1
|
Liao Y, Han T, Jiang D, Zhu C, Shi G, Li G, Shi H. Functions of thyroid hormone signaling in regulating melanophore, iridophore, erythrophore, and pigment pattern formation in spotted scat (Scatophagus argus). BMC Genomics 2025; 26:79. [PMID: 39871198 PMCID: PMC11773731 DOI: 10.1186/s12864-025-11286-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/23/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Spotted scat, a marine aquaculture fish, has variable body color development stages during their ontogenesis. However, the regulatory mechanism of body color patterns formation was poorly understood. Thyroid hormones (TH) function as an important endocrine factor in regulating metamorphosis. In this study, exogenous thyroid hormones 3,5,3'-L-triiodothyronine (T3) and its inhibitor thiourea (TU) were used to treat spotted scat juveniles during the metamorphosis stage (from 60 to 90 dpf). The function and molecular mechanism of thyroid hormone signaling in regulating body color patterns formation was revealed, using the micro-observation of pigments cells distribution, colorimetric evaluation and carotenoids concentration measurement by spectrophotometry, and comparative transcriptome analysis. RESULTS Spotted scat body color patterns consisted of whole body black color, black bar, black and red spots, and its final pattern was formed through the metamorphosis. When spotted scat were treated with the inhibitor TU to disrupt thyroid hormone signaling, the levels of T3 and T4 were significantly decreased, the melanophores numbers were significantly increased, as well as the expression of genes involved in melanin synthesis and melanophore differentiation (tyr, tyrp1, dct, mitf, pmel, oca2, slc24a5, and erbb3) was significantly increased. Besides, the expression of genes associated with carotenoids and pteridine metabolism (apod, pnpla2, rdh12, stard10, xdh, abca1, retsat, scarb1, rgs2, and gch1) and carotenoids accumulation were stimulated, when thyroid hormone signaling was disrupted by TU. On the contrary, the levels of T3 and T4 were significantly elevated in spotted scat treated with T3, which could weaken the skin redness and reduce the number of black spots and melanophores, as well as the number and diameter of larval erythrophores. Notably, unlike melanophores and erythrophores, the differentiation of iridophore was promoted by thyroid hormones, gene related to iridophore differentiation (fhl2-l, fhl2, ltk, id2a, alx4) and guanine metabolism (gmps, hprt1, ppat, impdh1b) were up-regulated after T3 treatment, but they were down-regulated after TU treatment. CONCLUSIONS Above results showed that thyroid hormone signaling might play critical roles in regulation pigments synthesis and deposition, thereby affecting pigment cells (melanophores, iridophores and erythrophores) formation and body color patterns. The mechanisms of hyperthyroid and hypothyroid on different pigment cells development were different. Excess thyroid hormone might impact the rearrangement of melanophore by regulating cell cycle, resulting in the abnormalities of black spots in spotted scat. Meanwhile, the excessed thyroid hormone could reduce the number and diameter of larval erythrophores, as well as weaken the skin redness of juvenile erythrophores, but they were enhanced by the disruption of thyroid hormone. However, the formation of iridophore differentiation and guanine synthesis genes expression were stimulated by thyroid hormones. These findings provide new insights for exploring the formation of body color patterns in fish, and help to elucidate the molecular mechanism of thyroid hormone in regulating pigment cell development and body coloration, and may also contribute to selective breeding of ornamental fish.
Collapse
Affiliation(s)
- Yongguan Liao
- Guangdong Research Center On Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Tong Han
- Guangdong Research Center On Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Dongneng Jiang
- Guangdong Research Center On Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chunhua Zhu
- Guangdong Research Center On Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
- Development and Research Center for Biological Marine Resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524025, China
| | - Gang Shi
- Guangdong Research Center On Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - GuangLi Li
- Guangdong Research Center On Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Hongjuan Shi
- Guangdong Research Center On Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
2
|
Garcia-Elfring A, Roffey HL, Abergas JM, Wuyts J, Hendry AP, Tzika AC, Barrett RDH. A Ball Python Colour Morph Implicates MC1R in Melanophore-Xanthophore Distribution and Pattern Formation. Pigment Cell Melanoma Res 2025; 38:e13215. [PMID: 39609249 DOI: 10.1111/pcmr.13215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/23/2024] [Accepted: 11/10/2024] [Indexed: 11/30/2024]
Abstract
Reptiles showcase an extensive array of skin colours and patterns, yet little is known about the genetics of reptile colouration. Here, we investigate the genetic basis of the Clown colour morph found in captive-bred ball pythons (Python regius) to study skin pigmentation and patterning in snakes. We obtained samples by crowdsourcing shed skin from commercial breeders and hobbyists. We applied a case-control design, whole-genome pool sequencing, variant annotation, histological analyses, and electron microscopy imaging. We identified a missense mutation in a transmembrane region of the melanocortin-1 receptor (MC1R) associated with the Clown phenotype. In classic avian and mammalian model species, MC1R is known for controlling the type and amount of melanin produced. In contrast, our results suggest that MC1R signalling might play a key role in pattern formation in ball pythons, affecting xanthophore-melanophore distribution. This work highlights the varied functions of MC1R across different vertebrate lineages and promotes a novel model system to study reptile colouration.
Collapse
Affiliation(s)
| | | | - Jaren M Abergas
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Jurgen Wuyts
- Laboratory of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Andrew P Hendry
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Athanasia C Tzika
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
3
|
Clark B, Hickey A, Marconi A, Fischer B, Elkin J, Mateus R, Santos ME. Developmental plasticity and variability in the formation of egg-spots, a pigmentation ornament in the cichlid Astatotilapia calliptera. Evol Dev 2024; 26:e12475. [PMID: 38555511 DOI: 10.1111/ede.12475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024]
Abstract
Vertebrate pigmentation patterns are highly diverse, yet we have a limited understanding of how evolutionary changes to genetic, cellular, and developmental mechanisms generate variation. To address this, we examine the formation of a sexually-selected male ornament exhibiting inter- and intraspecific variation, the egg-spot pattern, consisting of circular yellow-orange markings on the male anal fins of haplochromine cichlid fishes. We focus on Astatotilapia calliptera, the ancestor-type species of the Malawi cichlid adaptive radiation of over 850 species. We identify a key role for iridophores in initializing egg-spot aggregations composed of iridophore-xanthophore associations. Despite adult sexual dimorphism, aggregations initially form in both males and females, with development only diverging between the sexes at later stages. Unexpectedly, we found that the timing of egg-spot initialization is plastic. The earlier individuals are socially isolated, the earlier the aggregations form, with iridophores being the cell type that responds to changes to the social environment. Furthermore, we observe apparent competitive interactions between adjacent egg-spot aggregations, which strongly suggests that egg-spot patterning results mostly from cell-autonomous cellular interactions. Together, these results demonstrate that A. calliptera egg-spot development is an exciting model for investigating pigment pattern formation at the cellular level in a system with developmental plasticity, sexual dimorphism, and intraspecific variation. As A. calliptera represents the ancestral bauplan for egg-spots, these findings provide a baseline for informed comparisons across the incredibly diverse Malawi cichlid radiation.
Collapse
Affiliation(s)
- Bethan Clark
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Aaron Hickey
- Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Bettina Fischer
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Joel Elkin
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Rita Mateus
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - M Emília Santos
- Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Maclary ET, Wauer R, Phillips B, Brown A, Boer EF, Samani AM, Shapiro MD. An allelic series at the EDNRB2 locus controls diverse piebalding patterns in the domestic pigeon. PLoS Genet 2023; 19:e1010880. [PMID: 37862332 PMCID: PMC10588866 DOI: 10.1371/journal.pgen.1010880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/25/2023] [Indexed: 10/22/2023] Open
Abstract
Variation in pigment patterns within and among vertebrate species reflects underlying changes in cell migration and function that can impact health, reproductive success, and survival. The domestic pigeon (Columba livia) is an exceptional model for understanding the genetic changes that give rise to diverse pigment patterns, as selective breeding has given rise to hundreds of breeds with extensive variation in plumage color and pattern. Here, we map the genetic architecture of a suite of pigmentation phenotypes known as piebalding. Piebalding is characterized by patches of pigmented and non-pigmented feathers, and these plumage patterns are often breed-specific and stable across generations. Using a combination of quantitative trait locus mapping in F2 laboratory crosses and genome-wide association analysis, we identify a locus associated with piebalding across many pigeon breeds. This shared locus harbors a candidate gene, EDNRB2, that is a known regulator of pigment cell migration, proliferation, and survival. We discover multiple distinct haplotypes at the EDNRB2 locus in piebald pigeons, which include a mix of protein-coding, noncoding, and structural variants that are associated with depigmentation in specific plumage regions. These results identify a role for EDNRB2 in pigment patterning in the domestic pigeon, and highlight how repeated selection at a single locus can generate a diverse array of stable and heritable pigment patterns.
Collapse
Affiliation(s)
- Emily T. Maclary
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Ryan Wauer
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Bridget Phillips
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Audrey Brown
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Elena F. Boer
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Atoosa M. Samani
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Michael D. Shapiro
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
5
|
Rice MC, Little JH, Forrister DL, Machado J, Clark NL, Gagnon JA. Gadusol is a maternally provided sunscreen that protects fish embryos from DNA damage. Curr Biol 2023; 33:3229-3237.e4. [PMID: 37369210 PMCID: PMC10528378 DOI: 10.1016/j.cub.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/05/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
Exposure to ultraviolet radiation (UVR) is harmful to living cells, leading organisms to evolve protective mechanisms against UVR-induced cellular damage and stress.1,2 UVR, particularly UVB (280-320 nm), can damage proteins and DNA, leading to errors during DNA repair and replication. Excessive UVR can induce cellular death. Aquatic organisms face risk of UV exposure as biologically harmful levels of UVB can penetrate >10 m in clear water.3 While melanin is the only known sunscreen in vertebrates, it often emerges late in embryonic development, rendering embryos of many species vulnerable during the earlier stages. Algae and microbes produce a class of sunscreening compounds known as mycosporine-like amino acids (MAAs).4 Fish eggs contain a similar compound called gadusol, whose role as a sunscreen has yet to be tested despite its discovery over 40 years ago.5 The recent finding that many vertebrate genomes contain a biosynthetic pathway for gadusol suggests that many fish may produce and use this molecule as a sunscreen.6 We generated a gadusol-deficient mutant zebrafish to investigate the role of gadusol in protecting fish embryos and larvae from UVR. Our results demonstrate that maternally provided gadusol is the primary sunscreen in embryonic and larval development, while melanin provides modest secondary protection. The gadusol biosynthetic pathway is retained in the vast majority of teleost genomes but is repeatedly lost in species whose young are no longer exposed to UVR. Our data demonstrate that gadusol is a maternally provided sunscreen that is critical for early-life survival in the most species-rich branch of the vertebrate phylogeny.
Collapse
Affiliation(s)
- Marlen C Rice
- School of Biological Sciences, 257 1400 E, University of Utah, Salt Lake City, UT 84112, USA
| | - Jordan H Little
- Department of Human Genetics, 15 N 2030 E, University of Utah, Salt Lake City, UT 84112, USA
| | - Dale L Forrister
- School of Biological Sciences, 257 1400 E, University of Utah, Salt Lake City, UT 84112, USA
| | - Julane Machado
- School of Biological Sciences, 257 1400 E, University of Utah, Salt Lake City, UT 84112, USA
| | - Nathan L Clark
- Department of Human Genetics, 15 N 2030 E, University of Utah, Salt Lake City, UT 84112, USA
| | - James A Gagnon
- School of Biological Sciences, 257 1400 E, University of Utah, Salt Lake City, UT 84112, USA; Henry Eyring Center for Cell & Genome Science, 1390 Presidents Circle, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
6
|
Brandon AA, Almeida D, Powder KE. Neural crest cells as a source of microevolutionary variation. Semin Cell Dev Biol 2023; 145:42-51. [PMID: 35718684 PMCID: PMC10482117 DOI: 10.1016/j.semcdb.2022.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 05/03/2022] [Accepted: 06/03/2022] [Indexed: 11/28/2022]
Abstract
Vertebrates have some of the most complex and diverse features in animals, from varied craniofacial morphologies to colorful pigmentation patterns and elaborate social behaviors. All of these traits have their developmental origins in a multipotent embryonic lineage of neural crest cells. This "fourth germ layer" is a vertebrate innovation and the source of a wide range of adult cell types. While others have discussed the role of neural crest cells in human disease and animal domestication, less is known about their role in contributing to adaptive changes in wild populations. Here, we review how variation in the development of neural crest cells and their derivatives generates considerable phenotypic diversity in nature. We focus on the broad span of traits under natural and sexual selection whose variation may originate in the neural crest, with emphasis on behavioral factors such as intraspecies communication that are often overlooked. In all, we encourage the integration of evolutionary ecology with developmental biology and molecular genetics to gain a more complete understanding of the role of this single cell type in trait covariation, evolutionary trajectories, and vertebrate diversity.
Collapse
Affiliation(s)
- A Allyson Brandon
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Daniela Almeida
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Kara E Powder
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
7
|
Elkin J, Martin A, Courtier-Orgogozo V, Santos ME. Analysis of the genetic loci of pigment pattern evolution in vertebrates. Biol Rev Camb Philos Soc 2023; 98:1250-1277. [PMID: 37017088 DOI: 10.1111/brv.12952] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 04/06/2023]
Abstract
Vertebrate pigmentation patterns are amongst the best characterised model systems for studying the genetic basis of adaptive evolution. The wealth of available data on the genetic basis for pigmentation evolution allows for analysis of trends and quantitative testing of evolutionary hypotheses. We employed Gephebase, a database of genetic variants associated with natural and domesticated trait variation, to examine trends in how cis-regulatory and coding mutations contribute to vertebrate pigmentation phenotypes, as well as factors that favour one mutation type over the other. We found that studies with lower ascertainment bias identified higher proportions of cis-regulatory mutations, and that cis-regulatory mutations were more common amongst animals harbouring a higher number of pigment cell classes. We classified pigmentation traits firstly according to their physiological basis and secondly according to whether they affect colour or pattern, and identified that carotenoid-based pigmentation and variation in pattern boundaries are preferentially associated with cis-regulatory change. We also classified genes according to their developmental, cellular, and molecular functions. We found a greater proportion of cis-regulatory mutations in genes implicated in upstream developmental processes compared to those involved in downstream cellular functions, and that ligands were associated with a higher proportion of cis-regulatory mutations than their respective receptors. Based on these trends, we discuss future directions for research in vertebrate pigmentation evolution.
Collapse
Affiliation(s)
- Joel Elkin
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, 800 22nd St. NW, Suite 6000, Washington, DC, 20052, USA
| | | | - M Emília Santos
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| |
Collapse
|
8
|
Maclary ET, Wauer R, Phillips B, Brown A, Boer EF, Samani AM, Shapiro MD. An allelic series at the EDNRB2 locus controls diverse piebalding patterns in the domestic pigeon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550625. [PMID: 37546953 PMCID: PMC10402103 DOI: 10.1101/2023.07.26.550625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Variation in pigment patterns within and among vertebrate species reflects underlying changes in cell migration and function that can impact health, reproductive success, and survival. The domestic pigeon (Columba livia) is an exceptional model for understanding the genetic changes that give rise to diverse pigment patterns, as selective breeding has given rise to hundreds of breeds with extensive variation in plumage color and pattern. Here, we map the genetic architecture of a suite of pigmentation phenotypes known as piebalding. Piebalding is characterized by patches of pigmented and non-pigmented feathers, and these plumage patterns are often breed-specific and stable across generations. Using a combination of quantitative trait locus mapping in F2 laboratory crosses and genome-wide association analysis, we identify a locus associated with piebalding across many pigeon breeds. This shared locus harbors a candidate gene, EDNRB2, that is a known regulator of pigment cell migration, proliferation, and survival. We discover multiple distinct haplotypes at the EDNRB2 locus in piebald pigeons, which include a mix of protein-coding, noncoding, and structural variants that are associated with depigmentation in specific plumage regions. These results identify a role for EDNRB2 in pigment patterning in the domestic pigeon, and highlight how repeated selection at a single locus can generate a diverse array of stable and heritable pigment patterns.
Collapse
Affiliation(s)
- Emily T. Maclary
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Ryan Wauer
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Bridget Phillips
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Audrey Brown
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Elena F. Boer
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Atoosa M. Samani
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Michael D. Shapiro
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
9
|
Dao UM, Lederer I, Tabor RL, Shahid B, Graves CW, Seidel HS. Stripes and loss of color in ball pythons (Python regius) are associated with variants affecting endothelin signaling. G3 (BETHESDA, MD.) 2023; 13:jkad063. [PMID: 37191439 PMCID: PMC10320763 DOI: 10.1093/g3journal/jkad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/10/2023] [Indexed: 05/17/2023]
Abstract
Color patterns in nonavian reptiles are beautifully diverse, but little is known about the genetics and development of these patterns. Here, we investigated color patterning in pet ball pythons (Python regius), which have been bred to show color phenotypes that differ dramatically from the wildtype form. We report that several color phenotypes in pet animals are associated with putative loss-of-function variants in the gene encoding endothelin receptor EDNRB1: (1) frameshift variants in EDNRB1 are associated with conversion of the normal mottled color pattern to skin that is almost fully white, (2) missense variants affecting conserved sites of the EDNRB1 protein are associated with dorsal, longitudinal stripes, and (3) substitutions at EDNRB1 splice donors are associated with subtle changes in patterning compared to wildtype. We propose that these phenotypes are caused by loss of specialized color cells (chromatophores), with loss ranging from severe (fully white) to moderate (dorsal striping) to mild (subtle changes in patterning). Our study is the first to describe variants affecting endothelin signaling in a nonavian reptile and suggests that reductions in endothelin signaling in ball pythons can produce a variety of color phenotypes, depending on the degree of color cell loss.
Collapse
Affiliation(s)
- Uyen M Dao
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Izabella Lederer
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Ray L Tabor
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Basmah Shahid
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Chiron W Graves
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Hannah S Seidel
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| |
Collapse
|
10
|
Silva P, Atukorallaya D. Characterising the Effect of Wnt/β-Catenin Signalling on Melanocyte Development and Patterning: Insights from Zebrafish ( Danio rerio). Int J Mol Sci 2023; 24:10692. [PMID: 37445870 DOI: 10.3390/ijms241310692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Zebrafish (Danio rerio) is a well-established model organism for studying melanocyte biology due to its remarkable similarity to humans. The Wnt signalling pathway is a conserved signal transduction pathway that plays a crucial role in embryonic development and regulates many aspects of the melanocyte lineage. Our study was designed to investigate the effect of Wnt signalling activity on zebrafish melanocyte development and patterning. Stereo-microscopic examinations were used to screen for changes in melanocyte count, specific phenotypic differences, and distribution in zebrafish, while microscopic software tools were used to analyse the differences in pigment dispersion of melanocytes exposed to LiCl (Wnt enhancer) and W-C59 (Wnt inhibitor). Samples exposed to W-C59 showed low melanocyte densities and defects in melanocyte phenotype and patterning, whereas LiCl exposure demonstrated a stimulatory effect on most aspects of melanocyte development. Our study demonstrates the crucial role of Wnt signalling in melanocyte lineage and emphasises the importance of a balanced Wnt signalling level for proper melanocyte development and patterning.
Collapse
Affiliation(s)
- Praneeth Silva
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Devi Atukorallaya
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| |
Collapse
|
11
|
Wu S, Zhao L, Huang J, Li Y, Liu Z, Zhang D. miR-330 targeting BCO2 is involved in carotenoid metabolism to regulate skin pigmentation in rainbow trout (Oncorhynchus mykiss). BMC Genomics 2023; 24:124. [PMID: 36927381 PMCID: PMC10021964 DOI: 10.1186/s12864-023-09173-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 02/08/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) play a critical role in regulating skin pigmentation. As a key economic trait, skin color directly affects the market value of rainbow trout (Oncorhynchus mykiss), however, the regulatory mechanism of most miRNAs in fish skin color is still unclear. RESULTS In this study, the full-length cDNA sequence of β-carotene oxygenase 2 (BCO2, a key regulator of carotenoid metabolism) from the rainbow trout was obtained using rapid-amplification of cDNA ends (RACE) technology, and qRT-PCR was used to investigate the differential expression of miR-330 and BCO2 in 14 developmental stages and 13 tissues between wild-type rainbow trout (WTrt) and yellow mutant rainbow trout (YMrt). Additionally, the function of miR-330 was verified by overexpression and silencing in vitro and in vivo. The results showed that the complete cDNA sequence of BCO2 was 2057 bp with a 1707 bp ORF, encoding a 568 amino acid protein having a molecular weight of 64.07 kD. Sequence alignment revealed that higher conservation of BCO2 protein amongst fishes than amongst other vertebrates, which was further confirmed by phylogenetic analysis. The analysis of spatial and temporal expression patterns suggested that BCO2 and miR-330 were abundantly expressed from fertilized-stage to multi-cell as well as in the dorsal and ventral skin of WTrt and YMrt, and their expression patterns were opposite in most of the same periods and tissues. In vitro, luciferase reporter assay confirmed that BCO2 was a direct target of miR-330, and transfection of miR-330 mimics into rainbow trout liver cells resulted in a decrease in the expression of BCO2; conversely, miR-330 inhibitor had the opposite effect to the miR-330 mimics. In vivo, miR-330 agomir significantly decreased BCO2 expression in dorsal skin, tail fin, and liver. Furthermore, overexpression of miR-330 could suppress cell proliferation and induce apoptosis. CONCLUSION Our results showed that miR-330 is involved in the regulation of skin pigmentation in rainbow trout by targeting BCO2 and shows its promise as a potential molecular target to assist the selection of rainbow trout with better skin color patterns.
Collapse
Affiliation(s)
- Shenji Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lu Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jinqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Yongjuan Li
- College of Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhe Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Dongqiang Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
12
|
Rogerson G, Bock S, Loera Y, Parrott B, Mulley JF. Incubation temperature alters stripe formation and head colouration in American alligator hatchlings and is unaffected by estradiol-induced sex reversal. J Exp Biol 2023; 226:jeb245219. [PMID: 36861779 PMCID: PMC10112970 DOI: 10.1242/jeb.245219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/24/2023] [Indexed: 03/03/2023]
Abstract
Considerations of the impact climate change has on reptiles are typically focused on habitat change or loss, range shifts and skewed sex ratios in species with temperature-dependent sex determination. Here, we show that incubation temperature alters stripe number and head colouration of hatchling American alligators (Alligator mississippiensis). Animals incubated at higher temperatures (33.5°C) had, on average, one more stripe than those at lower temperatures (29.5°C), and also had significantly lighter heads. These patterns were not affected by estradiol-induced sex reversal, suggesting independence from hatchling sex. Therefore, increases in nest temperatures as a result of climate change have the potential to alter pigmentation patterning, which may have implications for offspring fitness.
Collapse
Affiliation(s)
- Grace Rogerson
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK
| | - Samantha Bock
- Odum School of Ecology, University of Georgia,Athens, GA 30602, USA
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA
| | - Yeraldi Loera
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Benjamin Parrott
- Odum School of Ecology, University of Georgia,Athens, GA 30602, USA
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA
| | - John F. Mulley
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK
| |
Collapse
|
13
|
Rice MC, Little JH, Forrister DL, Machado J, Clark NL, Gagnon JA. Gadusol is a maternally provided sunscreen that protects fish embryos from DNA damage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526370. [PMID: 36778296 PMCID: PMC9915660 DOI: 10.1101/2023.01.30.526370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ultraviolet radiation (UVR) and its deleterious effects on living cells selects for UVR-protective mechanisms. Organisms across the tree of life evolved a variety of natural sunscreens to prevent UVR-induced cellular damage and stress. However, in vertebrates, only melanin is known to act as a sunscreen. Here we demonstrate that gadusol, a transparent compound discovered over 40 years ago in fish eggs, is a maternally provided sunscreen required for survival of embryonic and larval zebrafish exposed to UVR. Mutating an enzyme involved in gadusol biosynthesis increases the formation of cyclobutane pyrimidine dimers, a hallmark of UVB-induced DNA damage. Compared to the contributions of melanin and the chorion, gadusol is the primary sunscreening mechanism in embryonic and larval fish. The gadusol biosynthetic pathway is retained in the vast majority of teleost genomes but is repeatedly lost in species whose young are no longer exposed to UVR. Our data demonstrate that gadusol is a maternally provided sunscreen that is critical for early-life survival in the most species-rich branch of the vertebrate phylogeny.
Collapse
Affiliation(s)
- Marlen C. Rice
- School of Biological Sciences, University of Utah, SLC, UT 84112, USA
| | - Jordan H. Little
- Department of Human Genetics, University of Utah, SLC, UT 84112, USA
| | - Dale L. Forrister
- School of Biological Sciences, University of Utah, SLC, UT 84112, USA
| | - Julane Machado
- School of Biological Sciences, University of Utah, SLC, UT 84112, USA
| | - Nathan L. Clark
- Department of Human Genetics, University of Utah, SLC, UT 84112, USA
| | - James A. Gagnon
- School of Biological Sciences, University of Utah, SLC, UT 84112, USA
- Henry Eyring Center for Cell & Genome Science, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
14
|
Valette T, Leitwein M, Lascaux JM, Desmarais E, Berrebi P, Guinand B. Redundancy analysis, genome-wide association studies and the pigmentation of brown trout (Salmo trutta L.). JOURNAL OF FISH BIOLOGY 2023; 102:96-118. [PMID: 36218076 DOI: 10.1111/jfb.15243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The association of molecular variants with phenotypic variation is a main issue in biology, often tackled with genome-wide association studies (GWAS). GWAS are challenging, with increasing, but still limited, use in evolutionary biology. We used redundancy analysis (RDA) as a complimentary ordination approach to single- and multitrait GWAS to explore the molecular basis of pigmentation variation in brown trout (Salmo trutta) belonging to wild populations impacted by hatchery fish. Based on 75,684 single nucleotide polymorphic (SNP) markers, RDA, single- and multitrait GWAS allowed the extraction of 337 independent colour patterning loci (CPLs) associated with trout pigmentation traits, such as the number of red and black spots on flanks. Collectively, these CPLs (i) mapped onto 35 out of 40 brown trout linkage groups indicating a polygenic genomic architecture of pigmentation, (ii) were found to be associated with 218 candidate genes, including 197 genes formerly mentioned in the literature associated to skin pigmentation, skin patterning, differentiation or structure notably in a close relative, the rainbow trout (Onchorhynchus mykiss), and (iii) related to functions relevant to pigmentation variation (e.g., calcium- and ion-binding, cell adhesion). Annotated CPLs include genes with well-known pigmentation effects (e.g., PMEL, SLC45A2, SOX10), but also markers associated with genes formerly found expressed in rainbow or brown trout skins. RDA was also shown to be useful to investigate management issues, especially the dynamics of trout pigmentation submitted to several generations of hatchery introgression.
Collapse
|
15
|
Candido-Ferreira IL, Lukoseviciute M, Sauka-Spengler T. Multi-layered transcriptional control of cranial neural crest development. Semin Cell Dev Biol 2022; 138:1-14. [PMID: 35941042 DOI: 10.1016/j.semcdb.2022.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/23/2022] [Accepted: 07/23/2022] [Indexed: 11/28/2022]
Abstract
The neural crest (NC) is an emblematic population of embryonic stem-like cells with remarkable migratory ability. These distinctive attributes have inspired the curiosity of developmental biologists for over 150 years, however only recently the regulatory mechanisms controlling the complex features of the NC have started to become elucidated at genomic scales. Regulatory control of NC development is achieved through combinatorial transcription factor binding and recruitment of associated transcriptional complexes to distal cis-regulatory elements. Together, they regulate when, where and to what extent transcriptional programmes are actively deployed, ultimately shaping ontogenetic processes. Here, we discuss how transcriptional networks control NC ontogeny, with a special emphasis on the molecular mechanisms underlying specification of the cephalic NC. We also cover emerging properties of transcriptional regulation revealed in diverse developmental systems, such as the role of three-dimensional conformation of chromatin, and how they are involved in the regulation of NC ontogeny. Finally, we highlight how advances in deciphering the NC transcriptional network have afforded new insights into the molecular basis of human diseases.
Collapse
Affiliation(s)
- Ivan L Candido-Ferreira
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Martyna Lukoseviciute
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Tatjana Sauka-Spengler
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK.
| |
Collapse
|
16
|
Li Y, Hu Y, Cheng P, Chen S. Identification of Potential Blind-Side Hypermelanosis-Related lncRNA–miRNA–mRNA Regulatory Network in a Flatfish Species, Chinese Tongue Sole (Cynoglossus semilaevis). Front Genet 2022; 12:817117. [PMID: 35186018 PMCID: PMC8850641 DOI: 10.3389/fgene.2021.817117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022] Open
Abstract
Blind-side hypermelanosis has emerged as a major concern in commercial rearing environments of the flatfish aquaculture industry. To date, the underlying molecular mechanisms are not well understood. To fill this gap, in this study, whole transcriptomic sequencing and analyses were performed using normal skins and hypermelanic skins of the blind side of Chinese tongue sole (Cynoglossus semilaevis). Differentially expressed long non-coding RNAs (DElncRNAs), miRNAs (DEmiRNAs), and differentially expressed genes as well as their competing endogenous RNA (ceRNA) networks were identified. A total of 34 DElncRNAs, 226 DEmiRNAs, and 610 DEGs were identified. Finally, lncRNA–miRNA–mRNA regulatory networks (involving 29 DElncRNAs, 106 DEmiRNAs, and 162 DEGs) associated with blind-side hypermelanosis were constructed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of 162 DEGs in ceRNA networks identified DEGs (e.g., oca2, mc1r, and ihhb) in pigmentation-related biological processes and DEGs (e.g., ca4, glul, and fut9) in nitrogen metabolism, glycosphingolipid biosynthesis, and folate biosynthesis pathways, as well as their corresponding DElncRNAs and DEmiRNAs to potentially play key regulatory roles in blind-side hypermelanosis. In conclusion, this is the first study on the ceRNA regulatory network associated with blind-side hypermelanosis in flatfish. These new findings expand the spectrum of non-coding regulatory mechanisms underpinning blind-side hypermelanosis, which facilitates the further exploration of molecular regulatory mechanisms of malpigmentation in flatfish.
Collapse
Affiliation(s)
- Yangzhen Li
- Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- *Correspondence: Yangzhen Li,
| | - Yuanri Hu
- Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Peng Cheng
- Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Songlin Chen
- Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
17
|
Maclary ET, Phillips B, Wauer R, Boer EF, Bruders R, Gilvarry T, Holt C, Yandell M, Shapiro MD. Two Genomic Loci Control Three Eye Colors in the Domestic Pigeon (Columba livia). Mol Biol Evol 2021; 38:5376-5390. [PMID: 34459920 PMCID: PMC8662629 DOI: 10.1093/molbev/msab260] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The iris of the eye shows striking color variation across vertebrate species, and may play important roles in crypsis and communication. The domestic pigeon (Columba livia) has three common iris colors, orange, pearl (white), and bull (dark brown), segregating in a single species, thereby providing a unique opportunity to identify the genetic basis of iris coloration. We used comparative genomics and genetic mapping in laboratory crosses to identify two candidate genes that control variation in iris color in domestic pigeons. We identified a nonsense mutation in the solute carrier SLC2A11B that is shared among all pigeons with pearl eye color, and a locus associated with bull eye color that includes EDNRB2, a gene involved in neural crest migration and pigment development. However, bull eye is likely controlled by a heterogeneous collection of alleles across pigeon breeds. We also found that the EDNRB2 region is associated with regionalized plumage depigmentation (piebalding). Our study identifies two candidate genes for eye colors variation, and establishes a genetic link between iris and plumage color, two traits that vary widely in the evolution of birds and other vertebrates.
Collapse
Affiliation(s)
- Emily T Maclary
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Bridget Phillips
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Ryan Wauer
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Elena F Boer
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Rebecca Bruders
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Tyler Gilvarry
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Carson Holt
- Department of Human Genetics and Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT, USA
| | - Mark Yandell
- Department of Human Genetics and Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT, USA
| | - Michael D Shapiro
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
18
|
Huang D, Lewis VM, Foster TN, Toomey MB, Corbo JC, Parichy DM. Development and genetics of red coloration in the zebrafish relative Danio albolineatus. eLife 2021; 10:70253. [PMID: 34435950 PMCID: PMC8416024 DOI: 10.7554/elife.70253] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/25/2021] [Indexed: 12/11/2022] Open
Abstract
Animal pigment patterns play important roles in behavior and, in many species, red coloration serves as an honest signal of individual quality in mate choice. Among Danio fishes, some species develop erythrophores, pigment cells that contain red ketocarotenoids, whereas other species, like zebrafish (D. rerio) only have yellow xanthophores. Here, we use pearl danio (D. albolineatus) to assess the developmental origin of erythrophores and their mechanisms of differentiation. We show that erythrophores in the fin of D. albolineatus share a common progenitor with xanthophores and maintain plasticity in cell fate even after differentiation. We further identify the predominant ketocarotenoids that confer red coloration to erythrophores and use reverse genetics to pinpoint genes required for the differentiation and maintenance of these cells. Our analyses are a first step toward defining the mechanisms underlying the development of erythrophore-mediated red coloration in Danio and reveal striking parallels with the mechanism of red coloration in birds.
Collapse
Affiliation(s)
- Delai Huang
- Department of Biology, University of Virginia, Charlottesville, United States
| | - Victor M Lewis
- Department of Biology, University of Virginia, Charlottesville, United States
| | - Tarah N Foster
- Department of Biological Science, University of Tulsa, Tulsa, United States
| | - Matthew B Toomey
- Department of Biological Science, University of Tulsa, Tulsa, United States.,Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
| | - Joseph C Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
| | - David M Parichy
- Department of Biology, University of Virginia, Charlottesville, United States.,Department of Cell Biology, University of Virginia, Charlottesville, United States
| |
Collapse
|
19
|
Ikeda Y, Wada A, Hasegawa T, Yokota M, Koike M, Ikeda S. Melanocyte progenitor cells reside in human subcutaneous adipose tissue. PLoS One 2021; 16:e0256622. [PMID: 34432824 PMCID: PMC8386863 DOI: 10.1371/journal.pone.0256622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022] Open
Abstract
Based on the assumption that some progenitor cells in an organ might reside in neighboring adipose tissue, we investigated whether melanocyte progenitor cells reside in human subcutaneous adipose tissue. First, we examined the expression of human melanoma black 45 (HMB45) and microphthalmia-associated transcription factor (MITF) in undifferentiated adipose-derived stem cells (ADSCs) by immunostaining, RT-PCR, and western blotting. These two markers were detected in undifferentiated ADSCs, and their expression levels were increased in differentiated ADSCs in melanocyte-specific culture medium. Other melanocytic markers (Melan A, MATP, Mel2, Mel EM, tyrosinase, KIT, and PAX3) were also detected at variable levels in undifferentiated ADSCs, and the expression of some markers was increased during differentiation into the melanocyte lineage. We further showed that ADSCs differentiated in melanocyte-specific culture medium localized in the basal layer and expressed tyrosinase and HMB45 in a 3D epidermal culture system. Melanin deposits were also induced by ultraviolet-light-B (UVB) irradiation. These results demonstrate that melanocyte progenitor cells reside in human subcutaneous adipose tissue and that these cells might have the potential to differentiate into mature melanocytes. Melanocyte and keratinocyte progenitors residing in human subcutaneous tissue can be used for the treatment of skin diseases and skin rejuvenation in the future.
Collapse
Affiliation(s)
- Yuri Ikeda
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Akino Wada
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Toshio Hasegawa
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Mutsumi Yokota
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
- Advanced Research Institute for Health Sciences and Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Shigaku Ikeda
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
20
|
Si S, Xu X, Zhuang Y, Gao X, Zhang H, Zou Z, Luo SJ. The genetics and evolution of eye color in domestic pigeons (Columba livia). PLoS Genet 2021; 17:e1009770. [PMID: 34460822 PMCID: PMC8432899 DOI: 10.1371/journal.pgen.1009770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 09/10/2021] [Accepted: 08/10/2021] [Indexed: 11/18/2022] Open
Abstract
The eye color of birds, generally referring to the color of the iris, results from both pigmentation and structural coloration. Avian iris colors exhibit striking interspecific and intraspecific variations that correspond to unique evolutionary and ecological histories. Here, we identified the genetic basis of pearl (white) iris color in domestic pigeons (Columba livia) to explore the largely unknown genetic mechanism underlying the evolution of avian iris coloration. Using a genome-wide association study (GWAS) approach in 92 pigeons, we mapped the pearl iris trait to a 9 kb region containing the facilitative glucose transporter gene SLC2A11B. A nonsense mutation (W49X) leading to a premature stop codon in SLC2A11B was identified as the causal variant. Transcriptome analysis suggested that SLC2A11B loss of function may downregulate the xanthophore-differentiation gene CSF1R and the key pteridine biosynthesis gene GCH1, thus resulting in the pearl iris phenotype. Coalescence and phylogenetic analyses indicated that the mutation originated approximately 5,400 years ago, coinciding with the onset of pigeon domestication, while positive selection was likely associated with artificial breeding. Within Aves, potentially impaired SLC2A11B was found in six species from six distinct lineages, four of which associated with their signature brown or blue eyes and lack of pteridine. Analysis of vertebrate SLC2A11B orthologs revealed relaxed selection in the avian clade, consistent with the scenario that during and after avian divergence from the reptilian ancestor, the SLC2A11B-involved development of dermal chromatophores likely degenerated in the presence of feather coverage. Our findings provide new insight into the mechanism of avian iris color variations and the evolution of pigmentation in vertebrates.
Collapse
Affiliation(s)
- Si Si
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiao Xu
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yan Zhuang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiaodong Gao
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Honghai Zhang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Zhengting Zou
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shu-Jin Luo
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
21
|
Eom DS, Patterson LB, Bostic RR, Parichy DM. Immunoglobulin superfamily receptor Junctional adhesion molecule 3 (Jam3) requirement for melanophore survival and patterning during formation of zebrafish stripes. Dev Biol 2021; 476:314-327. [PMID: 33933422 PMCID: PMC10069301 DOI: 10.1016/j.ydbio.2021.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/03/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022]
Abstract
Adhesive interactions are essential for tissue patterning and morphogenesis yet difficult to study owing to functional redundancies across genes and gene families. A useful system in which to dissect roles for cell adhesion and adhesion-dependent signaling is the pattern formed by pigment cells in skin of adult zebrafish, in which stripes represent the arrangement of neural crest derived melanophores, cells homologous to melanocytes. In a forward genetic screen for adult pattern defects, we isolated the pissarro (psr) mutant, having a variegated phenotype of spots, as well as defects in adult fin and lens. We show that psr corresponds to junctional adhesion protein 3b (jam3b) encoding a zebrafish orthologue of the two immunoglobulin-like domain receptor JAM3 (JAM-C), known for roles in adhesion and signaling in other developing tissues, and for promoting metastatic behavior of human and murine melanoma cells. We found that zebrafish jam3b is expressed post-embryonically in a variety of cells including melanophores, and that jam3b mutants have defects in melanophore survival. Jam3b supported aggregation of cells in vitro and was required autonomously by melanophores for an adherent phenotype in vivo. Genetic analyses further indicated both overlapping and non-overlapping functions with the related receptor, Immunoglobulin superfamily 11 (Igsf11) and Kit receptor tyrosine kinase. These findings suggest a model for Jam3b function in zebrafish melanophores and hint at the complexity of adhesive interactions underlying pattern formation.
Collapse
Affiliation(s)
- Dae Seok Eom
- Department of Biology, University of Virginia, Charlottesville, VA, USA.
| | | | - Raegan R Bostic
- Department of Biology, University of Virginia, Charlottesville, VA, USA; Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - David M Parichy
- Department of Biology, University of Virginia, Charlottesville, VA, USA; Department of Cell Biology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
22
|
Guo L, Bloom J, Sykes S, Huang E, Kashif Z, Pham E, Ho K, Alcaraz A, Xiao XG, Duarte-Vogel S, Kruglyak L. Genetics of white color and iridophoroma in "Lemon Frost" leopard geckos. PLoS Genet 2021; 17:e1009580. [PMID: 34166378 PMCID: PMC8224956 DOI: 10.1371/journal.pgen.1009580] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/04/2021] [Indexed: 12/16/2022] Open
Abstract
The squamates (lizards and snakes) are close relatives of birds and mammals, with more than 10,000 described species that display extensive variation in a number of important biological traits, including coloration, venom production, and regeneration. Due to a lack of genomic tools, few genetic studies in squamates have been carried out. The leopard gecko, Eublepharis macularius, is a popular companion animal, and displays a variety of coloration patterns. We took advantage of a large breeding colony and used linkage analysis, synteny, and homozygosity mapping to investigate a spontaneous semi-dominant mutation, “Lemon Frost”, that produces white coloration and causes skin tumors (iridophoroma). We localized the mutation to a single locus which contains a strong candidate gene, SPINT1, a tumor suppressor implicated in human skin cutaneous melanoma (SKCM) and over-proliferation of epithelial cells in mice and zebrafish. Our work establishes the leopard gecko as a tractable genetic system and suggests that a tumor suppressor in melanocytes in humans can also suppress tumor development in iridophores in lizards. The squamates (lizards and snakes) comprise a diverse group of reptiles, with more than 10,000 described species that display extensive variation in a number of important biological traits, including coloration. In this manuscript, we used quantitative genetics and genomics to map the mutation underlying white coloration in the Lemon Frost morph of the common leopard gecko, Eublepharis macularius. Lemon Frost geckos have increased white body coloration with brightened yellow and orange areas. This morph also displays a high incidence of iridophoroma, a tumor of white-colored cells. We obtained phenotype information and DNA samples from geckos in a large breeding colony and used genome sequencing and genetic linkage analysis to localize the Lemon Frost mutation to a single locus. This locus contains a strong candidate gene, SPINT1, a tumor suppressor implicated in human skin cutaneous melanoma. Together with other recent advances, our work brings reptiles into the modern genetics era.
Collapse
Affiliation(s)
- Longhua Guo
- Department of Human Genetics, Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, California, United States of America
- * E-mail: (LG); (LK)
| | - Joshua Bloom
- Department of Human Genetics, Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, California, United States of America
| | - Steve Sykes
- Geckos Etc. Herpetoculture, Rocklin, California, United States of America
| | - Elaine Huang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, United States of America
| | - Zain Kashif
- Department of Human Genetics, Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, California, United States of America
| | - Elise Pham
- Department of Human Genetics, Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, California, United States of America
| | - Katarina Ho
- Department of Human Genetics, Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, California, United States of America
| | - Ana Alcaraz
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, United States of America
| | - Xinshu Grace Xiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, United States of America
| | - Sandra Duarte-Vogel
- Division of Laboratory Animal Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Leonid Kruglyak
- Department of Human Genetics, Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, California, United States of America
- * E-mail: (LG); (LK)
| |
Collapse
|
23
|
Wang C, Lu B, Li T, Liang G, Xu M, Liu X, Tao W, Zhou L, Kocher TD, Wang D. Nile Tilapia: A Model for Studying Teleost Color Patterns. J Hered 2021; 112:469-484. [PMID: 34027978 DOI: 10.1093/jhered/esab018] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/08/2021] [Indexed: 11/12/2022] Open
Abstract
The diverse color patterns of cichlid fishes play an important role in mate choice and speciation. Here we develop the Nile tilapia (Oreochromis niloticus) as a model system for studying the developmental genetics of cichlid color patterns. We identified 4 types of pigment cells: melanophores, xanthophores, iridophores and erythrophores, and characterized their first appearance in wild-type fish. We mutated 25 genes involved in melanogenesis, pteridine metabolism, and the carotenoid absorption and cleavage pathways. Among the 25 mutated genes, 13 genes had a phenotype in both the F0 and F2 generations. None of F1 heterozygotes had phenotype. By comparing the color pattern of our mutants with that of red tilapia (Oreochromis spp), a natural mutant produced during hybridization of tilapia species, we found that the pigmentation of the body and eye is controlled by different genes. Previously studied genes like mitf, kita/kitlga, pmel, tyrb, hps4, gch2, csf1ra, pax7b, and bco2b were proved to be of great significance for color patterning in tilapia. Our results suggested that tilapia, a fish with 4 types of pigment cells and a vertically barred wild-type color pattern, together with various natural and artificially induced color gene mutants, can serve as an excellent model system for study color patterning in vertebrates.
Collapse
Affiliation(s)
- Chenxu Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Baoyue Lu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Tao Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Guangyuan Liang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Mengmeng Xu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Xingyong Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Thomas D Kocher
- the Department of Biology, University of Maryland, College Park, MD
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
24
|
Galipot P, Damerval C, Jabbour F. The seven ways eukaryotes produce repeated colour motifs on external tissues. Biol Rev Camb Philos Soc 2021; 96:1676-1693. [PMID: 33955646 DOI: 10.1111/brv.12720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 02/03/2023]
Abstract
The external tissues of numerous eukaryote species show repeated colour patterns, usually characterized by units that are present at least twice on the body. These dotted, striped or more complex phenotypes carry out crucial biological functions, such as partner recognition, aposematism or camouflage. Very diverse mechanisms explaining the formation of repeated colour patterns in eukaryotes have been identified and described, and it is timely to review this field from an evolutionary and developmental biology perspective. We propose a novel classification consisting of seven families of primary mechanisms: Turing(-like), cellular automaton, multi-induction, physical cracking, random, neuromuscular and printing. In addition, we report six pattern modifiers, acting synergistically with these primary mechanisms to enhance the spectrum of repeated colour patterns. We discuss the limitations of our classification in light of currently unexplored extant diversity. As repeated colour patterns require both the production of a repetitive structure and colouration, we also discuss the nature of the links between these two processes. A more complete understanding of the formation of repeated colour patterns in eukaryotes will require (i) a deeper exploration of biological diversity, tackling the issue of pattern elaboration during the development of non-model taxa, and (ii) exploring some of the most promising ways to discover new families of mechanisms. Good starting points include evaluating the role of mechanisms known to produce non-repeated colour patterns and that of mechanisms responsible for repeated spatial patterns lacking colouration.
Collapse
Affiliation(s)
- Pierre Galipot
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP39, Paris, 75005, France.,Génétique Quantitative et Evolution-Le Moulon, Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Gif-sur-Yvette, 91190, France
| | - Catherine Damerval
- Génétique Quantitative et Evolution-Le Moulon, Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Gif-sur-Yvette, 91190, France
| | - Florian Jabbour
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP39, Paris, 75005, France
| |
Collapse
|
25
|
Vogt G. Epigenetic variation in animal populations: Sources, extent, phenotypic implications, and ecological and evolutionary relevance. J Biosci 2021. [DOI: 10.1007/s12038-021-00138-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Dlx5-augmentation in neural crest cells reveals early development and differentiation potential of mouse apical head mesenchyme. Sci Rep 2021; 11:2092. [PMID: 33483579 PMCID: PMC7822927 DOI: 10.1038/s41598-021-81434-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 01/05/2021] [Indexed: 11/08/2022] Open
Abstract
Neural crest cells (NCCs) give rise to various tissues including neurons, pigment cells, bone and cartilage in the head. Distal-less homeobox 5 (Dlx5) is involved in both jaw patterning and differentiation of NCC-derivatives. In this study, we investigated the differentiation potential of head mesenchyme by forcing Dlx5 to be expressed in mouse NCC (NCCDlx5). In NCCDlx5 mice, differentiation of dermis and pigment cells were enhanced with ectopic cartilage (ec) and heterotopic bone (hb) in different layers at the cranial vertex. The ec and hb were derived from the early migrating mesenchyme (EMM), the non-skeletogenic cell population located above skeletogenic supraorbital mesenchyme (SOM). The ec developed within Foxc1+-dura mater with increased PDGFRα signalling, and the hb formed with upregulation of BMP and WNT/β-catenin signallings in Dermo1+-dermal layer from E11.5. Since dermal cells express Runx2 and Msx2 in the control, osteogenic potential in dermal cells seemed to be inhibited by an anti-osteogenic function of Msx2 in normal context. We propose that, after the non-skeletogenic commitment, the EMM is divided into dermis and meninges by E11.5 in normal development. Two distinct responses of the EMM, chondrogenesis and osteogenesis, to Dlx5-augmentation in the NCCDlx5 strongly support this idea.
Collapse
|
27
|
Hamied A, Alnedawy Q, Correia A, Hacker C, Ramsdale M, Hashimoto H, Kudoh T. Identification and Characterization of Highly Fluorescent Pigment Cells in Embryos of the Arabian Killifish ( Aphanius Dispar). iScience 2020; 23:101674. [PMID: 33145484 PMCID: PMC7593555 DOI: 10.1016/j.isci.2020.101674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/15/2020] [Accepted: 10/09/2020] [Indexed: 11/26/2022] Open
Abstract
The Arabian killifish, Aphanius dispar, is a small tropical teleost fish living in wide range of habitats in sea water and fresh water in the Middle East. Here, we report extraordinary fluorescent pigment cells in the Arabian killifish embryo. These cells appear brown in transmitted light, yellowish white in reflected light, and as strong fluorescence in GFP and RFP filters. TEM and confocal microscopy analyses show the fluorescence emanates from leucosome-like pigment organelles. The cells express the gene encoding GTP cyclohydrolase (gch), a marker for leucophores and xanthophore. Gene knockdown and knockout of gch using morpholino or CRISPR-Cas9 induced loss of fluorescence in these embryos, indicating a crucial role of the enzyme and the associated pterine biosynthesis pathway in the generation of the fluorescence. We concluded that these cells are a highly fluorescent subtype of leucophores and have named them as fluoroleucophores. Arabian killifish embryos possess extremely fluorescent pigment cells The fluorescent pigment cells show characteristics in common with leucophores Gene knockout of GTP cyclohydrolase removes fluorescence from the pigment cells The novel pigment cells are termed fluoroleucophores
Collapse
Affiliation(s)
- Atyaf Hamied
- Biosciences, University of Exeter, Exeter, EX4 4QD, UK
| | | | - Ana Correia
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | | | - Mark Ramsdale
- Biosciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Hisashi Hashimoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Japan
| | | |
Collapse
|
28
|
Li X, Yang HW, Jiang Y, Oh JY, Jeon YJ, Ryu B. Ishophloroglucin A Isolated from Ishige okamurae Suppresses Melanogenesis Induced by α-MSH: In Vitro and In Vivo. Mar Drugs 2020; 18:E470. [PMID: 32957728 PMCID: PMC7551695 DOI: 10.3390/md18090470] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
Diphlorethohydroxycarmalol (DPHC) isolated from Ishige okamurae (IO) showed potential whitening effects against UV-B radiation. However, the components of IO as well as their molecular mechanism against α-melanocyte-stimulating hormone (α-MSH) have not yet been investigated. Thus, this study aimed to investigate the inhibitory effects of Ishophloroglucin A (IPA), a phlorotannin isolated from brown algae IO, and its crude extract (IOE), in melanogenesis in vivo in an α-MSH-induced zebrafish model and in B16F10 melanoma cells in vitro. Molecular docking studies of the phlorotannins were carried out to determine their inhibitory effects and to elucidate their mode of interaction with tyrosinase, a glycoprotein related to melanogenesis. In addition, morphological changes and melanin content decreased in the α-MSH-induced zebrafish model after IPA and IOE treatment. Furthermore, Western blotting results revealed that IPA upregulated the extracellular related protein expression in α-MSH-stimulated B16F10 cells. Hence, these results suggest that IPA isolated from IOE has a potential for use in the pharmaceutical and cosmetic industries.
Collapse
Affiliation(s)
- Xining Li
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea; (X.L.); (H.-W.Y.); (Y.J.); (J.-Y.O.)
| | - Hye-Won Yang
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea; (X.L.); (H.-W.Y.); (Y.J.); (J.-Y.O.)
| | - Yunfei Jiang
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea; (X.L.); (H.-W.Y.); (Y.J.); (J.-Y.O.)
| | - Jae-Young Oh
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea; (X.L.); (H.-W.Y.); (Y.J.); (J.-Y.O.)
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea; (X.L.); (H.-W.Y.); (Y.J.); (J.-Y.O.)
- Marine Science Institute, Jeju National University, Jeju 63333, Korea
| | - Bomi Ryu
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea; (X.L.); (H.-W.Y.); (Y.J.); (J.-Y.O.)
| |
Collapse
|
29
|
San-Jose LM, Roulin A. On the Potential Role of the Neural Crest Cells in Integrating Pigmentation Into Behavioral and Physiological Syndromes. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
30
|
Kuriyama T, Murakami A, Brandley M, Hasegawa M. Blue, Black, and Stripes: Evolution and Development of Color Production and Pattern Formation in Lizards and Snakes. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
31
|
Wu M, Chen X, Cui K, Li H, Jiang Y. Pigmentation formation and expression analysis of tyrosinase in Siniperca chuatsi. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1279-1293. [PMID: 32185567 DOI: 10.1007/s10695-020-00788-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Animal pigmentation primarily depends on the presence and mixing ratio of chromatophores, functioning in animal survival and communication. For the benthic and carnivorous Siniperca chuatsi, pigmentation pattern is key to concealment and predation. In this study, the formation, distribution, and main pattern of chromatophores were observed in the embryos, larvae, skins, and visceral tissues from S. chuatsi. Melanophores were firstly visualized in the yolk sac at segmentation stage, and then they were migrated to the whole body and further clustered into the black stripes, bands, and patches. In adult S. chuatsi, the head, black band, and body side skins mainly contained melanophores, showing as deep or light black. The abdomen skin mainly contained iridophores, showing as silvery. In the eye, the pigment layers were located in the epithelial layers of iris and retina and shown as black. Then, the pigmentation-related gene, tyrosinase gene from S. chuatsi (Sc-tyr) was analyzed by bioinformatics and quantitative methods. The Sc-tyr gene encoded a protein with 540 amino acids (Sc-TYR). The Sc-TYR contained two copper ion binding sites, which were coordinated by six conserved histidines (H182, H205, H214, H366, H370, H393) and necessary for catalytic activity. The Sc-TYR was well conserved compared with TYR of various species with higher degree of sequence similarity with other fishes (77.6-98.3%). The qRT-PCR test showed that the Sc-tyr mRNA reached the peak value at segmentation stage in the embryo development, the black skins displayed a higher expression level than that in silvery skin, and the eye had the highest expression level compared with other tissues. Further research on enzyme activity showed that the expression patterns of tyrosinase activity were similar to that of the Sc-tyr mRNA. Comparing with the results of molecular and phenotype, it was found that the temporal and spatial distributions of tyrosinase corresponded well with changes in pigmentation patterns and the intensity of skin melanization. This study initially explored the pigmentation formation and tyrosinase expression, which served as a foundation for further insight into the genetics mechanism of body color formation in S. chuatsi.
Collapse
Affiliation(s)
- Minglin Wu
- Fisheries Research Institute, Anhui Academy of Agricultural Sciences, NO.40 South Nongke Road, Luyang District, Hefei, 230031, Anhui, China
- Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, NO.40 South Nongke Road, Luyang District, Hefei, 230031, Anhui, China
| | - Xiaowu Chen
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, 201306, China
| | - Kai Cui
- Fisheries Research Institute, Anhui Academy of Agricultural Sciences, NO.40 South Nongke Road, Luyang District, Hefei, 230031, Anhui, China.
- Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, NO.40 South Nongke Road, Luyang District, Hefei, 230031, Anhui, China.
| | - Haiyang Li
- Fisheries Research Institute, Anhui Academy of Agricultural Sciences, NO.40 South Nongke Road, Luyang District, Hefei, 230031, Anhui, China
- Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, NO.40 South Nongke Road, Luyang District, Hefei, 230031, Anhui, China
| | - Yangyang Jiang
- Fisheries Research Institute, Anhui Academy of Agricultural Sciences, NO.40 South Nongke Road, Luyang District, Hefei, 230031, Anhui, China
- Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, NO.40 South Nongke Road, Luyang District, Hefei, 230031, Anhui, China
| |
Collapse
|
32
|
Owen JP, Kelsh RN, Yates CA. A quantitative modelling approach to zebrafish pigment pattern formation. eLife 2020; 9:52998. [PMID: 32716296 PMCID: PMC7384860 DOI: 10.7554/elife.52998] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 06/21/2020] [Indexed: 12/14/2022] Open
Abstract
Pattern formation is a key aspect of development. Adult zebrafish exhibit a striking striped pattern generated through the self-organisation of three different chromatophores. Numerous investigations have revealed a multitude of individual cell-cell interactions important for this self-organisation, but it has remained unclear whether these known biological rules were sufficient to explain pattern formation. To test this, we present an individual-based mathematical model incorporating all the important cell-types and known interactions. The model qualitatively and quantitatively reproduces wild type and mutant pigment pattern development. We use it to resolve a number of outstanding biological uncertainties, including the roles of domain growth and the initial iridophore stripe, and to generate hypotheses about the functions of leopard. We conclude that our rule-set is sufficient to recapitulate wild-type and mutant patterns. Our work now leads the way for further in silico exploration of the developmental and evolutionary implications of this pigment patterning system.
Collapse
Affiliation(s)
- Jennifer P Owen
- Department of Biology and Biochemistry and Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, United Kingdom
| | - Robert N Kelsh
- Department of Biology and Biochemistry and Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, United Kingdom
| | - Christian A Yates
- Department of Biology and Biochemistry and Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, United Kingdom
| |
Collapse
|
33
|
Anderson AP, Rose E, Flanagan SP, Jones AG. The Estrogen-Responsive Transcriptome of Female Secondary Sexual Traits in the Gulf Pipefish. J Hered 2020; 111:294-306. [PMID: 32124926 DOI: 10.1093/jhered/esaa008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/24/2020] [Indexed: 01/01/2023] Open
Abstract
Sexual dimorphism often results from hormonally regulated trait differences between the sexes. In sex-role-reversed vertebrates, females often have ornaments used in mating competition that are expected to be under hormonal control. Males of the sex-role-reversed Gulf pipefish (Syngnathus scovelli) develop female-typical traits when they are exposed to estrogens. We aimed to identify genes whose expression levels changed during the development and maintenance of female-specific ornaments. We performed RNA-sequencing on skin and muscle tissue in male Gulf pipefish with and without exposure to estrogen to investigate the transcriptome of the sexually dimorphic ornament of vertical iridescent bands found in females and estrogen-exposed males. We further compared differential gene expression patterns between males and females to generate a list of genes putatively involved in the female secondary sex traits of bands and body depth. A detailed analysis of estrogen-receptor binding sites demonstrates that estrogen-regulated genes tend to have nearby cis-regulatory elements. Our results identified a number of genes that differed between the sexes and confirmed that many of these were estrogen-responsive. These estrogen-regulated genes may be involved in the arrangement of chromatophores for color patterning, as well as in the growth of muscles to achieve the greater body depth typical of females in this species. In addition, anaerobic respiration and adipose tissue could be involved in the rigors of female courtship and mating competition. Overall, this study generates a number of interesting hypotheses regarding the genetic basis of a female ornament in a sex-role-reversed pipefish.
Collapse
Affiliation(s)
| | - Emily Rose
- Department of Biology, University of Tampa, Tampa, FL
| | - Sarah P Flanagan
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Adam G Jones
- Department of Biological Sciences, University of Idaho, Moscow, ID
| |
Collapse
|
34
|
Wu P, Zhang X, Zhang G, Chen F, He M, Zhang T, Wang J, Xie K, Dai G. Transcriptome for the breast muscle of Jinghai yellow chicken at early growth stages. PeerJ 2020; 8:e8950. [PMID: 32328350 PMCID: PMC7166044 DOI: 10.7717/peerj.8950] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/20/2020] [Indexed: 12/31/2022] Open
Abstract
Background The meat quality of yellow feathered broilers is better than the quality of its production. Growth traits are important in the broiler industry. The exploration of regulation mechanisms for the skeletal muscle would help to increase the growth performance of chickens. At present, some progress has been made by researchers, but the molecular mechanisms of the skeletal muscle still remain unclear and need to be improved. Methods In this study, the breast muscles of fast- and slow-growing female Jinghai yellow chickens (F4F, F8F, F4S, F8S) and slow-growing male Jinghai yellow chickens (M4S, M8S) aged four and eight weeks were selected for transcriptome sequencing (RNA-seq). All analyses of differentially expressed genes (DEGs) and functional enrichment were performed. Finally, we selected nine DEGs to verify the accuracy of the sequencing by qPCR. Results The differential gene expression analysis resulted in 364, 219 and 111 DEGs (adjusted P-value ≤ 0.05) for the three comparison groups, F8FvsF4F, F8SvsF4S, and M8SvsM4S, respectively. Three common DEGs (ADAMTS20, ARHGAP19, and Novel00254) were found, and they were all highly expressed at four weeks of age. In addition, some other genes related to growth and development, such as ANXA1, COL1A1, MYH15, TGFB3 and ACTC1, were obtained. The most common DEGs (n = 58) were found between the two comparison groups F8FvsF4F and F8SvsF4S, and they might play important roles in the growth of female chickens. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway also showed some significant enrichment pathways, for instance, extracellular matrix (ECM)-receptor interaction, focal adhesion, cell cycle, and DNA replication. The two pathways that were significantly enriched in the F8FvsF4F group were all contained in that of F8SvsF4S. The same two pathways were ECM–receptor interaction and focal adhesion, and they had great influence on the growth of chickens. However, many differences existed between male and female chickens in regards to common DEGs and KEGG pathways. The results would help to reveal the regulation mechanism of the growth and development of chickens and serve as a guideline to propose an experimental design on gene function with the DEGs and pathways.
Collapse
Affiliation(s)
- Pengfei Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xinchao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Fuxiang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Mingliang He
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Guojun Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
35
|
Rodríguez A, Mundy NI, Ibáñez R, Pröhl H. Being red, blue and green: the genetic basis of coloration differences in the strawberry poison frog (Oophaga pumilio). BMC Genomics 2020; 21:301. [PMID: 32293261 PMCID: PMC7158012 DOI: 10.1186/s12864-020-6719-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/05/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Animal coloration is usually an adaptive attribute, under strong local selection pressures and often diversified among species or populations. The strawberry poison frog (Oophaga pumilio) shows an impressive array of color morphs across its distribution in Central America. Here we quantify gene expression and genetic variation to identify candidate genes involved in generating divergence in coloration between populations of red, green and blue O. pumilio from the Bocas del Toro archipelago in Panama. RESULTS We generated a high quality non-redundant reference transcriptome by mapping the products of genome-guided and de novo transcriptome assemblies onto a re-scaffolded draft genome of O. pumilio. We then measured gene expression in individuals of the three color phenotypes and identified color-associated candidate genes by comparing differential expression results against a list of a priori gene sets for five different functional categories of coloration - pteridine synthesis, carotenoid synthesis, melanin synthesis, iridophore pathways (structural coloration), and chromatophore development. We found 68 candidate coloration loci with significant expression differences among the color phenotypes. Notable upregulated examples include pteridine synthesis genes spr, xdh and pts (in red and green frogs); carotenoid metabolism genes bco2 (in blue frogs), scarb1 (in red frogs), and guanine metabolism gene psat1 (in blue frogs). We detected significantly higher expression of the pteridine synthesis gene set in red and green frogs versus blue frogs. In addition to gene expression differences, we identified 370 outlier SNPs on 162 annotated genes showing signatures of diversifying selection, including eight pigmentation-associated genes. CONCLUSIONS Gene expression in the skin of the three populations of frogs with differing coloration is highly divergent. The strong signal of differential expression in pteridine genes is consistent with a major role of these genes in generating the coloration differences among the three morphs. However, the finding of differentially expressed genes across pathways and functional categories suggests that multiple mechanisms are responsible for the coloration differences, likely involving both pigmentary and structural coloration. In addition to regulatory differences, we found potential evidence of differential selection acting at the protein sequence level in several color-associated loci, which could contribute to the color polymorphism.
Collapse
Affiliation(s)
- Ariel Rodríguez
- Institute of Zoology, University of Veterinary Medicine of Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Nicholas I. Mundy
- Department of Zoology, University of Cambridge, Downing St, Cambridge, CB2 3EJ England
| | - Roberto Ibáñez
- Smithsonian Tropical Research Institute, Apartado Postal, 0843-03092 Panamá, República de Panamá
- Sistema Nacional de Investigación, Secretaría Nacional de Ciencia, Tecnología e Innovación, Apartado, 0816-02852 Panamá, República de Panamá
| | - Heike Pröhl
- Institute of Zoology, University of Veterinary Medicine of Hannover, Bünteweg 17, 30559 Hannover, Germany
| |
Collapse
|
36
|
Ahi EP, Lecaudey LA, Ziegelbecker A, Steiner O, Glabonjat R, Goessler W, Hois V, Wagner C, Lass A, Sefc KM. Comparative transcriptomics reveals candidate carotenoid color genes in an East African cichlid fish. BMC Genomics 2020; 21:54. [PMID: 31948394 PMCID: PMC6966818 DOI: 10.1186/s12864-020-6473-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/09/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Carotenoids contribute significantly to animal body coloration, including the spectacular color pattern diversity among fishes. Fish, as other animals, derive carotenoids from their diet. Following uptake, transport and metabolic conversion, carotenoids allocated to body coloration are deposited in the chromatophore cells of the integument. The genes involved in these processes are largely unknown. Using RNA-Sequencing, we tested for differential gene expression between carotenoid-colored and white skin regions of a cichlid fish, Tropheus duboisi "Maswa", to identify genes associated with carotenoid-based integumentary coloration. To control for positional gene expression differences that were independent of the presence/absence of carotenoid coloration, we conducted the same analyses in a closely related population, in which both body regions are white. RESULTS A larger number of genes (n = 50) showed higher expression in the yellow compared to the white skin tissue than vice versa (n = 9). Of particular interest was the elevated expression level of bco2a in the white skin samples, as the enzyme encoded by this gene catalyzes the cleavage of carotenoids into colorless derivatives. The set of genes with higher expression levels in the yellow region included genes involved in xanthophore formation (e.g., pax7 and sox10), intracellular pigment mobilization (e.g., tubb, vim, kif5b), as well as uptake (e.g., scarb1) and storage (e.g., plin6) of carotenoids, and metabolic conversion of lipids and retinoids (e.g., dgat2, pnpla2, akr1b1, dhrs). Triglyceride concentrations were similar in the yellow and white skin regions. Extracts of integumentary carotenoids contained zeaxanthin, lutein and beta-cryptoxanthin as well as unidentified carotenoid structures. CONCLUSION Our results suggest a role of carotenoid cleavage by Bco2 in fish integumentary coloration, analogous to previous findings in birds. The elevated expression of genes in carotenoid-rich skin regions with functions in retinol and lipid metabolism supports hypotheses concerning analogies and shared mechanisms between these metabolic pathways. Overlaps in the sets of differentially expressed genes (including dgat2, bscl2, faxdc2 and retsatl) between the present study and previous, comparable studies in other fish species provide useful hints to potential carotenoid color candidate genes.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010, Graz, Austria
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, SE-75 236 Uppsala, Sweden
| | - Laurène A. Lecaudey
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010, Graz, Austria
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Angelika Ziegelbecker
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010, Graz, Austria
| | - Oliver Steiner
- Institute of Chemistry, University of Graz, Universitätsplatz 1, A-8010, Graz, Austria
| | - Ronald Glabonjat
- Institute of Chemistry, University of Graz, Universitätsplatz 1, A-8010, Graz, Austria
| | - Walter Goessler
- Institute of Chemistry, University of Graz, Universitätsplatz 1, A-8010, Graz, Austria
| | - Victoria Hois
- Institute of Molecular Biosciences, University of Graz, Heinrichstraße 31/II, 8010, Graz, Austria
| | - Carina Wagner
- Institute of Molecular Biosciences, University of Graz, Heinrichstraße 31/II, 8010, Graz, Austria
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Heinrichstraße 31/II, 8010, Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Kristina M. Sefc
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010, Graz, Austria
| |
Collapse
|
37
|
Tripathy PS, Devi NC, Parhi J, Priyadarshi H, Patel AB, Pandey PK, Mandal SC. Molecular Mechanisms of Natural Carotenoid-based Pigmentation of Queen Loach, Botia dario (Hamilton, 1822) Under Captive Condition. Sci Rep 2019; 9:12585. [PMID: 31467347 PMCID: PMC6715654 DOI: 10.1038/s41598-019-48982-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/31/2019] [Indexed: 11/09/2022] Open
Abstract
The genetic basis and expression patterns of key genes are important aspects of study to understand the colouration. This trait differs between wild and domesticated fish which is a matter of research. Botia dario is an indigenous fish, having ornamental and aesthetic value, which shows faded appearance in terms of colour in domesticated condition than wild. In the present study the carotenoid-fed B. dario were examined through incorporation of marigold petal meal in the diets at the rate of 5, 10 and 15% w/w along with wild fish. The carotenoid content of tissues that is skin, muscle and intestine along with intensity of colouration increased in a dose dependant manner of carotenoid in the diet. Important carotenoid-based colouration genes that is csf1r, BCDO2, SR-B1, MLN64, STAR5, GSTA2 and PLIN2 were characterized in the fish, to find out their role in fish pigmentation. The significant difference (p < 0.05) in the expression of these genes in different tissues, when compared among carotenoid-fed domesticated and wild fish, revealed the mechanism responsible for faded colouration and also revealed the means to enhance colour in the fish.
Collapse
Affiliation(s)
- Partha Sarathi Tripathy
- College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Pin- 799210, Tripura, India
| | - Ningthoujam Chaoba Devi
- College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Pin- 799210, Tripura, India
| | - Janmejay Parhi
- College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Pin- 799210, Tripura, India
| | - Himanshu Priyadarshi
- College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Pin- 799210, Tripura, India
| | - Arun Bhai Patel
- College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Pin- 799210, Tripura, India
| | - Pramod Kumar Pandey
- College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Pin- 799210, Tripura, India
| | - Sagar Chandra Mandal
- College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Pin- 799210, Tripura, India.
| |
Collapse
|
38
|
Hendrick LA, Carter GA, Hilbrands EH, Heubel BP, Schilling TF, Le Pabic P. Bar, stripe and spot development in sand-dwelling cichlids from Lake Malawi. EvoDevo 2019; 10:18. [PMID: 31417669 PMCID: PMC6691528 DOI: 10.1186/s13227-019-0132-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/27/2019] [Indexed: 01/19/2023] Open
Abstract
Background Melanic patterns such as horizontal stripes, vertical bars and spots are common among teleost fishes and often serve roles in camouflage or mimicry. Extensive research in the zebrafish model has shown that the development of horizontal stripes depends on complex cellular interactions between melanophores, xanthophores and iridophores. Little is known about the development of horizontal stripes in other teleosts, and even less is known about bar or spot development. Here, we compare chromatophore composition and development of stripes, bars and spots in two cichlid species of sand-dwellers from Lake Malawi—Copadichromis azureus and Dimidiochromis compressiceps. Results (1) In D. compressiceps, stripes are made of dense melanophores underlaid by xanthophores and overlaid by iridophores. Melanophores and xanthophores are either loose or absent in interstripes, and iridophores are dense. In C. azureus, spots and bars are composed of a chromatophore arrangement similar to that of stripes but are separated by interbars where density of melanophores and xanthophores is only slightly lower than in stripes and iridophore density appears slightly greater. (2) Stripe, bar and spot chromatophores appear in the skin at metamorphosis. Stripe melanophores directly differentiate along horizontal myosepta into the adult pattern. In contrast, bar number and position are dynamic throughout development. As body length increases, new bars appear between old ones or by splitting of old ones through new melanophore appearance, not migration. Xanthophore and iridophore distributions follow melanophore patterns. (3) Metamorphic pigmentation arises in cichlids in a fashion similar to that described in zebrafish: melanophore progenitors derived from the medial route of neural crest migration migrate from the vicinity of the neural tube to the skin during metamorphosis. Conclusion The three pigment cell types forming stripes, bars and spots arise in the skin at metamorphosis. Stripes develop by differentiation of melanophores along horizontal myosepta, while bars do not develop along patent anatomical boundaries and increase in number in relation with body size. We propose that metamorphic melanophore differentiation and migratory arrest upon arrival to the skin lead to stripe formation, while bar formation must be supported by extensive migration of undifferentiated melanophores in the skin.
Collapse
Affiliation(s)
- Laura A Hendrick
- 1Department of Biology and Marine Biology, University of North Carolina Wilmington, 5216 Randall Drive, Wilmington, NC 28403 USA
| | - Grace A Carter
- 1Department of Biology and Marine Biology, University of North Carolina Wilmington, 5216 Randall Drive, Wilmington, NC 28403 USA
| | - Erin H Hilbrands
- 1Department of Biology and Marine Biology, University of North Carolina Wilmington, 5216 Randall Drive, Wilmington, NC 28403 USA
| | - Brian P Heubel
- 1Department of Biology and Marine Biology, University of North Carolina Wilmington, 5216 Randall Drive, Wilmington, NC 28403 USA
| | - Thomas F Schilling
- 2Department of Developmental and Cell Biology, University of California, Irvine, 4109 Natural Sciences II, Irvine, CA 92697-2300 USA
| | - Pierre Le Pabic
- 1Department of Biology and Marine Biology, University of North Carolina Wilmington, 5216 Randall Drive, Wilmington, NC 28403 USA
| |
Collapse
|
39
|
Brejcha J, Bataller JV, Bosáková Z, Geryk J, Havlíková M, Kleisner K, Maršík P, Font E. Body coloration and mechanisms of colour production in Archelosauria: the case of deirocheline turtles. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190319. [PMID: 31417734 PMCID: PMC6689573 DOI: 10.1098/rsos.190319] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/28/2019] [Indexed: 05/11/2023]
Abstract
Animal body coloration is a complex trait resulting from the interplay of multiple mechanisms. While many studies address the functions of animal coloration, the mechanisms of colour production still remain unknown in most taxa. Here we compare reflectance spectra, cellular, ultra- and nano-structure of colour-producing elements, and pigment types in two freshwater turtles with contrasting courtship behaviour, Trachemys scripta and Pseudemys concinna. The two species differ in the distribution of pigment cell-types and in pigment diversity. We found xanthophores, melanocytes, abundant iridophores and dermal collagen fibres in stripes of both species. The yellow chin and forelimb stripes of both P. concinna and T. scripta contain xanthophores and iridophores, but the post-orbital regions of the two species differ in cell-type distribution. The yellow post-orbital region of P. concinna contains both xanthophores and iridophores, while T. scripta has only xanthophores in the yellow-red postorbital/zygomatic regions. Moreover, in both species, the xanthophores colouring the yellow-red skin contain carotenoids, pterins and riboflavin, but T. scripta has a higher diversity of pigments than P. concinna. Trachemys s. elegans is sexually dichromatic. Differences in the distribution of pigment cell types across body regions in the two species may be related to visual signalling but do not match predictions based on courtship position. Our results demonstrate that archelosaurs share some colour production mechanisms with amphibians and lepidosaurs (i.e. vertical layering/stacking of different pigment cell types and interplay of carotenoids and pterins), but also employ novel mechanisms (i.e. nano-organization of dermal collagen) shared with mammals.
Collapse
Affiliation(s)
- Jindřich Brejcha
- Department of Philosophy and History of Science, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic
- Department of Zoology, Natural History Museum, National Museum, Václavské nám. 68, Prague 1, 110 00, Czech Republic
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, Prague 8, 18223, Czech Republic
| | - José Vicente Bataller
- Centro de Conservación de Especies Dulceacuícolas de la Comunidad Valenciana. VAERSA-Generalitat Valenciana, El Palmar, València, 46012, Spain
| | - Zuzana Bosáková
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2, 128 43, Czech Republic
| | - Jan Geryk
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Úvalu 84, 150 06 Prague, Czech Republic
| | - Martina Havlíková
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2, 128 43, Czech Republic
| | - Karel Kleisner
- Department of Philosophy and History of Science, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic
| | - Petr Maršík
- Department of Food Science, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00, Czech Republic
| | - Enrique Font
- Ethology Lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/ Catedrátic José Beltrán Martinez 2, Paterna, València, 46980, Spain
| |
Collapse
|
40
|
Li D, Wang X, Fu Y, Zhang C, Cao Y, Wang J, Zhang Y, Li Y, Chen Y, Li Z, Li W, Jiang R, Sun G, Tian Y, Li G, Kang X. Transcriptome Analysis of the Breast Muscle of Xichuan Black-Bone Chickens Under Tyrosine Supplementation Revealed the Mechanism of Tyrosine-Induced Melanin Deposition. Front Genet 2019; 10:457. [PMID: 31156710 PMCID: PMC6529781 DOI: 10.3389/fgene.2019.00457] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/30/2019] [Indexed: 01/18/2023] Open
Abstract
The Xichuan black-bone chicken, which is a rare local chicken species in China, is an important genetic resource of black-bone chickens. Tyrosine can affect melanin production, but the molecular mechanism underlying tyrosine-induced melanin deposition in Xichuan black-bone chickens is poorly understood. Here, the blackness degree and melanin content of the breast muscle of Xichuan black-bone chickens fed a basic diet with five levels of added tyrosine (i.e., 0.2, 0.4, 0.6, 0.8, and 1.0%; these groups were denoted test groups I-V, respectively) were assessed, and the results showed that 0.8% tyrosine was the optimal level of added tyrosine. Moreover, the effects of tyrosine supplementation on the proliferation and tyrosinase content of melanocytes in Xichuan black-bone chickens were evaluated. The results revealed a dose-dependent relationship between tyrosine supplementation and melanocyte proliferation. In addition, 417 differentially expressed genes (DEGs), including 160 upregulated genes and 257 downregulated genes, were identified in a comparative analysis of the transcriptome profiles constructed using the pooled total RNA from breast muscle tissues of the control group and test group IV, respectively (fold change ≥2.0, P < 0.05). These DEGs were mainly involved in melanogenesis, the calcium signaling pathway, the Wnt signaling pathway, the mTOR signaling pathway, and vascular smooth muscle contraction. The pathway analysis of the DEGs identified some key genes associated with pigmentation, such as DCT and EDNRB2. In summary, the melanin content of breast muscle could be markedly enhanced by adding an appropriate amount of tyrosine to the diet of Xichuan black-bone chickens, and the EDNRB2-mediated molecular regulatory network could play a key role in the biological process of tyrosine-induced melanin deposition. These results have deepened the understanding of the molecular regulatory mechanism of melanin deposition in black-bone chickens and provide a basis for the regulation of nutrition and genetic breeding associated with melanin deposition in Xichuan black-bone chickens.
Collapse
Affiliation(s)
- Donghua Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xinlei Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yawei Fu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Chenxi Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yanfang Cao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jie Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yanhua Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yuanfang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yi Chen
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Wenting Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Ruirui Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China
| | - Guirong Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China
| | - Guoxi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
41
|
Baxter LL, Watkins-Chow DE, Pavan WJ, Loftus SK. A curated gene list for expanding the horizons of pigmentation biology. Pigment Cell Melanoma Res 2019; 32:348-358. [PMID: 30339321 PMCID: PMC10413850 DOI: 10.1111/pcmr.12743] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 09/01/2018] [Accepted: 09/29/2018] [Indexed: 12/27/2022]
Abstract
Over the past century, studies of human pigmentary disorders along with mouse and zebrafish models have shed light on the many cellular functions associated with visible pigment phenotypes. This has led to numerous genes annotated with the ontology term "pigmentation" in independent human, mouse, and zebrafish databases. Comparisons among these datasets revealed that each is individually incomplete in documenting all genes involved in integument-based pigmentation phenotypes. Additionally, each database contained inherent species-specific biases in data annotation, and the term "pigmentation" did not solely reflect integument pigmentation phenotypes. This review presents a comprehensive, cross-species list of 650 genes involved in pigmentation phenotypes that was compiled with extensive manual curation of genes annotated in OMIM, MGI, ZFIN, and GO. The resulting cross-species list of genes both intrinsic and extrinsic to integument pigment cells provides a valuable tool that can be used to expand our knowledge of complex, pigmentation-associated pathways.
Collapse
Affiliation(s)
- Laura L Baxter
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Dawn E Watkins-Chow
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - William J Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Stacie K Loftus
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
42
|
Stuckert AMM, Moore E, Coyle KP, Davison I, MacManes MD, Roberts R, Summers K. Variation in pigmentation gene expression is associated with distinct aposematic color morphs in the poison frog Dendrobates auratus. BMC Evol Biol 2019; 19:85. [PMID: 30995908 PMCID: PMC6472079 DOI: 10.1186/s12862-019-1410-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/15/2019] [Indexed: 12/28/2022] Open
Abstract
Background Color and pattern phenotypes have clear implications for survival and reproduction in many species. However, the mechanisms that produce this coloration are still poorly characterized, especially at the genomic level. Here we have taken a transcriptomics-based approach to elucidate the underlying genetic mechanisms affecting color and pattern in a highly polytypic poison frog. We sequenced RNA from the skin from four different color morphs during the final stage of metamorphosis and assembled a de novo transcriptome. We then investigated differential gene expression, with an emphasis on examining candidate color genes from other taxa. Results Overall, we found differential expression of a suite of genes that control melanogenesis, melanocyte differentiation, and melanocyte proliferation (e.g., tyrp1, lef1, leo1, and mitf) as well as several differentially expressed genes involved in purine synthesis and iridophore development (e.g., arfgap1, arfgap2, airc, and gart). Conclusions Our results provide evidence that several gene networks known to affect color and pattern in vertebrates play a role in color and pattern variation in this species of poison frog. Electronic supplementary material The online version of this article (10.1186/s12862-019-1410-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adam M M Stuckert
- Department of Biology, East Carolina University, Greenville, North Carolina, USA. .,Hubbard Center for Genome Studies, University of New Hampshire, Durham, New Hampshire, USA. .,Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA.
| | - Emily Moore
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Kaitlin P Coyle
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Ian Davison
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| | - Matthew D MacManes
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, New Hampshire, USA.,Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Reade Roberts
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Kyle Summers
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
43
|
Inaba M, Jiang TX, Liang YC, Tsai S, Lai YC, Widelitz RB, Chuong CM. Instructive role of melanocytes during pigment pattern formation of the avian skin. Proc Natl Acad Sci U S A 2019; 116:6884-6890. [PMID: 30886106 PMCID: PMC6452743 DOI: 10.1073/pnas.1816107116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Animal skin pigment patterns are excellent models to study the mechanism of biological self-organization. Theoretical approaches developed mathematical models of pigment patterning and molecular genetics have brought progress; however, the responsible cellular mechanism is not fully understood. One long unsolved controversy is whether the patterning information is autonomously determined by melanocytes or nonautonomously determined from the environment. Here, we transplanted purified melanocytes and demonstrated that melanocytes could form periodic pigment patterns cell autonomously. Results of heterospecific transplantation among quail strains are consistent with this finding. Further, we observe that developing melanocytes directly connect with each other via filopodia to form a network in culture and in vivo. This melanocyte network is reminiscent of zebrafish pigment cell networks, where connexin is implicated in stripe formation via genetic studies. Indeed, we found connexin40 (cx40) present on developing melanocytes in birds. Stripe patterns can form in quail skin explant cultures. Several calcium channel modulators can enhance or suppress pigmentation globally, but a gap junction inhibitor can change stripe patterning. Most interestingly, in ovo, misexpression of dominant negative cx40 expands the black region, while overexpression of cx40 expands the yellow region. Subsequently, melanocytes instruct adjacent dermal cells to express agouti signaling protein (ASIP), the regulatory factor for pigment switching, which promotes pheomelanin production. Thus, we demonstrate Japanese quail melanocytes have an autonomous periodic patterning role during body pigment stripe formation. We also show dermal agouti stripes and how the coupling of melanocytes with dermal cells may confer stable and distinct pigment stripe patterns.
Collapse
Affiliation(s)
- Masafumi Inaba
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Ting-Xin Jiang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Ya-Chen Liang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Integrative Stem Cell Center, China Medical University Hospital, China Medical University, 40447 Taichung, Taiwan
| | - Stephanie Tsai
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089
- Graduate School of Clinical Dentistry, National Taiwan University, 100 Taipei, Taiwan
| | - Yung-Chih Lai
- Integrative Stem Cell Center, China Medical University Hospital, China Medical University, 40447 Taichung, Taiwan
| | - Randall Bruce Widelitz
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Cheng Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033;
- Integrative Stem Cell Center, China Medical University Hospital, China Medical University, 40447 Taichung, Taiwan
- Center for the Integrative and Evolutionary Galliformes Genomics, National Chung Hsing University, 40227 Taichung, Taiwan
| |
Collapse
|
44
|
Camargo-Sosa K, Colanesi S, Müller J, Schulte-Merker S, Stemple D, Patton EE, Kelsh RN. Endothelin receptor Aa regulates proliferation and differentiation of Erb-dependent pigment progenitors in zebrafish. PLoS Genet 2019; 15:e1007941. [PMID: 30811380 PMCID: PMC6392274 DOI: 10.1371/journal.pgen.1007941] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 01/07/2019] [Indexed: 11/18/2022] Open
Abstract
Skin pigment patterns are important, being under strong selection for multiple roles including camouflage and UV protection. Pigment cells underlying these patterns form from adult pigment stem cells (APSCs). In zebrafish, APSCs derive from embryonic neural crest cells, but sit dormant until activated to produce pigment cells during metamorphosis. The APSCs are set-aside in an ErbB signaling dependent manner, but the mechanism maintaining quiescence until metamorphosis remains unknown. Mutants for a pigment pattern gene, parade, exhibit ectopic pigment cells localised to the ventral trunk, but also supernumerary cells restricted to the Ventral Stripe. Contrary to expectations, these melanocytes and iridophores are discrete cells, but closely apposed. We show that parade encodes Endothelin receptor Aa, expressed in the blood vessels, most prominently in the medial blood vessels, consistent with the ventral trunk phenotype. We provide evidence that neuronal fates are not affected in parade mutants, arguing against transdifferentiation of sympathetic neurons to pigment cells. We show that inhibition of BMP signaling prevents specification of sympathetic neurons, indicating conservation of this molecular mechanism with chick and mouse. However, inhibition of sympathetic neuron differentiation does not enhance the parade phenotype. Instead, we pinpoint ventral trunk-restricted proliferation of neural crest cells as an early feature of the parade phenotype. Importantly, using a chemical genetic screen for rescue of the ectopic pigment cell phenotype of parade mutants (whilst leaving the embryonic pattern untouched), we identify ErbB inhibitors as a key hit. The time-window of sensitivity to these inhibitors mirrors precisely the window defined previously as crucial for the setting aside of APSCs in the embryo, strongly implicating adult pigment stem cells as the source of the ectopic pigment cells. We propose that a novel population of APSCs exists in association with medial blood vessels, and that their quiescence is dependent upon Endothelin-dependent factors expressed by the blood vessels.
Collapse
Affiliation(s)
- Karen Camargo-Sosa
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Claverton Down, Bath, United Kingdom
| | - Sarah Colanesi
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Claverton Down, Bath, United Kingdom
| | - Jeanette Müller
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Claverton Down, Bath, United Kingdom
| | | | - Derek Stemple
- Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - E. Elizabeth Patton
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Robert N. Kelsh
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Claverton Down, Bath, United Kingdom
| |
Collapse
|
45
|
Lim J, Nam S, Jeong JH, Kim MJ, Yang Y, Lee MS, Lee HG, Ryu JH, Lim JS. Kazinol U inhibits melanogenesis through the inhibition of tyrosinase-related proteins via AMP kinase activation. Br J Pharmacol 2019; 176:737-750. [PMID: 30579288 DOI: 10.1111/bph.14560] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Kazinol U is a prenylated flavan isolated from an extract of Broussonetia kazinoki Sieb (Moraceae). Kazinol U has shown cytoprotective effects against cytokine-induced apoptotic cell death and induces AMP kinase (AMPK) activation through LKB1 activation. However, kazinol U has not been tested as a regulator of melanogenesis, although bark extract of B. kazinoki has been used as a cosmetic ingredient for skin conditioning. EXPERIMENTAL APPROACH We cultured mouse, human melanoma cells and normal human melanocytes to demonstrate anti-melanogenic effects of kazinol U. A tyrosinase activity assay, Western blot, RT-qPCR and a luciferase reporter gene assay were performed to determine the anti-melanogenic mechanisms of kazinol U. We confirmed its effect on melanogenesis in vivo using zebrafish. KEY RESULTS Kazinol U inhibited the expression and activity of tyrosinase, the rate-limiting enzyme in melanogenesis, and reduced tyrosinase expression and activity in response to cAMP-inducing agents. Kazinol U reduced the expression of other melanogenic enzymes, such as tyrosinase-related protein (Tyrp) 1 and Tyrp2, and down-regulated microphthalmia-associated transcription factor (MITF), the master regulator of the tyrosinase gene family. Moreover, kazinol U induced phosphorylation of AMPK and MAPK proteins, which are MITF inhibitors. It also exhibited anti-melanogenic effects in zebrafish, a recently developed in vivo model. CONCLUSIONS AND IMPLICATIONS Our findings suggest that kazinol U reduces melanogenesis via its inhibitory effect on MITF and its downstream target genes, tyrosinase, Tyrp1 and Tyrp2. This work may provide a basis for the application of kazinol U for the treatment of hyperpigmentation skin disorders.
Collapse
Affiliation(s)
- Jihyun Lim
- Department of Biological Science and Cellular Heterogeneity Research Center, Sookmyung Women's University, Seoul, Republic of Korea
| | - Sorim Nam
- Department of Biological Science and Cellular Heterogeneity Research Center, Sookmyung Women's University, Seoul, Republic of Korea
| | - Ji Hye Jeong
- Research Center for Cell Fate Control and College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Min Jung Kim
- Department of Biological Science and Cellular Heterogeneity Research Center, Sookmyung Women's University, Seoul, Republic of Korea
| | - Young Yang
- Department of Biological Science and Cellular Heterogeneity Research Center, Sookmyung Women's University, Seoul, Republic of Korea
| | - Myeong-Sok Lee
- Department of Biological Science and Cellular Heterogeneity Research Center, Sookmyung Women's University, Seoul, Republic of Korea
| | - Hee Gu Lee
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jae-Ha Ryu
- Research Center for Cell Fate Control and College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Jong-Seok Lim
- Department of Biological Science and Cellular Heterogeneity Research Center, Sookmyung Women's University, Seoul, Republic of Korea
| |
Collapse
|
46
|
Petratou K, Subkhankulova T, Lister JA, Rocco A, Schwetlick H, Kelsh RN. A systems biology approach uncovers the core gene regulatory network governing iridophore fate choice from the neural crest. PLoS Genet 2018; 14:e1007402. [PMID: 30286071 PMCID: PMC6191144 DOI: 10.1371/journal.pgen.1007402] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 10/16/2018] [Accepted: 08/22/2018] [Indexed: 12/29/2022] Open
Abstract
Multipotent neural crest (NC) progenitors generate an astonishing array of derivatives, including neuronal, skeletal components and pigment cells (chromatophores), but the molecular mechanisms allowing balanced selection of each fate remain unknown. In zebrafish, melanocytes, iridophores and xanthophores, the three chromatophore lineages, are thought to share progenitors and so lend themselves to investigating the complex gene regulatory networks (GRNs) underlying fate segregation of NC progenitors. Although the core GRN governing melanocyte specification has been previously established, those guiding iridophore and xanthophore development remain elusive. Here we focus on the iridophore GRN, where mutant phenotypes identify the transcription factors Sox10, Tfec and Mitfa and the receptor tyrosine kinase, Ltk, as key players. Here we present expression data, as well as loss and gain of function results, guiding the derivation of an initial iridophore specification GRN. Moreover, we use an iterative process of mathematical modelling, supplemented with a Monte Carlo screening algorithm suited to the qualitative nature of the experimental data, to allow for rigorous predictive exploration of the GRN dynamics. Predictions were experimentally evaluated and testable hypotheses were derived to construct an improved version of the GRN, which we showed produced outputs consistent with experimentally observed gene expression dynamics. Our study reveals multiple important regulatory features, notably a sox10-dependent positive feedback loop between tfec and ltk driving iridophore specification; the molecular basis of sox10 maintenance throughout iridophore development; and the cooperation between sox10 and tfec in driving expression of pnp4a, a key differentiation gene. We also assess a candidate repressor of mitfa, a melanocyte-specific target of sox10. Surprisingly, our data challenge the reported role of Foxd3, an established mitfa repressor, in iridophore regulation. Our study builds upon our previous systems biology approach, by incorporating physiologically-relevant parameter values and rigorous evaluation of parameter values within a qualitative data framework, to establish for the first time the core GRN guiding specification of the iridophore lineage.
Collapse
Affiliation(s)
- Kleio Petratou
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, Faculty of Science, University of Bath, Bath, United Kingdom
| | - Tatiana Subkhankulova
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, Faculty of Science, University of Bath, Bath, United Kingdom
| | - James A. Lister
- Department of Human and Molecular Genetics and Massey Cancer Center, VCU School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Andrea Rocco
- Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Hartmut Schwetlick
- Department of Mathematical Sciences, Faculty of Science, University of Bath, Bath, United Kingdom
| | - Robert N. Kelsh
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, Faculty of Science, University of Bath, Bath, United Kingdom
| |
Collapse
|
47
|
Evolution of Endothelin signaling and diversification of adult pigment pattern in Danio fishes. PLoS Genet 2018; 14:e1007538. [PMID: 30226839 PMCID: PMC6161917 DOI: 10.1371/journal.pgen.1007538] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/28/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022] Open
Abstract
Fishes of the genus Danio exhibit diverse pigment patterns that serve as useful models for understanding the genes and cell behaviors underlying the evolution of adult form. Among these species, zebrafish D. rerio exhibit several dark stripes of melanophores with sparse iridophores that alternate with light interstripes of dense iridophores and xanthophores. By contrast, the closely related species D. nigrofasciatus has an attenuated pattern with fewer melanophores, stripes and interstripes. Here we demonstrate species differences in iridophore development that presage the fully formed patterns. Using genetic and transgenic approaches we identify the secreted peptide Endothelin-3 (Edn3)—a known melanogenic factor of tetrapods—as contributing to reduced iridophore proliferation and fewer stripes and interstripes in D. nigrofasciatus. We further show the locus encoding this factor is expressed at lower levels in D. nigrofasciatus owing to cis-regulatory differences between species. Finally, we show that functions of two paralogous loci encoding Edn3 have been partitioned between skin and non-skin iridophores. Our findings reveal genetic and cellular mechanisms contributing to pattern differences between these species and suggest a model for evolutionary changes in Edn3 requirements for pigment patterning and its diversification across vertebrates. Neural crest derived pigment cells generate the spectacular variation in skin pigment patterns among vertebrates. Mammals and birds have just a single skin pigment cell, the melanocyte, whereas ectothermic vertebrates have several pigment cells including melanophores, iridophores and xanthophores, that together organize into a diverse array of patterns. In the teleost zebrafish, Danio rerio, an adult pattern of stripes depends on interactions between pigment cell classes and between pigment cells and their tissue environment. The close relative D. nigrofasciatus has fewer stripes and prior analyses suggested a difference between these species that lies extrinsic to the pigment cells themselves. A candidate for mediating this difference is Endothelin-3 (Edn3), essential for melanocyte development in warm-blooded animals, and required by all three classes of pigment cells in an amphibian. We show that Edn3 specifically promotes iridophore development in Danio, and that differences in Edn3 expression contribute to differences in iridophore complements, and striping, between D. rerio and D. nigrofasciatus. Our study reveals a novel function for Edn3 and provides new insights into how changes in gene expression yield morphogenetic outcomes to effect diversification of adult form.
Collapse
|
48
|
Vickrey AI, Bruders R, Kronenberg Z, Mackey E, Bohlender RJ, Maclary ET, Maynez R, Osborne EJ, Johnson KP, Huff CD, Yandell M, Shapiro MD. Introgression of regulatory alleles and a missense coding mutation drive plumage pattern diversity in the rock pigeon. eLife 2018; 7:e34803. [PMID: 30014848 PMCID: PMC6050045 DOI: 10.7554/elife.34803] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 06/05/2018] [Indexed: 12/17/2022] Open
Abstract
Birds and other vertebrates display stunning variation in pigmentation patterning, yet the genes controlling this diversity remain largely unknown. Rock pigeons (Columba livia) are fundamentally one of four color pattern phenotypes, in decreasing order of melanism: T-check, checker, bar (ancestral), or barless. Using whole-genome scans, we identified NDP as a candidate gene for this variation. Allele-specific expression differences in NDP indicate cis-regulatory divergence between ancestral and melanistic alleles. Sequence comparisons suggest that derived alleles originated in the speckled pigeon (Columba guinea), providing a striking example of introgression. In contrast, barless rock pigeons have an increased incidence of vision defects and, like human families with hereditary blindness, carry start-codon mutations in NDP. In summary, we find that both coding and regulatory variation in the same gene drives wing pattern diversity, and post-domestication introgression supplied potentially advantageous melanistic alleles to feral populations of this ubiquitous urban bird.
Collapse
Affiliation(s)
- Anna I Vickrey
- School of Biological SciencesUniversity of UtahSalt Lake CityUnited States
| | - Rebecca Bruders
- School of Biological SciencesUniversity of UtahSalt Lake CityUnited States
| | - Zev Kronenberg
- Department of Human GeneticsUniversity of UtahSalt Lake CityUnited States
| | - Emma Mackey
- School of Biological SciencesUniversity of UtahSalt Lake CityUnited States
| | - Ryan J Bohlender
- Department of Epidemiology, MD Anderson Cancer CenterUniversity of TexasHoustonUnited States
| | - Emily T Maclary
- School of Biological SciencesUniversity of UtahSalt Lake CityUnited States
| | - Raquel Maynez
- School of Biological SciencesUniversity of UtahSalt Lake CityUnited States
| | - Edward J Osborne
- Department of Human GeneticsUniversity of UtahSalt Lake CityUnited States
| | - Kevin P Johnson
- Illinois Natural History Survey, Prairie Research InstituteUniversity of Illinois Urbana-ChampaignChampaignUnited States
| | - Chad D Huff
- Department of Epidemiology, MD Anderson Cancer CenterUniversity of TexasHoustonUnited States
| | - Mark Yandell
- Department of Human GeneticsUniversity of UtahSalt Lake CityUnited States
| | - Michael D Shapiro
- School of Biological SciencesUniversity of UtahSalt Lake CityUnited States
| |
Collapse
|
49
|
Zhang YM, Zimmer MA, Guardia T, Callahan SJ, Mondal C, Di Martino J, Takagi T, Fennell M, Garippa R, Campbell NR, Bravo-Cordero JJ, White RM. Distant Insulin Signaling Regulates Vertebrate Pigmentation through the Sheddase Bace2. Dev Cell 2018; 45:580-594.e7. [PMID: 29804876 PMCID: PMC5991976 DOI: 10.1016/j.devcel.2018.04.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 03/07/2018] [Accepted: 04/27/2018] [Indexed: 11/15/2022]
Abstract
Patterning of vertebrate melanophores is essential for mate selection and protection from UV-induced damage. Patterning can be influenced by circulating long-range factors, such as hormones, but it is unclear how their activity is controlled in recipient cells to prevent excesses in cell number and migration. The zebrafish wanderlust mutant harbors a mutation in the sheddase bace2 and exhibits hyperdendritic and hyperproliferative melanophores that localize to aberrant sites. We performed a chemical screen to identify suppressors of the wanderlust phenotype and found that inhibition of insulin/PI3Kγ/mTOR signaling rescues the defect. In normal physiology, Bace2 cleaves the insulin receptor, whereas its loss results in hyperactive insulin/PI3K/mTOR signaling. Insulin B, an isoform enriched in the head, drives the melanophore defect. These results suggest that insulin signaling is negatively regulated by melanophore-specific expression of a sheddase, highlighting how long-distance factors can be regulated in a cell-type-specific manner.
Collapse
Affiliation(s)
- Yan M Zhang
- Weill Cornell Graduate School of Medical Sciences, Cell and Developmental Biology Program, New York, NY 10065, USA; Memorial Sloan Kettering Cancer Center, Department of Cancer Biology & Genetics, New York, NY 10065, USA
| | - Milena A Zimmer
- Memorial Sloan Kettering Cancer Center, Department of Cancer Biology & Genetics, New York, NY 10065, USA
| | - Talia Guardia
- University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Scott J Callahan
- Memorial Sloan Kettering Cancer Center, Department of Cancer Biology & Genetics, New York, NY 10065, USA; Memorial Sloan Kettering Cancer Center, Gerstner Graduate School of Biomedical Sciences, New York, NY 10065, USA
| | - Chandrani Mondal
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Julie Di Martino
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Toshimitsu Takagi
- Memorial Sloan Kettering Cancer Center, Department of Cancer Biology & Genetics, New York, NY 10065, USA
| | - Myles Fennell
- Memorial Sloan Kettering Cancer Center, Department of Cancer Biology & Genetics, New York, NY 10065, USA
| | - Ralph Garippa
- Memorial Sloan Kettering Cancer Center, Department of Cancer Biology & Genetics, New York, NY 10065, USA
| | - Nathaniel R Campbell
- Memorial Sloan Kettering Cancer Center, Department of Cancer Biology & Genetics, New York, NY 10065, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
| | - Jose Javier Bravo-Cordero
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Richard M White
- Memorial Sloan Kettering Cancer Center, Department of Cancer Biology & Genetics, New York, NY 10065, USA.
| |
Collapse
|
50
|
Neurocristopathies: New insights 150 years after the neural crest discovery. Dev Biol 2018; 444 Suppl 1:S110-S143. [PMID: 29802835 DOI: 10.1016/j.ydbio.2018.05.013] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022]
Abstract
The neural crest (NC) is a transient, multipotent and migratory cell population that generates an astonishingly diverse array of cell types during vertebrate development. These cells, which originate from the ectoderm in a region lateral to the neural plate in the neural fold, give rise to neurons, glia, melanocytes, chondrocytes, smooth muscle cells, odontoblasts and neuroendocrine cells, among others. Neurocristopathies (NCP) are a class of pathologies occurring in vertebrates, especially in humans that result from the abnormal specification, migration, differentiation or death of neural crest cells during embryonic development. Various pigment, skin, thyroid and hearing disorders, craniofacial and heart abnormalities, malfunctions of the digestive tract and tumors can also be considered as neurocristopathies. In this review we revisit the current classification and propose a new way to classify NCP based on the embryonic origin of the affected tissues, on recent findings regarding the molecular mechanisms that drive NC formation, and on the increased complexity of current molecular embryology techniques.
Collapse
|