1
|
Zelli E, Ellis J, Pilditch C, Rowden AA, Anderson OF, Geange SW, Bowden DA, Stephenson F. Identifying climate refugia for vulnerable marine ecosystem indicator taxa under future climate change scenarios. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 373:122635. [PMID: 39675324 DOI: 10.1016/j.jenvman.2024.122635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/11/2024] [Accepted: 09/21/2024] [Indexed: 12/17/2024]
Abstract
Vulnerable Marine Ecosystems (VMEs) are recognised as having high ecological significance and susceptibility to disturbances, including climate change. One approach to providing information on the location and biological composition of these ecosystems, especially in difficult-to-reach environments such as the deep sea, is to generate spatial predictions for VME indicator taxa. In this study, the Random Forest algorithm was used to model the spatial distribution of density for 14 deep-water VME indicator taxa under current environmental conditions and future climate change scenarios (SSP2-4.5 and SSP3-7.0) within the New Zealand Territorial Sea and Exclusive Economic Zone (100-1500 m water depth) to evaluate potential changes in the location and distribution of density of these taxa over time. Overall, our species distribution models performed well for all taxa (mean AUC = 0.82; TSS = 0.56; r = 0.40) and predicted a considerable average reduction in density (54%) and habitat extent (61%), by the end of the 21st century under both climate change scenarios. Nevertheless, models identified regions that might serve as internal refugia (approximately 158,000 km2), where some taxa are predicted to maintain the high densities predicted for current-day environmental conditions under future climatic conditions, and external refugia (approximately 121,000 km2) where taxa were predicted to expand into new locations by the end of the 21st century. Our results represent a significant step forward as they provide predictions of the distribution of taxa densities, rather than just occurrence, under both present and future climatic conditions. Furthermore, these findings carry implications for ecosystem management and spatial planning, suggesting current marine spatial protection measures may not offer adequate protection to VME indicator taxa in the face of climate change. Additionally, activities like bottom trawling, present or future, may jeopardize climate refugia viability. Thus, a comprehensive assessment of cumulative effects on VME indicator taxa is recommended to establish effective protection measures for potential climate refugia, ensuring the continuity of essential ecosystem services.
Collapse
Affiliation(s)
- Edoardo Zelli
- School of Science, University of Waikato, Tauranga, New Zealand.
| | - Joanne Ellis
- School of Science, University of Waikato, Tauranga, New Zealand
| | - Conrad Pilditch
- Institute of Marine Science, Faculty of Science, The University of Auckland, Auckland, New Zealand; School of Science, University of Waikato, Hamilton, New Zealand
| | - Ashley A Rowden
- National Institute of Water and Atmospheric Research (NIWA), Wellington, New Zealand; Victoria University of Wellington, Wellington, New Zealand
| | - Owen F Anderson
- National Institute of Water and Atmospheric Research (NIWA), Wellington, New Zealand
| | | | - David A Bowden
- National Institute of Water and Atmospheric Research (NIWA), Wellington, New Zealand
| | - Fabrice Stephenson
- School of Science, University of Waikato, Hamilton, New Zealand; School of Natural and Environmental Science, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
2
|
Claesson PM, Wojas NA, Corkery R, Dedinaite A, Schoelkopf J, Tyrode E. The dynamic nature of natural and fatty acid modified calcite surfaces. Phys Chem Chem Phys 2024; 26:2780-2805. [PMID: 38193529 DOI: 10.1039/d3cp04432g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Calcium carbonate, particularly in the form of calcite, is an abundant mineral widely used in both human-made products and biological systems. The calcite surface possesses a high surface energy, making it susceptible to the adsorption of organic contaminants. Moreover, the surface is also reactive towards a range of chemicals, including water. Consequently, studying and maintaining a clean and stable calcite surface is only possible under ultrahigh vacuum conditions and for limited amounts of time. When exposed to air or solution, the calcite surface undergoes rapid transformations, demanding a comprehensive understanding of the properties of calcite surfaces in different environments. Similarly, attention must also be directed towards the kinetics of changes, whether induced by fluctuating environments or at constant condition. All these aspects are encompassed in the expression "dynamic nature", and are of crucial importance in the context of the diverse applications of calcite. In many instances, the calcite surface is modified by adsorption of fatty acids to impart a desired nonpolar character. Although the binding between carboxylic acid groups and calcite surfaces is strong, the fatty acid layer used for surface modification undergoes significant alterations when exposed to water vapour and liquid water droplets. Therefore, it is also crucial to understand the dynamic nature of the adsorbed layer. This review article provides a comprehensive overview of the current understanding of both the dynamics of the calcite surface as well as when modified by fatty acid surface treatments.
Collapse
Affiliation(s)
- Per M Claesson
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, Teknikringen 29, SE-100 44 Stockholm, Sweden.
| | - Natalia A Wojas
- RISE Research Institutes of Sweden, Division of Bioeconomy and Health - Material and Surface Design, Drottning Kristinas väg 61B, SE-114 28 Stockholm, Sweden
| | - Robert Corkery
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, Teknikringen 29, SE-100 44 Stockholm, Sweden.
| | - Andra Dedinaite
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Engineering Pedagogics, SE-100 44 Stockholm, Sweden
- RISE Research Institutes of Sweden, Division Bioeconomy and Health, Department Chemical Process and Pharmaceutical Development, Box 5604, SE-114 86 Stockholm, Sweden
| | | | - Eric Tyrode
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, Teknikringen 29, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
3
|
Tan CD, Hähner G, Fitzer S, Cole C, Finch AA, Hintz C, Hintz K, Allison N. The response of coral skeletal nano structure and hardness to ocean acidification conditions. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230248. [PMID: 37538739 PMCID: PMC10394408 DOI: 10.1098/rsos.230248] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/12/2023] [Indexed: 08/05/2023]
Abstract
Ocean acidification typically reduces coral calcification rates and can fundamentally alter skeletal morphology. We use atomic force microscopy (AFM) and microindentation to determine how seawater pCO2 affects skeletal structure and Vickers hardness in a Porites lutea coral. At 400 µatm, the skeletal fasciculi are composed of tightly packed bundles of acicular crystals composed of quadrilateral nanograins, approximately 80-300 nm in dimensions. We interpret high adhesion at the nanograin edges as an organic coating. At 750 µatm the crystals are less regular in width and orientation and composed of either smaller/more rounded nanograins than observed at 400 µatm or of larger areas with little variation in adhesion. Coral aragonite may form via ion-by-ion attachment to the existing skeleton or via conversion of amorphous calcium carbonate precursors. Changes in nanoparticle morphology could reflect variations in the sizes of nanoparticles produced by each crystallization pathway or in the contributions of each pathway to biomineralization. We observe no significant variation in Vickers hardness between skeletons cultured at different seawater pCO2. Either the nanograin size does not affect skeletal hardness or the effect is offset by other changes in the skeleton, e.g. increases in skeletal organic material as reported in previous studies.
Collapse
Affiliation(s)
- Chao Dun Tan
- EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews KY16 9TS, UK
| | - Georg Hähner
- EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews KY16 9TS, UK
| | - Susan Fitzer
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Catherine Cole
- School of Earth and Environmental Sciences, University of St. Andrews, St. Andrews KY16 9TS, UK
| | - Adrian A. Finch
- School of Earth and Environmental Sciences, University of St. Andrews, St. Andrews KY16 9TS, UK
| | - Chris Hintz
- Department of Marine and Environmental Sciences, Savannah State University, Savannah, GA USA
| | - Ken Hintz
- Department of Electrical and Computer Engineering, George Mason University, Fairfax, VA, USA
| | - Nicola Allison
- School of Earth and Environmental Sciences, University of St. Andrews, St. Andrews KY16 9TS, UK
| |
Collapse
|
4
|
Zhang K, Wu Z, Liu Z, Tang J, Cai W, An M, Zhou Z. Acute hypoxia induces reduction of algal symbiont density and suppression of energy metabolism in the scleractinian coral Pocillopora damicornis. MARINE POLLUTION BULLETIN 2023; 191:114897. [PMID: 37043929 DOI: 10.1016/j.marpolbul.2023.114897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/21/2023] [Accepted: 03/27/2023] [Indexed: 05/13/2023]
Abstract
Loss of oxygen in the ocean is accelerating and threatening the coral reef ecosystem. In this study, the impacts of hypoxia on the scleractinian coral Pocillopora damicornis were explored. The algal symbiont density, chlorophyll a + c2 content, energy consumption of corals, as well as energy available and consumption of their symbionts, decreased significantly post hypoxia stress. Meanwhile, the malondialdehyde contents in corals and symbionts, together with the caspase-3 activation level in corals, increased significantly in response to hypoxia stress. Furthermore, it was revealed that activities such as coral cell division and calcification were inhibited under hypoxia. These results collectively suggest that acute hypoxia stress reduces symbiont density and chlorophyll a + c2 content in the coral P. damicornis by elevating intracellular oxidative pressure and apoptotic level, which further suppresses energy metabolism in the symbiotic association and negatively affects a series of activities such as coral cell division and calcification.
Collapse
Affiliation(s)
- Kaidian Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| | - Zhongjie Wu
- Hainan Academy of Ocean and Fisheries Sciences, Haikou 571126, China
| | - Zhaoqun Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China.
| | - Jia Tang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| | - Wenqi Cai
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China; Hainan Academy of Ocean and Fisheries Sciences, Haikou 571126, China
| | - Mingxun An
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| | - Zhi Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China.
| |
Collapse
|
5
|
Simonetti S, Zupo V, Gambi MC, Luckenbach T, Corsi I. Unraveling cellular and molecular mechanisms of acid stress tolerance and resistance in marine species: New frontiers in the study of adaptation to ocean acidification. MARINE POLLUTION BULLETIN 2022; 185:114365. [PMID: 36435021 DOI: 10.1016/j.marpolbul.2022.114365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Since the industrial revolution, fossil fuel combustion has led to a 30 %-increase of the atmospheric CO2 concentration, also increasing the ocean partial CO2 pressure. The consequent lowered surface seawater pH is termed ocean acidification (OA) and severely affects marine life on a global scale. Cellular and molecular responses of marine species to lowered seawater pH have been studied but information on the mechanisms driving the tolerance of adapted species to comparatively low seawater pH is limited. Such information may be obtained from species inhabiting sites with naturally low water pH that have evolved remarkable abilities to tolerate such conditions. This review gathers information on current knowledge about species naturally facing low water pH conditions and on cellular and molecular adaptive mechanisms enabling the species to survive under, and even benefit from, adverse pH conditions. Evidences derived from case studies on naturally acidified systems and on resistance mechanisms will guide predictions on the consequences of future adverse OA scenarios for marine biodiversity.
Collapse
Affiliation(s)
- Silvia Simonetti
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100 Siena, Italy; Stazione Zoologica Anton Dohrn, National Institute of Marine Biology, Ecology and Biotechnology, Dep.t of BluBioTech, Napoli, Italy.
| | - Valerio Zupo
- Stazione Zoologica Anton Dohrn, National Institute of Marine Biology, Ecology and Biotechnology, Dep.t of BluBioTech, Napoli, Italy.
| | | | - Till Luckenbach
- Department Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100 Siena, Italy.
| |
Collapse
|
6
|
Different skeletal protein toolkits achieve similar structure and performance in the tropical coral Stylophora pistillata and the temperate Oculina patagonica. Sci Rep 2022; 12:16575. [PMID: 36195656 PMCID: PMC9532382 DOI: 10.1038/s41598-022-20744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/19/2022] [Indexed: 11/08/2022] Open
Abstract
Stony corals (order: Scleractinia) differ in growth form and structure. While stony corals have gained the ability to form their aragonite skeleton once in their evolution, the suite of proteins involved in skeletogenesis is different for different coral species. This led to the conclusion that the organic portion of their skeleton can undergo rapid evolutionary changes by independently evolving new biomineralization-related proteins. Here, we used liquid chromatography-tandem mass spectrometry to sequence skeletogenic proteins extracted from the encrusting temperate coral Oculina patagonica. We compare it to the previously published skeletal proteome of the branching subtropical corals Stylophora pistillata as both are regarded as highly resilient to environmental changes. We further characterized the skeletal organic matrix (OM) composition of both taxa and tested their effects on the mineral formation using a series of overgrowth experiments on calcite seeds. We found that each species utilizes a different set of proteins containing different amino acid compositions and achieve a different morphology modification capacity on calcite overgrowth. Our results further support the hypothesis that the different coral taxa utilize a species-specific protein set comprised of independent gene co-option to construct their own unique organic matrix framework. While the protein set differs between species, the specific predicted roles of the whole set appear to underline similar functional roles. They include assisting in forming the extracellular matrix, nucleation of the mineral and cell signaling. Nevertheless, the different composition might be the reason for the varying organization of the mineral growth in the presence of a particular skeletal OM, ultimately forming their distinct morphologies.
Collapse
|
7
|
Full-Length Transcriptome Maps of Reef-Building Coral Illuminate the Molecular Basis of Calcification, Symbiosis, and Circa-Dian Genes. Int J Mol Sci 2022; 23:ijms231911135. [PMID: 36232445 PMCID: PMC9570262 DOI: 10.3390/ijms231911135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Coral transcriptomic data largely rely on short-read sequencing, which severely limits the understanding of coral molecular mechanisms and leaves many important biological questions unresolved. Here, we sequence the full-length transcriptomes of four common and frequently dominant reef-building corals using the PacBio Sequel II platform. We obtain information on reported gene functions, structures, and expression profiles. Among them, a comparative analysis of biomineralization-related genes provides insights into the molecular basis of coral skeletal density. The gene expression profiles of the symbiont Symbiodiniaceae are also isolated and annotated from the holobiont sequence data. Finally, a phylogenetic analysis of key circadian clock genes among 40 evolutionarily representative species indicates that there are four key members in early metazoans, including cry genes; Clock or Npas2; cyc or Arntl; and tim, while per, as the fifth member, occurs in Bilateria. In summary, this work provides a foundation for further work on the manipulation of skeleton production or symbiosis to promote the survival of these important organisms.
Collapse
|
8
|
Niu YQ, Liu JH, Aymonier C, Fermani S, Kralj D, Falini G, Zhou CH. Calcium carbonate: controlled synthesis, surface functionalization, and nanostructured materials. Chem Soc Rev 2022; 51:7883-7943. [PMID: 35993776 DOI: 10.1039/d1cs00519g] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Calcium carbonate (CaCO3) is an important inorganic mineral in biological and geological systems. Traditionally, it is widely used in plastics, papermaking, ink, building materials, textiles, cosmetics, and food. Over the last decade, there has been rapid development in the controlled synthesis and surface modification of CaCO3, the stabilization of amorphous CaCO3 (ACC), and CaCO3-based nanostructured materials. In this review, the controlled synthesis of CaCO3 is first examined, including Ca2+-CO32- systems, solid-liquid-gas carbonation, water-in-oil reverse emulsions, and biomineralization. Advancing insights into the nucleation and crystallization of CaCO3 have led to the development of efficient routes towards the controlled synthesis of CaCO3 with specific sizes, morphologies, and polymorphs. Recently-developed surface modification methods of CaCO3 include organic and inorganic modifications, as well as intensified surface reactions. The resultant CaCO3 can then be further engineered via template-induced biomineralization and layer-by-layer assembly into porous, hollow, or core-shell organic-inorganic nanocomposites. The introduction of CaCO3 into nanostructured materials has led to a significant improvement in the mechanical, optical, magnetic, and catalytic properties of such materials, with the resultant CaCO3-based nanostructured materials showing great potential for use in biomaterials and biomedicine, environmental remediation, and energy production and storage. The influences that the preparation conditions and additives have on ACC preparation and stabilization are also discussed. Studies indicate that ACC can be used to construct environmentally-friendly hybrid films, supramolecular hydrogels, and drug vehicles. Finally, the existing challenges and future directions of the controlled synthesis and functionalization of CaCO3 and its expanding applications are highlighted.
Collapse
Affiliation(s)
- Yu-Qin Niu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Jia-Hui Liu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Cyril Aymonier
- Univ Bordeaux, ICMCB, Bordeaux INP, UMR 5026, CNRS, F-33600 Pessac, France
| | - Simona Fermani
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, I-40126 Bologna, Italy. .,Interdepartmental Centre for Industrial Research Health Sciences & Technologies, University of Bologna, 40064 Bologna, Italy
| | - Damir Kralj
- Laboratory for Precipitation Processes, Ruđer Bošković Institute, P. O. Box 1016, HR-10001 Zagreb, Croatia
| | - Giuseppe Falini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, I-40126 Bologna, Italy.
| | - Chun-Hui Zhou
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| |
Collapse
|
9
|
Ramnarain V, Georges T, Ortiz Peña N, Ihiawakrim D, Longuinho M, Bulou H, Gervais C, Sanchez C, Azaïs T, Ersen O. Monitoring of CaCO 3 Nanoscale Structuration through Real-Time Liquid Phase Transmission Electron Microscopy and Hyperpolarized NMR. J Am Chem Soc 2022; 144:15236-15251. [PMID: 35971919 DOI: 10.1021/jacs.2c05731] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Calcium carbonate (CaCO3) is one of the most significant biominerals in nature. Living organisms are able to control its biomineralization by means of an organic matrix to tailor a myriad of hybrid functional materials. The soluble organic components are often proteins rich in acidic amino-acids such as l-aspartic acid. While several studies have demonstrated the influence of amino acids on the crystallization of calcium carbonate, nanoscopic insight of their impact on CaCO3 mineralization, in particular at the early stages, is still lacking. Herein, we implement liquid phase-transmission electron microscopy (LP-TEM) in order to visualize in real-time and at the nanoscale the prenucleation stages of CaCO3 formation. We observe that l-aspartic acid favors the formation of individual and aggregated prenucleation clusters which are found stable for several minutes before the transformation into amorphous nanoparticles. Combination with hyperpolarized solid state nuclear magnetic resonance (DNP NMR) and density functional theory (DFT) calculations allow shedding light on the underlying mechanism at the prenucleation stage. The promoting nature of l-aspartic acid with respect to prenucleation clusters is explained by specific interactions with both Ca2+ and carbonates and the stabilization of the Ca2+-CO32-/HCO3- ion pairs favoring the formation and stabilization of the CaCO3 transient precursors. The study of prenucleation stages of mineral formation by the combination of in situ LP-TEM, advanced analytical techniques (including hyperpolarized solid-state NMR), and numerical modeling allows the real-time monitoring of prenucleation species formation and evolution and the comprehension of their relative stability.
Collapse
Affiliation(s)
- Vinavadini Ramnarain
- Institut de Physique et Chimie des Matériaux de Strasbourg, 23 Rue du Loess, 67034 Strasbourg, Cedex 2, France.,ICFRC, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Tristan Georges
- Laboratoire de Chimie de Matière Condensée de Paris, Sorbonne Université, 75005 Paris, France
| | - Nathaly Ortiz Peña
- Laboratoire Matériaux et Phénomènes Quantiques, 75025 Paris, Cedex 13, France
| | - Dris Ihiawakrim
- Institut de Physique et Chimie des Matériaux de Strasbourg, 23 Rue du Loess, 67034 Strasbourg, Cedex 2, France.,ICFRC, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Mariana Longuinho
- CBPF, Rua Dr. Xavier Sigaud, 150 Urca I, CEP 22290-180, Rio de Janeiro, Brasil.,UFRJ, Av Pedro Calmon, 550 Edificio da Reitoria, Iha de do Fundao, CEP 21941-901 Rio de Janeiro, Brasil
| | - Hervé Bulou
- Institut de Physique et Chimie des Matériaux de Strasbourg, 23 Rue du Loess, 67034 Strasbourg, Cedex 2, France.,ICFRC, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Christel Gervais
- Laboratoire de Chimie de Matière Condensée de Paris, Sorbonne Université, 75005 Paris, France
| | - Clément Sanchez
- Laboratoire de Chimie de Matière Condensée de Paris, Sorbonne Université, 75005 Paris, France.,USIAS, Université de Strasbourg, 67000 Strasbourg, France
| | - Thierry Azaïs
- Laboratoire de Chimie de Matière Condensée de Paris, Sorbonne Université, 75005 Paris, France
| | - Ovidiu Ersen
- Institut de Physique et Chimie des Matériaux de Strasbourg, 23 Rue du Loess, 67034 Strasbourg, Cedex 2, France.,ICFRC, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
10
|
Capasso L, Aranda M, Cui G, Pousse M, Tambutté S, Zoccola D. Investigating calcification-related candidates in a non-symbiotic scleractinian coral, Tubastraea spp. Sci Rep 2022; 12:13515. [PMID: 35933557 PMCID: PMC9357087 DOI: 10.1038/s41598-022-17022-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
In hermatypic scleractinian corals, photosynthetic fixation of CO2 and the production of CaCO3 are intimately linked due to their symbiotic relationship with dinoflagellates of the Symbiodiniaceae family. This makes it difficult to study ion transport mechanisms involved in the different pathways. In contrast, most ahermatypic scleractinian corals do not share this symbiotic relationship and thus offer an advantage when studying the ion transport mechanisms involved in the calcification process. Despite this advantage, non-symbiotic scleractinian corals have been systematically neglected in calcification studies, resulting in a lack of data especially at the molecular level. Here, we combined a tissue micro-dissection technique and RNA-sequencing to identify calcification-related ion transporters, and other candidates, in the ahermatypic non-symbiotic scleractinian coral Tubastraea spp. Our results show that Tubastraea spp. possesses several calcification-related candidates previously identified in symbiotic scleractinian corals (such as SLC4-γ, AMT-1like, CARP, etc.). Furthermore, we identify and describe a role in scleractinian calcification for several ion transporter candidates (such as SLC13, -16, -23, etc.) identified for the first time in this study. Taken together, our results provide not only insights about the molecular mechanisms underlying non-symbiotic scleractinian calcification, but also valuable tools for the development of biotechnological solutions to better control the extreme invasiveness of corals belonging to this particular genus.
Collapse
Affiliation(s)
- Laura Capasso
- Marine Biology Department, Centre Scientifique de Monaco (CSM), 8 Quai Antoine 1er, Monte Carlo, 9800, Monaco
- Sorbonne Université, Collège Doctoral, 75005, Paris, France
| | - Manuel Aranda
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Red Sea Research Center Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Guoxin Cui
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Red Sea Research Center Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Melanie Pousse
- Université Côte d'Azur, CNRS, Inserm, Institut for Research On Cancer and Aging, Nice (IRCAN), Medical School of Nice, Nice, France
| | - Sylvie Tambutté
- Marine Biology Department, Centre Scientifique de Monaco (CSM), 8 Quai Antoine 1er, Monte Carlo, 9800, Monaco.
| | - Didier Zoccola
- Marine Biology Department, Centre Scientifique de Monaco (CSM), 8 Quai Antoine 1er, Monte Carlo, 9800, Monaco.
| |
Collapse
|
11
|
Wolfram U, Peña Fernández M, McPhee S, Smith E, Beck RJ, Shephard JD, Ozel A, Erskine CS, Büscher J, Titschack J, Roberts JM, Hennige SJ. Multiscale mechanical consequences of ocean acidification for cold-water corals. Sci Rep 2022; 12:8052. [PMID: 35577824 PMCID: PMC9110400 DOI: 10.1038/s41598-022-11266-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/13/2022] [Indexed: 12/03/2022] Open
Abstract
Ocean acidification is a threat to deep-sea corals and could lead to dramatic and rapid loss of the reef framework habitat they build. Weakening of structurally critical parts of the coral reef framework can lead to physical habitat collapse on an ecosystem scale, reducing the potential for biodiversity support. The mechanism underpinning crumbling and collapse of corals can be described via a combination of laboratory-scale experiments and mathematical and computational models. We synthesise data from electron back-scatter diffraction, micro-computed tomography, and micromechanical experiments, supplemented by molecular dynamics and continuum micromechanics simulations to predict failure of coral structures under increasing porosity and dissolution. Results reveal remarkable mechanical properties of the building material of cold-water coral skeletons of 462 MPa compressive strength and 45-67 GPa stiffness. This is 10 times stronger than concrete, twice as strong as ultrahigh performance fibre reinforced concrete, or nacre. Contrary to what would be expected, CWCs retain the strength of their skeletal building material despite a loss of its stiffness even when synthesised under future oceanic conditions. As this is on the material length-scale, it is independent of increasing porosity from exposure to corrosive water or bioerosion. Our models then illustrate how small increases in porosity lead to significantly increased risk of crumbling coral habitat. This new understanding, combined with projections of how seawater chemistry will change over the coming decades, will help support future conservation and management efforts of these vulnerable marine ecosystems by identifying which ecosystems are at risk and when they will be at risk, allowing assessment of the impact upon associated biodiversity.
Collapse
Affiliation(s)
- Uwe Wolfram
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, UK.
| | - Marta Peña Fernández
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, UK
| | - Samuel McPhee
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, UK
| | - Ewan Smith
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, UK
| | - Rainer J Beck
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, UK
| | - Jonathan D Shephard
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, UK
| | - Ali Ozel
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, UK
| | - Craig S Erskine
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, UK
| | - Janina Büscher
- Biological Oceanography Research Group, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Jürgen Titschack
- Marum Center for Marine Sciences, University of Bremen, Bremen, Germany
- Marine Research Department, Senckenberg am Meer, Wilhelmshaven, Germany
| | - J Murray Roberts
- Changing Oceans Research Group, School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | - Sebastian J Hennige
- Changing Oceans Research Group, School of GeoSciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
12
|
Wan MC, Qin W, Lei C, Li QH, Meng M, Fang M, Song W, Chen JH, Tay F, Niu LN. Biomaterials from the sea: Future building blocks for biomedical applications. Bioact Mater 2021; 6:4255-4285. [PMID: 33997505 PMCID: PMC8102716 DOI: 10.1016/j.bioactmat.2021.04.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 02/08/2023] Open
Abstract
Marine resources have tremendous potential for developing high-value biomaterials. The last decade has seen an increasing number of biomaterials that originate from marine organisms. This field is rapidly evolving. Marine biomaterials experience several periods of discovery and development ranging from coralline bone graft to polysaccharide-based biomaterials. The latter are represented by chitin and chitosan, marine-derived collagen, and composites of different organisms of marine origin. The diversity of marine natural products, their properties and applications are discussed thoroughly in the present review. These materials are easily available and possess excellent biocompatibility, biodegradability and potent bioactive characteristics. Important applications of marine biomaterials include medical applications, antimicrobial agents, drug delivery agents, anticoagulants, rehabilitation of diseases such as cardiovascular diseases, bone diseases and diabetes, as well as comestible, cosmetic and industrial applications.
Collapse
Affiliation(s)
- Mei-chen Wan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Wen Qin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Chen Lei
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Qi-hong Li
- Department of Stomatology, The Fifth Medical Centre, Chinese PLA General Hospital (Former 307th Hospital of the PLA), Dongda Street, Beijing, 100071, PR China
| | - Meng Meng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Ming Fang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Wen Song
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Ji-hua Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Franklin Tay
- College of Graduate Studies, Augusta University, Augusta, GA, 30912, USA
| | - Li-na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453000, PR China
| |
Collapse
|
13
|
Luo D, Wang X, Feng X, Tian M, Wang S, Tang SL, Ang P, Yan A, Luo H. Population differentiation of Rhodobacteraceae along with coral compartments. THE ISME JOURNAL 2021; 15:3286-3302. [PMID: 34017056 PMCID: PMC8528864 DOI: 10.1038/s41396-021-01009-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 02/04/2023]
Abstract
Coral mucus, tissue, and skeleton harbor compositionally different microbiota, but how these coral compartments shape the microbial evolution remains unexplored. Here, we sampled bacteria inhabiting a prevalent coral species Platygyra acuta and sequenced genomes of 234 isolates comprising two populations in Rhodobacteraceae, an alphaproteobacterial lineage representing a significant but variable proportion (5-50%) of the coral microbiota. The Ruegeria population (20 genomes) contains three clades represented by eight, six, and six isolates predominantly sampled from the skeleton (outgroup), mucus (clade-M), and skeleton (clade-S), respectively. The clade-M possesses functions involved in the utilization of coral osmolytes abundant in the mucus (e.g., methylamines, DMSP, taurine, and L-proline), whereas the clade-S uniquely harbors traits that may promote adaptation to the low-energy and diurnally anoxic skeleton (e.g., sulfur oxidation and swimming motility). These between-clade genetic differences were largely supported by physiological assays. Expanded analyses by including genomes of 24 related isolates (including seven new genomes) from other marine environments suggest that clade-M and clade-S may have diversified in non-coral habitats, but they also consolidated a key role of distinct coral compartments in diversifying many of the above-mentioned traits. The unassigned Rhodobacteraceae population (214 genomes) varies only at a few dozen nucleotide sites across the whole genomes, but the number of between-compartment migration events predicted by the Slatkin-Maddison test supported that dispersal limitation between coral compartments is another key mechanism diversifying microbial populations. Collectively, our results suggest that different coral compartments represent ecologically distinct and microgeographically separate habitats that drive the evolution of the coral microbiota.
Collapse
Affiliation(s)
- Danli Luo
- grid.10784.3a0000 0004 1937 0482Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR ,grid.10784.3a0000 0004 1937 0482Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Xiaojun Wang
- grid.10784.3a0000 0004 1937 0482Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR ,grid.10784.3a0000 0004 1937 0482Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Xiaoyuan Feng
- grid.10784.3a0000 0004 1937 0482Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR ,grid.10784.3a0000 0004 1937 0482Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Mengdan Tian
- grid.194645.b0000000121742757School of Biological Sciences, The University of Hong Kong, Shatin, Hong Kong SAR
| | - Sishuo Wang
- grid.10784.3a0000 0004 1937 0482Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Sen-Lin Tang
- grid.506939.0Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Put Ang
- grid.10784.3a0000 0004 1937 0482Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Aixin Yan
- grid.194645.b0000000121742757School of Biological Sciences, The University of Hong Kong, Shatin, Hong Kong SAR
| | - Haiwei Luo
- grid.10784.3a0000 0004 1937 0482Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR ,grid.10784.3a0000 0004 1937 0482Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
14
|
Wang X, Zoccola D, Liew YJ, Tambutte E, Cui G, Allemand D, Tambutte S, Aranda M. The Evolution of Calcification in Reef-Building Corals. Mol Biol Evol 2021; 38:3543-3555. [PMID: 33871620 PMCID: PMC8382919 DOI: 10.1093/molbev/msab103] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Corals build the structural foundation of coral reefs, one of the most diverse and productive ecosystems on our planet. Although the process of coral calcification that allows corals to build these immense structures has been extensively investigated, we still know little about the evolutionary processes that allowed the soft-bodied ancestor of corals to become the ecosystem builders they are today. Using a combination of phylogenomics, proteomics, and immunohistochemistry, we show that scleractinian corals likely acquired the ability to calcify sometime between ∼308 and ∼265 Ma through a combination of lineage-specific gene duplications and the co-option of existing genes to the calcification process. Our results suggest that coral calcification did not require extensive evolutionary changes, but rather few coral-specific gene duplications and a series of small, gradual optimizations of ancestral proteins and their co-option to the calcification process.
Collapse
Affiliation(s)
- Xin Wang
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal, Saudi Arabia
| | - Didier Zoccola
- Marine Biology Department, Centre Scientifique de Monaco, Monaco, Monaco
| | - Yi Jin Liew
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal, Saudi Arabia
| | - Eric Tambutte
- Marine Biology Department, Centre Scientifique de Monaco, Monaco, Monaco
| | - Guoxin Cui
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal, Saudi Arabia
| | - Denis Allemand
- Marine Biology Department, Centre Scientifique de Monaco, Monaco, Monaco
| | - Sylvie Tambutte
- Marine Biology Department, Centre Scientifique de Monaco, Monaco, Monaco
| | - Manuel Aranda
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal, Saudi Arabia
| |
Collapse
|
15
|
Cheli A, Mancuso A, Azzarone M, Fermani S, Kaandorp J, Marin F, Montroni D, Polishchuk I, Prada F, Stagioni M, Valdré G, Pokroy B, Falini G, Goffredo S, Scarponi D. Climate variation during the Holocene influenced the skeletal properties of Chamelea gallina shells in the North Adriatic Sea (Italy). PLoS One 2021; 16:e0247590. [PMID: 33661962 PMCID: PMC7932108 DOI: 10.1371/journal.pone.0247590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/09/2021] [Indexed: 12/01/2022] Open
Abstract
Understanding how marine taxa will respond to near-future climate changes is one of the main challenges for management of coastal ecosystem services. Ecological studies that investigate relationships between the environment and shell properties of commercially important marine species are commonly restricted to latitudinal gradients or small-scale laboratory experiments. This paper aimed to explore the variations in shell features and growth of the edible bivalve Chamelea gallina from the Holocene sedimentary succession to present-day thanatocoenosis of the Po Plain-Adriatic Sea system (Italy). Comparing the Holocene sub-fossil record to modern thanatocoenoses allowed obtaining an insight of shell variations dynamics on a millennial temporal scale. Five shoreface-related assemblages rich in C. gallina were considered: two from the Middle Holocene, when regional sea surface temperatures were higher than today, representing a possible analogue for the near-future global warming, one from the Late Holocene and two from the present-day. We investigated shell biometry and skeletal properties in relation to the valve length of C. gallina. Juveniles were found to be more porous than adults in all horizons. This suggested that C. gallina promoted an accelerated shell accretion with a higher porosity and lower density at the expense of mechanically fragile shells. A positive correlation between sea surface temperature and both micro-density and bulk density were found, with modern specimens being less dense, likely due to lower aragonite saturation state at lower temperature, which could ultimately increase the energetic costs of shell formation. Since no variation was observed in shell CaCO3 polymorphism (100% aragonite) or in compositional parameters among the analyzed horizons, the observed dynamics in skeletal parameters are likely not driven by a diagenetic recrystallization of the shell mineral phase. This study contributes to understand the response of C. gallina to climate-driven environmental shifts and offers insights for assessing anthropogenic impacts on this economic relevant species.
Collapse
Affiliation(s)
- Alessandro Cheli
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | - Arianna Mancuso
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | - Michele Azzarone
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Simona Fermani
- Department of Chemistry ‘Giacomo Ciamician’, University of Bologna, Bologna, Italy
| | - Jaap Kaandorp
- Computational Science Laboratory, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Frederic Marin
- UMR CNRS 6282 Biogéosciences, Université de Bourgogne—Franche-Comté, Dijon, France
| | - Devis Montroni
- Department of Chemistry ‘Giacomo Ciamician’, University of Bologna, Bologna, Italy
| | - Iryna Polishchuk
- Department of Materials Sciences and Engineering and the Russell Berrie Nanotechnology Institute, Technion–Israel Institute of Technology, Technion City, Haifa, Israel
| | - Fiorella Prada
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | - Marco Stagioni
- Marine Biology and Fisheries Laboratory of Fano, Department of Biological, Geological and Environmental Sciences, University of Bologna, Italy
| | - Giovanni Valdré
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Boaz Pokroy
- Department of Materials Sciences and Engineering and the Russell Berrie Nanotechnology Institute, Technion–Israel Institute of Technology, Technion City, Haifa, Israel
| | - Giuseppe Falini
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
- Department of Chemistry ‘Giacomo Ciamician’, University of Bologna, Bologna, Italy
- * E-mail: (GF); (SG); (DS)
| | - Stefano Goffredo
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
- * E-mail: (GF); (SG); (DS)
| | - Daniele Scarponi
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
- * E-mail: (GF); (SG); (DS)
| |
Collapse
|
16
|
Conci N, Vargas S, Wörheide G. The Biology and Evolution of Calcite and Aragonite Mineralization in Octocorallia. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.623774] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Octocorallia (class Anthozoa, phylum Cnidaria) is a group of calcifying corals displaying a wide diversity of mineral skeletons. This includes skeletal structures composed of different calcium carbonate polymorphs (aragonite and calcite). This represents a unique feature among anthozoans, as scleractinian corals (subclass Hexacorallia), main reef builders and focus of biomineralization research, are all characterized by an aragonite exoskeleton. From an evolutionary perspective, the presence of aragonitic skeletons in Octocorallia is puzzling as it is observed in very few species and has apparently originated during a Calcite sea (i.e., time interval characterized by calcite-inducing seawater conditions). Despite this, octocorals have been systematically overlooked in biomineralization studies. Here we review what is known about octocoral biomineralization, focusing on the evolutionary and biological processes that underlie calcite and aragonite formation. Although differences in research focus between octocorals and scleractinians are often mentioned, we highlight how strong variability also exists between different octocoral groups. Different main aspects of octocoral biomineralization have been in fact studied in a small set of species, including the (calcitic) gorgonian Leptogorgia virgulata and/or the precious coral Corallium rubrum. These include descriptions of calcifying cells (scleroblasts), calcium transport and chemistry of the calcification fluids. With the exception of few histological observations, no information on these features is available for aragonitic octocorals. Availability of sequencing data is also heterogeneous between groups, with no transcriptome or genome available, for instance, for the clade Calcaxonia. Although calcite represents by far the most common polymorph deposited by octocorals, we argue that studying aragonite-forming could provide insight on octocoral, and more generally anthozoan, biomineralization. First and foremost it would allow to compare calcification processes between octocoral groups, highlighting homologies and differences. Secondly, similarities (exoskeleton) between Heliopora and scleractinian skeletons, would provide further insight on which biomineralization features are driven by skeleton characteristics (shared by scleractinians and aragonitic octocorals) and those driven by taxonomy (shared by octocorals regardless of skeleton polymorph). Including the diversity of anthozoan mineralization strategies into biomineralization studies remains thus essential to comprehensively study how skeletons form and evolved within this ecologically important group of marine animals.
Collapse
|
17
|
Molecular and skeletal fingerprints of scleractinian coral biomineralization: From the sea surface to mesophotic depths. Acta Biomater 2021; 120:263-276. [PMID: 31954936 DOI: 10.1016/j.actbio.2020.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/16/2019] [Accepted: 01/09/2020] [Indexed: 11/20/2022]
Abstract
Reef-building corals, the major producers of biogenic calcium carbonate, form skeletons in a plethora of morphological forms. Here we studied skeletal modifications of Stylophora pistillata (clade 4) colonies that adapt to increasing depths with decreasing ambient light. The coral show characteristic transitions from spherical morphologies (shallow depths, 5 m deep) to flat and branching geometries (mesophotic depths, 60 m deep). Such changes are typically ascribed to the algal photosymbiont physiological feedback with the coral that host them. We find specific fine-scale skeletal variability in accretion of structure at shallow- and mesophotic depth morphotypes that suggest underlying genomic regulation of biomineralization pathways of the coral host. To explain this, we conducted comparative morphology-based analyses, including optical and electron microscopy, tomography and X-ray diffraction analysis coupled with a comprehensive transcriptomic analysis of S. pistillata. The samples originated from Gulf of Eilat in the Red Sea collected along a depth gradient from shallow to mesophotic depths (5 to 60 m). Additional samples were experimentally transplanted from 5 m to 60 m and from 60 m to 5 m. Interestingly, both morphologically and functionally, transplanted corals partly adapt by exhibiting typical depth-specific properties. In mesophotic depths, we find that the organic matrix fraction is enriched in the coralla, well matching the overrepresentation of transcripts encoding biomineralization "tool-kit" structural extracellularproteins that was observed. These results provide insights into the molecular mechanisms of calcification and skeletal adaptation that repeatedly allowed this coral group to adapt to a range of environments presumably with a rich geological past. STATEMENT OF SIGNIFICANCE: Understanding the reef coral physiological plasticity under a rapidly changing climate is of crucial importance for the protection of coral reef ecosystems. Most of the reef corals operate near their upper limit of heat tolerance. A possible rescue for some coral species is migration to deeper, cooler mesophotic depths. However, gradually changing environmental parameters (especially light) along the depth gradient pose new adaptative stress on corals with largely unknown influences on the various biological molecular pathways. This work provides a first comprehensive analysis of changes in gene expression, including biomineralization "tool kit" genes, and reports the fine-scale microstructural and crystallographic skeletal details in S. pistillata collected in the Red Sea along a depth gradient spannign 5 to 60 m.
Collapse
|
18
|
Le Roy N, Ganot P, Aranda M, Allemand D, Tambutté S. The skeletome of the red coral Corallium rubrum indicates an independent evolution of biomineralization process in octocorals. BMC Ecol Evol 2021; 21:1. [PMID: 33514311 PMCID: PMC7853314 DOI: 10.1186/s12862-020-01734-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 12/13/2020] [Indexed: 12/16/2022] Open
Abstract
Background The process of calcium carbonate biomineralization has arisen multiple times during metazoan evolution. In the phylum Cnidaria, biomineralization has mostly been studied in the subclass Hexacorallia (i.e. stony corals) in comparison to the subclass Octocorallia (i.e. red corals); the two diverged approximately 600 million years ago. The precious Mediterranean red coral, Corallium rubrum, is an octocorallian species, which produces two distinct high-magnesium calcite biominerals, the axial skeleton and the sclerites. In order to gain insight into the red coral biomineralization process and cnidarian biomineralization evolution, we studied the protein repertoire forming the organic matrix (OM) of its two biominerals. Results We combined High-Resolution Mass Spectrometry and transcriptome analysis to study the OM composition of the axial skeleton and the sclerites. We identified a total of 102 OM proteins, 52 are found in the two red coral biominerals with scleritin being the most abundant protein in each fraction. Contrary to reef building corals, the red coral organic matrix possesses a large number of collagen-like proteins. Agrin-like glycoproteins and proteins with sugar-binding domains are also predominant. Twenty-seven and 23 proteins were uniquely assigned to the axial skeleton and the sclerites, respectively. The inferred regulatory function of these OM proteins suggests that the difference between the two biominerals is due to the modeling of the matrix network, rather than the presence of specific structural components. At least one OM component could have been horizontally transferred from prokaryotes early during Octocorallia evolution. Conclusion Our results suggest that calcification of the red coral axial skeleton likely represents a secondary calcification of an ancestral gorgonian horny axis. In addition, the comparison with stony coral skeletomes highlighted the low proportion of similar proteins between the biomineral OMs of hexacorallian and octocorallian corals, suggesting an independent acquisition of calcification in anthozoans.
Collapse
Affiliation(s)
- Nathalie Le Roy
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, MC, 98000, Monaco. .,BOA UMR83, INRAe Centre Val de Loire, 37380, Nouzilly, France.
| | - Philippe Ganot
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, MC, 98000, Monaco
| | - Manuel Aranda
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Denis Allemand
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, MC, 98000, Monaco
| | - Sylvie Tambutté
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, MC, 98000, Monaco
| |
Collapse
|
19
|
Abstract
Until now, all of the ca. 1,800 known modern scleractinian coral species were thought to produce skeletons exclusively of aragonite. Asymbiotic Paraconotrochus antarcticus living in the Southern Ocean is the first example of an extant scleractinian that forms a two-component carbonate skeleton, with an inner structure made of high-Mg calcite and an outer structure composed of aragonite. This discovery adds support to the notion that the coral skeletal formation process is strongly biologically controlled. Mitophylogenomic analysis shows that P. antarcticus represents an ancient scleractinian clade, suggesting that skeletal mineralogy/polymorph of a taxon, once established, is a trait conserved throughout the evolution of that clade. One of the most conserved traits in the evolution of biomineralizing organisms is the taxon-specific selection of skeletal minerals. All modern scleractinian corals are thought to produce skeletons exclusively of the calcium-carbonate polymorph aragonite. Despite strong fluctuations in ocean chemistry (notably the Mg/Ca ratio), this feature is believed to be conserved throughout the coral fossil record, spanning more than 240 million years. Only one example, the Cretaceous scleractinian coral Coelosmilia (ca. 70 to 65 Ma), is thought to have produced a calcitic skeleton. Here, we report that the modern asymbiotic scleractinian coral Paraconotrochus antarcticus living in the Southern Ocean forms a two-component carbonate skeleton, with an inner structure made of high-Mg calcite and an outer structure composed of aragonite. P. antarcticus and Cretaceous Coelosmilia skeletons share a unique microstructure indicating a close phylogenetic relationship, consistent with the early divergence of P. antarcticus within the Vacatina (i.e., Robusta) clade, estimated to have occurred in the Mesozoic (ca. 116 Mya). Scleractinian corals thus join the group of marine organisms capable of forming bimineralic structures, which requires a highly controlled biomineralization mechanism; this capability dates back at least 100 My. Due to its relatively prolonged isolation, the Southern Ocean stands out as a repository for extant marine organisms with ancient traits.
Collapse
|
20
|
Sun CY, Stifler CA, Chopdekar RV, Schmidt CA, Parida G, Schoeppler V, Fordyce BI, Brau JH, Mass T, Tambutté S, Gilbert PUPA. From particle attachment to space-filling coral skeletons. Proc Natl Acad Sci U S A 2020; 117:30159-30170. [PMID: 33188087 PMCID: PMC7720159 DOI: 10.1073/pnas.2012025117] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Reef-building corals and their aragonite (CaCO3) skeletons support entire reef ecosystems, yet their formation mechanism is poorly understood. Here we used synchrotron spectromicroscopy to observe the nanoscale mineralogy of fresh, forming skeletons from six species spanning all reef-forming coral morphologies: Branching, encrusting, massive, and table. In all species, hydrated and anhydrous amorphous calcium carbonate nanoparticles were precursors for skeletal growth, as previously observed in a single species. The amorphous precursors here were observed in tissue, between tissue and skeleton, and at growth fronts of the skeleton, within a low-density nano- or microporous layer varying in thickness from 7 to 20 µm. Brunauer-Emmett-Teller measurements, however, indicated that the mature skeletons at the microscale were space-filling, comparable to single crystals of geologic aragonite. Nanoparticles alone can never fill space completely, thus ion-by-ion filling must be invoked to fill interstitial pores. Such ion-by-ion diffusion and attachment may occur from the supersaturated calcifying fluid known to exist in corals, or from a dense liquid precursor, observed in synthetic systems but never in biogenic ones. Concomitant particle attachment and ion-by-ion filling was previously observed in synthetic calcite rhombohedra, but never in aragonite pseudohexagonal prisms, synthetic or biogenic, as observed here. Models for biomineral growth, isotope incorporation, and coral skeletons' resilience to ocean warming and acidification must take into account the dual formation mechanism, including particle attachment and ion-by-ion space filling.
Collapse
Affiliation(s)
- Chang-Yu Sun
- Department of Physics, University of Wisconsin, Madison, WI 53706
| | - Cayla A Stifler
- Department of Physics, University of Wisconsin, Madison, WI 53706
| | - Rajesh V Chopdekar
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Connor A Schmidt
- Department of Physics, University of Wisconsin, Madison, WI 53706
| | - Ganesh Parida
- Department of Physics, University of Wisconsin, Madison, WI 53706
| | - Vanessa Schoeppler
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | | | - Jack H Brau
- Department of Physics, University of Wisconsin, Madison, WI 53706
| | - Tali Mass
- Marine Biology Department, University of Haifa, 31905 Haifa, Israel
| | - Sylvie Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, 98000 Monaco, Principality of Monaco
| | - Pupa U P A Gilbert
- Department of Physics, University of Wisconsin, Madison, WI 53706;
- Department of Chemistry, University of Wisconsin, Madison, WI 53706
- Department of Geoscience, University of Wisconsin, Madison, WI 53706
- Department of Materials Science, University of Wisconsin, Madison, WI 53706
| |
Collapse
|
21
|
Stapane L, Le Roy N, Ezagal J, Rodriguez-Navarro AB, Labas V, Combes-Soia L, Hincke MT, Gautron J. Avian eggshell formation reveals a new paradigm for vertebrate mineralization via vesicular amorphous calcium carbonate. J Biol Chem 2020; 295:15853-15869. [PMID: 32816992 DOI: 10.1074/jbc.ra120.014542] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 12/16/2022] Open
Abstract
Amorphous calcium carbonate (ACC) is an unstable mineral phase, which is progressively transformed into aragonite or calcite in biomineralization of marine invertebrate shells or avian eggshells, respectively. We have previously proposed a model of vesicular transport to provide stabilized ACC in chicken uterine fluid where eggshell mineralization takes place. Herein, we report further experimental support for this model. We confirmed the presence of extracellular vesicles (EVs) using transmission EM and showed high levels of mRNA of vesicular markers in the oviduct segments where eggshell mineralization occurs. We also demonstrate that EVs contain ACC in uterine fluid using spectroscopic analysis. Moreover, proteomics and immunofluorescence confirmed the presence of major vesicular, mineralization-specific and eggshell matrix proteins in the uterus and in purified EVs. We propose a comprehensive role for EVs in eggshell mineralization, in which annexins transfer calcium into vesicles and carbonic anhydrase 4 catalyzes the formation of bicarbonate ions (HCO[Formula: see text]), for accumulation of ACC in vesicles. We hypothesize that ACC is stabilized by ovalbumin and/or lysozyme or additional vesicle proteins identified in this study. Finally, EDIL3 and MFGE8 are proposed to serve as guidance molecules to target EVs to the mineralization site. We therefore report for the first-time experimental evidence for the components of vesicular transport to supply ACC in a vertebrate model of biomineralization.
Collapse
Affiliation(s)
| | | | - Jacky Ezagal
- BOA INRAe, Université de Tours, Nouzilly, France
| | | | - Valérie Labas
- Unité Mixte de Recherches Physiologie de la Reproduction et des Comportements, Université de Tours IFCE, Nouzilly, France
| | - Lucie Combes-Soia
- Unité Mixte de Recherches Physiologie de la Reproduction et des Comportements, Université de Tours IFCE, Nouzilly, France
| | - Maxwell T Hincke
- Department of Innovation in Medical Education, and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Joël Gautron
- BOA INRAe, Université de Tours, Nouzilly, France.
| |
Collapse
|
22
|
The role of aspartic acid in reducing coral calcification under ocean acidification conditions. Sci Rep 2020; 10:12797. [PMID: 32733044 PMCID: PMC7393068 DOI: 10.1038/s41598-020-69556-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/17/2020] [Indexed: 11/13/2022] Open
Abstract
Biomolecules play key roles in regulating the precipitation of CaCO3 biominerals but their response to ocean acidification is poorly understood. We analysed the skeletal intracrystalline amino acids of massive, tropical Porites spp. corals cultured over different seawater pCO2. We find that concentrations of total amino acids, aspartic acid/asparagine (Asx), glutamic acid/glutamine and alanine are positively correlated with seawater pCO2 and inversely correlated with seawater pH. Almost all variance in calcification rates between corals can be explained by changes in the skeletal total amino acid, Asx, serine and alanine concentrations combined with the calcification media pH (a likely indicator of the dissolved inorganic carbon available to support calcification). We show that aspartic acid inhibits aragonite precipitation from seawater in vitro, at the pH, saturation state and approximate aspartic acid concentrations inferred to occur at the coral calcification site. Reducing seawater saturation state and increasing [aspartic acid], as occurs in some corals at high pCO2, both serve to increase the degree of inhibition, indicating that biomolecules may contribute to reduced coral calcification rates under ocean acidification.
Collapse
|
23
|
Abstract
Much recent marine research has been directed towards understanding the effects of anthropogenic-induced environmental change on marine biodiversity, particularly for those animals with heavily calcified exoskeletons, such as corals, molluscs and urchins. This is because life in our oceans is becoming more challenging for these animals with changes in temperature, pH and salinity. In the future, it will be more energetically expensive to make marine skeletons and the increasingly corrosive conditions in seawater are expected to result in the dissolution of these external skeletons. However, initial predictions of wide-scale sensitivity are changing as we understand more about the mechanisms underpinning skeletal production (biomineralization). These studies demonstrate the complexity of calcification pathways and the cellular responses of animals to these altered conditions. Factors including parental conditioning, phenotypic plasticity and epigenetics can significantly impact the production of skeletons and thus future population success. This understanding is paralleled by an increase in our knowledge of the genes and proteins involved in biomineralization, particularly in some phyla, such as urchins, molluscs and corals. This Review will provide a broad overview of our current understanding of the factors affecting skeletal production in marine invertebrates. It will focus on the molecular mechanisms underpinning biomineralization and how knowledge of these processes affects experimental design and our ability to predict responses to climate change. Understanding marine biomineralization has many tangible benefits in our changing world, including improvements in conservation and aquaculture and exploitation of natural calcified structure design using biomimicry approaches that are aimed at producing novel biocomposites.
Collapse
Affiliation(s)
- Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| |
Collapse
|
24
|
Ricci F, Rossetto Marcelino V, Blackall LL, Kühl M, Medina M, Verbruggen H. Beneath the surface: community assembly and functions of the coral skeleton microbiome. MICROBIOME 2019; 7:159. [PMID: 31831078 PMCID: PMC6909473 DOI: 10.1186/s40168-019-0762-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/17/2019] [Indexed: 05/24/2023]
Abstract
Coral microbial ecology is a burgeoning field, driven by the urgency of understanding coral health and slowing reef loss due to climate change. Coral resilience depends on its microbiota, and both the tissue and the underlying skeleton are home to a rich biodiversity of eukaryotic, bacterial and archaeal species that form an integral part of the coral holobiont. New techniques now enable detailed studies of the endolithic habitat, and our knowledge of the skeletal microbial community and its eco-physiology is increasing rapidly, with multiple lines of evidence for the importance of the skeletal microbiota in coral health and functioning. Here, we review the roles these organisms play in the holobiont, including nutritional exchanges with the coral host and decalcification of the host skeleton. Microbial metabolism causes steep physico-chemical gradients in the skeleton, creating micro-niches that, along with dispersal limitation and priority effects, define the fine-scale microbial community assembly. Coral bleaching causes drastic changes in the skeletal microbiome, which can mitigate bleaching effects and promote coral survival during stress periods, but may also have detrimental effects. Finally, we discuss the idea that the skeleton may function as a microbial reservoir that can promote recolonization of the tissue microbiome following dysbiosis and help the coral holobiont return to homeostasis.
Collapse
Affiliation(s)
- Francesco Ricci
- School of BioSciences, University of Melbourne, Parkville, 3010 Australia
| | - Vanessa Rossetto Marcelino
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, NSW 2006 Australia
| | - Linda L. Blackall
- School of BioSciences, University of Melbourne, Parkville, 3010 Australia
| | - Michael Kühl
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, DK-3000 Helsingør, Denmark
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007 Australia
| | - Mónica Medina
- Pennsylvania State University, University Park, PA 16802 USA
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Parkville, 3010 Australia
| |
Collapse
|
25
|
Simonet Roda M, Ziegler A, Griesshaber E, Yin X, Rupp U, Greiner M, Henkel D, Häussermann V, Eisenhauer A, Laudien J, Schmahl WW. Terebratulide brachiopod shell biomineralization by mantle epithelial cells. J Struct Biol 2019; 207:136-157. [PMID: 31071428 DOI: 10.1016/j.jsb.2019.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/02/2019] [Accepted: 05/04/2019] [Indexed: 11/16/2022]
Abstract
To understand mineral transport pathways for shell secretion and to assess differences in cellular activity during mineralization, we imaged with TEM and FE-SEM ultrastructural characteristics of outer mantle epithelium (OME) cells. Imaging was carried out on Magellania venosa shells embedded/etched, chemically fixed/decalcified and high-pressure frozen/freeze-substituted samples from the commissure, central shell portions and from puncta. Imaging results are complemented with morphometric evaluations of volume fractions of membrane-bound organelles. At the commissure the OME consists of several layers of cells. These cells form oblique extensions that, in cross-section, are round below the primary layer and flat underneath fibres. At the commissure the OME is multi-cell layered, in central shell regions it is single-cell layered. When actively secreting shell carbonate extrapallial space is lacking, because OME cells are in direct contact with the calcite of the forming fibres. Upon termination of secretion, OME cells attach via apical hemidesmosomes to extracellular matrix membranes that line the proximal surface of fibres. At the commissure volume fractions for vesicles, mitochondria and lysosomes are higher relative to single-cell layered regions, whereas for endoplasmic-reticulum and Golgi apparatus there is no difference. FE-SEM, TEM imaging reveals the lack of extrapallial space between OME cells and developing fibres. In addition, there is no indication for an amorphous precursor within fibres when these are in active secretion mode. Accordingly, our results do not support transport of minerals by vesicles from cells to sites of mineralization, rather by transfer of carbonate ions via transport mechanisms associated with OME cell membranes.
Collapse
Affiliation(s)
- M Simonet Roda
- Department of Earth and Environmental Sciences, LMU, 80333 München, Germany.
| | - A Ziegler
- Central Facility for Electron Microscopy, University of Ulm, 89069 Ulm, Germany
| | - E Griesshaber
- Department of Earth and Environmental Sciences, LMU, 80333 München, Germany
| | - X Yin
- Department of Earth and Environmental Sciences, LMU, 80333 München, Germany
| | - U Rupp
- Central Facility for Electron Microscopy, University of Ulm, 89069 Ulm, Germany
| | - M Greiner
- Department of Earth and Environmental Sciences, LMU, 80333 München, Germany
| | - D Henkel
- Marine Biogeochemistry/Marine Systems, GEOMAR Helmholtz Centre for Ocean Research, 24148 Kiel, Germany
| | - V Häussermann
- Pontificia Universidad Católica de Valparaíso, Facultad de Recursos Naturales, Escuela de Ciencias del Mar, Avda. Brasil, 2950 Valparaíso, Chile; Huinay Scientific Field Station, Puerto Montt, Chile
| | - A Eisenhauer
- Marine Biogeochemistry/Marine Systems, GEOMAR Helmholtz Centre for Ocean Research, 24148 Kiel, Germany
| | - J Laudien
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, 27568 Bremerhaven, Germany
| | - W W Schmahl
- Department of Earth and Environmental Sciences, LMU, 80333 München, Germany
| |
Collapse
|
26
|
Njegić Džakula B, Fermani S, Dubinsky Z, Goffredo S, Falini G, Kralj D. In Vitro Coral Biomineralization under Relevant Aragonite Supersaturation Conditions. Chemistry 2019; 25:10616-10624. [PMID: 30840343 DOI: 10.1002/chem.201900691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Indexed: 11/09/2022]
Abstract
The biomineralization of corals occurs under conditions of high and low supersaturation with respect to aragonite, which corresponds to day- or night-time periods of their growth, respectively. Here, in vitro precipitation of aragonite in artificial seawater was investigated at a high supersaturation, allowing spontaneous nucleation and growth, as well as at low supersaturation conditions, which allowed only the crystal growth on the deliberately introduced aragonite seeds. In either chemical systems, soluble organic matrix (SOM) extracted from Balanophyllia europaea (light sensitive) or Leptopsammia pruvoti (light insensitive) was added. The analyses of the kinetic and thermodynamic data of aragonite precipitation and microscopic observations showed that, at high supersaturation, the SOMs increased the induction time, did not affect the growth rate and were incorporated within aggregates of nanoparticles. At low supersaturation, the SOMs affected the aggregation of overgrowing crystalline units and did not substantially change the growth rate. On the basis of the obtained results we can infer that at high supersaturation conditions the formation of nanoparticles, which is typically observed in the skeleton's early mineralization zone may occur, whereas at low supersaturation the overgrowth on prismatic seeds observed in the skeleton fiber zone is a predominant process. In conclusion, this research brings insight on coral skeletogenesis bridging physicochemical (supersaturation) and biological (role of SOM) models of coral biomineralization and provides a source of inspiration for the precipitation of composite materials under different conditions of supersaturation.
Collapse
Affiliation(s)
- Branka Njegić Džakula
- Laboratory for Precipitation Processes, Ruđer Bošković Institute, P.O. Box 180, 10002, Zagreb, Croatia
| | - Simona Fermani
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum-Universitá di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Zvy Dubinsky
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Stefano Goffredo
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum-Università di Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Giuseppe Falini
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum-Universitá di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Damir Kralj
- Laboratory for Precipitation Processes, Ruđer Bošković Institute, P.O. Box 180, 10002, Zagreb, Croatia
| |
Collapse
|
27
|
Ross CL, DeCarlo TM, McCulloch MT. Environmental and physiochemical controls on coral calcification along a latitudinal temperature gradient in Western Australia. GLOBAL CHANGE BIOLOGY 2019; 25:431-447. [PMID: 30456772 DOI: 10.1111/gcb.14488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/12/2018] [Accepted: 09/19/2018] [Indexed: 06/09/2023]
Abstract
The processes that occur at the micro-scale site of calcification are fundamental to understanding the response of coral growth in a changing world. However, our mechanistic understanding of chemical processes driving calcification is still evolving. Here, we report the results of a long-term in situ study of coral calcification rates, photo-physiology, and calcifying fluid (cf) carbonate chemistry (using boron isotopes, elemental systematics, and Raman spectroscopy) for seven species (four genera) of symbiotic corals growing in their natural environments at tropical, subtropical, and temperate locations in Western Australia (latitudinal range of ~11°). We find that changes in net coral calcification rates are primarily driven by pHcf and carbonate ion concentration [ CO 3 2 - ]cf in conjunction with temperature and DICcf . Coral pHcf varies with latitudinal and seasonal changes in temperature and works together with the seasonally varying DICcf to optimize [ CO 3 2 - ]cf at species-dependent levels. Our results indicate that corals shift their pHcf to adapt and/or acclimatize to their localized thermal regimes. This biological response is likely to have critical implications for predicting the future of coral reefs under CO2 -driven warming and acidification.
Collapse
Affiliation(s)
- Claire L Ross
- School of Earth Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
- ARC Centre of Excellence for Coral Reef Studies, The University of Western Australia, Crawley, Western Australia, Australia
| | - Thomas M DeCarlo
- Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
- ARC Centre of Excellence for Coral Reef Studies, The University of Western Australia, Crawley, Western Australia, Australia
- Oceans Graduate School, The University of Western Australia, Crawley, Western Australia, Australia
| | - Malcolm T McCulloch
- Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
- ARC Centre of Excellence for Coral Reef Studies, The University of Western Australia, Crawley, Western Australia, Australia
- Oceans Graduate School, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
28
|
Rani RS, Saharay M. Molecular dynamics simulation of protein-mediated biomineralization of amorphous calcium carbonate. RSC Adv 2019; 9:1653-1663. [PMID: 35518017 PMCID: PMC9059667 DOI: 10.1039/c8ra08459a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/21/2018] [Indexed: 11/21/2022] Open
Abstract
The protein-mediated biomineralization of calcium carbonate (CaCO3) in living organisms is primarily governed by critical interactions between the charged amino acids of the protein, solvent, calcium (Ca2+) and carbonate (CO32−) ions. The present article investigates the molecular mechanism of lysozyme-mediated nucleation of amorphous calcium carbonate (ACC) using molecular dynamics and metadynamics simulations. The results reveal that, by acting as nucleation sites, the positively charged side chains of surface-exposed arginine residues form hydrogen bonds with carbonates and promote aggregation of ions around them leading to the formation and growth of ACC on the protein surface. The newly formed ACC patches were found to be less hydrated due to ion aggregation-induced expulsion of water from the nucleation sites. Despite favorable electrostatic interactions of the negatively charged side chains of aspartate and glutamate with calcium ions, these residues contribute minimally to the growth of ACC on protein surface. The activation barrier for the growth of partially hydrated ACC patches on lysozymes was determined from the free energy profiles obtained from metadynamics simulations. The protein-mediated biomineralization of calcium carbonate (CaCO3) in living organisms is primarily governed by critical interactions between the charged amino acids of the protein, solvent, calcium (Ca2+) and carbonate (CO32−) ions.![]()
Collapse
Affiliation(s)
- R Sandya Rani
- Department of Physics, Osmania University Hyderabad India
| | | |
Collapse
|
29
|
Abstract
One of the most common crystal habits of the thermodynamically stable polymorph of calcium carbonate, calcite, is the rhombohedral one, which exposes {10.4} faces. When calcite is precipitated in the presence of Li+ ions, dominantly {00.1} faces appear together with the {10.4}, thus generating truncated rhombohedrons. This well-known phenomenon is explored in this work, with the aim of obtaining calcite crystals with smooth {00.1} faces. In order to achieve this objective, the formation of calcite was examined in precipitation systems with different c(Ca2+)/c(Li+) ratios and by performing an initial high-power sonication. At the optimal conditions, a precipitate consisting of thin, tabular {001} calcite crystals and very low content of incorporated Li+ has been obtained. The adsorption properties of the tabular crystals, in which the energetically unstable {00.1} faces represent almost all of the exposed surface, were tested with model dye molecules, calcein and crystal violet, and compared to predominantly rhombohedral crystals. It was found that the {00.1} crystals showed a lower adsorption capability when compared to the {10.4} crystals for calcein, while the adsorption of crystal violet was similar for both crystal morphologies. The obtained results open new routes for the usage of calcite as adsorbing substrates and are relevant for the understanding of biomineralization processes in which the {00.1} faces often interact with organic macromolecules.
Collapse
|
30
|
Naggi A, Torri G, Iacomini M, Colombo Castelli G, Reggi M, Fermani S, Dubinsky Z, Goffredo S, Falini G. Structure and Function of Stony Coral Intraskeletal Polysaccharides. ACS OMEGA 2018; 3:2895-2901. [PMID: 30221225 PMCID: PMC6130787 DOI: 10.1021/acsomega.7b02053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/14/2018] [Indexed: 05/20/2023]
Abstract
Polysaccharides represent a main weight fraction of the intraskeletal organic matrix of corals, but their structure, as well as their function in the calcification process, has been poorly investigated. This communication shows by a combination of techniques (nuclear magnetic resonance, Fourier transform infrared, and monosaccharide composition) that their key component is a 1→3 β-d glucuronic acid polymer and evidences its influence in vitro in the calcification process.
Collapse
Affiliation(s)
- Annamaria Naggi
- Istituto
di Ricerche Chimiche e Biochimiche “G. Ronzoni” Milano, via Giuseppe Colombo 81, 20133 Milano, Italy
- E-mail: (A.N.)
| | - Giangiacomo Torri
- Istituto
di Ricerche Chimiche e Biochimiche “G. Ronzoni” Milano, via Giuseppe Colombo 81, 20133 Milano, Italy
| | - Marcello Iacomini
- Departamento
de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, CP 19046, CEP 81531-980 Curitiba, Paraná, Brazil
| | - Gabriele Colombo Castelli
- Istituto
di Ricerche Chimiche e Biochimiche “G. Ronzoni” Milano, via Giuseppe Colombo 81, 20133 Milano, Italy
| | - Michela Reggi
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Simona Fermani
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Zvy Dubinsky
- The
Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Stefano Goffredo
- Marine
Science Group, Department of Biological, Geological and Environmental
Sciences, Alma Mater Studiorum—Università
di Bologna, Via Selmi
3, 40126 Bologna, Italy
- E-mail: (S.G.)
| | - Giuseppe Falini
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, via Selmi 2, 40126 Bologna, Italy
- E-mail: (G.F.)
| |
Collapse
|
31
|
Ross CL, Falter JL, McCulloch MT. Active modulation of the calcifying fluid carbonate chemistry (δ 11B, B/Ca) and seasonally invariant coral calcification at sub-tropical limits. Sci Rep 2017; 7:13830. [PMID: 29062113 PMCID: PMC5653831 DOI: 10.1038/s41598-017-14066-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 10/05/2017] [Indexed: 11/08/2022] Open
Abstract
Coral calcification is dependent on both the supply of dissolved inorganic carbon (DIC) and the up-regulation of pH in the calcifying fluid (cf). Using geochemical proxies (δ11B, B/Ca, Sr/Ca, Li/Mg), we show seasonal changes in the pHcf and DICcf for Acropora yongei and Pocillopora damicornis growing in-situ at Rottnest Island (32°S) in Western Australia. Changes in pHcf range from 8.38 in summer to 8.60 in winter, while DICcf is 25 to 30% higher during summer compared to winter (×1.5 to ×2 seawater). Thus, both variables are up-regulated well above seawater values and are seasonally out of phase with one another. The net effect of this counter-cyclical behaviour between DICcf and pHcf is that the aragonite saturation state of the calcifying fluid (Ωcf) is elevated ~4 times above seawater values and is ~25 to 40% higher during winter compared to summer. Thus, these corals control the chemical composition of the calcifying fluid to help sustain near-constant year-round calcification rates, despite a seasonal seawater temperature range from just ~19° to 24 °C. The ability of corals to up-regulate Ωcf is a key mechanism to optimise biomineralization, and is thus critical for the future of coral calcification under high CO2 conditions.
Collapse
Affiliation(s)
- Claire L Ross
- Oceans Institute and School of Earth Sciences, The University of Western Australia, Perth, Australia.
- Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Western Australia, Perth, Australia.
| | - James L Falter
- Oceans Institute and School of Earth Sciences, The University of Western Australia, Perth, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Western Australia, Perth, Australia
| | - Malcolm T McCulloch
- Oceans Institute and School of Earth Sciences, The University of Western Australia, Perth, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Western Australia, Perth, Australia
| |
Collapse
|
32
|
Abstract
Do corals form their skeletons by precipitation from solution or by attachment of amorphous precursor particles as observed in other minerals and biominerals? The classical model assumes precipitation in contrast with observed "vital effects," that is, deviations from elemental and isotopic compositions at thermodynamic equilibrium. Here, we show direct spectromicroscopy evidence in Stylophora pistillata corals that two amorphous precursors exist, one hydrated and one anhydrous amorphous calcium carbonate (ACC); that these are formed in the tissue as 400-nm particles; and that they attach to the surface of coral skeletons, remain amorphous for hours, and finally, crystallize into aragonite (CaCO3). We show in both coral and synthetic aragonite spherulites that crystal growth by attachment of ACC particles is more than 100 times faster than ion-by-ion growth from solution. Fast growth provides a distinct physiological advantage to corals in the rigors of the reef, a crowded and fiercely competitive ecosystem. Corals are affected by warming-induced bleaching and postmortem dissolution, but the finding here that ACC particles are formed inside tissue may make coral skeleton formation less susceptible to ocean acidification than previously assumed. If this is how other corals form their skeletons, perhaps this is how a few corals survived past CO2 increases, such as the Paleocene-Eocene Thermal Maximum that occurred 56 Mya.
Collapse
|
33
|
Von Euw S, Zhang Q, Manichev V, Murali N, Gross J, Feldman LC, Gustafsson T, Flach C, Mendelsohn R, Falkowski PG. Biological control of aragonite formation in stony corals. Science 2017; 356:933-938. [DOI: 10.1126/science.aam6371] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/10/2017] [Indexed: 02/06/2023]
|
34
|
Samorì C, Caroselli E, Prada F, Reggi M, Fermani S, Dubinsky Z, Goffredo S, Falini G. Ecological relevance of skeletal fatty acid concentration and composition in Mediterranean scleractinian corals. Sci Rep 2017; 7:1929. [PMID: 28512344 PMCID: PMC5434035 DOI: 10.1038/s41598-017-02034-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/06/2017] [Indexed: 11/10/2022] Open
Abstract
The intra-skeletal fatty acid concentration and composition of four Mediterranean coral species, namely Cladocora caespitosa, Balanophyllia europaea, Astroides calycularis and Leptopsammia pruvoti, were examined in young and old individuals living in three different locations of the Mediterranean Sea. These species are characterized by diverse levels of organization (solitary or colonial) and trophic strategies (symbiotic or non-symbiotic). Fatty acids have manifold fundamental roles comprehensive of membrane structure fluidity, cell signaling and energy storage. For all species, except for B. europaea, the intra-skeletal fatty acid concentration was significantly higher in young individuals than in old ones. Moreover, fatty acid concentration was higher in colonial corals than in solitary ones and in the symbiotic corals compared to non-symbiotic ones. Analysis by gas chromatography-mass spectrometry (GC-MS) revealed that palmitic acid (16:0) was the most abundant fatty acid, followed by stearic (18:0) in order of concentration. Oleic acid (18:1) was detected as the third main component only in skeletons from symbiotic corals. These results suggest that, in the limits of the studied species, intra-skeletal fatty acid composition and concentration may be used for specific cases as a proxy of level of organization and trophic strategy, and eventually coral age.
Collapse
Affiliation(s)
- Chiara Samorì
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, via Selmi 2, 40126, Bologna, Italy
| | - Erik Caroselli
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Fiorella Prada
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Michela Reggi
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, via Selmi 2, 40126, Bologna, Italy
| | - Simona Fermani
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, via Selmi 2, 40126, Bologna, Italy
| | - Zvy Dubinsky
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Stefano Goffredo
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126, Bologna, Italy.
| | - Giuseppe Falini
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, via Selmi 2, 40126, Bologna, Italy.
| |
Collapse
|
35
|
Yao S, Jin B, Liu Z, Shao C, Zhao R, Wang X, Tang R. Biomineralization: From Material Tactics to Biological Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605903. [PMID: 28229486 DOI: 10.1002/adma.201605903] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/31/2017] [Indexed: 05/23/2023]
Abstract
Biomineralization is an important tactic by which biological organisms produce hierarchically structured minerals with marvellous functions. Biomineralization studies typically focus on the mediation function of organic matrices on inorganic minerals, which helps scientists to design and synthesize bioinspired functional materials. However, the presence of inorganic minerals may also alter the native behaviours of organic matrices and even biological organisms. This progress report discusses the latest achievements relating to biomineralization mechanisms, the manufacturing of biomimetic materials and relevant applications in biological and biomedical fields. In particular, biomineralized vaccines and algae with improved thermostability and photosynthesis, respectively, demonstrate that biomineralization is a strategy for organism evolution via the rational design of organism-material complexes. The successful modification of biological systems using materials is based on the regulatory effect of inorganic materials on organic organisms, which is another aspect of biomineralization control. Unlike previous studies, this study integrates materials and biological science to achieve a more comprehensive view of the mechanisms and applications of biomineralization.
Collapse
Affiliation(s)
- Shasha Yao
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Biao Jin
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Zhaoming Liu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Changyu Shao
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Ruibo Zhao
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Xiaoyu Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
36
|
Fermani S, Njegić Džakula B, Reggi M, Falini G, Kralj D. Effects of magnesium and temperature control on aragonite crystal aggregation and morphology. CrystEngComm 2017. [DOI: 10.1039/c7ce00197e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Natural and Synthetic Coral Biomineralization for Human Bone Revitalization. Trends Biotechnol 2016; 35:43-54. [PMID: 27889241 DOI: 10.1016/j.tibtech.2016.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/12/2016] [Accepted: 10/05/2016] [Indexed: 01/27/2023]
Abstract
Coral skeletons can regenerate replacement human bone in nonload-bearing excavated skeletal locations. A combination of multiscale, interconnected pores and channels and highly bioactive surface chemistry has established corals as an important alternative to using healthy host bone replacements. Here, we highlight how coral skeletal systems are being remolded into new calcified structures or synthetic corals by biomimetic processes, as places for the organized permeation of bone tissue cells and blood vessels. Progressive technologies in coral aquaculture and self-organization inorganic chemistry are helping to modify natural corals and create synthetic coral architectures able to accelerate bone regeneration with proper host integration at more skeletal locations, adapted to recent surgical techniques and used to treat intrinsic skeletal deformities and metabolic conditions.
Collapse
|
38
|
Zhan Y, Hu W, Zhang W, Liu M, Duan L, Huang X, Chang Y, Li C. The impact of CO 2-driven ocean acidification on early development and calcification in the sea urchin Strongylocentrotus intermedius. MARINE POLLUTION BULLETIN 2016; 112:291-302. [PMID: 27522173 DOI: 10.1016/j.marpolbul.2016.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/21/2016] [Accepted: 08/02/2016] [Indexed: 06/06/2023]
Abstract
The impact of CO2-driven ocean acidification(OA) on early development and calcification in the sea urchin Strongylocentrotus intermedius cultured in northern Yellow Sea was investigated by comparing fertilization success, early cleavage rate, hatching rate of blastulae, larvae survival rate at 70h post-fertilization, larval morphology and calcification under present natural seawater condition (pH=8.00±0.03) and three laboratory-controlled acidified conditions (OA1, △pH=-0.3units; OA2, △pH=-0.4units; OA3, △pH=-0.5units) projected by IPCC for 2100. Results showed that pH decline had no effect on the overall fertilization, however, with decreased pH, delayed early embryonic cleavage, reduced hatching rate of blastulae and four-armed larvae survival rate at 70h post-fertilization, impaired larval symmetry, shortened larval spicules, and corrosion spicule structure were observed in all OA-treated groups as compared to control, which indicated that CO2-driven OA affected early development and calcification in S. intermedius negatively.
Collapse
Affiliation(s)
- Yaoyao Zhan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - Wanbin Hu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - Weijie Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - Minbo Liu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - Lizhu Duan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - Xianya Huang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, Liaoning 116023, China.
| | - Cong Li
- College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning 116044, China
| |
Collapse
|
39
|
Reggi M, Fermani S, Samorì C, Gizzi F, Prada F, Dubinsky Z, Goffredo S, Falini G. Influence of intra-skeletal coral lipids on calcium carbonate precipitation. CrystEngComm 2016. [DOI: 10.1039/c6ce01939k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|