1
|
Ahn J, Kim B, Bello AB, Moon JJ, Arai Y, Lee SH. Regenerative Functions of Regulatory T Cells and Current Strategies Utilizing Mesenchymal Stem Cells in Immunomodulatory Tissue Regeneration. Tissue Eng Regen Med 2025; 22:167-180. [PMID: 39804546 PMCID: PMC11794763 DOI: 10.1007/s13770-024-00690-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Regulatory T cells (Tregs) are essential for maintaining immune homeostasis and facilitating tissue regeneration by fostering an environment conducive to tissue repair. However, in damaged tissues, excessive inflammatory responses can overwhelm the immunomodulatory capacity of Tregs, compromising their functionality and potentially hindering effective regeneration. Mesenchymal stem cells (MSCs) play a key role in enhancing Treg function. MSCs enhance Treg activity through indirect interactions, such as cytokine secretion, and direct interactions via membrane proteins. METHODS This review examines the regenerative functions of Tregs across various tissues, including bone, cartilage, muscle, and skin, and explores strategies to enhance Treg functionality using MSCs. Advanced techniques, such as the overexpression of relevant genes in MSCs, are highlighted for their potential to further enhance Treg function. Additionally, emerging technologies utilizing extracellular vesicles (EVs) and cell membrane-derived vesicles derived from MSCs offer promising alternatives to circumvent the potential side effects associated with live cell therapies. This review proposes approaches to enhance Treg function and promote tissue regeneration and also outlines future research directions. RESULTS AND CONCLUSION This review elucidates recent technological advancements aimed at enhancing Treg function using MSCs and examines their potential to improve tissue regeneration efficiency.
Collapse
Grants
- 2022R1A2C3004850 Ministry of Science and ICT, South Korea
- RS-2024-00405381 Ministry of Science and ICT, South Korea
- RS-2023-00257290 Ministry of Science and ICT, South Korea
- RS-2023-00246418 Ministry of Education
- RS-2023-00275407 Ministry of Education
- 21C0703L1 Ministry of Science and ICT, Ministry of Health & Welfare
- HX23C1734 Ministry of Science and ICT, Ministry of Trade, Industry and Energy, Ministry of Health & Welfare, The Ministry of Food and Drug Safety
- Ministry of Science and ICT, Ministry of Health & Welfare
- Ministry of Science and ICT, Ministry of Trade, Industry and Energy, Ministry of Health & Welfare, The Ministry of Food and Drug Safety
Collapse
Affiliation(s)
- Jinsung Ahn
- Department of Biomedical Engineering, Dongguk University, Seoul, South Korea
| | - Bowon Kim
- Department of Biomedical Engineering, Dongguk University, Seoul, South Korea
| | - Alvin Bacero Bello
- Department of Biomedical Engineering, Dongguk University, Seoul, South Korea
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Yoshie Arai
- Department of Biomedical Engineering, Dongguk University, Seoul, South Korea.
| | - Soo-Hong Lee
- Department of Biomedical Engineering, Dongguk University, Seoul, South Korea.
| |
Collapse
|
2
|
Ge C, Ye Z, Hu W, Tang J, Li H, Liu F, Liao X, Chen J, Zhang S, Cao Z. Effects of pyrazosulfuron-ethyl on caudal fin regeneration in zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 290:117552. [PMID: 39705973 DOI: 10.1016/j.ecoenv.2024.117552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
With the widespread application of pesticides, water pollution problems are becoming more and more serious, which is very likely to cause harm to fish. Lower vertebrates, including fish, have the ability to repair damaged tissues. The spread of pesticides in the water may affect their regeneration process after injury, leading to their death, thereby affecting the survival rate of the population. Therefore, we used zebrafish as a model animal to evaluate the effect of the pesticide pyrazosulfuron-ethyl on caudal fin regeneration in zebrafish larvae. We exposed zebrafish larvae to 0, 5, 15, and 25 mg/L pyrazosulfuron-ethyl at 3 days after caudal fin amputation. It was found that exposure to pyrazosulfuron-ethyl significantly inhibited caudal fin regeneration and affected the behavior of zebrafish larvae. After exposure to pyrazosulfuron-ethyl, proliferating cells decreased and apoptotic cells increased in the caudal fin of zebrafish larvae. Pyrazosulfuron-ethyl exposure resulted in the decreased number of neutrophils and macrophages, and the downregulation of immune related gene expression levels during caudal fin. Using LPS to activate inflammation can effectively rescue the fin regeneration defects induced by pyrazosulfuron-ethyl. However, inhibiting the Notch signaling pathway and inhibiting reactive oxygen cannot rescue the fin regeneration defects induced by pyrazosulfuron-ethyl. Our results indicate that pyrazosulfuron-ethyl can inhibit zebrafish caudal fin regeneration by reducing the number of innate immune cells and affecting the normal process of inflammation, thereby inhibiting caudal fin regeneration. This study expands our understanding of the potential effects of the pesticide pyrazosulfuron-ethyl on injured fish, highlights the link between the immune system and the regeneration process, and demonstrates the potential application of fin regeneration in risk assessments of environmental toxicology to assess drug toxicity.
Collapse
Affiliation(s)
- Chenkai Ge
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China; School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325003, China
| | - Zhijun Ye
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Weitao Hu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Jingrong Tang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Huimin Li
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Jianjun Chen
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine,Translational Research Institute of Brain and Brain-Like Intelligence,Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Institute of Medical Genetics, Department of Big Data in Health Science School of Public Health, Tongji University School of Medicine, Tongji University, Shanghai 200331, China
| | - Shouhua Zhang
- Department of General Surgery, Jiangxi Provincial Children's Hospital, The Affiliated Children's Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China.
| |
Collapse
|
3
|
Colavite PM, Azevedo MDCS, Francisconi CF, Fonseca AC, Tabanez AP, Melchiades JL, Passadori DC, Borrego A, De Franco M, Trombone APF, Garlet GP. Intermediate and Transitory Inflammation Mediate Proper Alveolar Bone Healing Outcome in Contrast to Extreme Low/High Responses: Evidence from Mice Strains Selected for Distinct Inflammatory Phenotypes. BIOLOGY 2024; 13:972. [PMID: 39765639 PMCID: PMC11673754 DOI: 10.3390/biology13120972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025]
Abstract
Alveolar bone healing is influenced by various local and systemic factors, including the local inflammatory response. This study aimed to evaluate the role of inflammatory responsiveness in alveolar bone healing using 8-week-old male and female mice (N = 5/time/group) strains selected for maximum (AIRmax) or minimum (AIRmin) acute inflammatory response carrying distinct homozygous RR/SS Slc11a1 genotypes, namely AIRminRR, AIRminSS, AIRmaxRR, and AIRmaxSS mice. After upper right incisor extraction, bone healing was analyzed at 0, 3, 7, and 14 days using micro-computed tomography, histomorphometry, birefringence, immunohistochemistry, and PCRArray analysis. AIRmaxSS and AIRminRR presented the highest and lowest inflammatory readouts, respectively, associated with lowest repair levels in both strains, while intermediate inflammatory phenotypes observed in AIRminSS and AIRmaxRR were associated with higher repair levels in such strains. The better healing outcomes are associated with intermediate inflammatory cell counts, a balanced expression of pro- and anti-inflammatory cytokines and chemokines, increased expression of growth and osteogenic factors and MSCs markers. Our results demonstrate that extreme high and low inflammatory responses are not ideal for a proper bone repair outcome, while an intermediate and transitory inflammation is associated with a proper alveolar bone healing outcome.
Collapse
Affiliation(s)
- Priscila Maria Colavite
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisola, 9-75, Bauru CEP 17012-901, SP, Brazil; (P.M.C.); (M.d.C.S.A.); (A.C.F.); (D.C.P.)
| | - Michelle de Campos Soriani Azevedo
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisola, 9-75, Bauru CEP 17012-901, SP, Brazil; (P.M.C.); (M.d.C.S.A.); (A.C.F.); (D.C.P.)
| | - Carolina Fávaro Francisconi
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisola, 9-75, Bauru CEP 17012-901, SP, Brazil; (P.M.C.); (M.d.C.S.A.); (A.C.F.); (D.C.P.)
| | - Angélica Cristina Fonseca
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisola, 9-75, Bauru CEP 17012-901, SP, Brazil; (P.M.C.); (M.d.C.S.A.); (A.C.F.); (D.C.P.)
| | - André Petenucci Tabanez
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisola, 9-75, Bauru CEP 17012-901, SP, Brazil; (P.M.C.); (M.d.C.S.A.); (A.C.F.); (D.C.P.)
| | - Jéssica Lima Melchiades
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisola, 9-75, Bauru CEP 17012-901, SP, Brazil; (P.M.C.); (M.d.C.S.A.); (A.C.F.); (D.C.P.)
| | - Daniela Carignatto Passadori
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisola, 9-75, Bauru CEP 17012-901, SP, Brazil; (P.M.C.); (M.d.C.S.A.); (A.C.F.); (D.C.P.)
| | - Andrea Borrego
- Laboratory of Immunogenetics, Butantan Institute, Secretary of Health, Government of the State of São Paulo, Sao Paulo CEP 05503-900, SP, Brazil; (A.B.); (M.D.F.)
| | - Marcelo De Franco
- Laboratory of Immunogenetics, Butantan Institute, Secretary of Health, Government of the State of São Paulo, Sao Paulo CEP 05503-900, SP, Brazil; (A.B.); (M.D.F.)
- Pasteur Institute, Diagnostic Section, Sao Paulo CEP 01311-000, SP, Brazil
| | | | - Gustavo Pompermaier Garlet
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisola, 9-75, Bauru CEP 17012-901, SP, Brazil; (P.M.C.); (M.d.C.S.A.); (A.C.F.); (D.C.P.)
| |
Collapse
|
4
|
Najafi Z, Rahmanian-Devin P, Baradaran Rahimi V, Nokhodchi A, Askari VR. Challenges and opportunities of medicines for treating tendon inflammation and fibrosis: A comprehensive and mechanistic review. Fundam Clin Pharmacol 2024; 38:802-841. [PMID: 38468183 DOI: 10.1111/fcp.12999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/20/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Tendinopathy refers to conditions characterized by collagen degeneration within tendon tissue, accompanied by the proliferation of capillaries and arteries, resulting in reduced mechanical function, pain, and swelling. While inflammation in tendinopathy can play a role in preventing infection, uncontrolled inflammation can hinder tissue regeneration and lead to fibrosis and impaired movement. OBJECTIVES The inability to regulate inflammation poses a significant limitation in tendinopathy treatment. Therefore, an ideal treatment strategy should involve modulation of the inflammatory process while promoting tissue regeneration. METHODS The current review article was prepared by searching PubMed, Scopus, Web of Science, and Google Scholar databases. Several treatment approaches based on biomaterials have been developed. RESULTS This review examines various treatment methods utilizing small molecules, biological compounds, herbal medicine-inspired approaches, immunotherapy, gene therapy, cell-based therapy, tissue engineering, nanotechnology, and phototherapy. CONCLUSION These treatments work through mechanisms of action involving signaling pathways such as transforming growth factor-beta (TGF-β), mitogen-activated protein kinases (MAPKs), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), all of which contribute to the repair of injured tendons.
Collapse
Affiliation(s)
- Zohreh Najafi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pouria Rahmanian-Devin
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Nokhodchi
- Lupin Pharmaceutical Research Center, 4006 NW 124th Ave., Coral Springs, Florida, Florida, 33065, USA
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, UK
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Yang Y, Xu L, Atkins C, Kuhlman L, Zhao J, Jeong JM, Wen Y, Moreno N, Kim KH, An YA, Wang F, Bynon S, Villani V, Gao B, Brombacher F, Harris R, Eltzschig HK, Jacobsen E, Ju C. Novel IL-4/HB-EGF-dependent crosstalk between eosinophils and macrophages controls liver regeneration after ischaemia and reperfusion injury. Gut 2024; 73:1543-1553. [PMID: 38724220 PMCID: PMC11347249 DOI: 10.1136/gutjnl-2024-332033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/18/2024] [Indexed: 06/13/2024]
Abstract
OBJECTIVE Previous studies indicate that eosinophils are recruited into the allograft following orthotopic liver transplantation and protect from ischaemia reperfusion (IR) injury. In the current studies, we aim to explore whether their protective function could outlast during liver repair. DESIGN Eosinophil-deficient mice and adoptive transfer of bone marrow-derived eosinophils (bmEos) were employed to investigate the effects of eosinophils on tissue repair and regeneration after hepatic IR injury. Aside from exogenous cytokine or neutralising antibody treatments, mechanistic studies made use of a panel of mouse models of eosinophil-specific IL-4/IL-13-deletion, cell-specific IL-4rα-deletion in liver macrophages and hepatocytes and macrophage-specific deletion of heparin-binding epidermal growth factor-like growth factor (hb-egf). RESULT We observed that eosinophils persisted over a week following hepatic IR injury. Their peak accumulation coincided with that of hepatocyte proliferation. Functional studies showed that eosinophil deficiency was associated with a dramatic delay in liver repair, which was normalised by the adoptive transfer of bmEos. Mechanistic studies demonstrated that eosinophil-derived IL-4, but not IL-13, was critically involved in the reparative function of these cells. The data further revealed a selective role of macrophage-dependent IL-4 signalling in liver regeneration. Eosinophil-derived IL-4 stimulated macrophages to produce HB-EGF. Moreover, macrophage-specific hb-egf deletion impaired hepatocyte regeneration after IR injury. CONCLUSION Together, these studies uncovered an indispensable role of eosinophils in liver repair after acute injury and identified a novel crosstalk between eosinophils and macrophages through the IL-4/HB-EGF axis.
Collapse
Affiliation(s)
- Yang Yang
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Long Xu
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Constance Atkins
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Lily Kuhlman
- The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jie Zhao
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jong-Min Jeong
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yankai Wen
- The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Nicolas Moreno
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kang Ho Kim
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yu A An
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fenfen Wang
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Steve Bynon
- Department of Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Vincenzo Villani
- Department of Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bin Gao
- Laboratory of Liver Disease, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Frank Brombacher
- University of Cape Town Faculty of Health Sciences, Observatory, Western Cape, South Africa
| | - Raymond Harris
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Holger K Eltzschig
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Elizabeth Jacobsen
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Cynthia Ju
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
6
|
Hu S, Liang Y, Pan X. Exosomes: A promising new strategy for treating osteoporosis in the future. J Drug Deliv Sci Technol 2024; 97:105571. [DOI: 10.1016/j.jddst.2024.105571] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Dutra FA, Francisco CS, Carneiro Pires B, Borges MM, Torres ALH, Resende VA, Mateus MF, Cipriano DF, Miguez FB, Freitas JCC, Teixeira J, Borges WDS, Guimarães L, da Cunha EF, Ramalho TDC, Nascimento CS, De Sousa FB, Costa RA, Lacerda V, Borges KB. Coumarin/β-Cyclodextrin Inclusion Complexes Promote Acceleration and Improvement of Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30900-30914. [PMID: 38848495 PMCID: PMC11194811 DOI: 10.1021/acsami.4c05069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024]
Abstract
Coumarins have great pharmacotherapeutic potential, presenting several biological and pharmaceutical applications, like antibiotic, fungicidal, anti-inflammatory, anticancer, anti-HIV, and healing activities, among others. These molecules are practically insoluble in water, and for biological applications, it became necessary to complex them with cyclodextrins (CDs), which influence their bioavailability in the target organism. In this work, we studied two coumarins, and it was possible to conclude that there were structural differences between 4,7-dimethyl-2H-chromen-2-one (DMC) and 7-methoxy-4-methyl-2H-chromen-2-one (MMC)/β-CD that were solubilized in ethanol, frozen, and lyophilized (FL) and the mechanical mixtures (MM). In addition, the inclusion complex formation improved the solubility of DMC and MMC in an aqueous medium. According to the data, the inclusion complexes were formed and are more stable at a molar ratio of 2:1 coumarin/β-CD, and hydrogen bonds along with π-π stacking interactions are responsible for the better stability, especially for (MMC)2@β-CD. In vivo wound healing studies in mice showed faster re-epithelialization and the best deposition of collagen with the (DMC)2@β-CD (FL) and (MMC)2@β-CD (FL) inclusion complexes, demonstrating clearly that they have potential in wound repair. Therefore, (DMC)2@β-CD (FL) deserves great attention because it presented excellent results, reducing the granulation tissue and mast cell density and improving collagen remodeling. Finally, the protein binding studies suggested that the anti-inflammatory activities might exert their biological function through the inhibition of MEK, providing the possibility of development of new MEK inhibitors.
Collapse
Affiliation(s)
- Flávia
Viana Avelar Dutra
- Departamento
de Ciências Naturais, Universidade
Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio
74, Fábricas, 36301-160 São João del-Rei, Minas Gerais, Brazil
| | - Carla Santana Francisco
- Departamento
de Química, Universidade Federal
do Espírito Santo, Centro de Ciências Exatas, Avenida Fernando Ferrari, S/N, Goiabeiras, 29060-900 Vitoria, Espírito Santo, Brazil
| | - Bruna Carneiro Pires
- Departamento
de Ciências Naturais, Universidade
Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio
74, Fábricas, 36301-160 São João del-Rei, Minas Gerais, Brazil
| | - Marcella Matos
Cordeiro Borges
- Departamento
de Ciências Naturais, Universidade
Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio
74, Fábricas, 36301-160 São João del-Rei, Minas Gerais, Brazil
| | - Ana Luiza Horta Torres
- Departamento
de Medicina, Universidade Federal de São
João del-Rei, Campus Dom Bosco, Praça Dom Helvécio 74, Fábricas, 36301-160 São João
del-Rei, Minas Gerais, Brazil
| | - Vivian Alexandra Resende
- Departamento
de Ciências Naturais, Universidade
Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio
74, Fábricas, 36301-160 São João del-Rei, Minas Gerais, Brazil
| | - Marcella Fernandes
Mano Mateus
- Departamento
de Ciências Naturais, Universidade
Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio
74, Fábricas, 36301-160 São João del-Rei, Minas Gerais, Brazil
| | - Daniel Fernandes Cipriano
- Departamento
de Física, Universidade Federal do
Espírito Santo, Centro de Ciências Exatas, Avenida Fernando Ferrari, S/N, Goiabeiras, 29060-900 Vitoria, Espírito Santo, Brazil
| | - Flávio Bastos Miguez
- Instituto
de Física e Química, Universidade
Federal de Itajubá, 37500-903 Itajubá, Minas Gerais, Brazil
| | - Jair Carlos Checon
de Freitas
- Departamento
de Física, Universidade Federal do
Espírito Santo, Centro de Ciências Exatas, Avenida Fernando Ferrari, S/N, Goiabeiras, 29060-900 Vitoria, Espírito Santo, Brazil
| | - Jéssika
Poliana Teixeira
- Departamento
de Química, Universidade Federal
de Lavras, Campus Universitário, 37200-900 Lavras, Minas Gerais, Brazil
| | - Warley de Souza Borges
- Departamento
de Química, Universidade Federal
do Espírito Santo, Centro de Ciências Exatas, Avenida Fernando Ferrari, S/N, Goiabeiras, 29060-900 Vitoria, Espírito Santo, Brazil
| | - Luciana Guimarães
- Departamento
de Ciências Naturais, Universidade
Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio
74, Fábricas, 36301-160 São João del-Rei, Minas Gerais, Brazil
| | | | - Teodorico de Castro Ramalho
- Departamento
de Química, Universidade Federal
de Lavras, Campus Universitário, 37200-900 Lavras, Minas Gerais, Brazil
| | - Clebio Soares Nascimento
- Departamento
de Ciências Naturais, Universidade
Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio
74, Fábricas, 36301-160 São João del-Rei, Minas Gerais, Brazil
| | - Frederico Barros De Sousa
- Instituto
de Física e Química, Universidade
Federal de Itajubá, 37500-903 Itajubá, Minas Gerais, Brazil
| | - Raquel Alves Costa
- Departamento
de Ciências Naturais, Universidade
Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio
74, Fábricas, 36301-160 São João del-Rei, Minas Gerais, Brazil
| | - Valdemar Lacerda
- Departamento
de Química, Universidade Federal
do Espírito Santo, Centro de Ciências Exatas, Avenida Fernando Ferrari, S/N, Goiabeiras, 29060-900 Vitoria, Espírito Santo, Brazil
| | - Keyller Bastos Borges
- Departamento
de Ciências Naturais, Universidade
Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio
74, Fábricas, 36301-160 São João del-Rei, Minas Gerais, Brazil
| |
Collapse
|
8
|
Chu Z, Zhu L, Zhou Y, Yang F, Hu Z, Luo Y, Li W, Luo F. Targeting Nrf2 by bioactive peptides alleviate inflammation: expanding the role of gut microbiota and metabolites. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 38881345 DOI: 10.1080/10408398.2024.2367570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Inflammation is a complex process that usually refers to the general response of the body to the harmful stimuli of various pathogens, tissue damage, or exogenous pollutants. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that regulates cellular defense against oxidative damage and toxicity by expressing genes related to oxidative stress response and drug detoxification. In addition to its antioxidant properties, Nrf2 is involved in many other important physiological processes, including inflammation and metabolism. Nrf2 can bind the promoters of antioxidant genes and upregulates their expressions, which alleviate oxidation-induced inflammation. Nrf2 has been shown to upregulate heme oxygenase-1 expression, which promotes NF-κB activation and is closely related with inflammation. Nrf2, as a key factor in antioxidant response, is closely related to the expressions of pro-inflammatory factors, NF-κB pathway and cell metabolism. Bioactive peptides come from a wide range of sources and have many biological functions. Increasing evidence indicates that bioactive peptides have potential anti-inflammatory activities. This article summarized the sources, absorption and utilization of bioactive peptides and their role in alleviating inflammation via Nrf2 pathway. Bioactive peptides can also regulate gut microbiota and alter metabolites, which regulates the Nrf2 pathway through novel pathway and supplement the anti-inflammatory mechanisms of bioactive peptides. This review provides a reference for further study on the anti-inflammatory effect of bioactive peptides and the development and utilization of functional foods.
Collapse
Affiliation(s)
- Zhongxing Chu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Lingfeng Zhu
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Yaping Zhou
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Feiyan Yang
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Zuomin Hu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yi Luo
- Department of Clinic Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wen Li
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| |
Collapse
|
9
|
Yang J, Dong X, Wei W, Liu K, Wu X, Dai H. An injectable hydrogel dressing for controlled release of hydrogen sulfide pleiotropically mediates the wound microenvironment. J Mater Chem B 2024; 12:5377-5390. [PMID: 38716615 DOI: 10.1039/d4tb00411f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The healing of scalded wounds faces many challenges such as chronic inflammation, oxidative stress, wound infection, and difficulties in vascular and nerve regeneration. Treating a single problem cannot effectively coordinate the complex regenerative microenvironment of scalded wounds, limiting the healing and functional recovery of the skin. Therefore, there is a need to develop a multi-effect treatment plan that can adaptively address the issues at each stage of wound healing. In this study, we propose a scheme for on-demand release of hydrogen sulfide (H2S) based on the concentration of reactive oxygen species (ROS) in the wound microenvironment. This is achieved by encapsulating peroxythiocarbamate (PTCM) in the ROS-responsive polymer poly(ethylene glycol)-poly(L-methionine) (PMet) to form nanoparticles, which are loaded into a thermosensitive injectable hydrogel, F127-poly(L-aspartic acid-N-hydroxysuccinimide) (F127-P(Asp-NHS)), to create a scald dressing. The H2S released by the hydrogel dressing on demand regulates the wound microenvironment by alleviating infection, reducing oxidative stress, and remodeling inflammation, thereby accelerating the healing of full-thickness scalded wounds. This hydrogel dressing for the adaptive release of H2S has great potential in addressing complex scalded wounds associated with infection and chronic inflammation.
Collapse
Affiliation(s)
- Junwei Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Xianzhen Dong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Wenying Wei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Kun Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Xiaopei Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
- Wuhan University of Technology Advanced Engineering Technology Research Institute of Zhongshan City, Zhongshan 528400, China
| |
Collapse
|
10
|
Gundogdu K, Kılıc Erkek O, Gundogdu G, Sayin D, Abban Mete G. Anti-inflammatory effects of sericin and swimming exercise in treating experimental Achilles tendinopathy in rat. Appl Physiol Nutr Metab 2024; 49:501-513. [PMID: 38284362 DOI: 10.1139/apnm-2023-0377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
The aim of this study was to assess the effectiveness of combining sericin with swimming exercise as a treatment for type-I collagenase-induced Achilles tendinopathy (AT) in rats, with a focus on inflammatory cytokines. An experimental AT model was established using type-I collagenase in male Sprague-Dawley rats, categorized into five groups: Group 1 (Control + Saline), Group 2 (AT), Group 3 (AT + exercise), Group 4 (AT + sericin), and Group 5 (AT + sericin + exercise). Intratendinous sericin administration (0.8 g/kg/mL) took place from days 3 to 6, coupled with 30 min daily swimming exercise sessions (5 days/week, 4 weeks). Serum samples were analyzed using ELISA for tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), interleukin-10 (IL-10), and total antioxidant-oxidant status (TAS-TOS), alongside histopathological and immunohistochemical assessments of Achilles tendon samples. Elevated TNF-α and IL-1β and decreased IL-10 levels were evident in Group 2; Of these, TNF-α and IL-1β were effectively reduced and IL-10 increased across all treatment groups, particularly groups 4 and 5. Serum TAS was notably lower in Group 2 and significantly increased in Group 5 compared to Group 2. Histopathologically, Group 2 displayed severe degeneration, irregular fibers, and round cell nuclei, while Group 5 exhibited decreased degeneration and spindle-shaped fibers. The Bonar score increased in Group 2 and decreased in groups 4 and 5. Collagen type-I alpha-1 (Col1A1) expression was notably lower in Group 2 (P = 0.001) and significantly increased in groups 4 and 5 compared to Group 2 (P = 0.011 and 0.028, respectively). This study underscores the potential of sericin and swimming exercises in mitigating inflammation and oxidative stress linked to AT pathogenesis, presenting a promising combined therapeutic strategy.
Collapse
Affiliation(s)
- Koksal Gundogdu
- Department of Orthopedics and Traumatology, Denizli State Hospital, Denizli, Turkey
| | - Ozgen Kılıc Erkek
- Department of Physiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Gulsah Gundogdu
- Department of Physiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Dilek Sayin
- Department of Physiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Gulcin Abban Mete
- Department of Histology and Embryology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| |
Collapse
|
11
|
Jiang Y, Lu L. New insight into the agonism of protease-activated receptors as an immunotherapeutic strategy. J Biol Chem 2024; 300:105614. [PMID: 38159863 PMCID: PMC10810747 DOI: 10.1016/j.jbc.2023.105614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024] Open
Abstract
The activation and mobilization of immune cells play a crucial role in immunotherapy. Existing therapeutic interventions, such as cytokines administration, aim to enhance immune cell activity. However, these approaches usually result in modest effectiveness and toxic side effects, thereby restricting their clinical application. Protease-activated receptors (PARs), a subfamily of G protein-coupled receptors, actively participate in the immune system by directly activating immune cells. The activation of PARs by proteases or synthetic ligands can modulate immune cell behavior, signaling, and responses to treat immune-related diseases, suggesting the significance of PARs agonism in immunotherapy. However, the agonism of PARs in therapeutical applications remains rarely discussed, since it has been traditionally considered that PARs activation facilitates disease progressions. This review aims to comprehensively summarize the activation, rather than inhibition, of PARs in immune-related physiological responses and diseases. Additionally, we will discuss the emerging immunotherapeutic potential of PARs agonism, providing a new strategic direction for PARs-mediated immunotherapy.
Collapse
Affiliation(s)
- Yuhong Jiang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China.
| | - Lei Lu
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
12
|
Pranantyo D, Yeo CK, Wu Y, Fan C, Xu X, Yip YS, Vos MIG, Mahadevegowda SH, Lim PLK, Yang L, Hammond PT, Leavesley DI, Tan NS, Chan-Park MB. Hydrogel dressings with intrinsic antibiofilm and antioxidative dual functionalities accelerate infected diabetic wound healing. Nat Commun 2024; 15:954. [PMID: 38296937 PMCID: PMC10830466 DOI: 10.1038/s41467-024-44968-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Chronic wounds are often infected with biofilm bacteria and characterized by high oxidative stress. Current dressings that promote chronic wound healing either require additional processes such as photothermal irradiation or leave behind gross amounts of undesirable residues. We report a dual-functionality hydrogel dressing with intrinsic antibiofilm and antioxidative properties that are synergistic and low-leaching. The hydrogel is a crosslinked network with tethered antibacterial cationic polyimidazolium and antioxidative N-acetylcysteine. In a murine diabetic wound model, the hydrogel accelerates the closure of wounds infected with methicillin-resistant Staphylococcus aureus or carbapenem-resistant Pseudomonas aeruginosa biofilm. Furthermore, a three-dimensional ex vivo human skin equivalent model shows that N-acetylcysteine promotes the keratinocyte differentiation and accelerates the re-epithelialization process. Our hydrogel dressing can be made into different formats for the healing of both flat and deep infected chronic wounds without contamination of the wound or needing other modalities such as photothermal irradiation.
Collapse
Affiliation(s)
- Dicky Pranantyo
- Centre for Antimicrobial Bioengineering, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, 138602, Singapore
| | - Chun Kiat Yeo
- Centre for Antimicrobial Bioengineering, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- NTU Institute for Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, Singapore, 637553, Singapore
| | - Yang Wu
- Centre for Antimicrobial Bioengineering, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Chen Fan
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 11 Mandalay Road, Singapore, 308232, Singapore
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Xiaofei Xu
- Centre for Antimicrobial Bioengineering, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Yun Sheng Yip
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Marcus Ivan Gerard Vos
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Surendra H Mahadevegowda
- Centre for Antimicrobial Bioengineering, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Priscilla Lay Keng Lim
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 11 Mandalay Road, Singapore, 308232, Singapore
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Paula T Hammond
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, 138602, Singapore
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - David Ian Leavesley
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 11 Mandalay Road, Singapore, 308232, Singapore
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore.
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| | - Mary B Chan-Park
- Centre for Antimicrobial Bioengineering, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
13
|
Wang M, Liu H, Huang M, Huang Y, Ming Y, Chen W, Chen Y, Tang Z, Jia B. Immunomodulatory functions of microorganisms in tissue regenerative healing. Acta Biomater 2023; 172:38-52. [PMID: 37816417 DOI: 10.1016/j.actbio.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/31/2023] [Accepted: 10/04/2023] [Indexed: 10/12/2023]
Abstract
External pathogenic microorganisms and commensal microorganisms in the body have either harmful or beneficial impacts on the regenerative repair of tissues, and the immune system plays a crucial regulatory role in this process. This review summarises our current understanding of microorganism-immune system interactions, with a focus on how these interactions impact the renewal and repair ability of tissues, including skin, bone, gut, liver, and nerves. This review concludes with a discussion of the mechanisms by which microbes act on various types of immune cells to affect tissue regeneration, offers potential strategies for using microbial therapies to enhance the regenerative repair function of tissues, and suggest novel therapeutic approaches for regenerative medicine. STATEMENT OF SIGNIFICANCE: Microbiological communities have crucial impacts on human health and illness by participating in energy collection and storage and performing various metabolic processes. External pathogenic microorganisms and commensal microorganisms in the body have either harmful or beneficial impacts on the regenerative repair of tissues, and the immune system plays a critical regulatory role in this process. This study reviews the important correlation between microorganisms and the immune system and investigates the mechanism of various microorganism that participate in the regeneration and repair of tissues and organs by modulating immune system.
Collapse
Affiliation(s)
- Min Wang
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Hongyu Liu
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Mingshu Huang
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yisheng Huang
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yue Ming
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weixing Chen
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yuanxin Chen
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Zhengming Tang
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Bo Jia
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
14
|
Quirynen M, Siawasch S, Temmerman A, Cortellini S, Dhondt R, Teughels W, Castro AB. Do autologous platelet concentrates (APCs) have a role in intra-oral bone regeneration? A critical review of clinical guidelines on decision-making process. Periodontol 2000 2023; 93:254-269. [PMID: 37845802 DOI: 10.1111/prd.12526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 07/05/2023] [Accepted: 08/15/2023] [Indexed: 10/18/2023]
Abstract
In the past decades, personalized regenerative medicine has gained increased attention. Autologous platelet concentrates (APCs) such as PRP, PRGF, and L-PRF, all serving as a source of a large variety of cells and growth factors that participate in hard and soft tissue healing and regeneration, could play a significant role in regenerative periodontal procedures. This narrative review evaluated the relative impact of APCs in alveolar ridge preservation, sinus floor augmentation, and the regeneration of bony craters around teeth, both as a single substitute or in combination with a xenograft. L-PRF has a significant beneficial effect on alveolar ridge preservation ( bone quality). The data for PRGF are less convincing, and PRP is controversial. L-PRF can successfully be used as a single substitute during transcrestal (≥3.5 mm bone gain) as well as 1-stage lateral window sinus floor elevation (>5 mm bone gain). For PRGF and especially PRP the data are very scarce. In the treatment of bony craters around teeth, during open flap debridement, L-PRF as a single substitute showed significant adjunctive benefits (e.g., >PPD reduction, >CAL gain, >crater depth reduction). The data for PRP and PRGF were non-conclusive. Adding PRP or L-PRF to a xenograft during OFD resulted in additional improvements (>PPD reduction, >CAL gain, >bone fill), for PRGF no data were found. Autologous platelet concentrates demonstrated to enhance bone and soft tissue healing in periodontal regenerative procedures. The data for L-PRF were most convincing. L-PRF also has the advantage of a greater simplicity of production, and its 100% autologous character.
Collapse
Affiliation(s)
- Marc Quirynen
- Department of Oral Health Sciences, Periodontology, KU Leuven & Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Sam Siawasch
- Department of Oral Health Sciences, Periodontology, KU Leuven & Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Andy Temmerman
- Department of Oral Health Sciences, Periodontology, KU Leuven & Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Simone Cortellini
- Department of Oral Health Sciences, Periodontology, KU Leuven & Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Rutger Dhondt
- Department of Oral Health Sciences, Periodontology, KU Leuven & Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Wim Teughels
- Department of Oral Health Sciences, Periodontology, KU Leuven & Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Anna B Castro
- Department of Oral Health Sciences, Periodontology, KU Leuven & Dentistry, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Li H, Luo S, Li H, Pan H, Jiang L, Chen Y, Chen H, Feng Z, Li S. From fetal tendon regeneration to adult therapeutic modalities: TGF-β3 in scarless healing. Regen Med 2023; 18:809-822. [PMID: 37671630 DOI: 10.2217/rme-2023-0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023] Open
Abstract
Tendon injuries are common disorders that can significantly impact people's lives. Unfortunately, the limited regenerative ability of tendons results in tissue healing in a scar-mediated manner. The current therapeutic strategies fail to fully recover the functions of the injured tendons, and as such, the conception of 'scarless healing' has gained prominent attention in the field of regenerative medicine. Interestingly, injured fetal tendons possess the capability to heal through regeneration, which builds an ideal blueprint for adult tendon regeneration. Studies have shown that fetal biochemical cues have the potential to improve adult tendon healing. Here we review the biological factors that contribute to fetal tendon regeneration and how manipulation of these biochemical cues in the adult tendon healing process could achieve regeneration.
Collapse
Affiliation(s)
- Hanyue Li
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Shengyu Luo
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Hongtao Li
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Sichuan, China
| | - Hongyu Pan
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Sichuan, China
| | - Li Jiang
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Yixuan Chen
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Hui Chen
- Geriatric department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Sichuan, China
| | - Zhenhua Feng
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University
| | - Sen Li
- School of Physical Education, Southwest Medical University, Luzhou, China
| |
Collapse
|
16
|
Markitantova YV, Grigoryan EN. Cellular and Molecular Triggers of Retinal Regeneration in Amphibians. Life (Basel) 2023; 13:1981. [PMID: 37895363 PMCID: PMC10608152 DOI: 10.3390/life13101981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Understanding the mechanisms triggering the initiation of retinal regeneration in amphibians may advance the quest for prevention and treatment options for degenerating human retina diseases. Natural retinal regeneration in amphibians requires two cell sources, namely retinal pigment epithelium (RPE) and ciliary marginal zone. The disruption of RPE interaction with photoreceptors through surgery or injury triggers local and systemic responses for retinal protection. In mammals, disease-induced damage to the retina results in the shutdown of the function, cellular or oxidative stress, pronounced immune response, cell death and retinal degeneration. In contrast to retinal pathology in mammals, regenerative responses in amphibians have taxon-specific features ensuring efficient regeneration. These include rapid hemostasis, the recruitment of cells and factors of endogenous defense systems, activities of the immature immune system, high cell viability, and the efficiency of the extracellular matrix, cytoskeleton, and cell surface remodeling. These reactions are controlled by specific signaling pathways, transcription factors, and the epigenome, which are insufficiently studied. This review provides a summary of the mechanisms initiating retinal regeneration in amphibians and reveals its features collectively directed at recruiting universal responses to trauma to activate the cell sources of retinal regeneration. This study of the integrated molecular network of these processes is a prospect for future research in demand biomedicine.
Collapse
Affiliation(s)
| | - Eleonora N. Grigoryan
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| |
Collapse
|
17
|
Qin X, He J, Wang X, Wang J, Yang R, Chen X. The functions and clinical application potential of exosomes derived from mesenchymal stem cells on wound repair: a review of recent research advances. Front Immunol 2023; 14:1256687. [PMID: 37691943 PMCID: PMC10486026 DOI: 10.3389/fimmu.2023.1256687] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Wound repair is a complex problem for both clinical practitioners and scientific investigators. Conventional approaches to wound repair have been associated with several limitations, including prolonged treatment duration, high treatment expenses, and significant economic and psychological strain on patients. Consequently, there is a pressing demand for more efficacious and secure treatment modalities to enhance the existing treatment landscapes. In the field of wound repair, cell-free therapy, particularly the use of mesenchymal stem cell-derived exosomes (MSC-Exos), has made notable advancements in recent years. Exosomes, which are small lipid bilayer vesicles discharged by MSCs, harbor bioactive constituents such as proteins, lipids, microRNA (miRNA), and messenger RNA (mRNA). These constituents facilitate material transfer and information exchange between the cells, thereby regulating their biological functions. This article presents a comprehensive survey of the function and mechanisms of MSC-Exos in the context of wound healing, emphasizing their beneficial impact on each phase of the process, including the regulation of the immune response, inhibition of inflammation, promotion of angiogenesis, advancement of cell proliferation and migration, and reduction of scar formation.
Collapse
Affiliation(s)
- Xinchi Qin
- Zunyi Medical University, Zunyi, China
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, China
| | - Jia He
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, China
| | - Xiaoxiang Wang
- Department of Burn Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jingru Wang
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, China
| | - Ronghua Yang
- Department of Burn and Plastic Surgery, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Xiaodong Chen
- Zunyi Medical University, Zunyi, China
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, China
| |
Collapse
|
18
|
Yue Z, Yu Y, Gao B, Wang D, Sun H, Feng Y, Ma Z, Xie X. Advances in protein glycosylation and its role in tissue repair and regeneration. Glycoconj J 2023; 40:355-373. [PMID: 37097318 DOI: 10.1007/s10719-023-10117-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/10/2023] [Accepted: 04/16/2023] [Indexed: 04/26/2023]
Abstract
After tissue damage, a series of molecular and cellular events are initiated to promote tissue repair and regeneration to restore its original structure and function. These events include inter-cell communication, cell proliferation, cell migration, extracellular matrix differentiation, and other critical biological processes. Glycosylation is the crucial conservative and universal post-translational modification in all eukaryotic cells [1], with influential roles in intercellular recognition, regulation, signaling, immune response, cellular transformation, and disease development. Studies have shown that abnormally glycosylation of proteins is a well-recognized feature of cancer cells, and specific glycan structures are considered markers of tumor development. There are many studies on gene expression and regulation during tissue repair and regeneration. Still, there needs to be more knowledge of complex carbohydrates' effects on tissue repair and regeneration, such as glycosylation. Here, we present a review of studies investigating protein glycosylation in the tissue repair and regeneration process.
Collapse
Affiliation(s)
- Zhongyu Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Yajie Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Boyuan Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Du Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Hongxiao Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Yue Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Zihan Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Xin Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China.
- GeWu Medical Research Institute (GMRI), Xi'an, China.
| |
Collapse
|
19
|
Xu Z, Dong M, Yin S, Dong J, Zhang M, Tian R, Min W, Zeng L, Qiao H, Chen J. Why traditional herbal medicine promotes wound healing: Research from immune response, wound microbiome to controlled delivery. Adv Drug Deliv Rev 2023; 195:114764. [PMID: 36841332 DOI: 10.1016/j.addr.2023.114764] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/16/2022] [Accepted: 02/19/2023] [Indexed: 02/25/2023]
Abstract
Impaired wound healing in chronic wounds has been a significant challenge for clinicians and researchers for decades. Traditional herbal medicine (THM) has a long history of promoting wound healing, making them culturally accepted and trusted by a great number of people in the world. However, for a long time, the understanding of herbal medicine has been limited and incomplete, particularly in the allopathic medicine-dominated research system. The therapeutic effects of individual components isolated from THM are found less pronounced compared to synthetic chemical medicine, and the clinical efficacy is always inferior to herbs. In the present article, we review and discuss underlying mechanisms of the skin microbiome involved in the wound healing process; THM in regulating immune responses and commensal microbiome. We additionally propose few pioneer ideas and studies in the development of therapeutic strategies for controlled delivery of herbal medicine. This review aims to promote wound care with a focus on wound microbiome, immune response, and topical drug delivery systems. Finally, future development trends, challenges, and research directions are discussed.
Collapse
Affiliation(s)
- Zeyu Xu
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Mei Dong
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Shaoping Yin
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jie Dong
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Ming Zhang
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Rong Tian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Wen Min
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Department of Bone Injury of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210004, PR China
| | - Li Zeng
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Hongzhi Qiao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Jun Chen
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
20
|
Laupèze B, Doherty TM. Maintaining a 'fit' immune system: the role of vaccines. Expert Rev Vaccines 2023; 22:256-266. [PMID: 36864769 DOI: 10.1080/14760584.2023.2185223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
INTRODUCTION Conventionally, vaccines are thought to induce a specific immune response directed against a target pathogen. Long recognized but poorly understood nonspecific benefits of vaccination, such as reduced susceptibility to unrelated diseases or cancer, are now being investigated and may be due in part to "trained immunity'. AREAS COVERED We discuss 'trained immunity' and whether vaccine-induced 'trained immunity' could be leveraged to prevent morbidity due to a broader range of causes. EXPERT OPINION The prevention of infection i.e. maintaining homeostasis by preventing the primary infection and resulting secondary illnesses, is the pivotal strategy used to direct vaccine design and may have long-term, positive impacts on health at all ages. In the future, we anticipate that vaccine design will change to not only prevent the target infection (or related infections) but to generate positive modifications to the immune response that could prevent a wider range of infections and potentially reduce the impact of immunological changes associated with aging. Despite changing demographics, adult vaccination has not always been prioritized. However, the SARS-CoV-2 pandemic has demonstrated that adult vaccination can flourish given the right circumstances, demonstrating that harnessing the potential benefits of life-course vaccination is achievable for all.
Collapse
|
21
|
Koh K, Wang JK, Chen JXY, Hiew SH, Cheng HS, Gabryelczyk B, Vos MIG, Yip YS, Chen L, Sobota RM, Chua DKK, Tan NS, Tay CY, Miserez A. Squid Suckerin-Spider Silk Fusion Protein Hydrogel for Delivery of Mesenchymal Stem Cell Secretome to Chronic Wounds. Adv Healthc Mater 2023; 12:e2201900. [PMID: 36177679 DOI: 10.1002/adhm.202201900] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/19/2022] [Indexed: 02/03/2023]
Abstract
Chronic wounds are non-healing wounds characterized by a prolonged inflammation phase. Excessive inflammation leads to elevated protease levels and consequently to a decrease in growth factors at wound sites. Stem cell secretome therapy has been identified as a treatment strategy to modulate the microenvironment of chronic wounds via supplementation with anti-inflammatory/growth factors. However, there is a need to develop better secretome delivery systems that are able to encapsulate the secretome without denaturation, in a sustained manner, and that are fully biocompatible. To address this gap, a recombinant squid suckerin-spider silk fusion protein is developed with cell-adhesion motifs capable of thermal gelation at physiological temperatures to form hydrogels for encapsulation and subsequent release of the stem cell secretome. Freeze-thaw treatment of the protein hydrogel results in a modified porous cryogel that maintains slow degradation and sustained secretome release. Chronic wounds of diabetic mice treated with the secretome-laden cryogel display increased wound closure, presence of endothelial cells, granulation wound tissue thickness, and reduced inflammation with no fibrotic scar formation. Overall, these in vivo indicators of wound healing demonstrate that the fusion protein hydrogel displays remarkable potential as a delivery system for secretome-assisted chronic wound healing.
Collapse
Affiliation(s)
- Kenrick Koh
- NTU Institute for Health Technologies, Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore, 637335, Singapore.,Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore, 637553, Singapore
| | - Jun Kit Wang
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore, 637553, Singapore
| | - James Xiao Yuan Chen
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore, 637553, Singapore
| | - Shu Hui Hiew
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore, 637553, Singapore
| | - Hong Sheng Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Bartosz Gabryelczyk
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore, 637553, Singapore
| | - Marcus Ivan Gerard Vos
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Yun Sheng Yip
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Liyan Chen
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.,Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, 138671, Singapore
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.,Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, 138671, Singapore
| | - Damian Kang Keat Chua
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Chor Yong Tay
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore, 637553, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Ali Miserez
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore, 637553, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| |
Collapse
|
22
|
Vasconcelos DP, Águas AP, Barbosa JN. The inflammasome in biomaterial-driven immunomodulation. J Tissue Eng Regen Med 2022; 16:1109-1120. [PMID: 36327091 PMCID: PMC10092308 DOI: 10.1002/term.3361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/07/2022] [Accepted: 10/23/2022] [Indexed: 11/05/2022]
Abstract
Inflammasomes are intracellular structures formed upon the assembly of several proteins that have a considerable size and are very important in innate immune responses being key players in host defense. They are assembled after the perception of pathogens or danger signals. The activation of the inflammasome pathway induces the production of high levels of the pro-inflammatory cytokines Interleukin (IL)-1β and IL-18 through the caspase activation. The procedure for the implantation of a biomaterial causes tissue injury, and the injured cells will secrete danger signals recognized by the inflammasome. There is growing evidence that the inflammasome participates in a number of inflammatory processes, including pathogen clearance, chronic inflammation and tissue repair. Therefore, the control of the inflammasome activity is a promising target in the development of capable approaches to be applied in regenerative medicine. In this review, we revisit current knowledge of the inflammasome in the inflammatory response to biomaterials and point to the yet underexplored potential of the inflammasome in the context of immunomodulation.
Collapse
Affiliation(s)
- Daniela P Vasconcelos
- i3S - Instituto de Inovação e Investigação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Porto, Portugal
| | - Artur P Águas
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.,UMIB - Unit for Multidisciplinary Biomedical Research of ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Judite N Barbosa
- i3S - Instituto de Inovação e Investigação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
23
|
Al Sadoun H. Macrophage Phenotypes in Normal and Diabetic Wound Healing and Therapeutic Interventions. Cells 2022; 11:2430. [PMID: 35954275 PMCID: PMC9367932 DOI: 10.3390/cells11152430] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 11/29/2022] Open
Abstract
Macrophage differentiation and polarization are essential players in the success of the wound-healing process. Acute simple wounds progress from inflammation to proliferation/regeneration and, finally, to remodeling. In injured skin, macrophages either reside in the epithelium or are recruited from monocytes. Their main role is supported by their plasticity, which allows them to adopt different phenotypic states, such as the M1-inflammatory state, in which they produce TNF and NO, and the M2-reparative state, in which they resolve inflammation and exhibit a reparative function. Reparative macrophages are an essential source of growth factors such as TGF-β and VEGF and are not found in nonhealing wounds. This review discusses the differences between macrophage phenotypes in vitro and in vivo, how macrophages originate, and how they cross-communicate with other cellular components in a wound. This review also highlights the dysregulation of macrophages that occurs in nonhealing versus overhealing wounds and fibrosis. Then, the therapeutic manipulation of macrophages is presented as an attractive strategy for promoting healing through the secretion of growth factors for angiogenesis, keratinocyte migration, and collagen production. Finally, Hoxa3 overexpression is discussed as an example of the therapeutic repolarization of macrophages to the normal maturation state and phenotype with better healing outcomes.
Collapse
Affiliation(s)
- Hadeel Al Sadoun
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; ; Tel.: +966-(12)-6400000 (ext. 24277)
- Stem Cell Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
24
|
Lv Y, Chen Z, Yang Z, Yang W, Chu W, Tu Y, Xie J, Cao D. Evaluation of the red & blue LED effects on cutaneous refractory wound healing in male Sprague-Dawley rat using 3 different multi-drug resistant bacteria. Lasers Surg Med 2022; 54:725-736. [PMID: 34989417 DOI: 10.1002/lsm.23515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/24/2021] [Accepted: 12/21/2021] [Indexed: 01/23/2023]
Abstract
OBJECTIVES Photobiomodulation (PBM) is widely used in clinical therapy, and is an effective approach to resist the bacterial infection of the cutaneous wound and modulate the wound healing process. Due to the several detriments of lasers, Red & Blue LED light (RBLL) may be a more viable light source. This study is aimed to evaluate and compare the therapeutic effect of RBLL light on different multi-drug resistant (MDR) bacteria in vitro and male Sprague-Dawley (SD) rat refractory MDR infection wound model in vivo. MATERIALS AND METHODS Methicillin-resistant Staphylococcus aureus (MRSA), Extended-spectrum β-lactamases -producing Escherichia coli (ESBLs-Eco), and the MDR Pseudomonas aeruginosa (MDR-Pae) were employed to evaluate the antibacterial effects of the Blue LED light in vitro. Effects of RBLL on in vivo wound healing were evaluated by analyzing time to closure, wound score, semi-quantitative test for bacterial culture, histopathological examination and Masson staining of skin tissue, immunohistochemical (IHC) staining, and western blot analysis (WB) of wound tissue. RESULTS Blue LED light inhibited MRSA, ESBLs-Eco, and MDR-Pae in vitro study. In vivo, RBLL accelerated wound healing, reduced levels of pathogenic bacteria on the wound surface while increasing the blood supply to the wound surface and inhibiting the excessive inflammatory response. CONCLUSION RBLL showed a great potential gain for the treatment of MDR bacterial infected wounds, suggesting PBM therapy is an inexpensive, convenient, pain-free, and safe therapeutic intervention for refractory MDR infection wounds.
Collapse
Affiliation(s)
- Yang Lv
- Department of Plastic and Reconstructive Surgery, The Second Hospital of Anhui Medical University, Anhui Province, P.R. China
| | - ZengHong Chen
- Department of Plastic and Reconstructive Surgery, The Second Hospital of Anhui Medical University, Anhui Province, P.R. China
| | - ZhiGuo Yang
- Department of Plastic and Reconstructive Surgery, The Second Hospital of Anhui Medical University, Anhui Province, P.R. China
| | - WenYu Yang
- Department of Oral and Maxillofacial Surgery, The Second Hospital of Anhui Medical University, Anhui Province, P.R. China
| | - WenWen Chu
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Anhui Province, P.R. China
| | - YiQian Tu
- Department of Plastic and Reconstructive Surgery, The Second Hospital of Anhui Medical University, Anhui Province, P.R. China
| | - Juan Xie
- Department of Plastic and Reconstructive Surgery, The Second Hospital of Anhui Medical University, Anhui Province, P.R. China
| | - DongSheng Cao
- Department of Plastic and Reconstructive Surgery, The Second Hospital of Anhui Medical University, Anhui Province, P.R. China
| |
Collapse
|
25
|
Sun Z, Yu T, Cao X, Gao L, Pang Q, Liu B, Deng H. Identification and characterization of Deoxyribonuclease II in planarian Dugesia japonica. Gene 2022; 826:146464. [PMID: 35358655 DOI: 10.1016/j.gene.2022.146464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/09/2022] [Accepted: 03/25/2022] [Indexed: 11/04/2022]
Abstract
Deoxyribonuclease II (DNase II) has been found to regulate inflammation, autoimmunity and apoptosis in vertebrates and invertebrates. The strong capacity of degrading DNA makes DNase II play an important role in the immune process. Planarian has become one of the model references due to its strong immune system, the environment they live makes planarians face the threat of microorganisms and injury, the strong immune system can protect planarians from the threat of bacterial and infection. In this study, we found that there was DNase in the lysis buffer of planarians, then we acquired the sequence of DjDN2s (Dugesia japonica DNase2s) and confirmed the DjDN2s were conserved DNase IIs. The predicted structure showed the active sites and binding patterns of DjDN2s. Whole-mount in situ hybridization results showed DjDN2s mainly expressed in immune organs. Quantitative real-time PCR revealed that the expression of DjDN2s upregulated in varying degrees when got hurt and challenged with bacteria, and the knockdown of DjDN2s led to the slower repair of wound. The recombinant phages which take DjDN2 also had the ability to degrade DNA and clear young biofilm of Gram-negative bacteria. Collectively, DNase II of planarian might play a role in the antimicrobial response and wound-induced response.
Collapse
Affiliation(s)
- Zhe Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Tong Yu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Xiangyu Cao
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Lili Gao
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Qiuxiang Pang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China.
| | - Baohua Liu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China; Shenzhen University of Health Science Center, Shenzhen, Guangdong 518060, China.
| | - Hongkuan Deng
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China.
| |
Collapse
|
26
|
Venugopal D, Vishwakarma S, Kaur I, Samavedi S. Electrospun fiber-based strategies for controlling early innate immune cell responses: Towards immunomodulatory mesh designs that facilitate robust tissue repair. Acta Biomater 2022; 163:228-247. [PMID: 35675893 DOI: 10.1016/j.actbio.2022.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 12/16/2022]
Abstract
Electrospun fibrous meshes are widely used for tissue repair due to their ability to guide a host of cell responses including phenotypic differentiation and tissue maturation. A critical factor determining the eventual biological outcomes of mesh-based regeneration strategies is the early innate immune response following implantation. The natural healing process involves a sequence of tightly regulated, temporally varying and delicately balanced pro-/anti-inflammatory events which together promote mesh integration with host tissue. Matrix designs that do not account for the immune milieu can result in dysregulation, chronic inflammation and fibrous capsule formation, thus obliterating potential therapeutic outcomes. In this review, we provide systematic insights into the effects of specific fiber/mesh properties and mechanical stimulation on the responses of early innate immune modulators viz., neutrophils, monocytes and macrophages. We identify matrix characteristics that promote anti-inflammatory immune phenotypes, and we correlate such responses with pro-regenerative in vivo outcomes. We also discuss recent advances in 3D fabrication technologies, bioactive functionalization approaches and biomimetic/bioinspired immunomodulatory mesh design strategies for tissue repair and wound healing. The mechanobiological insights and immunoregulatory strategies discussed herein can help improve the translational outcomes of fiber-based regeneration and may also be leveraged for intervention in degenerative diseases associated with dysfunctional immune responses. STATEMENT OF SIGNIFICANCE: The crucial role played by immune cells in promoting biomaterial-based tissue regeneration is being increasingly recognized. In this review focusing on the interactions of innate immune cells (primarily neutrophils, monocytes and macrophages) with electrospun fibrous meshes, we systematically elucidate the effects of the fiber microenvironment and mechanical stimulation on biological responses, and build upon these insights to inform the rational design of immunomodulatory meshes for effective tissue repair. We discuss state-of-the-art fabrication methods and mechanobiological advances that permit the orchestration of temporally controlled phenotypic switches in immune cells during different phases of healing. The design strategies discussed herein can also be leveraged to target several complex autoimmune and inflammatory diseases.
Collapse
|
27
|
Xia C, Tian L, Yu J, Lu X, Wang H, He Z, Qian B, Gu L, Wang L, Chen J, Lu T, Xu C, Qian H, Sun L. Inhibitory effects of estrogenic endocrine disrupting chemicals on fin regeneration in zebrafish are dependent on estrogen receptors. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 247:106156. [PMID: 35405443 DOI: 10.1016/j.aquatox.2022.106156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/16/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
For fish and other aquatic organisms, disrupting their capacity for repair and regeneration will reduce their quality of life and survivorship in the wild. Studies have shown that 17α-ethinylestradiol (EE2), a synthetic estrogenic endocrine disrupting chemical (EEDC), can inhibit caudal fin regeneration in larval zebrafish following fin amputation. However, whether the inhibitory effects of EE2 are dependent on estrogen receptor (ER) remains unknown. Therefore, in this study, amputated zebrafish larvae were exposed to the ER agonist EE2 alone and in combination with the ER antagonist ICI 182,780 (ICI), and the change in regenerative capacity was determined. The inhibition of fin regeneration caused by EE2 alone (100 ng/L) was ameliorated after combination with ICI (30-300 μg/L), and these changes in regeneration-related signaling and the immune system corresponded with morphological observations, implying that the effects of EE2 on regeneration were possibly initiated by the activation of ER. Furthermore, the role of ER was confirmed with a natural ligand of ER, namely, 17β-estradiol (E2), and as expected, the effects of E2 (10, 100 and 1000 ng/L) paralleled those of EE2. In conclusion, EEDCs can disrupt the regenerative capacity in zebrafish, possibly due to the binding and activation of ERs and the consequent alteration of signaling pathways that regulate fin regeneration and immune competence. Given that EEDCs appear to be ubiquitous in the aquatic environment, the risk of these chemicals might be readdressed regarding their potential effects on tissue repair and regeneration.
Collapse
Affiliation(s)
- Caihong Xia
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Li Tian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Jie Yu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Xingfan Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Haixia Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Zepeng He
- Division of Hangzhou West Lake Aquatic Area Management, Hangzhou 310002, PR China
| | - Baoliu Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Linqi Gu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Lina Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Jun Chen
- Division of Hangzhou West Lake Aquatic Area Management, Hangzhou 310002, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Chao Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China.
| |
Collapse
|
28
|
Topical bilirubin-deferoxamine hastens excisional wound healing by modulating inflammation, oxidative stress, angiogenesis, and collagen deposition in diabetic rats. J Tissue Viability 2022; 31:474-484. [DOI: 10.1016/j.jtv.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 11/23/2022]
|
29
|
Schilrreff P, Alexiev U. Chronic Inflammation in Non-Healing Skin Wounds and Promising Natural Bioactive Compounds Treatment. Int J Mol Sci 2022; 23:ijms23094928. [PMID: 35563319 PMCID: PMC9104327 DOI: 10.3390/ijms23094928] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/14/2022] Open
Abstract
Chronic inflammation is one of the hallmarks of chronic wounds and is tightly coupled to immune regulation. The dysregulation of the immune system leads to continuing inflammation and impaired wound healing and, subsequently, to chronic skin wounds. In this review, we discuss the role of the immune system, the involvement of inflammatory mediators and reactive oxygen species, the complication of bacterial infections in chronic wound healing, and the still-underexplored potential of natural bioactive compounds in wound treatment. We focus on natural compounds with antioxidant, anti-inflammatory, and antibacterial activities and their mechanisms of action, as well as on recent wound treatments and therapeutic advancements capitalizing on nanotechnology or new biomaterial platforms.
Collapse
|
30
|
Patil P, Russo KA, McCune JT, Pollins AC, Cottam MA, Dollinger BR, DeJulius CR, Gupta MK, D'Arcy R, Colazo JM, Yu F, Bezold MG, Martin JR, Cardwell NL, Davidson JM, Thompson CM, Barbul A, Hasty AH, Guelcher SA, Duvall CL. Reactive oxygen species-degradable polythioketal urethane foam dressings to promote porcine skin wound repair. Sci Transl Med 2022; 14:eabm6586. [PMID: 35442705 PMCID: PMC10165619 DOI: 10.1126/scitranslmed.abm6586] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Porous, resorbable biomaterials can serve as temporary scaffolds that support cell infiltration, tissue formation, and remodeling of nonhealing skin wounds. Synthetic biomaterials are less expensive to manufacture than biologic dressings and can achieve a broader range of physiochemical properties, but opportunities remain to tailor these materials for ideal host immune and regenerative responses. Polyesters are a well-established class of synthetic biomaterials; however, acidic degradation products released by their hydrolysis can cause poorly controlled autocatalytic degradation. Here, we systemically explored reactive oxygen species (ROS)-degradable polythioketal (PTK) urethane (UR) foams with varied hydrophilicity for skin wound healing. The most hydrophilic PTK-UR variant, with seven ethylene glycol (EG7) repeats flanking each side of a thioketal bond, exhibited the highest ROS reactivity and promoted optimal tissue infiltration, extracellular matrix (ECM) deposition, and reepithelialization in porcine skin wounds. EG7 induced lower foreign body response, greater recruitment of regenerative immune cell populations, and resolution of type 1 inflammation compared to more hydrophobic PTK-UR scaffolds. Porcine wounds treated with EG7 PTK-UR foams had greater ECM production, vascularization, and resolution of proinflammatory immune cells compared to polyester UR foam-based NovoSorb Biodegradable Temporizing Matrix (BTM)-treated wounds and greater early vascular perfusion and similar wound resurfacing relative to clinical gold standard Integra Bilayer Wound Matrix (BWM). In a porcine ischemic flap excisional wound model, EG7 PTK-UR treatment led to higher wound healing scores driven by lower inflammation and higher reepithelialization compared to NovoSorb BTM. PTK-UR foams warrant further investigation as synthetic biomaterials for wound healing applications.
Collapse
Affiliation(s)
- Prarthana Patil
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Katherine A Russo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Joshua T McCune
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Alonda C Pollins
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Matthew A Cottam
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Bryan R Dollinger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Carlisle R DeJulius
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Mukesh K Gupta
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Richard D'Arcy
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Juan M Colazo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Fang Yu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Mariah G Bezold
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - John R Martin
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Nancy L Cardwell
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Jeffrey M Davidson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Callie M Thompson
- Vanderbilt Burn Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Adrian Barbul
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37212, USA.,Department of Surgery, Veterans Administration Medical Center, Nashville, TN 37212, USA
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Scott A Guelcher
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA.,Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
31
|
3D-printable chitosan/silk fibroin/cellulose nanoparticle scaffolds for bone regeneration via M2 macrophage polarization. Carbohydr Polym 2022; 281:119077. [DOI: 10.1016/j.carbpol.2021.119077] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022]
|
32
|
Seifert AW, Temple-Smith P. A remarkable rodent: Regeneration and reproduction in spiny mice (Acomys). Curr Top Dev Biol 2022; 147:659-707. [PMID: 35337466 DOI: 10.1016/bs.ctdb.2021.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although certain organisms are chosen and employed to better understand a specific problem in biology (so-called model organisms), sometimes an animal model reveals its' biomedical importance by happenstance. In many ways, the advent of spiny mice (Acomys) as an emerging model to study regeneration and menstruation stands as a case study in scientific pseudoserendipity (Diaz de Chumaceiro, 1995). As we recount in this chapter, the discovery of these phenotypes, while not entirely accidental, was nonetheless unexpected. In addition to recounting how we uncovered these unusual mammalian traits, we outline recent work by our groups and others that has begun to outline the cellular and genetic mechanisms underlying bonafide mammalian tissue regeneration and a human-like mode of reproduction in spiny mice.
Collapse
Affiliation(s)
- Ashley W Seifert
- Department of Biology, University of Kentucky, Lexington, KY, United States; Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya.
| | - Peter Temple-Smith
- Department of Obstetrics & Gynecology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
33
|
Necula MG, Mazare A, Negrescu AM, Mitran V, Ozkan S, Trusca R, Park J, Schmuki P, Cimpean A. Macrophage-like Cells Are Responsive to Titania Nanotube Intertube Spacing-An In Vitro Study. Int J Mol Sci 2022; 23:3558. [PMID: 35408918 PMCID: PMC8998567 DOI: 10.3390/ijms23073558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 12/23/2022] Open
Abstract
With the introduction of a new interdisciplinary field, osteoimmunology, today, it is well acknowledged that biomaterial-induced inflammation is modulated by immune cells, primarily macrophages, and can be controlled by nanotopographical cues. Recent studies have investigated the effect of surface properties in modulating the immune reaction, and literature data indicate that various surface cues can dictate both the immune response and bone tissue repair. In this context, the purpose of the present study was to investigate the effects of titanium dioxide nanotube (TNT) interspacing on the response of the macrophage-like cell line RAW 264.7. The cells were maintained in contact with the surfaces of flat titanium (Ti) and anodic TNTs with an intertube spacing of 20 nm (TNT20) and 80 nm (TNT80), under standard or pro-inflammatory conditions. The results revealed that nanotube interspacing can influence macrophage response in terms of cell survival and proliferation, cellular morphology and polarization, cytokine/chemokine expression, and foreign body reaction. While the nanostructured topography did not tune the macrophages' differentiation into osteoclasts, this behavior was significantly reduced as compared to flat Ti surface. Overall, this study provides a new insight into how nanotubes' morphological features, particularly intertube spacing, could affect macrophage behavior.
Collapse
Affiliation(s)
- Madalina Georgiana Necula
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.G.N.); (A.M.N.); (V.M.)
| | - Anca Mazare
- Department of Materials Science WW4-LKO, Friedrich-Alexander University, 91058 Erlangen, Germany; (A.M.); (S.O.); (P.S.)
- Advanced Institute for Materials Research (AIMR), National University Corporation Tohoku University (TU), Sendai 980-8577, Japan
| | - Andreea Mariana Negrescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.G.N.); (A.M.N.); (V.M.)
| | - Valentina Mitran
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.G.N.); (A.M.N.); (V.M.)
| | - Selda Ozkan
- Department of Materials Science WW4-LKO, Friedrich-Alexander University, 91058 Erlangen, Germany; (A.M.); (S.O.); (P.S.)
| | - Roxana Trusca
- Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, 313 Splaiul Indendentei, 060042 Bucharest, Romania;
| | - Jung Park
- Department of Pediatrics, Division of Molecular Pediatrics, University Hospital Erlangen, 91054 Erlangen, Germany;
| | - Patrik Schmuki
- Department of Materials Science WW4-LKO, Friedrich-Alexander University, 91058 Erlangen, Germany; (A.M.); (S.O.); (P.S.)
- Regional Centre of Advanced Technologies and Materials, 78371 Olomouc, Czech Republic
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21569, Saudi Arabia
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.G.N.); (A.M.N.); (V.M.)
| |
Collapse
|
34
|
Immune Cells in Cutaneous Wound Healing: A Review of Functional Data from Animal Models. Int J Mol Sci 2022; 23:ijms23052444. [PMID: 35269586 PMCID: PMC8910456 DOI: 10.3390/ijms23052444] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
The healing of skin wounds involves the activation and recruitment of various immune cell types, many of which are believed to contribute significantly to different aspects of the repair process. Roles for immune cells have been described in practically all stages of wound healing, including hemostasis, inflammation, proliferation and scar formation/remodeling. Over the last decade, tools to deplete immune cell populations in animal models have become more advanced, leading to a surge in the number of studies examining the function of specific immune cell types in skin repair. In this review, we will summarize what is known about distinct immune cell types in cutaneous wound healing, with an emphasis on data from animal studies in which specific cell types have been targeted.
Collapse
|
35
|
Hao Y, Yang L, Liu Y, Ye Y, Wang J, Yu C, Yan H, Xing Y, Jia Z, Hu C, Zuo H, Li Y. mmu-miR-145a-5p Accelerates Diabetic Wound Healing by Promoting Macrophage Polarization Toward the M2 Phenotype. Front Med (Lausanne) 2022; 8:775523. [PMID: 34993211 PMCID: PMC8724056 DOI: 10.3389/fmed.2021.775523] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/22/2021] [Indexed: 12/28/2022] Open
Abstract
Diabetic wounds are recalcitrant to healing. One of the important characteristics of diabetic trauma is impaired macrophage polarization with an excessive inflammatory response. Many studies have described the important regulatory roles of microRNAs (miRNAs) in macrophage differentiation and polarization. However, the differentially expressed miRNAs involved in wound healing and their effects on diabetic wounds remain to be further explored. In this study, we first identified differentially expressed miRNAs in the inflammation, tissue formation and reconstruction phases in wound healing using Illumina sequencing and RT-qPCR techniques. Thereafter, the expression of musculus (mmu)-miR-145a-5p (“miR-145a-5p” for short) in excisional wounds of diabetic mice was identified. Finally, expression of miR-145a-5p was measured to determine its effects on macrophage polarization in murine RAW 264.7 macrophage cells and wound healing in diabetic mice. We identified differentially expressed miRNAs at different stages of wound healing, ten of which were further confirmed by RT-qPCR. Expression of miR-145a-5p in diabetic wounds was downregulated during the tissue formation stage. Furthermore, we observed that miR-145a-5p blocked M1 macrophage polarization while promoting M2 phenotype activation in vitro. Administration of miR-145a-5p mimics during initiation of the repair phase significantly accelerated wound healing in db/db diabetic mice. In conclusion, our findings suggest that rectifying macrophage function using miR-145a-5p overexpression accelerates diabetic chronic wound healing.
Collapse
Affiliation(s)
- Yanhui Hao
- Beijing Institute of Radiation Medicine, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Leilei Yang
- Beijing Institute of Radiation Medicine, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Ying Liu
- Department of Basic Medicine, Chengde Medical College, Chengde, China
| | - Yumeng Ye
- Beijing Institute of Radiation Medicine, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Jiayu Wang
- Beijing Institute of Radiation Medicine, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Chao Yu
- Beijing Institute of Radiation Medicine, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Hua Yan
- Beijing Institute of Radiation Medicine, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Yuan Xing
- Beijing Institute of Radiation Medicine, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Zhaoqian Jia
- Beijing Institute of Radiation Medicine, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Cuicui Hu
- Academy of Life Sciences, Anhui Medical University, Hefei, China
| | - Hongyan Zuo
- Beijing Institute of Radiation Medicine, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Yang Li
- Beijing Institute of Radiation Medicine, Academy of Military Medical Sciences (AMMS), Beijing, China.,Academy of Life Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
36
|
Zarrintaj P, Ghorbani S, Barani M, Singh Chauhan NP, Khodadadi Yazdi M, Saeb MR, Ramsey JD, Hamblin MR, Mozafari M, Mostafavi E. Polylysine for skin regeneration: A review of recent advances and future perspectives. Bioeng Transl Med 2022; 7:e10261. [PMID: 35111953 PMCID: PMC8780928 DOI: 10.1002/btm2.10261] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/28/2021] [Accepted: 10/03/2021] [Indexed: 12/19/2022] Open
Abstract
There have been several attempts to find promising biomaterials for skin regeneration, among which polylysine (a homopolypeptide) has shown benefits in the regeneration and treatment of skin disorders. This class of biomaterials has shown exceptional abilities due to their macromolecular structure. Polylysine-based biomaterials can be used as tissue engineering scaffolds for skin regeneration, and as drug carriers or even gene delivery vectors for the treatment of skin diseases. In addition, polylysine can play a preservative role in extending the lifetime of skin tissue by minimizing the appearance of photodamaged skin. Research on polylysine is growing today, opening new scenarios that expand the potential of these biomaterials from traditional treatments to a new era of tissue regeneration. This review aims to address the basic concepts, recent trends, and prospects of polylysine-based biomaterials for skin regeneration. Undoubtedly, this class of biomaterials needs further evaluations and explorations, and many critical questions have yet to be answered.
Collapse
Affiliation(s)
- Payam Zarrintaj
- School of Chemical EngineeringOklahoma State UniversityStillwaterOklahomaUSA
| | - Sadegh Ghorbani
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhusDenmark
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research CenterKerman University of Medical SciencesKermanIran
| | | | | | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of ChemistryGdańsk University of TechnologyGdańskPoland
| | - Joshua D. Ramsey
- School of Chemical EngineeringOklahoma State UniversityStillwaterOklahomaUSA
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health ScienceUniversity of JohannesburgSouth Africa
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in MedicineIran University of Medical SciencesTehranIran
- Present address:
Lunenfeld‐Tanenbaum Research InstituteMount Sinai Hospital, University of TorontoTorontoONCanada.
| | - Ebrahim Mostafavi
- Stanford Cardiovascular InstituteStanford University School of MedicineStanfordCaliforniaUSA
- Department of MedicineStanford University School of MedicineStanfordCaliforniaUSA
| |
Collapse
|
37
|
Abstract
In his prominent book Regeneration (1901), T.H. Morgan's collected and synthesized theoretical and experimental findings from a diverse array of regenerating animals and plants. Through his endeavor, he introduced a new way to study regeneration and its evolution, setting a conceptual framework that still guides today's research and that embraces the contemporary evolutionary and developmental approaches.In the first part of the chapter, we summarize Morgan's major tenets and use it as a narrative thread to advocate interpreting regenerative biology through the theoretical tools provided by evolution and developmental biology, but also to highlight potential caveats resulting from the rapid proliferation of comparative studies and from the expansion of experimental laboratory models. In the second part, we review some experimental evo-devo approaches, highlighting their power and some of their interpretative dangers. Finally, in order to further understand the evolution of regenerative abilities, we portray an adaptive perspective on the evolution of regeneration and suggest a framework for investigating the adaptive nature of regeneration.
Collapse
Affiliation(s)
| | - Alexandre Alié
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Villefranche-sur-Mer, France
| | - Stefano Tiozzo
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Villefranche-sur-Mer, France.
| |
Collapse
|
38
|
Kiseleva A, Nestor G, Östman JR, Kriuchkova A, Savin A, Krivoshapkin P, Krivoshapkina E, Seisenbaeva GA, Kessler VG. Modulating Surface Properties of the Linothele fallax Spider Web by Solvent Treatment. Biomacromolecules 2021; 22:4945-4955. [PMID: 34644050 PMCID: PMC8672351 DOI: 10.1021/acs.biomac.1c00787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/23/2021] [Indexed: 11/29/2022]
Abstract
Linothele fallax (Mello-Leitão) (L. fallax) spider web, a potentially attractive tissue engineering material, was investigated using quantitative peak force measurement atomic force microscopy and scanning electron microscopy with energy dispersive spectroscopy both in its natural state and after treatment with solvents of different protein affinities, namely, water, ethanol, and dimethyl sulfoxide (DMSO). Native L. fallax silk threads are densely covered by globular objects, which constitute their inseparable parts. Depending on the solvent, treating L. fallax modifies its appearance. In the case of water and ethanol, the changes are minor. In contrast, DMSO practically removes the globules and fuses the threads into dense bands. Moreover, the solvent treatment influences the chemistry of the threads' surface, changing their adhesive and, therefore, biocompatibility and cell adhesion properties. On the other hand, the solvent-treated web materials' contact effect on different types of biological matter differs considerably. Protein-rich matter controls humidity better when wrapped in spider silk treated with more hydrophobic solvents. However, carbohydrate plant materials retain more moisture when wrapped in native spider silk. The extracts produced with the solvents were analyzed using nuclear magnetic resonance (NMR) and liquid chromatography-mass spectrometry techniques, revealing unsaturated fatty acids as representative adsorbed species, which may explain the mild antibacterial effect of the spider silk. The extracted metabolites were similar for the different solvents, meaning that the globules were not "dissolved" but "fused into" the threads themselves, being supposedly rolled-in knots of the protein chain.
Collapse
Affiliation(s)
- Aleksandra Kiseleva
- Institute
of Solution Chemistry of Advanced Materials and Technologies, ITMO University, St. Petersburg 197101, Russia
| | - Gustav Nestor
- Department
of Molecular Sciences, Biocenter, SLU, Box 7015, Uppsala 75007, Sweden
| | - Johnny R. Östman
- Department
of Molecular Sciences, Biocenter, SLU, Box 7015, Uppsala 75007, Sweden
| | - Anastasiia Kriuchkova
- Institute
of Solution Chemistry of Advanced Materials and Technologies, ITMO University, St. Petersburg 197101, Russia
| | - Artemii Savin
- Institute
of Solution Chemistry of Advanced Materials and Technologies, ITMO University, St. Petersburg 197101, Russia
| | - Pavel Krivoshapkin
- Institute
of Solution Chemistry of Advanced Materials and Technologies, ITMO University, St. Petersburg 197101, Russia
| | - Elena Krivoshapkina
- Institute
of Solution Chemistry of Advanced Materials and Technologies, ITMO University, St. Petersburg 197101, Russia
| | | | - Vadim G. Kessler
- Department
of Molecular Sciences, Biocenter, SLU, Box 7015, Uppsala 75007, Sweden
| |
Collapse
|
39
|
Hauck S, Zager P, Halfter N, Wandel E, Torregrossa M, Kakpenova A, Rother S, Ordieres M, Räthel S, Berg A, Möller S, Schnabelrauch M, Simon JC, Hintze V, Franz S. Collagen/hyaluronan based hydrogels releasing sulfated hyaluronan improve dermal wound healing in diabetic mice via reducing inflammatory macrophage activity. Bioact Mater 2021; 6:4342-4359. [PMID: 33997511 PMCID: PMC8105600 DOI: 10.1016/j.bioactmat.2021.04.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/13/2022] Open
Abstract
Sustained inflammation associated with dysregulated macrophage activation prevents tissue formation and healing of chronic wounds. Control of inflammation and immune cell functions thus represents a promising approach in the development of advanced therapeutic strategies. Here we describe immunomodulatory hyaluronan/collagen (HA-AC/coll)-based hydrogels containing high-sulfated hyaluronan (sHA) as immunoregulatory component for the modulation of inflammatory macrophage activities in disturbed wound healing. Solute sHA downregulates inflammatory activities of bone marrow-derived and tissue-resident macrophages in vitro. This further affects macrophage-mediated pro-inflammatory activation of skin cells as shown in skin ex-vivo cultures. In a mouse model of acute skin inflammation, intradermal injection of sHA downregulates the inflammatory processes in the skin. This is associated with the promotion of an anti-inflammatory gene signature in skin macrophages indicating a shift of their activation profile. For in vivo translation, we designed HA-AC/coll hydrogels allowing delivery of sHA into wounds over a period of at least one week. Their immunoregulatory capacity was analyzed in a translational experimental approach in skin wounds of diabetic db/db mice, an established model for disturbed wound healing. The sHA-releasing hydrogels improved defective tissue repair with reduced inflammation, augmented pro-regenerative macrophage activation, increased vascularization, and accelerated new tissue formation and wound closure.
Collapse
Affiliation(s)
- Sophia Hauck
- Department of Dermatology, Venerology und Allergology, Leipzig University, 04103, Leipzig, Germany
| | - Paula Zager
- Department of Dermatology, Venerology und Allergology, Leipzig University, 04103, Leipzig, Germany
| | - Norbert Halfter
- Institute of Materials Science, Max Bergmann Center for Biomaterials, Technische Universität Dresden, 01069, Dresden, Germany
| | - Elke Wandel
- Department of Dermatology, Venerology und Allergology, Leipzig University, 04103, Leipzig, Germany
| | - Marta Torregrossa
- Department of Dermatology, Venerology und Allergology, Leipzig University, 04103, Leipzig, Germany
| | - Ainur Kakpenova
- Department of Dermatology, Venerology und Allergology, Leipzig University, 04103, Leipzig, Germany
| | - Sandra Rother
- Institute of Materials Science, Max Bergmann Center for Biomaterials, Technische Universität Dresden, 01069, Dresden, Germany
| | - Michelle Ordieres
- Department of Dermatology, Venerology und Allergology, Leipzig University, 04103, Leipzig, Germany
| | - Susann Räthel
- Department of Dermatology, Venerology und Allergology, Leipzig University, 04103, Leipzig, Germany
| | - Albrecht Berg
- Biomaterials Department, INNOVENT e.V. Jena, Germany
| | | | | | - Jan C. Simon
- Department of Dermatology, Venerology und Allergology, Leipzig University, 04103, Leipzig, Germany
| | - Vera Hintze
- Institute of Materials Science, Max Bergmann Center for Biomaterials, Technische Universität Dresden, 01069, Dresden, Germany
| | - Sandra Franz
- Department of Dermatology, Venerology und Allergology, Leipzig University, 04103, Leipzig, Germany
- Corresponding author. University Leipzig, Department of Dermatology, Venerology and Allergology, Max Bürger Research Centre, Johannisallee 30, 04103, Leipzig, Germany.
| |
Collapse
|
40
|
Abstract
Reparative inflammation is an important protective response that eliminates foreign organisms, damaged cells, and physical irritants. However, inappropriately triggered or sustained inflammation can respectively initiate, propagate, or prolong disease. Post-hemorrhagic (PHH) and post-infectious hydrocephalus (PIH) are the most common forms of hydrocephalus worldwide. They are treated using neurosurgical cerebrospinal fluid (CSF) diversion techniques with high complication and failure rates. Despite their distinct etiologies, clinical studies in human patients have shown PHH and PIH share similar CSF cytokine and immune cell profiles. Here, in light of recent work in model systems, we discuss the concept of "inflammatory hydrocephalus" to emphasize potential shared mechanisms and potential therapeutic vulnerabilities of these disorders. We propose that this change of emphasis could shift our thinking of PHH and PIH from a framework of life-long neurosurgical disorders to that of preventable conditions amenable to immunomodulation.
Collapse
|
41
|
Preparation of W/O Hypaphorine-Chitosan Nanoparticles and Its Application on Promoting Chronic Wound Healing via Alleviating Inflammation Block. NANOMATERIALS 2021; 11:nano11112830. [PMID: 34835594 PMCID: PMC8625710 DOI: 10.3390/nano11112830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022]
Abstract
Chronic wound repair is a common complication in patients with diabetes mellitus, which causes a heavy burden on social medical resources and the economy. Hypaphorine (HYP) has good anti-inflammatory effect, and chitosan (CS) is used in the treatment of wounds because of its good antibacterial effect. The purpose of this research was to investigate the role and mechanism of HYP-nano-microspheres in the treatment of wounds for diabetic rats. The morphology of HYP-NPS was observed by transmission electron microscopy (TEM). RAW 264.7 macrophages were used to assess the bio-compatibility of HYP-NPS. A full-thickness dermal wound in a diabetic rat model was performed to evaluate the wound healing function of HYP-NPS. The results revealed that HYP-NPS nanoparticles were spherical with an average diameter of approximately 50 nm. The cell experiments hinted that HYP-NPS had the potential as a trauma material. The wound test in diabetic rats indicated that HYP-NPS fostered the healing of chronic wounds. The mechanism was through down-regulating the expression of pro-inflammatory cytokines IL-1β and TNF-α in the skin of the wound, and accelerating the transition of chronic wound from inflammation to tissue regeneration. These results indicate that HYP-NPS has a good application prospect in the treatment of chronic wounds.
Collapse
|
42
|
Lyu SC, Wang J, Xu WL, Wang HX, Pan F, Jiang T, He Q, Lang R. Therapeutic Effect of Combining Anisodamine With Neostigmine on Local Scar Formation Following Roux-en-Y Choledochojejunostomy in a Novel Rat Model. Front Pharmacol 2021; 12:700050. [PMID: 34658849 PMCID: PMC8511430 DOI: 10.3389/fphar.2021.700050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022] Open
Abstract
Background: The present study aimed to explore the potential effect of combining anisodamine with neostigmine on local scar formation following Roux-en-Y choledochojejunostomy (RCJS) in a novel rat model. Methods: The biliary obstruction model of Sprague Dawley (SD) rats was established in advance, and 54 rats were divided into nine groups randomly (sham operation group, anisodamine group, neostigmine group, combination group, and control group). Anisodamine (25 mg/kg) and neostigmine (50 μg/kg) were injected to the abdominal cavity separately or simultaneously for 1 week since the first day after surgery according to their allocated intervention, while the same amount of saline (0.5 ml) was injected intraperitoneally in the control group. Indexes including body weight, the diameter of the common bile duct, liver function, inflammatory indexes, and the condition of scar formation in different groups at certain time were evaluated in our study. Results: Recovery of liver function (ALT, AST, TB, DB, and GGT) and systematic inflammation indexes (CRP, TNF-α, and IL-1β) in the combination group was prior to that in the control group (p < 0.05), while no statistical difference in the serum level of IL-10 was observed among groups. Rats in the combination group represented a wider anastomotic diameter and lower expression of α-SMA and TGF-β1 at anastomotic stoma compared to the control group (p < 0.05). Histopathological staining showed slighter proliferation of collagen and smooth muscle fibers in rats’ bile duct wall and less local scar formation at anastomotic stoma compared to the control group. Conclusion: The combination of anisodamine and neostigmine can alleviate local and systemic inflammatory response, promote the recovery of liver function, and reduce scar formation in rats after the RCJS procedure.
Collapse
Affiliation(s)
- Shao-Cheng Lyu
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jing Wang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Wen-Li Xu
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Han-Xuan Wang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Fei Pan
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Tao Jiang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Qiang He
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ren Lang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
43
|
Toma AI, Fuller JM, Willett NJ, Goudy SL. Oral wound healing models and emerging regenerative therapies. Transl Res 2021; 236:17-34. [PMID: 34161876 PMCID: PMC8380729 DOI: 10.1016/j.trsl.2021.06.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022]
Abstract
Following injury, the oral mucosa undergoes complex sequences of biological healing processes to restore homeostasis. While general similarities exist, there are marked differences in the genomics and kinetics of wound healing between the oral cavity and cutaneous epithelium. The lack of successful therapy for oral mucosal wounds has influenced clinicians to explore alternative treatments and potential autotherapies to enhance intraoral healing. The present in-depth review discusses current gold standards for oral mucosal wound healing and compares endogenous factors that dictate the quality of tissue remodeling. We conducted a review of the literature on in vivo oral wound healing models and emerging regenerative therapies published during the past twenty years. Studies were evaluated by injury models, therapy interventions, and outcome measures. The success of therapeutic approaches was assessed, and research outcomes were compared based on current hallmarks of oral wound healing. By leveraging therapeutic advancements, particularly within in cell-based biomaterials and immunoregulation, there is great potential for translational therapy in oral tissue regeneration.
Collapse
Affiliation(s)
- Afra I Toma
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, USA.
| | - Julia M Fuller
- Department of Biology, Emory University, Atlanta, GA, USA.
| | - Nick J Willett
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, USA; Department of Orthopedics, Emory University, Atlanta, GA, USA; The Atlanta Veterans Affairs Medical Center, Atlanta, GA, USA.
| | - Steven L Goudy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, USA; Department of Otolaryngology, Emory University, Atlanta, GA, USA; Department of Pediatric Otolaryngology, Children's Healthcare of Atlanta, Atlanta, GA, USA.
| |
Collapse
|
44
|
Gu L, Peng S, Zhang J, Lu X, Xia C, Yu J, Sun L. Development and validation of an activated immune model with zebrafish eleutheroembryo based on caudal fin acupuncture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147288. [PMID: 33930807 DOI: 10.1016/j.scitotenv.2021.147288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/01/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Environmental pollutants are ubiquitous in global aquatic ecosystems and may cause immunotoxicity in aquatic organisms. However, disadvantages remain in the existing in vivo immunotoxicological methods, which make it difficult to meet the increasing demands for screening and for discriminating the immunotoxicity of environmental pollutants. In this study, the immune response in zebrafish eleutheroembryo was activated by acupuncture of the caudal fin at 72 hours post fertilization (hpf), and this immune model was further validated with a well-defined immunosuppressor, beclomethasone dipropionate (BDP). It was shown that acupuncture resulted in no increase in mortality in zebrafish eleutheroembryos. The transcription and protein levels of most immune genes were significantly increased after acupuncture, which indicated that acupuncture can effectively activate the immune response in zebrafish eleutheroembryos. Following exposure to BDP (0.01-1 μmol/L), the suppressive effects on the immune system were more significant in zebrafish that received acupuncture than in zebrafish that did not receive acupuncture. Considering these advantages, including its sensitivity, safety, and simple operation, over existing methods, the established immune model of zebrafish is promising for assessing the immunotoxicity of environmental pollutants.
Collapse
Affiliation(s)
- Linqi Gu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Shaohong Peng
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Jieyu Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Xingfan Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Caihong Xia
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Jie Yu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China.
| |
Collapse
|
45
|
Torregrossa M, Kakpenova A, Simon JC, Franz S. Modulation of macrophage functions by ECM-inspired wound dressings - a promising therapeutic approach for chronic wounds. Biol Chem 2021; 402:1289-1307. [PMID: 34390641 DOI: 10.1515/hsz-2021-0145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/02/2021] [Indexed: 12/24/2022]
Abstract
Nonhealing chronic wounds are among the most common skin disorders with increasing incidence worldwide. However, their treatment is still dissatisfying, that is why novel therapeutic concepts targeting the sustained inflammatory process have emerged. Increasing understanding of chronic wound pathologies has put macrophages in the spotlight of such approaches. Herein, we review current concepts and perspectives of therapeutic macrophage control by ECM-inspired wound dressing materials. We provide an overview of the current understanding of macrophage diversity with particular view on their roles in skin and in physiological and disturbed wound healing processes. Based on this we discuss strategies for their modulation in chronic wounds and how such strategies can be tailored in ECM-inspired wound dressing. The latter utilize and mimic general principles of ECM-mediated cell control, such as binding and delivery of signaling molecules and direct signaling to cells specifically adapted for macrophage regulation in wounds. In this review, we present examples of most recent approaches and discuss ideas for their further development.
Collapse
Affiliation(s)
- Marta Torregrossa
- Department of Dermatology, Venerology and Allergology, Max Bürger Research Centre, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Ainur Kakpenova
- Department of Dermatology, Venerology and Allergology, Max Bürger Research Centre, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Jan C Simon
- Department of Dermatology, Venerology and Allergology, Max Bürger Research Centre, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Sandra Franz
- Department of Dermatology, Venerology and Allergology, Max Bürger Research Centre, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| |
Collapse
|
46
|
The Tentacular Spectacular: Evolution of Regeneration in Sea Anemones. Genes (Basel) 2021; 12:genes12071072. [PMID: 34356088 PMCID: PMC8306839 DOI: 10.3390/genes12071072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/03/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Sea anemones vary immensely in life history strategies, environmental niches and their ability to regenerate. While the sea anemone Nematostella vectensis is the starlet of many key regeneration studies, recent work is emerging on the diverse regeneration strategies employed by other sea anemones. This manuscript will explore current molecular mechanisms of regeneration employed by non-model sea anemones Exaiptasia diaphana (an emerging model species for coral symbiosis studies) and Calliactis polypus (a less well-studied species) and examine how these species compare to the model sea anemone N. vectensis. We summarize the field of regeneration within sea anemones, within the greater context of phylum Cnidaria and in other invertebrate models of regeneration. We also address the current knowledge on two key systems that may be implemented in regeneration: the innate immune system and developmental pathways, including future aspects of work and current limitations.
Collapse
|
47
|
Berthézène CD, Rabiller L, Jourdan G, Cousin B, Pénicaud L, Casteilla L, Lorsignol A. Tissue Regeneration: The Dark Side of Opioids. Int J Mol Sci 2021; 22:7336. [PMID: 34298954 PMCID: PMC8307464 DOI: 10.3390/ijms22147336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Opioids are regarded as among the most effective analgesic drugs and their use for the management of pain is considered standard of care. Despite their systematic administration in the peri-operative period, their impact on tissue repair has been studied mainly in the context of scar healing and is only beginning to be documented in the context of true tissue regeneration. Indeed, in mammals, growing evidence shows that opioids direct tissue repair towards scar healing, with a loss of tissue function, instead of the regenerative process that allows for recovery of both the morphology and function of tissue. Here, we review recent studies that highlight how opioids may prevent a regenerative process by silencing nociceptive nerve activity and a powerful anti-inflammatory effect. These data open up new perspectives for inducing tissue regeneration and argue for opioid-restricted strategies for managing pain associated with tissue injury.
Collapse
Affiliation(s)
- Cécile Dromard Berthézène
- RESTORE Research Center, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, 31000 Toulouse, France; (C.D.B.); (G.J.); (B.C.); (L.P.); (L.C.)
| | - Lise Rabiller
- Alan Edwards Center for Research on Pain, Department of Physiology and Cell Information Systems, McGill University, Montreal, QC H3A 0G1, Canada;
| | - Géraldine Jourdan
- RESTORE Research Center, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, 31000 Toulouse, France; (C.D.B.); (G.J.); (B.C.); (L.P.); (L.C.)
| | - Béatrice Cousin
- RESTORE Research Center, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, 31000 Toulouse, France; (C.D.B.); (G.J.); (B.C.); (L.P.); (L.C.)
| | - Luc Pénicaud
- RESTORE Research Center, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, 31000 Toulouse, France; (C.D.B.); (G.J.); (B.C.); (L.P.); (L.C.)
| | - Louis Casteilla
- RESTORE Research Center, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, 31000 Toulouse, France; (C.D.B.); (G.J.); (B.C.); (L.P.); (L.C.)
| | - Anne Lorsignol
- RESTORE Research Center, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, 31000 Toulouse, France; (C.D.B.); (G.J.); (B.C.); (L.P.); (L.C.)
| |
Collapse
|
48
|
The Role of MSC in Wound Healing, Scarring and Regeneration. Cells 2021; 10:cells10071729. [PMID: 34359898 PMCID: PMC8305394 DOI: 10.3390/cells10071729] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 02/06/2023] Open
Abstract
Tissue repair and regeneration after damage is not completely understood, and current therapies to support this process are limited. The wound healing process is associated with cell migration and proliferation, extracellular matrix remodeling, angiogenesis and re-epithelialization. In normal conditions, a wound will lead to healing, resulting in reparation of the tissue. Several risk factors, chronic inflammation, and some diseases lead to a deficient wound closure, producing a scar that can finish with a pathological fibrosis. Mesenchymal stem/stromal cells (MSCs) are widely used for their regenerative capacity and their possible therapeutically potential. Derived products of MSCs, such as exosomes or extravesicles, have shown a therapeutic potential similar to MSCs, and these cell-free products may be interesting in clinics. MSCs or their derivative products have shown paracrine beneficial effects, regulating inflammation, modifying the fibroblast activation and production of collagen and promoting neovascularization and re-epithelialization. This review describes the effects of MSCs and their derived products in each step of the wound repair process. As well, it reviews the pre-clinical and clinical use of MSCs to benefit in skin wound healing in diabetic associated wounds and in pathophysiological fibrosis.
Collapse
|
49
|
Ding L, Wang M, Qin S, Xu L. The Roles of MicroRNAs in Tendon Healing and Regeneration. Front Cell Dev Biol 2021; 9:687117. [PMID: 34277629 PMCID: PMC8283311 DOI: 10.3389/fcell.2021.687117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/11/2021] [Indexed: 01/20/2023] Open
Abstract
Tendons connect the muscle abdomen of skeletal muscles to the bone, which transmits the force generated by the muscle abdomen contraction and pulls the bone into motion. Tendon injury is a common clinical condition occurring in certain populations, such as repeated tendon strains in athletes. And it can lead to substantial pain and loss of motor function, in severe cases, significant disability. Tendon healing and regeneration have attracted growing interests. Some treatments including growth factors, stem cell therapies and rehabilitation programs have been tried to improve tendon healing. However, the basic cellular biology and pathology of tendons are still not fully understood, and the management of tendon injury remains a considerable challenge. Regulating gene expression at post-transcriptional level, microRNA (miRNA) has been increasingly recognized as essential regulators in the biological processes of tendon healing and regeneration. A wide range of miRNAs in tendon injury have been shown to play vital roles in maintaining and regulating its physiological function, as well as regulating the tenogenic differentiation potential of stem cells. In this review, we show the summary of the latest information on the role of miRNAs in tendon healing and regeneration, and also discuss potentials for miRNA-directed diagnosis and therapy in tendon injuries and tendinopathy, which may provide new theoretical foundation for tenogenesis and tendon healing.
Collapse
Affiliation(s)
- Lingli Ding
- Lingnan Medical Research Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Wang
- Lingnan Medical Research Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shengnan Qin
- Department of Orthopaedics, Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Liangliang Xu
- Lingnan Medical Research Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
50
|
Species variations in tenocytes' response to inflammation require careful selection of animal models for tendon research. Sci Rep 2021; 11:12451. [PMID: 34127759 PMCID: PMC8203623 DOI: 10.1038/s41598-021-91914-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 05/24/2021] [Indexed: 01/23/2023] Open
Abstract
For research on tendon injury, many different animal models are utilized; however, the extent to which these species simulate the clinical condition and disease pathophysiology has not yet been critically evaluated. Considering the importance of inflammation in tendon disease, this study compared the cellular and molecular features of inflammation in tenocytes of humans and four common model species (mouse, rat, sheep, and horse). While mouse and rat tenocytes most closely equalled human tenocytes’ low proliferation capacity and the negligible effect of inflammation on proliferation, the wound closure speed of humans was best approximated by rats and horses. The overall gene expression of human tenocytes was most similar to mice under healthy, to horses under transient and to sheep under constant inflammatory conditions. Humans were best matched by mice and horses in their tendon marker and collagen expression, by horses in extracellular matrix remodelling genes, and by rats in inflammatory mediators. As no single animal model perfectly replicates the clinical condition and sufficiently emulates human tenocytes, fit-for-purpose selection of the model species for each specific research question and combination of data from multiple species will be essential to optimize translational predictive validity.
Collapse
|