1
|
Meyer S, Neuhut A, Claraz A. Electrochemical sulfonylation/Truce-Smiles rearrangement of N-allylbenzamides: toward sulfone-containing β-arylethylamines and Saclofen analogues. Org Biomol Chem 2024; 22:8102-8108. [PMID: 39290053 DOI: 10.1039/d4ob01327a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The β-arylethylamine pharmacophore is commonly found in medications for central nervous system disorders, prompting the need for safe and efficient methods to endow this motif with relevant functional groups for drug discovery. In this context, herein, we have established electrochemical radical sulfonylation reactions of N-allylbenzamides followed by Truce-Smiles rearrangement to produce sulfone- and sulfonate ester-containing β-arylethylamines. Electricity enables this transformation to occur under mild and oxidant-free conditions. Simple sources of sulfonyl radicals and SO2 surrogates were employed to form sulfones and sulfonate esters, respectively. This practical and operationally robust method exhibited a broad substrate scope with good to high yields. The prospective pharmaceutical utility of the process was further demonstrated by removing the N-protecting groups and hydrolysing the sulfonate ester moiety to provide γ-sulfonyl-β-arylamines and Saclofen.
Collapse
Affiliation(s)
- Sébastien Meyer
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| | - Alexandre Neuhut
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| | - Aurélie Claraz
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| |
Collapse
|
2
|
Ma WY, Leone M, Derat E, Retailleau P, Reddy CR, Neuville L, Masson G. Photocatalytic Asymmetric Acyl Radical Truce-Smiles Rearrangement for the Synthesis of Enantioenriched α-Aryl Amides. Angew Chem Int Ed Engl 2024; 63:e202408154. [PMID: 38887967 DOI: 10.1002/anie.202408154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
The radical Truce-Smiles rearrangement is a straightforward strategy for incorporating aryl groups into organic molecules for which asymmetric processes remains rare. By employing a readily available and non-expensive chiral auxiliary, we developed a highly efficient asymmetric photocatalytic acyl and alkyl radical Truce-Smiles rearrangement of α-substituted acrylamides using tetrabutylammonium decatungstate (TBADT) as a hydrogen atom-transfer photocatalyst, along with aldehydes or C-H containing precursors. The rearranged products exhibited excellent diastereoselectivities (7 : 1 to >98 : 2 d.r.) and chiral auxiliary was easily removed. Mechanistic studies allowed understanding the transformation in which density functional theory (DFT) calculations provided insights into the stereochemistry-determining step.
Collapse
Affiliation(s)
- Wei-Yang Ma
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Matteo Leone
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Etienne Derat
- Sorbonne Université, Faculté des Sciences et Ingénierie, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 place Jussieu, 75005, Paris, France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry CSIR-, Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Luc Neuville
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
- HitCat, Seqens-CNRS joint laboratory, Seqens'lab, 8 rue de Rouen, 78440, Porcheville, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
- HitCat, Seqens-CNRS joint laboratory, Seqens'lab, 8 rue de Rouen, 78440, Porcheville, France
| |
Collapse
|
3
|
Rasmi Y, Shokati A, Hatamkhani S, Farnamian Y, Naderi R, Jalali L. Assessment of the relationship between the dopaminergic pathway and severe acute respiratory syndrome coronavirus 2 infection, with related neuropathological features, and potential therapeutic approaches in COVID-19 infection. Rev Med Virol 2024; 34:e2506. [PMID: 38282395 DOI: 10.1002/rmv.2506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 07/06/2023] [Accepted: 12/17/2023] [Indexed: 01/30/2024]
Abstract
Dopamine is a known catecholamine neurotransmitter involved in several physiological processes, including motor control, motivation, reward, cognition, and immune function. Dopamine receptors are widely distributed throughout the nervous system and in immune cells. Several viruses, including human immunodeficiency virus and Japanese encephalitis virus, can use dopaminergic receptors to replicate in the nervous system and are involved in viral neuropathogenesis. In addition, studies suggest that dopaminergic receptors may play a role in the progression and pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. When SARS-CoV-2 binds to angiotensin-converting enzyme 2 receptors on the surface of neuronal cells, the spike protein of the virus can bind to dopaminergic receptors on neighbouring cells to accelerate its life cycle and exacerbate neurological symptoms. In addition, recent research has shown that dopamine is an important regulator of the immune-neuroendocrine system. Most immune cells express dopamine receptors and other dopamine-related proteins, indicating the importance of dopaminergic immune regulation. The increase in dopamine concentration during SARS-CoV2 infection may reduce immunity (innate and adaptive) that promotes viral spread, which could lead to neuronal damage. In addition, dopaminergic signalling in the nervous system may be affected by SARS-CoV-2 infection. COVID -19 can cause various neurological symptoms as it interacts with the immune system. One possible treatment strategy for COVID -19 patients could be the use of dopamine antagonists. To fully understand how to protect the neurological system and immune cells from the virus, we need to study the pathophysiology of the dopamine system in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yousef Rasmi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ameneh Shokati
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Shima Hatamkhani
- Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Pharmacy, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Yeganeh Farnamian
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Roya Naderi
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ladan Jalali
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
4
|
Rachamalla M, Salahinejad A, Khan M, Datusalia AK, Niyogi S. Chronic dietary exposure to arsenic at environmentally relevant concentrations impairs cognitive performance in adult zebrafish (Danio rerio) via oxidative stress and dopaminergic dysfunction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 886:163771. [PMID: 37164085 DOI: 10.1016/j.scitotenv.2023.163771] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/17/2023] [Accepted: 04/23/2023] [Indexed: 05/12/2023]
Abstract
The current study was designed to evaluate the effects of chronic dietary arsenic exposure on the cognitive performance of adult zebrafish and uncover probable pathways by which arsenic mediates such neurotoxic effects. Adult zebrafish were treated with 3 different dietary arsenic concentrations (30, 60, and 100 μg/g dry weight (dw), as arsenite) in addition to control for 60 days. A latent learning paradigm, which employs a complex maze, was used to assess the cognitive performance of fish. Our results demonstrated that dietary treatment with arsenic, especially at medium (60 μg/g dw) and high (100 μg/g dw) exposure dose levels, significantly impaired the performance of fish in various latent learning tasks evaluated in the present study. Concomitant with cognitive dysfunction, chronic dietary exposure to arsenic was also found to increase arsenic accumulation and dopamine levels, and induce oxidative stress (reduced thiol redox, increased lipid peroxidation and expression of antioxidant enzyme genes) in the brain of zebrafish in a dose-dependent manner. Dopaminergic system in the brain is known to play a critical role in regulating cognitive behaviours in fish, and our observations suggested that chronic dietary treatment with medium and high arsenic doses leads to significant alterations in the expression of genes involved in dopamine signalling (dopamine receptors), synthesis (thyroxine hydroxylase) and metabolism (monoamine oxidase) in the zebrafish brain. Moreover, we also recorded significant downregulation of genes such as the brain-derived neurotrophic factor (BDNF) and ectonucleotidases (entpd2_mg, entpd2_mq, and 5'-nucleotidase), which are critical for learning and memory functions, in the zebrafish brain following chronic dietary exposure to arsenic. Overall, the present study suggests that chronic environmentally relevant dietary exposure to arsenic can impair the cognitive performance in zebrafish, essentially by inducing oxidative stress and disrupting the dopaminergic neurotransmission in the brain.
Collapse
Affiliation(s)
- Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada.
| | - Arash Salahinejad
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Maria Khan
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK S7N 5B2, Canada
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| |
Collapse
|
5
|
Toschi C, Robbins TW, Dalley JW. Effects of quinpirole in the ventral tegmental area on impulsive behaviour during performance on the five-choice serial reaction time task. Exp Brain Res 2023; 241:539-546. [PMID: 36625968 PMCID: PMC9895024 DOI: 10.1007/s00221-022-06502-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/29/2022] [Indexed: 01/11/2023]
Abstract
Impulsive behaviour on the five-choice serial reaction time task (5CSRTT), a task measuring attention and impulsivity in rodents, is known to depend on dopamine (DA) neurotransmission in the mesolimbic DA pathway. Previous research in our lab reported that systemic administration of the D2/3 agonist quinpirole, which decreases DA release in the striatum, reduced premature responses in rats performing the 5CSRTT. It is unclear, however, whether this effect is mediated by the activation of inhibitory somatodendritic receptors in the ventral tegmental area (VTA), which in turn leads to a reduction in DA release in the nucleus accumbens, a major terminal region of the mesolimbic DA pathway. In the present study, we investigated this possibility by infusing quinpirole directly into the VTA of rats during performance on the 5CSRTT. We found that quinpirole, at the highest dose, significantly reduced the frequency of premature responses on the 5CSRTT. Thus, the effects of quinpirole and other D2/3 receptor agonists to reduce this form of impulsive behaviour appear to depend on the activation of somatodendritic D2/3 receptors in the VTA.
Collapse
Affiliation(s)
- Chiara Toschi
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing St, Cambridge, CB2 3EB, UK.
| | - Trevor W. Robbins
- grid.5335.00000000121885934Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing St, Cambridge, CB2 3EB UK
| | - Jeffrey W. Dalley
- grid.5335.00000000121885934Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing St, Cambridge, CB2 3EB UK ,grid.5335.00000000121885934Department of Psychiatry, Hershel Smith Building for Brain and Mind Sciences, Addenbrooke’s Hospital, University of Cambridge, Cambridge, CB2 0SZ UK
| |
Collapse
|
6
|
Kwon Y, Wang Q. Recent Advances in 1,2-Amino(hetero)arylation of Alkenes. Chem Asian J 2022; 17:e202200215. [PMID: 35460596 PMCID: PMC9357224 DOI: 10.1002/asia.202200215] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Indexed: 11/06/2022]
Abstract
Alkene amino(hetero)arylation presents a highly efficient and straightforward strategy for direct installation of amino groups and heteroaryl rings across a double bond simultaneously. An extensive array of practical transformations has been developed via alkene difunctionalization approach to access a broad range of medicinally valuable (hetero)arylethylamine motifs. This review presents recent progress in 1,2-amino(hetero)arylation of alkenes organized in three different modes. First, intramolecular transformations employing C, N-tethered alkenes will be introduced. Next, two-component reactions will be discussed with different combination of precursors, N-tethered alkenes and external aryl precursor, C-tethered alkenes and external amine precursor, or C, N-tethered reagents, and alkenes. Last, three-component intermolecular amino(hetero)arylation reactions will be covered.
Collapse
Affiliation(s)
- Yungeun Kwon
- Department of Chemistry, Duke University, Durham, North Carolina, 27708, USA
| | - Qiu Wang
- Department of Chemistry, Duke University, Durham, North Carolina, 27708, USA
| |
Collapse
|
7
|
He Y, Du C, Han J, Han J, Zhu C, Xie J. Manganese‐Catalyzed Anti‐Markovnikov
Hydroarylation of Enamides: Modular Synthesis of Arylethylamines. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yijie He
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Chaoyu Du
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Jian Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Chengjian Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
- Green Catalysis Center, College of Chemistry and Molecular Engineering, Zhengzhou University Zhengzhou 450001 China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
- Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University Changsha 410082 China
| |
Collapse
|
8
|
Holst HM, Floreancig JT, Ritts CB, Race NJ. Aziridine Opening via a Phenonium Ion Enables Synthesis of Complex Phenethylamine Derivatives. Org Lett 2022; 24:501-505. [PMID: 34967220 PMCID: PMC8796817 DOI: 10.1021/acs.orglett.1c03857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report that the treatment of unsymmetrical 2,3-disubstituted aziridines with TiCl4 yields β-phenethylamine products via the intermediacy of a phenonium ion. Derivatization of the products obtained via this method is demonstrated. Computational analysis of the reaction pathway provides insight into the reaction mechanism, including the selectivity of the phenonium opening.
Collapse
Affiliation(s)
- Hannah M Holst
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Jack T Floreancig
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Casey B Ritts
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Nicholas J Race
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
9
|
Bunescu A, Abdelhamid Y, Gaunt MJ. Multicomponent alkene azidoarylation by anion-mediated dual catalysis. Nature 2021; 598:597-603. [PMID: 34517408 DOI: 10.1038/s41586-021-03980-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/01/2021] [Indexed: 01/25/2023]
Abstract
Molecules that contain the β-arylethylamine motif have applications in the modulation of pain, treatment of neurological disorders and management of opioid addiction, among others, making it a privileged scaffold in drug discovery1,2. De novo methods for their assembly are reliant on transformations that convert a small class of feedstocks into the target compounds via time-consuming multistep syntheses3-5. Synthetic invention can drive the investigation of the chemical space around this scaffold to further expand its capabilities in biology6-9. Here we report the development of a dual catalysis platform that enables a multicomponent coupling of alkenes, aryl electrophiles and a simple nitrogen nucleophile, providing single-step access to synthetically versatile and functionally diverse β-arylethylamines. Driven by visible light, two discrete copper catalysts orchestrate aryl-radical formation and azido-group transfer, which underpin an alkene azidoarylation process. The process shows broad scope in alkene and aryl components and an azide anion performs a multifaceted role both as a nitrogen source and in mediating the redox-neutral dual catalysis via inner-sphere electron transfer10,11. The synthetic capabilities of this anion-mediated alkene functionalization process are likely to be of use in a variety of pharmaceutically relevant and wider synthetic applications.
Collapse
Affiliation(s)
- Ala Bunescu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Yusra Abdelhamid
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Matthew J Gaunt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
10
|
Ririe DG, Eisenach JC, Martin TJ. A Painful Beginning: Early Life Surgery Produces Long-Term Behavioral Disruption in the Rat. Front Behav Neurosci 2021; 15:630889. [PMID: 34025368 PMCID: PMC8131510 DOI: 10.3389/fnbeh.2021.630889] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Early life surgery produces peripheral nociceptive activation, inflammation, and stress. Early life nociceptive input and inflammation have been shown to produce long-term processing changes that are not restricted to the dermatome of injury. Additionally stress has shown long-term effects on anxiety, depression, learning, and maladaptive behaviors including substance abuse disorder and we hypothesized that early life surgery would have long-term effects on theses complex behaviors in later life. In this study surgery in the rat hindpaw was performed to determine if there are long-term effects on anxiety, depression, audiovisual attention, and opioid reward behaviors. Male animals received paw incision surgery and anesthesia or anesthesia alone (sham) at postnatal day 6. At 10 weeks after surgery, open field center zone entries were decreased, a measure of anxiety (n = 20) (P = 0.03) (effect size, Cohen's d = 0.80). No difference was found in the tail suspension test as a measure of depression. At 16-20 weeks, attentional performance in an operant task was similar between groups at baseline and decreased with audiovisual distraction in both groups (P < 0.001) (effect size, η2 = 0.25), but distraction revealed a persistent impairment in performance in the surgery group (n = 8) (P = 0.04) (effect size, η2 = 0.13). Opioid reward was measured using heroin self-administration at 16-24 weeks. Heroin intake increased over time in both groups during 24-h free access (P < 0.001), but was greater in the surgery group (P = 0.045), with a significant interaction between time and treatment (P < 0.001) (effect size, Cohen f 2 = 0.36). These results demonstrate long-term disruptions in complex behaviors from surgical incision under anesthesia. Future studies to explore sex differences in early life surgery and the attendant peripheral neuronal input, stress, and inflammation will be valuable to understand emerging learning deficits, anxiety, attentional dysfunction, and opioid reward and their mechanisms. This will be valuable to develop optimal approaches to mitigate the long-term effects of surgery in early life.
Collapse
Affiliation(s)
- Douglas G Ririe
- Pain Mechanisms Lab, Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - James C Eisenach
- Pain Mechanisms Lab, Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Thomas J Martin
- Pain Mechanisms Lab, Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
11
|
Weber I, Niehaus H, Krause K, Molitor L, Peper M, Schmidt L, Hakel L, Timmermann L, Menzler K, Knake S, Oehrn CR. Trust your gut: vagal nerve stimulation in humans improves reinforcement learning. Brain Commun 2021; 3:fcab039. [PMID: 33928247 PMCID: PMC8066886 DOI: 10.1093/braincomms/fcab039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/01/2020] [Accepted: 01/20/2021] [Indexed: 11/26/2022] Open
Abstract
Whereas the effect of vagal nerve stimulation on emotional states is well established, its effect on cognitive functions is still unclear. Recent rodent studies show that vagal activation enhances reinforcement learning and neuronal dopamine release. The influence of vagal nerve stimulation on reinforcement learning in humans is still unknown. Here, we studied the effect of transcutaneous vagal nerve stimulation on reinforcement learning in eight long-standing seizure-free epilepsy patients, using a well-established forced-choice reward-based paradigm in a cross-sectional, within-subject study design. We investigated vagal nerve stimulation effects on overall accuracy using non-parametric cluster-based permutation tests. Furthermore, we modelled sub-components of the decision process using drift-diffusion modelling. We found higher accuracies in the vagal nerve stimulation condition compared to sham stimulation. Modelling suggests a stimulation-dependent increase in reward sensitivity and shift of accuracy-speed trade-offs towards maximizing rewards. Moreover, vagal nerve stimulation was associated with increased non-decision times suggesting enhanced sensory or attentional processes. No differences of starting bias were detected for both conditions. Accuracies in the extinction phase were higher in later trials of the vagal nerve stimulation condition, suggesting a perseverative effect compared to sham. Together, our results provide first evidence of causal vagal influence on human reinforcement learning and might have clinical implications for the usage of vagal stimulation in learning deficiency.
Collapse
Affiliation(s)
- Immo Weber
- Department of Neurology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Hauke Niehaus
- Faculty of Psychology, Neuropsychology Section, Philipps-University Marburg, 35032 Marburg, Germany.,Faculty of Psychology, Theoretical Neuroscience Section, Philipps-University Marburg, 35032 Marburg, Germany
| | - Kristina Krause
- Department of Neurology, Philipps-University Marburg, 35043 Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg, 35032 Marburg, Germany.,Department of Neurology, Epilepsy Center Hessen, Philipps University, 35043 Marburg, Germany
| | - Lena Molitor
- Department of Neurology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Martin Peper
- Faculty of Psychology, Neuropsychology Section, Philipps-University Marburg, 35032 Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg, 35032 Marburg, Germany
| | - Laura Schmidt
- Department of Neurology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Lukas Hakel
- Department of Neurology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Lars Timmermann
- Department of Neurology, Philipps-University Marburg, 35043 Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg, 35032 Marburg, Germany
| | - Katja Menzler
- Department of Neurology, Philipps-University Marburg, 35043 Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg, 35032 Marburg, Germany.,Department of Neurology, Epilepsy Center Hessen, Philipps University, 35043 Marburg, Germany
| | - Susanne Knake
- Department of Neurology, Philipps-University Marburg, 35043 Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg, 35032 Marburg, Germany.,Department of Neurology, Epilepsy Center Hessen, Philipps University, 35043 Marburg, Germany
| | - Carina R Oehrn
- Department of Neurology, Philipps-University Marburg, 35043 Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg, 35032 Marburg, Germany.,Department of Neurology, Epilepsy Center Hessen, Philipps University, 35043 Marburg, Germany
| |
Collapse
|
12
|
Chen R, Ferris MJ, Wang S. Dopamine D2 autoreceptor interactome: Targeting the receptor complex as a strategy for treatment of substance use disorder. Pharmacol Ther 2020; 213:107583. [PMID: 32473160 PMCID: PMC7434700 DOI: 10.1016/j.pharmthera.2020.107583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
Dopamine D2 autoreceptors (D2ARs), located in somatodendritic and axon terminal compartments of dopamine (DA) neurons, function to provide a negative feedback regulatory control on DA neuron firing, DA synthesis, reuptake and release. Dysregulation of D2AR-mediated DA signaling is implicated in vulnerability to substance use disorder (SUD). Due to the extreme low abundance of D2ARs compared to postsynaptic D2 receptors (D2PRs) and the lack of experimental tools to differentiate the signaling of D2ARs from D2PRs, the regulation of D2ARs by drugs of abuse is poorly understood. The recent availability of conditional D2AR knockout mice and newly developed virus-mediated gene delivery approaches have provided means to specifically study the function of D2ARs at the molecular, cellular and behavioral levels. There is a growing revelation of novel mechanisms and new proteins that mediate D2AR activity, suggesting that D2ARs act cooperatively with an array of membrane and intracellular proteins to tightly control DA transmission. This review highlights D2AR-interacting partners including transporters, G-protein-coupled receptors, ion channels, intracellular signaling modulators, and protein kinases. The complexity of the D2AR interaction network illustrates the functional divergence of D2ARs. Pharmacological targeting of multiple D2AR-interacting partners may be more effective to restore disrupted DA homeostasis by drugs of abuse.
Collapse
Affiliation(s)
- Rong Chen
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America; Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America.
| | - Mark J Ferris
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America; Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America
| | - Shiyu Wang
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America
| |
Collapse
|
13
|
Borroto-Escuela DO, Narváez M, Romero-Fernández W, Pinton L, Wydra K, Filip M, Beggiato S, Tanganelli S, Ferraro L, Fuxe K. Acute Cocaine Enhances Dopamine D 2R Recognition and Signaling and Counteracts D 2R Internalization in Sigma1R-D 2R Heteroreceptor Complexes. Mol Neurobiol 2019; 56:7045-7055. [PMID: 30972626 PMCID: PMC6728299 DOI: 10.1007/s12035-019-1580-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/20/2019] [Indexed: 12/04/2022]
Abstract
The current study was performed to establish the actions of nanomolar concentrations of cocaine, not blocking the dopamine transporter, on dopamine D2 receptor (D2R)-sigma 1 receptor (δ1R) heteroreceptor complexes and the D2R protomer recognition, signaling and internalization in cellular models. We report the existence of D2R-δ1R heteroreceptor complexes in subcortical limbic areas as well as the dorsal striatum, with different distribution patterns using the in situ proximity ligation assay. Also, through BRET, these heteromers were demonstrated in HEK293 cells. Furthermore, saturation binding assay demonstrated that in membrane preparations of HEK293 cells coexpressing D2R and δ1R, cocaine (1 nM) significantly increased the D2R Bmax values over cells singly expressing D2R. CREB reporter luc-gene assay indicated that coexpressed δ1R significantly reduced the potency of the D2R-like agonist quinpirole to inhibit via D2R activation the forskolin induced increase of the CREB signal. In contrast, the addition of 100 nM cocaine was found to markedly increase the quinpirole potency to inhibit the forskolin-induced increase of the CREB signal in the D2R-δ1R cells. These events were associated with a marked reduction of cocaine-induced internalization of D2R protomers in D2R-δ1R heteromer-containing cells vs D2R singly expressing cells as studied by means of confocal analysis of D2R-δ1R trafficking and internalization. Overall, the formation of D2R-δ1R heteromers enhanced the ability of cocaine to increase the D2R protomer function associated with a marked reduction of its internalization. The existence of D2R-δ1R heteromers opens up a new understanding of the acute actions of cocaine.
Collapse
Affiliation(s)
- Dasiel O. Borroto-Escuela
- Department of Neuroscience, Karolinska Institutet, Biomedicum (B0851). Solnavägen 9, 171 77 Stockholm, Sweden
- Department of Biomolecular Science, Section of Physiology, University of Urbino, Campus Scientifico Enrico Mattei, via Ca’ le Suore 2, 610 29 Urbino, Italy
- Observatorio Cubano de Neurociencias, Grupo Bohío-Estudio, Zayas 50, 62100 Yaguajay, Cuba
| | - Manuel Narváez
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Wilber Romero-Fernández
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, 751 24 Uppsala, Sweden
| | - Luca Pinton
- Department of Neuroscience, Karolinska Institutet, Biomedicum (B0851). Solnavägen 9, 171 77 Stockholm, Sweden
| | - Karolina Wydra
- Institute of Pharmacology, Department of Drug Addiction Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland
| | - Malgorzata Filip
- Institute of Pharmacology, Department of Drug Addiction Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland
| | - Sarah Beggiato
- Department of Life Sciences and Biotechnology (SVEB), University of Ferrara, Ferrara, Italy
| | - Sergio Tanganelli
- Department of Life Sciences and Biotechnology (SVEB), University of Ferrara, Ferrara, Italy
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology (SVEB), University of Ferrara, Ferrara, Italy
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Biomedicum (B0851). Solnavägen 9, 171 77 Stockholm, Sweden
| |
Collapse
|
14
|
Stubbendorff C, Hale E, Cassaday HJ, Bast T, Stevenson CW. Dopamine D1-like receptors in the dorsomedial prefrontal cortex regulate contextual fear conditioning. Psychopharmacology (Berl) 2019; 236:1771-1782. [PMID: 30656366 PMCID: PMC6602997 DOI: 10.1007/s00213-018-5162-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/21/2018] [Indexed: 11/29/2022]
Abstract
RATIONALE Dopamine D1 receptor (D1R) signalling is involved in contextual fear conditioning. The D1R antagonist SCH23390 impairs the acquisition of contextual fear when administered systemically or infused locally into the dorsal hippocampus or basolateral amygdala. OBJECTIVES We determined if state dependency may account for the impairment in contextual fear conditioning caused by systemic SCH23390 administration. We also examined if the dorsomedial prefrontal cortex (dmPFC), nucleus accumbens (NAc), and ventral hippocampus (VH) are involved in mediating the effect of systemic SCH23390 treatment on contextual fear conditioning. METHODS In experiment 1, SCH23390 (0.1 mg/kg) or vehicle was given before contextual fear conditioning and/or retrieval. In experiment 2, SCH23390 (2.5 μg/0.5 uL) or vehicle was infused locally into dmPFC, NAc, or VH before contextual fear conditioning, and retrieval was tested drug-free. Freezing was quantified as a measure of contextual fear. RESULTS In experiment 1, SCH23390 given before conditioning or before both conditioning and retrieval decreased freezing at retrieval, whereas SCH23390 given only before retrieval had no effect. In experiment 2, SCH23390 infused into dmPFC before conditioning decreased freezing at retrieval, while infusion of SCH23390 into NAc or VH had no effect. CONCLUSIONS The results of experiment 1 confirm those of previous studies indicating that D1Rs are required for the acquisition but not retrieval of contextual fear and rule out state dependency as an explanation for these findings. Moreover, the results of experiment 2 provide evidence that dmPFC is also part of the neural circuitry through which D1R signalling regulates contextual fear conditioning.
Collapse
Affiliation(s)
- Christine Stubbendorff
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| | - Ed Hale
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - Helen J. Cassaday
- School of Psychology@Nottingham, University of Nottingham, University Park, Nottingham, NG7 2RD UK ,School of Neuroscience@Nottingham, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Tobias Bast
- School of Psychology@Nottingham, University of Nottingham, University Park, Nottingham, NG7 2RD UK ,School of Neuroscience@Nottingham, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Carl W. Stevenson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| |
Collapse
|
15
|
Monos TM, McAtee RC, Stephenson CRJ. Arylsulfonylacetamides as bifunctional reagents for alkene aminoarylation. Science 2018; 361:1369-1373. [PMID: 30262501 DOI: 10.1126/science.aat2117] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 07/25/2018] [Indexed: 12/17/2022]
Abstract
Alkene aminoarylation with a single, bifunctional reagent is a concise synthetic strategy. We report a catalytic protocol for the addition of arylsulfonylacetamides across electron-rich alkenes with complete anti-Markovnikov regioselectivity and excellent diastereoselectivity to provide 2,2-diarylethylamines. In this process, single-electron alkene oxidation enables carbon-nitrogen bond formation to provide a key benzylic radical poised for a Smiles-Truce 1,5-aryl shift. This reaction is redox-neutral, exhibits broad functional group compatibility, and occurs at room temperature with loss of sulfur dioxide. As this process is driven by visible light, uses readily available starting materials, and demonstrates convergent synthesis, it is well suited for use in a variety of synthetic endeavors.
Collapse
Affiliation(s)
- Timothy M Monos
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Rory C McAtee
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
16
|
Harada Y, Yamaguchi T, Hu A, Otani S, Han C, Kurihara Y, Kobayashi H, Arai H. Effect of hangekobokuto for amelioration of aggressiveness and social behavior in socially isolated mice. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/tkm2.1095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Yoshinao Harada
- Department of Neurosurgery; Juntendo University Faculty of Medicine; Tokyo Japan
- Center for Advanced Kampo Medicine and Clinical Research; Juntendo University Graduate School of Medicine; Tokyo Japan
| | - Takuji Yamaguchi
- Center for Advanced Kampo Medicine and Clinical Research; Juntendo University Graduate School of Medicine; Tokyo Japan
| | - Ailing Hu
- Center for Advanced Kampo Medicine and Clinical Research; Juntendo University Graduate School of Medicine; Tokyo Japan
| | - Satoru Otani
- Center for Advanced Kampo Medicine and Clinical Research; Juntendo University Graduate School of Medicine; Tokyo Japan
| | - Cheolsun Han
- Center for Advanced Kampo Medicine and Clinical Research; Juntendo University Graduate School of Medicine; Tokyo Japan
| | - Yumiko Kurihara
- Center for Advanced Kampo Medicine and Clinical Research; Juntendo University Graduate School of Medicine; Tokyo Japan
| | - Hiroyuki Kobayashi
- Center for Advanced Kampo Medicine and Clinical Research; Juntendo University Graduate School of Medicine; Tokyo Japan
| | - Hajime Arai
- Department of Neurosurgery; Juntendo University Faculty of Medicine; Tokyo Japan
| |
Collapse
|
17
|
Beggiato S, Borelli AC, Borroto-Escuela D, Corbucci I, Tomasini MC, Marti M, Antonelli T, Tanganelli S, Fuxe K, Ferraro L. Cocaine modulates allosteric D 2-σ 1 receptor-receptor interactions on dopamine and glutamate nerve terminals from rat striatum. Cell Signal 2017; 40:116-124. [PMID: 28923416 DOI: 10.1016/j.cellsig.2017.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/30/2017] [Accepted: 09/14/2017] [Indexed: 10/18/2022]
Abstract
The effects of nanomolar cocaine concentrations, possibly not blocking the dopamine transporter activity, on striatal D2-σ1 heteroreceptor complexes and their inhibitory signaling over Gi/o, have been tested in rat striatal synaptosomes and HEK293T cells. Furthermore, the possible role of σ1 receptors (σ1Rs) in the cocaine-provoked amplification of D2 receptor (D2R)-induced reduction of K+-evoked [3H]-DA and glutamate release from rat striatal synaptosomes, has also been investigated. The dopamine D2-likeR agonist quinpirole (10nM-1μM), concentration-dependently reduced K+-evoked [3H]-DA and glutamate release from rat striatal synaptosomes. The σ1R antagonist BD1063 (100nM), amplified the effects of quinpirole (10 and 100nM) on K+-evoked [3H]-DA, but not glutamate, release. Nanomolar cocaine concentrations significantly enhanced the quinpirole (100nM)-induced decrease of K+-evoked [3H]-DA and glutamate release from rat striatal synaptosomes. In the presence of BD1063 (10nM), cocaine failed to amplify the quinpirole (100nM)-induced effects. In cotransfected σ1R and D2LR HEK293T cells, quinpirole had a reduced potency to inhibit the CREB signal versus D2LR singly transfected cells. In the presence of cocaine (100nM), the potency of quinpirole to inhibit the CREB signal was restored. In D2L singly transfected cells cocaine (100nM and 10μM) exerted no modulatory effects on the inhibitory potency of quinpirole to bring down the CREB signal. These results led us to hypothesize the existence of functional D2-σ1R complexes on the rat striatal DA and glutamate nerve terminals and functional D2-σ1R-DA transporter complexes on the striatal DA terminals. Nanomolar cocaine concentrations appear to alter the allosteric receptor-receptor interactions in such complexes leading to enhancement of Gi/o mediated D2R signaling.
Collapse
Affiliation(s)
- Sarah Beggiato
- Department of Life Sciences and Biotechnology (SVEB), University of Ferrara, Ferrara, Italy
| | - Andrea Celeste Borelli
- Department of Life Sciences and Biotechnology (SVEB), University of Ferrara, Ferrara, Italy
| | | | - Ilaria Corbucci
- Department of Life Sciences and Biotechnology (SVEB), University of Ferrara, Ferrara, Italy
| | | | - Matteo Marti
- Department of Life Sciences and Biotechnology (SVEB), University of Ferrara, Ferrara, Italy
| | - Tiziana Antonelli
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Sergio Tanganelli
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Kjell Fuxe
- Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology (SVEB), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
18
|
Thomas MB, Becker JB. Sex differences in prenatal stress effects on cocaine pursuit in rats. Physiol Behav 2017; 203:3-9. [PMID: 29055747 DOI: 10.1016/j.physbeh.2017.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/02/2017] [Accepted: 10/17/2017] [Indexed: 11/29/2022]
Abstract
Disruption of early-life ontogeny has severe and persistent consequences for the health of the developing organism. Both clinical and preclinical findings indicate that such interference can be caused by maternal stress during the gestation period (prenatal stress [PS]). In rats, PS facilitates the rewarding and neurochemical-stimulating effects of drugs, suggesting that PS may represent a risk factor for drug abuse in humans. Very little, however, is known about its effects in females, even though sex differences in drug susceptibility have been well documented in no PS (NPS) controls. Thus, we tested for independent effects and interactions between maternal restraint stress during the last week of gestation and sex on drug use with an extended regimen of drug self-administration. Male and female rats were provided daily access to a large but controlled amount of cocaine for seven weeks. Drug pursuit during the final week was used to indicate susceptibility to developing an addiction-like phenotype, based on reports that drug use becomes increasingly compulsive-like after weeks of testing. Overall, females satisfied more addiction-like criteria than males, and the same was true for PS rats when compared to NPS controls. In addition, sex and PS interacted to disproportionately promote drug pursuit of females with a history of PS. These results indicate that sex differences in drug susceptibility persist with continued drug exposure, and that PS widens this difference by more severely affecting females. In all, PS may be a risk factor for drug addiction in humans, and to a greater extent in women vs. men.
Collapse
Affiliation(s)
- Mark B Thomas
- Psychology Department, University of Michigan, Ann Arbor, MI, United States; Sciformix, 1500 West Park Drive, Westborough, MA, United States
| | - Jill B Becker
- Psychology Department, University of Michigan, Ann Arbor, MI, United States; Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States; Neuroscience Program, Psychiatry Department, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
19
|
Riley AL, Hempel BJ, Clasen MM. Sex as a biological variable: Drug use and abuse. Physiol Behav 2017; 187:79-96. [PMID: 29030249 DOI: 10.1016/j.physbeh.2017.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/15/2017] [Accepted: 10/07/2017] [Indexed: 01/11/2023]
Abstract
The study of sex as a biological variable is a necessary emphasis across a wide array of endpoints, including basic neuroscience, medicine, mental health, physiology and behavior. The present review summarizes work from clinical and preclinical populations on sex differences in drug use and abuse, ranging from initiation to escalation/dysregulation and from drug cessation/abstinence to relapse. These differences are analyzed in the context of the addiction cycle conceptualization of Koob and his colleagues and address patterns of drug use (binge/intoxication), motivation underlying its use (withdrawal/negative affect) and likelihood and causes of craving and relapse of drug taking (preoccupation/anticipation). Following this overview, an assessment of the basis for the reported sex differences is discussed in the context of the affective (rewarding and aversive) properties of drugs of abuse and how such properties and their balance vary with sex and contribute to drug intake. Finally, the interaction of sex with several experiential (drug history) and subject (age) factors and how these interactions affect reward and aversion are discussed to highlight the importance of understanding such interactions in predicting drug use and abuse. We note that sex as a biological variable remains one of critical evaluation and that such investigations of sex differences in drug use and abuse continue and be expanded to assess all facets of their mediation, including these affective properties, how their balance may be impacted by the multiple conditions under which drugs are taken and how this overall balance affects drug use and addiction vulnerability.
Collapse
Affiliation(s)
- Anthony L Riley
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave, NW, Washington, D.C. 20016, USA.
| | - Briana J Hempel
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave, NW, Washington, D.C. 20016, USA
| | - Matthew M Clasen
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave, NW, Washington, D.C. 20016, USA
| |
Collapse
|
20
|
Lesscher HMB, Bailey A, Vanderschuren LJMJ. Genetic Variability in Adenosine Deaminase-Like Contributes to Variation in Alcohol Preference in Mice. Alcohol Clin Exp Res 2017; 41:1271-1279. [PMID: 28449374 DOI: 10.1111/acer.13409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/20/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND A substantial part of the risk for alcohol use disorder is determined by genetic factors. We previously used chromosome substitution (CSS) mice, to identify a quantitative trait loci (QTL) for alcohol preference on mouse chromosome 2. The aim of this study was to identify candidate genes within this QTL that confer the risk for alcohol preference. METHODS In order to delineate the neurobiological underpinnings of alcohol consumption, we expanded on the QTL approach to identify candidate genes for high alcohol preference in mice. We narrowed down a QTL for alcohol preference on mouse chromosome 2, that we previously identified using CSS mice, to 4 candidate genes in silico. Expression levels of these candidate genes in prefrontal cortex, amygdala, and nucleus accumbens-brain regions implicated in reward and addiction-were subsequently compared for the CSS-2 and the C57BL/6J host strain. RESULTS We observed increased expression of adenosine deaminase-like (Adal) in all 3 regions in CSS-2 mice. Moreover, we found that the adenosine deaminase inhibitor EHNA reduced the difference in alcohol preference between CSS-2 and C57BL/6J mice. CONCLUSIONS This study identifies Adal as a genetically protective factor against alcohol consumption in mice, in which elevated Adal levels contribute to low alcohol preference.
Collapse
Affiliation(s)
- Heidi M B Lesscher
- Division of Behavioural Neuroscience , Department of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Alexis Bailey
- Institute of Medical and Biomedical Education , St George's University of London, London, UK
| | - Louk J M J Vanderschuren
- Division of Behavioural Neuroscience , Department of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
21
|
Bakhtazad A, Vousooghi N, Garmabi B, Zarrindast MR. Evaluation of the CART peptide expression in morphine sensitization in male rats. Eur J Pharmacol 2017; 802:52-59. [PMID: 28238767 DOI: 10.1016/j.ejphar.2017.02.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/20/2017] [Accepted: 02/22/2017] [Indexed: 11/24/2022]
Abstract
The importance of Cocaine- and amphetamine-regulated transcript (CART) peptide in reinforcing effects of addictive drugs specially alcohol and psychostimulants has been stablished. Involvement of CART peptide in rewarding effects of opioids in brain has recently been reported. Here we have studied the expression of CART mRNA and peptide in the reward pathway in morphine-induced sensitization phenomenon and also evaluated the peptide level fluctuations in CSF and plasma. Male Wistar rats received 7-day morphine injection (20mg/kg) and then after a 7-day washout period, a challenge dose of 10mg/kg morphine was administered and locomotor activity and oral stereotypical behaviors were recorded. Besides, the expression level of CART mRNA and peptide in four important areas of the mesocorticolimbic reward pathway including nucleus accumbens, striatum, prefrontal cortex, and hippocampus were measured by real-time PCR and western blotting, respectively. The level of the peptide in CSF and plasma was measured by Elisa method. The expression level of CART mRNA and protein in brain regions and also the peptide level in CSF and plasma were significantly down-regulated after 7-day morphine administration. These reduced levels returned to nearly normal rates after 7-day wash-out period. Administration of morphine challenge dose led to significant upregulation of CART gene expression (both mRNA and peptide) in the brain, and elevation of peptide level in CSF and plasma in morphine-sensitized rats. It can be concluded that CART is released in the framework of reward pathway and may serve as an important neurotransmitter in the process of morphine dependence and sensitization.
Collapse
Affiliation(s)
- Atefeh Bakhtazad
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Vousooghi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Genetics Laboratory, Iranian National Center for Addiction Studies (INCAS), Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Behzad Garmabi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zarrindast
- Genetics Laboratory, Iranian National Center for Addiction Studies (INCAS), Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies, Tehran, Iran; Genomics Center, School of Advanced Sciences, Tehran Medical Branch, Islamic Azad University, Tehran, Iran; School of Cognitive Sciences, Institute for Studies in Theoretical Physics and Mathematics, Tehran, Iran.
| |
Collapse
|
22
|
Neurochemical substrates of the rewarding effects of MDMA: implications for the development of pharmacotherapies to MDMA dependence. Behav Pharmacol 2016; 27:116-32. [PMID: 26650254 DOI: 10.1097/fbp.0000000000000210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In recent years, studies with animal models of reward, such as the intracranial self-stimulation, self-administration, and conditioned place preference paradigms, have increased our knowledge on the neurochemical substrates of the rewarding effects of 3,4-methylenedioxymetamphetamine (MDMA) in rodents. However, pharmacological and neuroimaging studies with human participants are scarce. Serotonin [5-hydroxytryptamine (5-HT)], dopamine (DA), endocannabinoids, and endogenous opiates are the main neurotransmitter systems involved in the rewarding effects of MDMA in rodents, but other neurotransmitters such as glutamate, acetylcholine, adenosine, and neurotensin are also involved. The most important finding of recent research is the demonstration of differential involvement of specific neurotransmitter receptor subtypes (5-HT2, 5-HT3, DA D1, DA D2, CB1, μ and δ opioid, etc.) and extracellular proteins (DA and 5-HT transporters) in the acquisition, expression, extinction, and reinstatement of MDMA self-administration and conditioned place preference. It is important to extend the research on the effects of different compounds acting on these receptors/transporters in animal models of reward, especially in priming-induced, cue-induced, and stress-induced reinstatement. Increase in knowledge of the neurochemical substrates of the rewarding effects of MDMA may contribute to the design of new pharmacological treatments for individuals who develop MDMA dependence.
Collapse
|
23
|
Jia L, Li Y, Hu X, Lin W, Wen D, Zhong S. Effect of Pingan Fang, a Traditional Chinese Medicine compound, on behavioral sensitization and conditioned place preference induced by ethanol in mice. J TRADIT CHIN MED 2016; 36:197-204. [PMID: 27400474 DOI: 10.1016/s0254-6272(16)30027-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To observe the effect of Pingan Fang (PG) on behavioral sensitization and conditioned place preference (CPP) induced by ethanol in mice, and to determine the intervention mechanism of PG on alcohol addiction. METHODS A behavioral sensitization mouse model induced by ethanol was established to observe the effect of PG on the development and expression of behavioral sensitization induced by ethanol by recording the spontaneous activity of mice. The resident time of mice in a white box was measured to evaluate the effect of PG on developing CPP induced by ethanol. Concentrations of dopamine (DA), Glutamate (Glu), and ã-aminobutyric acid (GABA) in the corresponding mesolimbic region of mice were determined by enzyme-linked immunosorbent assay. RESULTS Although PG did not alter spontaneous activity in mice, it reduced the growth of spontaneous activity stimulated by ethanol. The residence time in the white box after-ethanol-training of mice in CPP experiments was decreased. CONCLUSION Our data suggested that PG blocked the development and expression of behavioral sensitization induced by ethanol and the development of CPP in mice. The mechanism might be related to the decreased content of DA and Glu and increased content of GABA in the mesolimbic dopamine system. This suggests that PG might be useful for the prevention and treatment of alcohol addiction.
Collapse
|
24
|
Shen L, Yan M, He L. D5 receptor agonist 027075 promotes cognitive function recovery and neurogenesis in a Aβ 1-42 -induced mouse model. Neuropharmacology 2016; 105:72-83. [DOI: 10.1016/j.neuropharm.2016.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/24/2015] [Accepted: 01/04/2016] [Indexed: 11/27/2022]
|
25
|
Naderi M, Jamwal A, Chivers DP, Niyogi S. Modulatory effects of dopamine receptors on associative learning performance in zebrafish (Danio rerio). Behav Brain Res 2016; 303:109-19. [DOI: 10.1016/j.bbr.2016.01.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 12/14/2022]
|
26
|
Moraga-Amaro R, González H, Ugalde V, Donoso-Ramos JP, Quintana-Donoso D, Lara M, Morales B, Rojas P, Pacheco R, Stehberg J. Dopamine receptor D5 deficiency results in a selective reduction of hippocampal NMDA receptor subunit NR2B expression and impaired memory. Neuropharmacology 2016; 103:222-35. [DOI: 10.1016/j.neuropharm.2015.12.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/30/2015] [Accepted: 12/17/2015] [Indexed: 11/16/2022]
|
27
|
Jenda M, Gawel K, Marszalek M, Komsta L, Kotlinska JH. AMN082, a metabotropic glutamate receptor 7 allosteric agonist, attenuates locomotor sensitization and cross-sensitization induced by cocaine and morphine in mice. Prog Neuropsychopharmacol Biol Psychiatry 2015; 57:166-75. [PMID: 25448778 DOI: 10.1016/j.pnpbp.2014.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/29/2014] [Accepted: 11/06/2014] [Indexed: 10/24/2022]
Abstract
Previous studies have indicated that metabotropic glutamate receptors 7 (mGluR7s) are involved in drug addiction. However, the role of these receptors in drug-induced behavioral sensitization is unknown. The aim of the present study was to determine whether systemic injection of AMN082, a selective mGluR7 allosteric agonist, reduces the cocaine- and morphine-induced hyperactivity and the development and expression of locomotor sensitization, and also affects the reciprocal cross-sensitization to the stimulant effect of cocaine and morphine in mice. AMN082 (1.25-10.0 mg/kg, i.p.) did not have an impact on locomotion of naive mice and did not affect the acute cocaine- or morphine-induced hyperactivity, except the dose of 10 mg/kg that suppressed the locomotor effect of both drugs. Repeated exposure to cocaine or morphine (10 mg/kg, 5× every 3 days) gradually increased locomotion during induction of sensitization and after 4 (cocaine) or 7 day (morphine) withdrawal phase when challenged with cocaine (10 mg/kg, i.p.) or morphine (10 mg/kg, i.p.) on day 17 or 20, respectively. Pretreatment of animals with the lower doses of AMN082 (1.25-5.0 mg/kg, i.p.), 30 min before every cocaine or morphine injection during repeated drug administration or before cocaine or morphine challenge, dose-dependently attenuated the development, as well as the expression of cocaine or morphine locomotor sensitization. AMN082 also inhibited the reciprocal cross-sensitization between these drugs. Prior to administration of MMPIP (10 mg/kg, i.p.), a selective mGluR7 antagonist reversed the inhibitory effect of AMN082 on the development or expression of cocaine or morphine sensitization. These data indicate that AMN082 attenuated the development and expression of cocaine and morphine sensitization, and the reciprocal cross-sensitization via a mechanism that involves mGluR7s. Thus, AMN082 might have therapeutic implications not only in the treatment of cocaine or opioid addiction but also in the treatment of cocaine/opioid polydrug-abusers.
Collapse
Affiliation(s)
- M Jenda
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| | - K Gawel
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| | - M Marszalek
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| | - L Komsta
- Department of Medicinal Chemistry, Medical University, Lublin, Poland
| | - J H Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland.
| |
Collapse
|
28
|
Liu H, Yamaguchi T, Ryotokuji K, Otani S, Kobayashi H, Iseki M, Inada E. The Impact of Chronic Social Stress on Emotional Behavior in Mice and the Therapeutic Effect of Peripheral Mild-Heat Stimulation. Health (London) 2015. [DOI: 10.4236/health.2015.710144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
29
|
McHugh PC, Buckley DA. The Structure and Function of the Dopamine Transporter and its Role in CNS Diseases. HORMONES AND TRANSPORT SYSTEMS 2015; 98:339-69. [DOI: 10.1016/bs.vh.2014.12.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Effect of ASF (a Compound of Traditional Chinese Medicine) on Behavioral Sensitization Induced by Ethanol and Conditioned Place Preference in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:304718. [PMID: 25530778 PMCID: PMC4229967 DOI: 10.1155/2014/304718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/03/2014] [Accepted: 09/07/2014] [Indexed: 11/17/2022]
Abstract
ASF composed by semen and epimedium herbal is a traditional plant compound that is widely used in the treatment of insomnia. Studies have shown that saponins and flavonoids contained in semen can significantly decrease the content of excitatory neurotransmitter Glu in mice. And the total flavone of YinYangHuo can increase the release of GABA in the anterior periventricular system of rat and increase the affinity of GABA for the receptors GABAA. It can be inferred that their synergism may have effect on the neurotransmitter that causes behavioral sensitization and conditioned place preference in experimental animals and affects their drinking behaviors, which is the starting point of this research. The present study found that ASF can inhibit development and expression of behavioral sensitization induced by ethanol and the development of CPP in mice. We demonstrate the inhibition of ASF on behavioral sensitization partly due to its effect on the mesolimbic neurotransmitter system, including decreasing level of DA and Glu and increasing the content of GABA. It suggested that the ASF may have pharmacological effects in the treatment of alcohol addiction.
Collapse
|
31
|
Forray A, Sofuoglu M. Future pharmacological treatments for substance use disorders. Br J Clin Pharmacol 2014; 77:382-400. [PMID: 23039267 DOI: 10.1111/j.1365-2125.2012.04474.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 09/23/2012] [Indexed: 12/20/2022] Open
Abstract
Substance use disorders represent a serious public health and social issue worldwide. Recent advances in our understanding of the neurobiological basis of the addictive processes have led to the development of a growing number of pharmacological agents to treat addictions. Despite this progress, there are no approved pharmacological treatments for cocaine, methamphetamine and cannabis addiction. Moving treatment development to the next stage will require novel ways of approaching substance use disorders. One such novel approach is to target individual vulnerabilities, such as cognitive function, sex differences and psychiatric comorbidities. This review provides a summary of promising pharmacotherapies for alcohol, opiate, stimulant and nicotine addictions. Many medications that target positive and negative reinforcement of drugs, as well as individual vulnerabilities to addiction, are in different phases of development. Clinical trials testing the efficacy of these medications for substance use disorder are warranted.
Collapse
Affiliation(s)
- Ariadna Forray
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
32
|
Klinke ME, Jónsdóttir H. Smoking addiction in chronic obstructive pulmonary disease: Integrating neurobiology and phenomenology through a review of the literature. Chron Respir Dis 2014; 11:229-36. [PMID: 25150186 DOI: 10.1177/1479972314546764] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The aim of this review is to extend professional understanding of the various mechanisms that make smoking cessation difficult for patients with chronic obstructive pulmonary disease (COPD). Smoking in people with COPD is a major challenge for health care today. In spite of significant advances in knowledge about the processes of nicotine addiction, current interventions to support smoking cessation in patients with COPD are less successful than hoped for. A wealth of literature has confirmed that nicotine addiction is a powerful force and that smoking is not simply an unhealthy lifestyle or destructive behavior. However, research based on this realization is still in its infancy. To increase understanding and to develop ways of enhancing smoking cessation in patients with COPD, we review and synthesize knowledge found in neurobiology and phenomenology. We use neurobiology to explain the neurochemical changes that take place in addiction in order to substantiate phenomenological perspectives of smoking in patients with COPD. We relate the smoking experience to the concept of "affordances"-in this context "smoking affordances"-to analyze how smoking affects action possibilities in individuals with COPD. Combining these perspectives helps to illuminate the manifold and unique issues related to smoking addiction in patients with COPD.
Collapse
Affiliation(s)
- Marianne E Klinke
- Faculty of Nursing, School of Health Sciences, University of Iceland, Eirberg, Reykjavik, Iceland
| | - Helga Jónsdóttir
- Faculty of Nursing, School of Health Sciences, University of Iceland, Eirberg, Reykjavik, Iceland
| |
Collapse
|
33
|
Marasco CC, Goodwin CR, Winder DG, Schramm-Sapyta NL, McLean JA, Wikswo JP. Systems-level view of cocaine addiction: the interconnection of the immune and nervous systems. Exp Biol Med (Maywood) 2014; 239:1433-42. [PMID: 24903164 DOI: 10.1177/1535370214537747] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The human body is a complex assembly of physiological systems designed to manage the multidirectional transport of both information and nutrients. An intricate interplay between the nervous, circulatory, and secretory systems is therefore necessary to sustain life, allow delivery of nutrients and therapeutic drugs, and eliminate metabolic waste products and toxins. These systems also provide vulnerable routes for modification by substances of abuse. Addictive substances are, by definition, neurologically active, but as they and their metabolites are spread throughout the body via the nervous, circulatory, respiratory and digestive systems, there is abundant opportunity for interaction with numerous cell and tissue types. Cocaine is one such substance that exerts a broad physiological effect. While a great deal of the research concerning addiction has addressed the neurological effects of cocaine use, only a few studies have been aimed at delineating the role that cocaine plays in various body systems. In this paper, we probe the current research regarding cocaine and the immune system, and map a systems-level view to outline a broader perspective of the biological response to cocaine. Specifically, our overview of the neurological and immunomodulatory effects of the drug will allow a broader perspective of the biological response to cocaine. The focus of this review is on the connection between the nervous and immune systems and the role this connection plays in the long-term complications of cocaine use. By describing the multiplicity of these connections, we hope to inspire detailed investigations into the immunological interplay in cocaine addiction.
Collapse
Affiliation(s)
- Christina C Marasco
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Cody R Goodwin
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Danny G Winder
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | | | - John A McLean
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - John P Wikswo
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
34
|
Soeda F, Hirakawa E, Inoue M, Shirasaki T, Takahama K. Cloperastine rescues impairment of passive avoidance response in mice prenatally exposed to diethylstilbestrol. ENVIRONMENTAL TOXICOLOGY 2014; 29:216-225. [PMID: 22223406 DOI: 10.1002/tox.21749] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 11/11/2011] [Accepted: 11/13/2011] [Indexed: 05/31/2023]
Abstract
We previously reported that prenatal exposure to diethylstilbestrol (DES) impaired passive avoidance responses in mice. Apart from the above, we also found that cloperastine, a centrally acting antitussive, ameliorated depression-like and anxiety-like behaviors in rodents at antitussive-effective doses. In this study, we investigated whether or not cloperastine rescues impairment of passive avoidance responses in mice prenatally exposed to DES. Male DES-exposed mice were subcutaneously administered cloperastine at 10 or 30 mg/kg twice a day from 32 to 41 days after birth and subjected to behavioral testing 42 to 46 days after birth. Cloperastine at 10 and 30 mg/kg ameliorated DES-induced impairment of passive avoidance responses. In addition, cloperastine affected the levels of 5-HT1A receptors, GIRK and BDNF in the hippocampus of DES-exposed mice. However, the number of BrdU-positive cells in the hippocampus of DES-exposed mice was not changed by chronic administration of cloperastine. These findings suggest that the action of endocrine disruptors in the brain may not always be irreversible, and that the symptoms caused by endocrine disruptors might be curable with drugs such as cloperastine.
Collapse
Affiliation(s)
- Fumio Soeda
- Department of Environmental and Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | | | | | | | | |
Collapse
|
35
|
Huys QJ, Tobler PN, Hasler G, Flagel SB. The role of learning-related dopamine signals in addiction vulnerability. PROGRESS IN BRAIN RESEARCH 2014; 211:31-77. [DOI: 10.1016/b978-0-444-63425-2.00003-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Peters J, Pattij T, De Vries TJ. Targeting cocaine versus heroin memories: divergent roles within ventromedial prefrontal cortex. Trends Pharmacol Sci 2013; 34:689-95. [PMID: 24182624 DOI: 10.1016/j.tips.2013.10.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/01/2013] [Accepted: 10/03/2013] [Indexed: 10/26/2022]
Abstract
In the search for novel treatments for addiction, most research has been propelled by the hope for a 'magic bullet' that would cure all forms of addiction. More recently, the field has started to appreciate the differences between psychostimulants versus opiates. Recent data suggest that the ventromedial prefrontal cortex (vmPFC) may fundamentally serve different roles in cocaine versus heroin addiction: acting as a neural OFF switch for cocaine seeking, but an ON switch for heroin seeking. We discuss the relevance of this distinction in relationship to three main functions of the vmPFC: (i) extinction memory, (ii) the suppression of impulsive behaviors, and (iii) the transition from goal-directed behaviors to habits. We highlight the importance of dopamine in modulating corticostriatal circuits for each of these functions. Finally, we conclude by discussing the implications for treatment strategies.
Collapse
Affiliation(s)
- Jamie Peters
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, 1081 BT, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
37
|
Caprioli D, Fryer TD, Sawiak SJ, Aigbirhio FI, Dalley JW. Translating positron emission tomography studies in animals to stimulant addiction: promises and pitfalls. Curr Opin Neurobiol 2013; 23:597-606. [DOI: 10.1016/j.conb.2013.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/04/2013] [Indexed: 11/27/2022]
|
38
|
Porter-Stransky KA, Seiler JL, Day JJ, Aragona BJ. Development of behavioral preferences for the optimal choice following unexpected reward omission is mediated by a reduction of D2-like receptor tone in the nucleus accumbens. Eur J Neurosci 2013; 38:2572-88. [PMID: 23692625 DOI: 10.1111/ejn.12253] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 04/28/2013] [Accepted: 04/12/2013] [Indexed: 11/30/2022]
Abstract
To survive in a dynamic environment, animals must identify changes in resource availability and rapidly apply adaptive strategies to obtain resources that promote survival. We have utilised a behavioral paradigm to assess differences in foraging strategy when resource (reward) availability unexpectedly changes. When reward magnitude was reduced by 50% (receive one reward pellet instead of two), male and female rats developed a preference for the optimal choice by the second session. However, when an expected reward was omitted (receive no reward pellets instead of one), subjects displayed a robust preference for the optimal choice during the very first session. Previous research shows that, when an expected reward is omitted, dopamine neurons phasically decrease their firing rate, which is hypothesised to decrease dopamine release preferentially affecting D2-like receptors. As robust changes in behavioral preference were specific to reward omission, we tested this hypothesis and the functional role of D1- and D2-like receptors in the nucleus accumbens in mediating the rapid development of a behavioral preference for the rewarded option during reward omission in male rats. Blockade of both receptor types had no effect on this behavior; however, holding D2-like, but not D1-like, receptor tone via infusion of dopamine receptor agonists prevented the development of the preference for the rewarded option during reward omission. These results demonstrate that avoiding an outcome that has been tagged with aversive motivational properties is facilitated through decreased dopamine transmission and subsequent functional disruption of D2-like, but not D1-like, receptor tone in the nucleus accumbens.
Collapse
Affiliation(s)
- Kirsten A Porter-Stransky
- Department of Psychology, Biopsychology Area, University of Michigan, 530 Church Street, Ann Arbor, 48109 MI, USA.
| | | | | | | |
Collapse
|
39
|
Nichkova M, Wynveen PM, Marc DT, Huisman H, Kellermann GH. Validation of an ELISA for urinary dopamine: applications in monitoring treatment of dopamine-related disorders. J Neurochem 2013; 125:724-35. [DOI: 10.1111/jnc.12248] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 03/20/2013] [Accepted: 03/21/2013] [Indexed: 11/26/2022]
|
40
|
Differential development of tolerance to the functional and behavioral effects of repeated baclofen treatment in rats. Pharmacol Biochem Behav 2013; 106:27-32. [PMID: 23500188 DOI: 10.1016/j.pbb.2013.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/27/2013] [Accepted: 03/02/2013] [Indexed: 11/21/2022]
Abstract
Baclofen, a gamma-aminobutyric acid (GABA)B receptor agonist, has been used clinically to treat muscle spasticity, rigidity and pain. More recently, interest in the use of baclofen as an addiction medicine has grown, with promising preclinical cocaine and amphetamine data and demonstrated clinical benefit from alcohol and nicotine studies. Few preclinical investigations, however, have utilized chronic dosing of baclofen, which is important given that tolerance can occur to many of its effects. Thus the question of whether chronic treatment of baclofen maintains the efficacy of acute doses is imperative. The neural substrates that underlie the effects of baclofen, particularly those after chronic treatment, are also not known. In the present study, therefore, rats were treated with either a) vehicle, b) acute baclofen (5 mg/kg) or c) chronic baclofen (5 mg/kg, t.i.d. for 5 days). The effects of acute and chronic baclofen administration, compared to vehicle, were assessed using locomotor activity and changes in brain glucose metabolism (a measure of functional brain activity). Acute baclofen significantly reduced locomotor activity (horizontal and total distance traveled), while chronic baclofen failed to affect locomotor activity. Acute baclofen resulted in significantly lower rates of local cerebral glucose utilization throughout many areas of the brain, including the prefrontal cortex, caudate putamen, septum and hippocampus. The majority of these functional effects, with the exception of the caudate putamen and septum, were absent in animals chronically treated with baclofen. Despite the tolerance to the locomotor and functional effects of baclofen following repeated treatment, these persistent effects on functional activity in the caudate putamen and septum may provide insights into the way in which baclofen alters the reinforcing effects of abused substances such as cocaine, alcohol, and methamphetamine both in humans and animal models.
Collapse
|
41
|
Barik J, Marti F, Morel C, Fernandez SP, Lanteri C, Godeheu G, Tassin JP, Mombereau C, Faure P, Tronche F. Chronic stress triggers social aversion via glucocorticoid receptor in dopaminoceptive neurons. Science 2013; 339:332-5. [PMID: 23329050 DOI: 10.1126/science.1226767] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Repeated traumatic events induce long-lasting behavioral changes that are key to organism adaptation and that affect cognitive, emotional, and social behaviors. Rodents subjected to repeated instances of aggression develop enduring social aversion and increased anxiety. Such repeated aggressions trigger a stress response, resulting in glucocorticoid release and activation of the ascending dopamine (DA) system. We bred mice with selective inactivation of the gene encoding the glucocorticoid receptor (GR) along the DA pathway, and exposed them to repeated aggressions. GR in dopaminoceptive but not DA-releasing neurons specifically promoted social aversion as well as dopaminergic neurochemical and electrophysiological neuroadaptations. Anxiety and fear memories remained unaffected. Acute inhibition of the activity of DA-releasing neurons fully restored social interaction in socially defeated wild-type mice. Our data suggest a GR-dependent neuronal dichotomy for the regulation of emotional and social behaviors, and clearly implicate GR as a link between stress resiliency and dopaminergic tone.
Collapse
Affiliation(s)
- Jacques Barik
- Molecular Genetics, Neurophysiology and Behavior Group, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7224, Paris, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Modulation by cocaine of dopamine receptors through miRNA-133b in zebrafish embryos. PLoS One 2012; 7:e52701. [PMID: 23285158 PMCID: PMC3528707 DOI: 10.1371/journal.pone.0052701] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 11/19/2012] [Indexed: 01/11/2023] Open
Abstract
The use of cocaine during pregnancy can affect the mother and indirectly might alter the development of the embryo/foetus. Accordingly, in the present work our aim was to study in vivo (in zebrafish embryos) the effects of cocaine on the expression of dopamine receptors and on miR-133b. These embryos were exposed to cocaine hydrochloride (HCl) at 5 hours post-fertilization (hpf) and were then collected at 8, 16, 24, 48 and 72 hpf to study the expression of dopamine receptors, drd1, drd2a, drd2b and drd3, by quantitative real time PCR (qPCR) and in situ hybridization (ISH, only at 24 hpf). Our results indicate that cocaine alters the expression of the genes studied, depending on the stage of the developing embryo and the type of dopamine receptor. We found that cocaine reduced the expression of miR-133b at 24 and 48 hpf in the central nervous system (CNS) and at the periphery by qPCR and also that the spatial distribution of miR-133b was mainly seen in somites, a finding that suggests the involvement of miR-133b in the development of the skeletal muscle. In contrast, at the level of the CNS miR-133b had a weak and moderate expression at 24 and 48 hpf. We also analysed the interaction of miR-133b with the Pitx3 and Pitx3 target genes drd2a and drd2b, tyrosine hydroxylase (th) and dopamine transporter (dat) by microinjection of the Pitx3-3'UTR sequence. Microinjection of Pitx3-3'UTR affected the expression of pitx3, drd2a, drd2b, th and dat. In conclusion, in the present work we describe a possible mechanism to account for cocaine activity by controlling miR-133b transcription in zebrafish. Via miR-133b cocaine would modulate the expression of pitx3 and subsequently of dopamine receptors, dat and th. These results indicate that miRNAs can play an important role during embryogenesis and in drug addiction.
Collapse
|
43
|
Bell RL, Franklin KM, Hauser SR, Zhou FC. Introduction to the special issue "Pharmacotherapies for the treatment of alcohol abuse and dependence" and a summary of patents targeting other neurotransmitter systems. RECENT PATENTS ON CNS DRUG DISCOVERY 2012; 7:93-112. [PMID: 22574678 PMCID: PMC3868366 DOI: 10.2174/157488912800673155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/02/2012] [Accepted: 03/13/2012] [Indexed: 12/19/2022]
Abstract
This paper introduces the Special Section: Pharmacotherapies for the Treatment of Alcohol Abuse and Dependence and provides a summary of patents targeting neurotransmitter systems not covered in the other four chapters. The World Health Organization notes that alcoholic-type drinking results in 2.5 million deaths per year, and these deaths occur to a disproportionately greater extent among adolescents and young adults. Developing a pharmacological treatment targeting alcohol abuse and dependence is complicated by (a) the heterogeneous nature of the disease(s), (b) alcohol affecting multiple neurotransmitter and neuromodulator systems, and (c) alcohol affecting multiple organ systems which in turn influence the function of the central nervous system. Presently, the USA Federal Drug Administration has approved three pharmacotherapies for alcoholism: disulfiram, naltrexone, and acamprosate. This chapter provides a summary of the following systems, which are not covered in the accompanying chapters; alcohol and acetaldehyde metabolism, opioid, glycinergic, GABA-A, neurosteroid, dopaminergic, serotonergic, and endocannabinoid, as well as patents targeting these systems for the treatment of alcoholism. Finally, an overview is presented on the use of pharmacogenetics and pharmacogenomics in tailoring treatments for certain subpopulations of alcoholics, which is expected to continue in the future.
Collapse
Affiliation(s)
- Richard L. Bell
- Indiana University School of Medicine, Department of Psychiatry, Institute of Psychiatric Research, 791 Union Drive, Indianapolis, Indiana, 46202, USA
| | - Kelle M. Franklin
- Indiana University School of Medicine, Department of Psychiatry, Institute of Psychiatric Research, 791 Union Drive, Indianapolis, Indiana, 46202, USA
| | - Sheketha R. Hauser
- Indiana University School of Medicine, Department of Psychiatry, Institute of Psychiatric Research, 791 Union Drive, Indianapolis, Indiana, 46202, USA
| | - Feng C. Zhou
- Indiana University School of Medicine, Department of Anatomy and Cell Biology, 635 Barnhill Drive MS-508, Indian-apolis, Indiana, 46202, USA
| |
Collapse
|
44
|
Abstract
Dopamine signaling in the nucleus accumbens is critical in mediating the effects of cocaine. There are two splice variants of dopamine D2 receptors, D2L and D2S, which are believed to have different functional roles. Here, we show, that knocking down D2L selectively using viral-mediated short-hairpin RNA led to a slight but significant decrease in basal locomotor activity with no significant change in cocaine-induced stimulation of locomotion. The knockdown appears to produce a trend of reduced conditioned place preference to cocaine but the difference was not statistically significant. Our results demonstrated that the splice variants of D2 receptors can be selectively manipulated in vivo in specific brain regions allowing more specific studies of each D2 receptor isoform.
Collapse
|
45
|
Liang J, Ma SS, Li YJ, Ping XJ, Hu L, Cui CL. Dynamic changes of tyrosine hydroxylase and dopamine concentrations in the ventral tegmental area-nucleus accumbens projection during the expression of morphine-induced conditioned place preference in rats. Neurochem Res 2012; 37:1482-9. [PMID: 22396106 DOI: 10.1007/s11064-012-0739-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 02/07/2012] [Accepted: 02/20/2012] [Indexed: 11/28/2022]
Abstract
Our previous study demonstrated that morphine dose- and time-dependently elevated dopamine (DA) concentrations in the nucleus accumbens (NAc) during the expression of morphine-induced conditioned place preference (CPP) in rats. However, still unknown are how DA concentrations dynamically change during the morphine-induced CPP test and whether tyrosine hydroxylase (TH) activity in the ventral tegmental area (VTA) plays a vital role in this process. In the present study, we measured dynamic changes in TH and phosphorylated TH serine 40 (pTH Ser(40)) and pTH Ser(31) proteins in the VTA, and DA concentrations in the NAc at 5 min intervals during a 30 min morphine-induced CPP test. Rats that underwent morphine-induced CPP training significantly preferred the morphine-paired chamber during the CPP expression test, an effect that lasted at least 30 min in the drug-free state. DA concentrations in the NAc markedly increased at 15 min when the rats were returned to the CPP boxes to assess the expression of preference for the previously drug-paired chamber. DA concentrations then declined 2 h after the CPP test. TH and pTH Ser(40) levels, but not pTH Ser(31) levels, in the VTA were enhanced during the CPP test. These results indicated that TH and the phosphorylation of TH Ser(40) in the VTA may be responsible for DA synthesis and release in the NAc during the behavioral expression of conditioned reward elicited by a drug-associated context.
Collapse
Affiliation(s)
- Jing Liang
- Neuroscience Research Institute and Department of Neurobiology, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100083, People's Republic of China
| | | | | | | | | | | |
Collapse
|
46
|
Praschak-Rieder N, Willeit M. Imaging of seasonal affective disorder and seasonality effects on serotonin and dopamine function in the human brain. Curr Top Behav Neurosci 2012; 11:149-167. [PMID: 22218931 DOI: 10.1007/7854_2011_174] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
According to current knowledge, disturbances in brain monoamine transmission play a major role in many psychiatric disorders, and many of the radioligands used for investigating these disorders bind to targets within the brain monoamine systems. However, a phylogenetically ancient and prevailing function of monoamines is to mediate the adaptation of organisms and cells to rhythmical changes in light conditions, and to other environmental rhythms, such as changes in temperature, or the availability of energy resources throughout the seasons. The physiological systems mediating these changes are highly conserved throughout species, including humans. Here we review the literature on seasonal changes in binding of monoaminergic ligands in the human brain. Moreover, we argue for the importance of considering possible effects of season when investigating brain monoamines in healthy subjects and subjects with psychiatric disorders.
Collapse
Affiliation(s)
- Nicole Praschak-Rieder
- Department of Biological Psychiatry, Medical University Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria,
| | | |
Collapse
|
47
|
Urcelay GP, Dalley JW. Linking ADHD, impulsivity, and drug abuse: a neuropsychological perspective. Curr Top Behav Neurosci 2012; 9:173-197. [PMID: 21365439 DOI: 10.1007/7854_2011_119] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In this chapter, we consider the relevance of impulsivity as both a psychological construct and endophenotype underlying attention-deficit/hyperactivity disorder (ADHD) and drug addiction. The case for executive dysfunction in ADHD and drug addiction is critically reviewed in the context of dissociable cognitive control processes mediated by the dorsolateral prefrontal cortex (DLPFC), the orbital and ventral medial prefrontal cortex (VMPFC). We argue that such neuroanatomical divisions within the prefrontal cortex are likely to account for the multidimensional basis of impulsivity conceptually categorized in terms of "motoric" and "choice" impulsivity. The relevance of this distinction for the etiology of ADHD and drug addiction is integrated within a novel theoretical framework. This scheme embraces animal learning theory to help explain the heterogeneity of impulse control disorders, which are exemplified by ADHD as a vulnerability disorder for drug addiction.
Collapse
Affiliation(s)
- Gonzalo P Urcelay
- Behavioural and Clinical Neuroscience Institute, Department of Experimental Psychology, University of Cambridge, Downing St., Cambridge, CB2 3EB, UK
| | | |
Collapse
|
48
|
Lenz B, Müller CP, Stoessel C, Sperling W, Biermann T, Hillemacher T, Bleich S, Kornhuber J. Sex hormone activity in alcohol addiction: integrating organizational and activational effects. Prog Neurobiol 2011; 96:136-63. [PMID: 22115850 DOI: 10.1016/j.pneurobio.2011.11.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 11/03/2011] [Accepted: 11/08/2011] [Indexed: 01/06/2023]
Abstract
There are well-known sex differences in the epidemiology and etiopathology of alcohol dependence. Male gender is a crucial risk factor for the onset of alcohol addiction. A directly modifying role of testosterone in alcohol addiction-related behavior is well established. Sex hormones exert both permanent (organizational) and transient (activational) effects on the human brain. The sensitive period for these effects lasts throughout life. In this article, we present a novel early sex hormone activity model of alcohol addiction. We propose that early exposure to sex hormones triggers structural (organizational) neuroadaptations. These neuroadaptations affect cellular and behavioral responses to adult sex hormones, sensitize the brain's reward system to the reinforcing properties of alcohol and modulate alcohol addictive behavior later in life. This review outlines clinical findings related to the early sex hormone activity model of alcohol addiction (handedness, the second-to-fourth-finger length ratio, and the androgen receptor and aromatase) and includes clinical and preclinical literature regarding the activational effects of sex hormones in alcohol drinking behavior. Furthermore, we discuss the role of the hypothalamic-pituitary-adrenal and -gonadal axes and the opioid system in mediating the relationship between sex hormone activity and alcohol dependence. We conclude that a combination of exposure to sex hormones in utero and during early development contributes to the risk of alcohol addiction later in life. The early sex hormone activity model of alcohol addiction may prove to be a valuable tool in the development of preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Bernd Lenz
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
BACKGROUND/AIM Nucleus accumbens is a part of the ventral striatum also known as a drug active brain region, especially related with drug addiction. The aim of the study was to investigate the Golgi morphology of the nucleus accumbens neurons. METHODS The study was performed on the frontal and sagittal sections of 15 human brains by the Golgi Kopsch method. We classified neurons in the human nucleus accumbens according to their morphology and size into four types: type I--fusiform neurons; type II--fusiform neurons with lateral dendrite, arising from a part of the cell body; type III--pyramidal-like neuron; type IV--multipolar neuron. The medium spiny neurons, which are mostly noted regarding to the drug addictive conditions of the brain, correspond to the type IV--multipolar neurons. RESULTS Two regions of human nucleus accumbens could be clearly recognized on Nissl and Golgi preparations each containing different predominant neuronal types. Central part of nucleus accumbens, core region, has a low density of impregnated neurons with predominant type III, pyramidal-like neurons, with spines on secondary branches and rare type IV, multipolar neurons. Contrary to the core, peripheral region, shell of nucleus, has a high density of impregnated neurons predominantly contained of type I and type IV--multipolar neurons, which all are rich in spines on secondary and tertiary dendritic branches. CONCLUSION Our results indicate great morphological variability of human nucleus accumbens neurons. This requires further investigations and clarifying clinical significance of this important brain region.
Collapse
|
50
|
Abstract
Nicotine is the principal addictive component that drives continued tobacco use despite users' knowledge of the harmful consequences. The initiation of addiction involves the mesocorticolimbic dopamine system, which contributes to the processing of rewarding sensory stimuli during the overall shaping of successful behaviors. Acting mainly through nicotinic receptors containing the α4 and β2 subunits, often in combination with the α6 subunit, nicotine increases the firing rate and the phasic bursts by midbrain dopamine neurons. Neuroadaptations arise during chronic exposure to nicotine, producing an altered brain condition that requires the continued presence of nicotine to be maintained. When nicotine is removed, a withdrawal syndrome develops. The expression of somatic withdrawal symptoms depends mainly on the α5, α2, and β4 (and likely α3) nicotinic subunits involving the epithalamic habenular complex and its targets. Thus, nicotine taps into diverse neural systems and an array of nicotinic acetylcholine receptor (nAChR) subtypes to influence reward, addiction, and withdrawal.
Collapse
Affiliation(s)
- Mariella De Biasi
- Department of Neuroscience, Center on Addiction, Learning, Memory, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|