein), apoptotic (cleaved-caspase3, cleaved-PARP), DNA/mitochondrial-damaged (γ-H2AX/cytosolic-cytochrome C), microglia/astrocyte activation (ox42/GFAP), and MAPKs [phosphorylated (p)-p38, p-JNK, p-ERK] biomarkers in dorsal root ganglia neurons (DRGs) and in spinal dorsal horn were exhibited an opposite pattern of TPWL among the five groups (all p < 0.0001). Additionally, protein expressions of Nav.1.3, Nav.1.8 and Nav.1.9 in sciatic nerve exhibited an identical pattern to inflammation among the five groups (all p < 0.0001). The numbers of cellular expressions of MAPKs (p-ERK1/2+/peripherin + cells, p-ERK1/2+/NF200 + cells and p-JNK+/peripherin + cells, p-JNK+/NF200 + cells) and voltage-gated sodium channels (Nav.1.8+/peripherin + cells, Nav.1.8+/NF200 + cells, Nav.1.9+/peripherin + cells, Nav.1.9+/NF200 + cells) in small and large DRGs displayed an identical pattern to inflammation among the five groups (all p < 0.0001). In conclusion, the synergistic effect of combined ECSW-Mel therapy is superior to either one alone for long-term improvement of mononeuropathic pain-induced by CCI in rats.
Collapse
Affiliation(s)
- Chien-Hui Yang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong Dist, Kaohsiung, 83301, Taiwan
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan
- Department of Nursing, Asia University, Taichung, 41354, Taiwan
| | - Hung-Fei Chen
- Institute of Technological and Vocational Education, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Tsung-Cheng Yin
- Department of Orthopaedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Kun-Chen Lin
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong Dist, Kaohsiung, 83301, Taiwan
| | - Yu-Huan Tsou
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong Dist, Kaohsiung, 83301, Taiwan
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Yi-Chen Li
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Tien-Hung Huang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Chi-Ruei Huang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Chi-Wen Luo
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Kuan-Hung Chen
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong Dist, Kaohsiung, 83301, Taiwan.
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan.
| |
Collapse
|
28
|
Yoshizawa K, Arai N, Suzuki Y, Nakamura T, Takeuchi K, Sakamoto R, Masuda R. Evaluation of the antinociceptive activities of several sodium channel blockers using veratrine test in mice. Synapse 2018; 72. [PMID: 29993143 DOI: 10.1002/syn.22056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/11/2018] [Accepted: 06/21/2018] [Indexed: 12/19/2022]
Abstract
An important role of voltage-gated sodium channels (VGSCs) in many different pain states has been established in animal models and humans wherein sodium channel blockers partially ameliorate pain. However, behavioral tests for screening analgesics that exhibit pharmacologic action by acting on VGSCs are rarely reported, and there are no studies on antinociception using veratrine as a nociceptive agent. The aim of the present study was to examine the amount of nociceptive behavior evoked by subcutaneous administration of veratrine into the hind paw and investigate whether veratrine can be used as a VGSC agonist to test the pharmacological properties of candidate analgesics via sodium channel blockade. We report for the first time that intraplantar injection of veratrine produced a reproducible nociceptive response in mice. Furthermore, several sodium channel blockers, namely carbamazepine, valproate, mexiletine, and the selective Nav1.7 inhibitor PF-04856264, but not flecainide or pilsicainide, reduced veratrine-induced nociception. In contrast, calcium channel blockers gabapentin and ethosuximide did not change veratrine-induced nociception. The veratrine test in mice might be a useful tool, at least in part, to evaluate the potential analgesic effect of sodium channel blockers.
Collapse
Affiliation(s)
- Kazumi Yoshizawa
- Laboratory of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Narumaki Arai
- Laboratory of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Yukina Suzuki
- Laboratory of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Toka Nakamura
- Laboratory of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Kota Takeuchi
- Laboratory of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Reinii Sakamoto
- Department of Anesthesiology, Tokai University Hachioji Hospital, Tokyo, Japan
| | - Ritsuko Masuda
- Department of Anesthesiology, Tokai University Hachioji Hospital, Tokyo, Japan
| |
Collapse
|
29
|
Behavioral, cellular and molecular maladaptations covary with exposure to pyridostigmine bromide in a rat model of gulf war illness pain. Toxicol Appl Pharmacol 2018; 352:119-131. [PMID: 29803855 DOI: 10.1016/j.taap.2018.05.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/16/2018] [Accepted: 05/20/2018] [Indexed: 12/12/2022]
Abstract
Many veterans of Operation Desert Storm (ODS) struggle with the chronic pain of Gulf War Illness (GWI). Exposure to insecticides and pyridostigmine bromide (PB) have been implicated in the etiology of this multisymptom disease. We examined the influence of 3 (DEET (N,N-diethyl-meta-toluamide), permethrin, chlorpyrifos) or 4 GW agents (DEET, permethrin, chlorpyrifos, pyridostigmine bromide (PB)) on the post-exposure ambulatory and resting behaviors of rats. In three independent studies, rats that were exposed to all 4 agents consistently developed both immediate and delayed ambulatory deficits that persisted at least 16 weeks after exposures had ceased. Rats exposed to a 3 agent protocol (PB excluded) did not develop any ambulatory deficits. Cellular and molecular studies on nociceptors harvested from 16WP (weeks post-exposure) rats indicated that vascular nociceptor Nav1.9 mediated currents were chronically potentiated following the 4 agent protocol but not following the 3 agent protocol. Muscarinic linkages to muscle nociceptor TRPA1 were also potentiated in the 4 agent but not the 3 agent, PB excluded, protocol. Although Kv7 activity changes diverged from the behavioral data, a Kv7 opener, retigabine, transiently reversed ambulation deficits. We concluded that PB played a critical role in the development of pain-like signs in a GWI rat model and that shifts in Nav1.9 and TRPA1 activity were critical to the expression of these pain behaviors.
Collapse
|
30
|
Hamad MK, He K, Abdulrazeq HF, Mustafa AM, Luceri R, Kamal N, Ali M, Nakhla J, Herzallah MM, Mammis A. Potential Uses of Isolated Toxin Peptides in Neuropathic Pain Relief: A Literature Review. World Neurosurg 2018; 113:333-347.e5. [DOI: 10.1016/j.wneu.2018.01.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 01/31/2023]
|
31
|
Iqbal Z, Azmi S, Yadav R, Ferdousi M, Kumar M, Cuthbertson DJ, Lim J, Malik RA, Alam U. Diabetic Peripheral Neuropathy: Epidemiology, Diagnosis, and Pharmacotherapy. Clin Ther 2018; 40:828-849. [PMID: 29709457 DOI: 10.1016/j.clinthera.2018.04.001] [Citation(s) in RCA: 280] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 03/26/2018] [Accepted: 04/02/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE Diabetic peripheral neuropathy (DPN) is the commonest cause of neuropathy worldwide, and its prevalence increases with the duration of diabetes. It affects approximately half of patients with diabetes. DPN is symmetric and predominantly sensory, starting distally and gradually spreading proximally in a glove-and-stocking distribution. It causes substantial morbidity and is associated with increased mortality. The unrelenting nature of pain in this condition can negatively affect a patient's sleep, mood, and functionality and result in a poor quality of life. The purpose of this review was to critically review the current literature on the diagnosis and treatment of DPN, with a focus on the treatment of neuropathic pain in DPN. METHODS A comprehensive literature review was undertaken, incorporating article searches in electronic databases (EMBASE, PubMed, OVID) and reference lists of relevant articles with the authors' expertise in DPN. This review considers seminal and novel research in epidemiology; diagnosis, especially in relation to novel surrogate end points; and the treatment of neuropathic pain in DPN. We also consider potential new pharmacotherapies for painful DPN. FINDINGS DPN is often misdiagnosed and inadequately treated. Other than improving glycemic control, there is no licensed pathogenetic treatment for diabetic neuropathy. Management of painful DPN remains challenging due to difficulties in personalizing therapy and ascertaining the best dosing strategy, choice of initial pharmacotherapy, consideration of combination therapy, and deciding on defining treatment for poor analgesic responders. Duloxetine and pregabalin remain first-line therapy for neuropathic pain in DPN in all 5 of the major published guidelines by the American Association of Clinical Endocrinologists, American Academy of Neurology, European Federation of Neurological Societies, National Institute of Clinical Excellence (United Kingdom), and the American Diabetes Association, and their use has been approved by the US Food and Drug Administration. IMPLICATIONS Clinical recognition of DPN is imperative for allowing timely symptom management to reduce the morbidity associated with this condition.
Collapse
Affiliation(s)
- Zohaib Iqbal
- Department of Endocrinology, Pennine Acute Hospitals NHS Trust, Greater Manchester, United Kingdom
| | - Shazli Azmi
- Institute of Cardiovascular Science, University of Manchester and the Manchester Royal Infirmary, Central Manchester Hospital Foundation Trust, Manchester, United Kingdom
| | - Rahul Yadav
- Department of Endocrinology, Warrington and Halton Hospitals NHS Foundation Trust, Warrington, United Kingdom
| | - Maryam Ferdousi
- Institute of Cardiovascular Science, University of Manchester and the Manchester Royal Infirmary, Central Manchester Hospital Foundation Trust, Manchester, United Kingdom
| | - Mohit Kumar
- Department of Endocrinology, Wrightington, Wigan and Leigh NHS Foundation Trust, Wigan, United Kingdom
| | - Daniel J Cuthbertson
- Diabetes and Endocrinology Research, Department of Eye and Vision Sciences and Pain Research Institute, Institute of Ageing and Chronic Disease, University of Liverpool and Aintree University Hospital NHS Foundation Trust, Liverpool, United Kingdom
| | - Jonathan Lim
- Diabetes and Endocrinology Research, Department of Eye and Vision Sciences and Pain Research Institute, Institute of Ageing and Chronic Disease, University of Liverpool and Aintree University Hospital NHS Foundation Trust, Liverpool, United Kingdom
| | - Rayaz A Malik
- Institute of Cardiovascular Science, University of Manchester and the Manchester Royal Infirmary, Central Manchester Hospital Foundation Trust, Manchester, United Kingdom; Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Uazman Alam
- Diabetes and Endocrinology Research, Department of Eye and Vision Sciences and Pain Research Institute, Institute of Ageing and Chronic Disease, University of Liverpool and Aintree University Hospital NHS Foundation Trust, Liverpool, United Kingdom; Department of Diabetes and Endocrinology, Royal Liverpool and Broadgreen University NHS Hospital Trust, Liverpool, United Kingdom; Division of Endocrinology, Diabetes and Gastroenterology, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
32
|
Cattaneo C, Barone P, Bonizzoni E, Sardina M. Effects of Safinamide on Pain in Fluctuating Parkinson's Disease Patients: A Post-Hoc Analysis. JOURNAL OF PARKINSONS DISEASE 2017; 7:95-101. [PMID: 27802242 PMCID: PMC5302028 DOI: 10.3233/jpd-160911] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Pain, a frequent non-motor symptom in Parkinson's Disease (PD), significantly impacts on quality of life. Safinamide is a new drug with dopaminergic and non-dopaminergic properties, approved in Europe as adjunct therapy to levodopa for the treatment of fluctuating PD patients. Results from two 24-month, double-blind, placebo-controlled studies demonstrated that safinamide has positive effects on both motor functions and quality of life in PD patients. OBJECTIVE To investigate the effects of safinamide on pain management in PD patients with motor fluctuations using pooled data from studies 016 and SETTLE. METHODS This post-hoc analysis evaluated the reduction of concomitant pain treatments and the changes in the scores of the items related to pain of the Parkinson's Disease Quality of Life Questionnaire (PDQ-39). A path analysis was performed in order to examine direct and indirect associations between safinamide and PDQ-39 pain-related items assessed after 6-months of treatment. RESULTS The percentage of patients with no pain treatments at the end of the trials was significantly lower in the safinamide group compared to the placebo group. Safinamide 100 mg/day significantly reduced on average the individual use of pain treatments by ≈24% and significantly improved two out of three PDQ-39 pain-related items of the "Bodily discomfort" domain.Path analysis showed that the direct effect of safinamide on pain accounted for about 80% of the total effect. CONCLUSIONS These results suggest that safinamide may have a positive effect on pain, one of the most underestimated non-motor symptoms. Prospective studies are warranted to investigate this potential benefit.
Collapse
Affiliation(s)
| | - Paolo Barone
- Centre for Neurodegenerative Diseases (CEMAND), Department of Medicine and Surgery, University of Salerno, Baronissi (SA), Italy
| | - Erminio Bonizzoni
- Department of Clinical Science and Community, Section of Medical Statistics and Biometry "GA Maccacaro", University of Milan, Milan, Italy
| | | |
Collapse
|
33
|
Bulleyaconitine A preferably reduces tetrodotoxin-sensitive sodium current in uninjured dorsal root ganglion neurons of neuropathic rats probably via inhibition of protein kinase C. Pain 2017; 158:2169-2180. [DOI: 10.1097/j.pain.0000000000001018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Cardoso FC, Dekan Z, Smith JJ, Deuis JR, Vetter I, Herzig V, Alewood PF, King GF, Lewis RJ. Modulatory features of the novel spider toxin μ-TRTX-Df1a isolated from the venom of the spider Davus fasciatus. Br J Pharmacol 2017; 174:2528-2544. [PMID: 28542706 DOI: 10.1111/bph.13865] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Naturally occurring dysfunction of voltage-gated sodium (NaV ) channels results in complex disorders such as chronic pain, making these channels an attractive target for new therapies. In the pursuit of novel NaV modulators, we investigated spider venoms for new inhibitors of NaV channels. EXPERIMENTAL APPROACH We used high-throughput screens to identify a NaV modulator in venom of the spider Davus fasciatus. Further characterization of this venom peptide was undertaken using fluorescent and electrophysiological assays, molecular modelling and a rodent pain model. KEY RESULTS We identified a potent NaV inhibitor named μ-TRTX-Df1a. This 34-residue peptide fully inhibited responses mediated by NaV 1.7 endogenously expressed in SH-SY5Y cells. Df1a also inhibited voltage-gated calcium (CaV 3) currents but had no activity against the voltage-gated potassium (KV 2) channel. The modelled structure of Df1a, which contains an inhibitor cystine knot motif, is reminiscent of the NaV channel toxin ProTx-I. Electrophysiology revealed that Df1a inhibits all NaV subtypes tested (hNaV 1.1-1.7). Df1a also slowed fast inactivation of NaV 1.1, NaV 1.3 and NaV 1.5 and modified the voltage-dependence of activation and inactivation of most of the NaV subtypes. Df1a preferentially binds to the domain II voltage-sensor and has additional interactions with the voltage sensors domains III and IV, which probably explains its modulatory features. Df1a was analgesic in vivo, reversing the spontaneous pain behaviours induced by the NaV activator OD1. CONCLUSION AND IMPLICATIONS μ-TRTX-Df1a shows potential as a new molecule for the development of drugs to treat pain disorders mediated by voltage-gated ion channels.
Collapse
Affiliation(s)
- Fernanda C Cardoso
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Zoltan Dekan
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Jennifer J Smith
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Jennifer R Deuis
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.,School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.,School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Paul F Alewood
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Richard J Lewis
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
35
|
Helås T, Sagafos D, Kleggetveit I, Quiding H, Jönsson B, Segerdahl M, Zhang Z, Salter H, Schmelz M, Jørum E. Pain thresholds,supra-threshold pain and lidocaine sensitivity in patients with erythromelalgia, including the I848Tmutation in NaV1.7. Eur J Pain 2017; 21:1316-1325. [DOI: 10.1002/ejp.1030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2017] [Indexed: 11/09/2022]
Affiliation(s)
- T. Helås
- Section of Clinical Neurophysiology, Department of Neurology; Oslo University Hospital - Rikshospitalet; Norway
| | - D. Sagafos
- Section of Clinical Neurophysiology, Department of Neurology; Oslo University Hospital - Rikshospitalet; Norway
| | - I.P. Kleggetveit
- Section of Clinical Neurophysiology, Department of Neurology; Oslo University Hospital - Rikshospitalet; Norway
| | | | | | | | - Z. Zhang
- Astra-Zeneca R&D; Södertälje Sweden
| | - H. Salter
- Astra-Zeneca R&D; Södertälje Sweden
- Department of Clinical Neuroscience; Karolinska Institutet; Solna Sweden
| | - M. Schmelz
- Department of Anesthesiology Mannheim; Heidelberg University; Germany
| | - E. Jørum
- Section of Clinical Neurophysiology, Department of Neurology; Oslo University Hospital - Rikshospitalet; Norway
- Faculty of Medicine, Institute of Clinical Medicine; University of Oslo; Norway
| |
Collapse
|
36
|
Kandil E, Melikman E, Adinoff B. Lidocaine Infusion: A Promising Therapeutic Approach for Chronic Pain. ACTA ACUST UNITED AC 2017; 8. [PMID: 28239510 PMCID: PMC5323245 DOI: 10.4172/2155-6148.1000697] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Opioid abuse is a national epidemic in the United States, where it is estimated that a prescription drug overdose death occurs every 19 minutes. While opioids are highly effective in acute and subacute pain control, their use for treatment of chronic pain is controversial. Chronic opioids use is associated with tolerance, dependency, hyperalgesia. Although there are new strategies and practice guidelines to reduce opioid dependence and opioid prescription drug overdose, there has been little focus on development of opioid-sparing therapeutic approaches. Lidocaine infusion has been shown to be successful in controlling pain where other agents have failed. The opioid sparing properties of lidocaine infusion added to its analgesic and antihyperalgesic properties make lidocaine infusion a viable option for pain control in opioid dependent patients. In this review, we provide an overview of the opioid abuse epidemic, and we outline current evidence supporting the potential use of lidocaine infusion as an adjuvant therapeutic approach for management of chronic pain.
Collapse
Affiliation(s)
- Enas Kandil
- Department of Anesthesiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Emily Melikman
- Department of Anesthesiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Bryon Adinoff
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
37
|
Rogers M, Zidar N, Kikelj D, Kirby RW. Characterization of Endogenous Sodium Channels in the ND7-23 Neuroblastoma Cell Line: Implications for Use as a Heterologous Ion Channel Expression System Suitable for Automated Patch Clamp Screening. Assay Drug Dev Technol 2016; 14:109-30. [PMID: 26991361 PMCID: PMC4800267 DOI: 10.1089/adt.2016.704] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The rodent neuroblastoma cell line, ND7-23, is used to express voltage-dependent sodium (Nav) and other neuronal ion channels resistant to heterologous expression in Chinese hamster ovary (CHO) or human embryonic kidney (HEK) cells. Their advantage is that they provide endogenous factors and signaling pathways to promote ion channel peptide folding, expression, and function at the cell surface and are also amenable to automated patch clamping. However, ND7-23 cells exhibit endogenous tetrodotoxin (TTX)-sensitive Nav currents, and molecular profiling has revealed the presence of Nav1.2, Nav1.3, Nav1.6, and Nav1.7 transcripts, but no study has determined which subtypes contribute to functional channels at the cell surface. We profiled the repertoire of functional Nav channels endogenously expressed in ND7-23 cells using the QPatch automated patch clamp platform and selective toxins and small molecules. The potency and subtype selectivity of the ligands (Icagen compound 68 from patent US-20060025415-A1-20060202, 4,9 anhydro TTX, and Protoxin-II) were established in human Nav1.3, Nav1.6, and Nav1.7 channel cell lines before application of selective concentrations to ND7-23 cells. Our data confirm previous studies that >97% of macroscopic Nav current in ND7-23 cells is carried by TTX-sensitive channels (300 nM TTX) and that Nav1.7 is the predominant channel contributing to this response (65% of peak inward current), followed by Nav1.6 (∼20%) and negligible Nav1.3 currents (∼2%). In addition, our data are the first to assess the Nav1.6 potency (50% inhibitory concentration [IC50] of 33 nM) and selectivity (50-fold over Nav1.7) of 4,9 anhydro TTX in human Nav channels expressed in mammalian cells, confirming previous studies of rodent Nav channels expressed in oocytes and HEK cells.
Collapse
Affiliation(s)
- Marc Rogers
- 1 Xention Limited , Cambridge, United Kingdom
| | - Nace Zidar
- 2 Faculty of Pharmacy, University of Ljubljana , Ljubljana, Slovenia
| | - Danijel Kikelj
- 2 Faculty of Pharmacy, University of Ljubljana , Ljubljana, Slovenia
| | | |
Collapse
|
38
|
Masocha W. Gene expression profile of sodium channel subunits in the anterior cingulate cortex during experimental paclitaxel-induced neuropathic pain in mice. PeerJ 2016; 4:e2702. [PMID: 27896032 PMCID: PMC5119229 DOI: 10.7717/peerj.2702] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 10/19/2016] [Indexed: 12/19/2022] Open
Abstract
Paclitaxel, a chemotherapeutic agent, causes neuropathic pain whose supraspinal pathophysiology is not fully understood. Dysregulation of sodium channel expression, studied mainly in the periphery and spinal cord level, contributes to the pathogenesis of neuropathic pain. We examined gene expression of sodium channel (Nav) subunits by real time polymerase chain reaction (PCR) in the anterior cingulate cortex (ACC) at day 7 post first administration of paclitaxel, when mice had developed paclitaxel-induced thermal hyperalgesia. The ACC was chosen because increased activity in the ACC has been observed during neuropathic pain. In the ACC of vehicle-treated animals the threshold cycle (Ct) values for Nav1.4, Nav1.5, Nav1.7, Nav1.8 and Nav1.9 were above 30 and/or not detectable in some samples. Thus, comparison in mRNA expression between untreated control, vehicle-treated and paclitaxel treated animals was done for Nav1.1, Nav1.2, Nav1.3, Nav1.6, Nax as well as Navβ1–Navβ4. There were no differences in the transcript levels of Nav1.1–Nav1.3, Nav1.6, Nax, Navβ1–Navβ3 between untreated and vehicle-treated mice, however, vehicle treatment increased Navβ4 expression. Paclitaxel treatment significantly increased the mRNA expression of Nav1.1, Nav1.2, Nav1.6 and Nax, but not Nav1.3, sodium channel alpha subunits compared to vehicle-treated animals. Treatment with paclitaxel significantly increased the expression of Navβ1 and Navβ3, but not Navβ2 and Navβ4, sodium channel beta subunits compared to vehicle-treated animals. These findings suggest that during paclitaxel-induced neuropathic pain (PINP) there is differential upregulation of sodium channels in the ACC, which might contribute to the increased neuronal activity observed in the area during neuropathic pain.
Collapse
Affiliation(s)
- Willias Masocha
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University , Safat , Kuwait
| |
Collapse
|
39
|
Affiliation(s)
- Kiran Beneng
- Consultant Oral Surgeon, Department of Oral Surgery, Guy's and St Thomas' Trust, Tooley Street, London SE1 9RT, UK
| | - Tara Renton
- Professor of Oral Surgery, King's College London Dental Institute, King's College Hospital London, Bessemer Road, London SE5 9RS, UK
| |
Collapse
|
40
|
Tanaka KI, Sekino S, Ikegami M, Ikeda H, Kamei J. Antihyperalgesic effects of ProTx-II, a Nav1.7 antagonist, and A803467, a Nav1.8 antagonist, in diabetic mice. J Exp Pharmacol 2015; 7:11-6. [PMID: 27186141 PMCID: PMC4863530 DOI: 10.2147/jep.s79973] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The present study investigated the effects of intrathecal administration of ProTx-II (tarantula venom peptide) and A803467 (5-[4-chloro-phenyl]-furan-2-carboxylic acid [3,5-dimethoxy-phenyl]-amide), selective Nav1.7 and Nav1.8 antagonists, respectively, on thermal hyperalgesia in a painful diabetic neuropathy model of mice. Intrathecal administration of ProTx-II at doses from 0.04 to 4 ng to diabetic mice dose-dependently and significantly increased the tail-flick latency. Intrathecal administration of A803467 at doses from 10 to 100 ng to diabetic mice also dose-dependently and significantly increased the tail-flick latency. However, intrathecal administration of either ProTx-II (4 ng) or A803467 (100 ng) had no effect on the tail-flick latency in nondiabetic mice. The expression of either the Nav1.7 or Nav1.8 sodium channel protein in the dorsal root ganglion in diabetic mice was not different from that in nondiabetic mice. The present results suggest that ProTx-II and A803467, highly selective blockers of Nav1.7 and Nav1.8 sodium channels, respectively, in the spinal cord, can have antihyperalgesic effects in diabetic mice.
Collapse
Affiliation(s)
- Ken-Ichiro Tanaka
- Department of Pathophysiology and Therapeutics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo, Japan; Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Shota Sekino
- Department of Pathophysiology and Therapeutics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
| | - Megumi Ikegami
- Department of Pathophysiology and Therapeutics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
| | - Hiroko Ikeda
- Department of Pathophysiology and Therapeutics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
| | - Junzo Kamei
- Department of Pathophysiology and Therapeutics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
| |
Collapse
|
41
|
Cardoso FC, Dekan Z, Rosengren KJ, Erickson A, Vetter I, Deuis JR, Herzig V, Alewood PF, King GF, Lewis RJ. Identification and Characterization of ProTx-III [μ-TRTX-Tp1a], a New Voltage-Gated Sodium Channel Inhibitor from Venom of the Tarantula Thrixopelma pruriens. Mol Pharmacol 2015; 88:291-303. [PMID: 25979003 DOI: 10.1124/mol.115.098178] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/15/2015] [Indexed: 01/26/2023] Open
Abstract
Spider venoms are a rich source of ion channel modulators with therapeutic potential. Given the analgesic potential of subtype-selective inhibitors of voltage-gated sodium (NaV) channels, we screened spider venoms for inhibitors of human NaV1.7 (hNaV1.7) using a high-throughput fluorescent assay. Here, we describe the discovery of a novel NaV1.7 inhibitor, μ-TRTX-Tp1a (Tp1a), isolated from the venom of the Peruvian green-velvet tarantula Thrixopelma pruriens. Recombinant and synthetic forms of this 33-residue peptide preferentially inhibited hNaV1.7 > hNaV1.6 > hNaV1.2 > hNaV1.1 > hNaV1.3 channels in fluorescent assays. NaV1.7 inhibition was diminished (IC50 11.5 nM) and the association rate decreased for the C-terminal acid form of Tp1a compared with the native amidated form (IC50 2.1 nM), suggesting that the peptide C terminus contributes to its interaction with hNaV1.7. Tp1a had no effect on human voltage-gated calcium channels or nicotinic acetylcholine receptors at 5 μM. Unlike most spider toxins that modulate NaV channels, Tp1a inhibited hNaV1.7 without significantly altering the voltage dependence of activation or inactivation. Tp1a proved to be analgesic by reversing spontaneous pain induced in mice by intraplantar injection in OD1, a scorpion toxin that potentiates hNaV1.7. The structure of Tp1a as determined using NMR spectroscopy revealed a classic inhibitor cystine knot (ICK) motif. The molecular surface of Tp1a presents a hydrophobic patch surrounded by positively charged residues, with subtle differences from other ICK spider toxins that might contribute to its different pharmacological profile. Tp1a may help guide the development of more selective and potent hNaV1.7 inhibitors for treatment of chronic pain.
Collapse
Affiliation(s)
- Fernanda C Cardoso
- Institute for Molecular Bioscience (F.C.C., Z.D., I.V., J.R.D., V.H., P.F.A., G.F.K., R.J.L.), School of Biomedical Sciences (K.J.R.), and School of Chemistry and Molecular Biosciences (A.E.), The University of Queensland, Brisbane, Queensland, Australia
| | - Zoltan Dekan
- Institute for Molecular Bioscience (F.C.C., Z.D., I.V., J.R.D., V.H., P.F.A., G.F.K., R.J.L.), School of Biomedical Sciences (K.J.R.), and School of Chemistry and Molecular Biosciences (A.E.), The University of Queensland, Brisbane, Queensland, Australia
| | - K Johan Rosengren
- Institute for Molecular Bioscience (F.C.C., Z.D., I.V., J.R.D., V.H., P.F.A., G.F.K., R.J.L.), School of Biomedical Sciences (K.J.R.), and School of Chemistry and Molecular Biosciences (A.E.), The University of Queensland, Brisbane, Queensland, Australia
| | - Andelain Erickson
- Institute for Molecular Bioscience (F.C.C., Z.D., I.V., J.R.D., V.H., P.F.A., G.F.K., R.J.L.), School of Biomedical Sciences (K.J.R.), and School of Chemistry and Molecular Biosciences (A.E.), The University of Queensland, Brisbane, Queensland, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience (F.C.C., Z.D., I.V., J.R.D., V.H., P.F.A., G.F.K., R.J.L.), School of Biomedical Sciences (K.J.R.), and School of Chemistry and Molecular Biosciences (A.E.), The University of Queensland, Brisbane, Queensland, Australia
| | - Jennifer R Deuis
- Institute for Molecular Bioscience (F.C.C., Z.D., I.V., J.R.D., V.H., P.F.A., G.F.K., R.J.L.), School of Biomedical Sciences (K.J.R.), and School of Chemistry and Molecular Biosciences (A.E.), The University of Queensland, Brisbane, Queensland, Australia
| | - Volker Herzig
- Institute for Molecular Bioscience (F.C.C., Z.D., I.V., J.R.D., V.H., P.F.A., G.F.K., R.J.L.), School of Biomedical Sciences (K.J.R.), and School of Chemistry and Molecular Biosciences (A.E.), The University of Queensland, Brisbane, Queensland, Australia
| | - Paul F Alewood
- Institute for Molecular Bioscience (F.C.C., Z.D., I.V., J.R.D., V.H., P.F.A., G.F.K., R.J.L.), School of Biomedical Sciences (K.J.R.), and School of Chemistry and Molecular Biosciences (A.E.), The University of Queensland, Brisbane, Queensland, Australia
| | - Glenn F King
- Institute for Molecular Bioscience (F.C.C., Z.D., I.V., J.R.D., V.H., P.F.A., G.F.K., R.J.L.), School of Biomedical Sciences (K.J.R.), and School of Chemistry and Molecular Biosciences (A.E.), The University of Queensland, Brisbane, Queensland, Australia
| | - Richard J Lewis
- Institute for Molecular Bioscience (F.C.C., Z.D., I.V., J.R.D., V.H., P.F.A., G.F.K., R.J.L.), School of Biomedical Sciences (K.J.R.), and School of Chemistry and Molecular Biosciences (A.E.), The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
42
|
Korkosh VS, Zhorov BS, Tikhonov DB. Folding similarity of the outer pore region in prokaryotic and eukaryotic sodium channels revealed by docking of conotoxins GIIIA, PIIIA, and KIIIA in a NavAb-based model of Nav1.4. ACTA ACUST UNITED AC 2015; 144:231-44. [PMID: 25156117 PMCID: PMC4144674 DOI: 10.1085/jgp.201411226] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Analyses of toxin binding to a homology model of Nav1.4 indicate similar folding of the outer pore region in eukaryotic and prokaryotic sodium channels. Voltage-gated sodium channels are targets for many drugs and toxins. However, the rational design of medically relevant channel modulators is hampered by the lack of x-ray structures of eukaryotic channels. Here, we used a homology model based on the x-ray structure of the NavAb prokaryotic sodium channel together with published experimental data to analyze interactions of the μ-conotoxins GIIIA, PIIIA, and KIIIA with the Nav1.4 eukaryotic channel. Using Monte Carlo energy minimizations and published experimentally defined pairwise contacts as distance constraints, we developed a model in which specific contacts between GIIIA and Nav1.4 were readily reproduced without deformation of the channel or toxin backbones. Computed energies of specific interactions between individual residues of GIIIA and the channel correlated with experimental estimates. The predicted complexes of PIIIA and KIIIA with Nav1.4 are consistent with a large body of experimental data. In particular, a model of Nav1.4 interactions with KIIIA and tetrodotoxin (TTX) indicated that TTX can pass between Nav1.4 and channel-bound KIIIA to reach its binding site at the selectivity filter. Our models also allowed us to explain experimental data that currently lack structural interpretations. For instance, consistent with the incomplete block observed with KIIIA and some GIIIA and PIIIA mutants, our computations predict an uninterrupted pathway for sodium ions between the extracellular space and the selectivity filter if at least one of the four outer carboxylates is not bound to the toxin. We found a good correlation between computational and experimental data on complete and incomplete channel block by native and mutant toxins. Thus, our study suggests similar folding of the outer pore region in eukaryotic and prokaryotic sodium channels.
Collapse
Affiliation(s)
- Viacheslav S Korkosh
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia
| | - Boris S Zhorov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S4L8, Canada
| | - Denis B Tikhonov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia
| |
Collapse
|
43
|
Synergetic action of domain II and IV underlies persistent current generation in Nav1.3 as revealed by a tarantula toxin. Sci Rep 2015; 5:9241. [PMID: 25784299 PMCID: PMC4363837 DOI: 10.1038/srep09241] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 02/18/2015] [Indexed: 12/19/2022] Open
Abstract
The persistent current (INaP) through voltage-gated sodium channels enhances neuronal excitability by causing prolonged depolarization of membranes. Nav1.3 intrinsically generates a small INaP, although the mechanism underlying its generation remains unclear. In this study, the involvement of the four domains of Nav1.3 in INaP generation was investigated using the tarantula toxin α-hexatoxin-MrVII (RTX-VII). RTX-VII activated Nav1.3 and induced a large INaP. A pre-activated state binding model was proposed to explain the kinetics of toxin-channel interaction. Of the four domains of Nav1.3, both domain II and IV might play important roles in the toxin-induced INaP. Domain IV constructed the binding site for RTX-VII, while domain II might not participate in interacting with RTX-VII but could determine the efficacy of RTX-VII. Our results based on the use of RTX-VII as a probe suggest that domain II and IV cooperatively contribute to the generation of INaP in Nav1.3.
Collapse
|
44
|
An Introduction to Pain Pathways and Pain “Targets”. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:1-30. [DOI: 10.1016/bs.pmbts.2015.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
45
|
|
46
|
Persistent modification of Nav1.9 following chronic exposure to insecticides and pyridostigmine bromide. Toxicol Appl Pharmacol 2014; 277:298-309. [DOI: 10.1016/j.taap.2014.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/14/2014] [Accepted: 04/03/2014] [Indexed: 12/21/2022]
|
47
|
Suppressive effects of D-glucosamine on the 5-HT sensitive nociceptive units in the rat tooth pulpal nerve. BIOMED RESEARCH INTERNATIONAL 2014; 2014:187989. [PMID: 24818130 PMCID: PMC4004231 DOI: 10.1155/2014/187989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 03/13/2014] [Indexed: 11/17/2022]
Abstract
It is well known that D-glucosamine hydrochloride (DGL) has a variety of biological activities and is regarded as a nutritional supplement effective in improving various disorders, including osteoarthritis and atherosclerosis. Although it has been reported that DGL has a significant pain relief effect in treating osteoarthritis, little is known about the characteristics of the effects of this compound on dental pain. The present study was undertaken to evaluate the applicability of DGL as a medicament to control pulpalgia. Using an in vitro rat mandible-inferior alveolar nerve preparation (jaw-nerve preparation), we evaluated the effects of DGL on 5-hydroxytryptamine (5-HT) sensitive nociceptive responses in the tooth pulpal nerve. 5-HT-induced nociceptive responses were fairly suppressed by direct application of DGL, suggesting that DGL have a pain relief effect on patients with dental pain.
Collapse
|
48
|
Nakahashi Y, Kamiya Y, Funakoshi K, Miyazaki T, Uchimoto K, Tojo K, Ogawa K, Fukuoka T, Goto T. Role of nerve growth factor-tyrosine kinase receptor A signaling in paclitaxel-induced peripheral neuropathy in rats. Biochem Biophys Res Commun 2014; 444:415-9. [PMID: 24480438 DOI: 10.1016/j.bbrc.2014.01.082] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 01/20/2014] [Indexed: 12/25/2022]
Abstract
The mechanisms underlying paclitaxel-induced peripheral neuropathy remain unknown. Nerve growth factor (NGF) is a representative neurotrophic factor that maintains neuronal function, promotes survival, and mediates neuropathic pain. We investigated expression levels of NGF and its receptors in the dorsal root ganglia (DRG) and spinal dorsal horn (DH) following paclitaxel treatment. Intraperitoneal (I.P.) administration of paclitaxel induced significant mechanical hypersensitivity and cold allodynia in rats, significantly increased the expression of NGF and its receptor tyrosine kinase receptor A (trkA) in the DRG, and increased NGF expression in the DH. In contrast, paclitaxel treatment did not alter the mRNA levels of NGF or its receptors in the DRG, DH, sciatic nerve, or hindpaw skin. Moreover, expression of NEDD4-2, a negative regulator of trkA, was significantly increased in the DRG of paclitaxel-treated rats. Intrathecal (I.T.) administration of the tyrosine kinase receptor inhibitor k252a significantly alleviated mechanical hypersensitivity in paclitaxel-treated rats. Our results suggest that NGF-trkA signaling is involved in mechanical allodynia in paclitaxel-induced neuropathy.
Collapse
Affiliation(s)
- Yusuke Nakahashi
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University, Graduate School of Medicine, Yokohama 236-0004, Japan.
| | - Yoshinori Kamiya
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University, Graduate School of Medicine, Yokohama 236-0004, Japan; Department of Anesthesiology, Niigata University Hospital, Niigata 951-8320, Japan; Department of Neuroanatomy, Yokohama City University, Graduate School of Medicine, Yokohama 236-0004, Japan.
| | - Kengo Funakoshi
- Department of Neuroanatomy, Yokohama City University, Graduate School of Medicine, Yokohama 236-0004, Japan.
| | - Tomoyuki Miyazaki
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University, Graduate School of Medicine, Yokohama 236-0004, Japan; Department of Physiology, Yokohama City University, Graduate School of Medicine, Yokohama 236-0004, Japan.
| | - Kazuhiro Uchimoto
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University, Graduate School of Medicine, Yokohama 236-0004, Japan.
| | - Kentaro Tojo
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University, Graduate School of Medicine, Yokohama 236-0004, Japan.
| | - Kenichi Ogawa
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University, Graduate School of Medicine, Yokohama 236-0004, Japan; Department of Palliative Care Medicine, Yokohama City University Hospital, Yokohama 236-0004, Japan.
| | - Tetsuo Fukuoka
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Nishinomiya 663-8501, Japan.
| | - Takahisa Goto
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University, Graduate School of Medicine, Yokohama 236-0004, Japan.
| |
Collapse
|
49
|
Hirofuji S, Yokota A, Ohno K, Kinoshita M, Neo M. Role of sodium channels in recovery of sciatic nerve-stretch injury in rats. Muscle Nerve 2014; 50:425-30. [PMID: 24399767 DOI: 10.1002/mus.24172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 12/26/2013] [Accepted: 01/06/2014] [Indexed: 11/09/2022]
Abstract
INTRODUCTION To elucidate the mechanism of functional recovery after gradual nerve-stretch injury, we used rats in which the femur length was increased by 15 mm at 1.5 mm/day. METHODS We performed electrophysiology, mRNA analysis of tetrodotoxin-resistant voltage-gated sodium channels (TTX-R VGSCs) in dorsal root ganglia, and histology of unmyelinated sciatic nerve fibers and examined pain thresholds at 1, 10, 20, and 30 days after cessation of lengthening. RESULTS Electrophysiology revealed conduction block after cessation that recovered after 30 days. TTX-R VGSC levels decreased immediately after cessation but were restored after 10 (Nav1.9) or 20 (Nav1.8) days. Histology revealed that injured unmyelinated nerve fibers regenerate 30 days after cessation. Pain threshold decreased gradually during lengthening but had not recovered to the control group level after 30 days. CONCLUSIONS Early restoration of TTX-R VGSC mRNA in dorsal root ganglia preceded functional recovery of stretched nerves before regeneration of injured unmyelinated nerve fibers.
Collapse
Affiliation(s)
- Shinji Hirofuji
- Department of Orthopedic Surgery, Osaka Medical College, 2-7, Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
| | | | | | | | | |
Collapse
|
50
|
Hoehne A, Behera D, Parsons WH, James ML, Shen B, Borgohain P, Bodapati D, Prabhakar A, Gambhir SS, Yeomans DC, Biswal S, Chin FT, Bois JD. A 18F-Labeled Saxitoxin Derivative for in Vivo PET-MR Imaging of Voltage-Gated Sodium Channel Expression Following Nerve Injury. J Am Chem Soc 2013; 135:18012-5. [DOI: 10.1021/ja408300e] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Aileen Hoehne
- Department of Radiology, ‡Department of Chemistry, and §Department of
Anesthesia, Stanford University, Stanford, California 94305, United States
| | - Deepak Behera
- Department of Radiology, ‡Department of Chemistry, and §Department of
Anesthesia, Stanford University, Stanford, California 94305, United States
| | - William H. Parsons
- Department of Radiology, ‡Department of Chemistry, and §Department of
Anesthesia, Stanford University, Stanford, California 94305, United States
| | - Michelle L. James
- Department of Radiology, ‡Department of Chemistry, and §Department of
Anesthesia, Stanford University, Stanford, California 94305, United States
| | - Bin Shen
- Department of Radiology, ‡Department of Chemistry, and §Department of
Anesthesia, Stanford University, Stanford, California 94305, United States
| | - Preeti Borgohain
- Department of Radiology, ‡Department of Chemistry, and §Department of
Anesthesia, Stanford University, Stanford, California 94305, United States
| | - Deepika Bodapati
- Department of Radiology, ‡Department of Chemistry, and §Department of
Anesthesia, Stanford University, Stanford, California 94305, United States
| | - Archana Prabhakar
- Department of Radiology, ‡Department of Chemistry, and §Department of
Anesthesia, Stanford University, Stanford, California 94305, United States
| | - Sanjiv S. Gambhir
- Department of Radiology, ‡Department of Chemistry, and §Department of
Anesthesia, Stanford University, Stanford, California 94305, United States
| | - David C. Yeomans
- Department of Radiology, ‡Department of Chemistry, and §Department of
Anesthesia, Stanford University, Stanford, California 94305, United States
| | - Sandip Biswal
- Department of Radiology, ‡Department of Chemistry, and §Department of
Anesthesia, Stanford University, Stanford, California 94305, United States
| | - Frederick T. Chin
- Department of Radiology, ‡Department of Chemistry, and §Department of
Anesthesia, Stanford University, Stanford, California 94305, United States
| | - J. Du Bois
- Department of Radiology, ‡Department of Chemistry, and §Department of
Anesthesia, Stanford University, Stanford, California 94305, United States
| |
Collapse
|