1
|
Yu L, Wang T, Wang B, Pan L. The mechanism of short hypha formation and high protein production system mediated by cell wall integrity signaling pathway in Aspergillus niger. Int J Biol Macromol 2024; 283:137413. [PMID: 39542304 DOI: 10.1016/j.ijbiomac.2024.137413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/24/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Aspergillus niger is a cell factory widely used in industries to produce proteases, organic acids, drugs, and other substances. The hyphal morphology of A. niger is a complex differentiated elongated tubular structure, which limits its basic research and application. In this study, the mpkA, bck1, steC, and Tpk2 genes were successfully deleted using a quick way to knock out genes based on the RNP (Ribonucleoprotein) complex. The study showed that the knockout of mpkA and bck1 kinase gene strains resulted in smaller, denser colonies, short rod-shaped hypha, and a significant increase in glucoamylase secretion. The mechanism of short hypha formation and high protein production for A. niger is the cell wall integrity signaling (CWIS) pathway. The CWIS pathway passed through the bck1-mkkA-mpkA tertiary kinase to deliver phosphorylation signals to the rlmA transcription factor, which regulated the expression of the cell wall synthesis gene agsA, thus regulating hyphal morphology. The mpkA kinase regulated the expression of the transcription factor amyR, which affected the expression of the genes glaA and amyA, thus enhancing the expression of proteins in A. niger. This study provides a strategy for the regulation of hyphal morphology and promotes the application of A. niger in industrial production.
Collapse
Affiliation(s)
- Leyi Yu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China; School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Tiantian Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Bin Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Li Pan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China.
| |
Collapse
|
2
|
Zhang TT, Xu X, Lv M. Measurement and prediction of the Aspergillus niger spore detachment from a vesicle unit subjected to air-blowing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168714. [PMID: 38007138 DOI: 10.1016/j.scitotenv.2023.168714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
Detachment of fungal spores from growing colonies results in human exposure. Thus far, the distribution of the binding forces of the spores in a fungal unit is unknown, so that precise prediction of the spores detachment is quite challenging. This investigation used centrifugal separation to measure the binding forces of the spores. Aspergillus niger (A. niger) colonies on a culture plate were placed in a centrifuge, the detached spores were counted, and this number was used to obtain the distribution of binding forces. Next, the air-blowing of an A. niger unit was modeled by computational fluid dynamics (CFD). A spore was judged to be detached if the air-imposed drag force was greater than the binding force. For model validation, the predicted spore detachment ratios were compared with the ratios measured in a wind tunnel test. The results revealed that the binding forces of the spores obeyed the log-normal distribution. The binding forces of the distal spores from colonies with a growth age of 66 h ranged from 0 nN to 4.0 nN and had a mean of 0.65 nN. The CFD modeling predicted the detachment ratios of the distal spores with good accuracy.
Collapse
Affiliation(s)
- Tengfei Tim Zhang
- Tianjin Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China; School of Civil Engineering, Dalian University of Technology, Dalian, China.
| | - Xinzi Xu
- Tianjin Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Mengqiang Lv
- Tianjin Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China.
| |
Collapse
|
3
|
Wang W, Liu Y, Duan S, Bai N, Zhu M, Yang J. Cellular communication and fusion regulate cell fusion, trap morphogenesis, conidiation, and secondary metabolism in Arthrobotrys oligospora. Microbiol Res 2024; 278:127516. [PMID: 37857124 DOI: 10.1016/j.micres.2023.127516] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
Signal-mediated cell fusion is vital for colony development in filamentous fungi. Arthrobotrys oligospora is a representative nematode-trapping (NT) fungus that produces adhesive networks (traps) to capture nematodes. Here, we characterized Aoadv-1, Aoso, Aoham-6, and Aoham-5 of A. oligospora, homologs of proteins involved in cellular communication and fusion in the model fungus Neurospora crassa. The deletion of four genes resulted in the complete loss of cell fusion, and traps produced by mutants did not close to form mycelial rings but were still capable of capturing nematodes. The absence of these genes inhibits aerial mycelial extension, slows colony growth, and increases mycelial branching. In addition, the mutants showed reduced sporulation capacity and tolerance to oxidative stress, increased sensitivity to SDS, and disturbed lipid droplet accumulation and autophagy. In addition, transcriptome and metabolomic analyses suggested that Aoadv-1 and Aoso are involved in multiple cellular processes and secondary metabolism. Our results revealed that Aoadv-1, Aoso, Aoham-6, and Aoham-5 regulate mycelial growth and trap morphogenesis through cell fusion, which contributed to elucidating the molecular mechanisms of cellular communication regulating mycelial development and trap morphogenesis in NT fungi.
Collapse
Affiliation(s)
- Wenjie Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China
| | - Yankun Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China
| | - Shipeng Duan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China
| | - Na Bai
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China
| | - Meichen Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China.
| |
Collapse
|
4
|
Jesmin R, Cary JW, Lebar MD, Majumdar R, Gummadidala PM, Dias T, Chandler S, Basu P, Decho AW, Keller NP, Chanda A. Vibrio gazogenes-dependent disruption of aflatoxin biosynthesis in Aspergillus flavus: the connection with endosomal uptake and hyphal morphogenesis. Front Microbiol 2023; 14:1208961. [PMID: 37744918 PMCID: PMC10516221 DOI: 10.3389/fmicb.2023.1208961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/07/2023] [Indexed: 09/26/2023] Open
Abstract
Aflatoxins, a family of fungal secondary metabolites, are toxic and carcinogenic compounds that pose an enormous threat to global food safety and agricultural sustainability. Specifically agricultural products in African, Southeast Asian and hot and humid regions of American countries suffer most damage from aflatoxin producing molds due to the ideal climate conditions promoting their growth. Our recent studies suggest that Vibrio gazogenes (Vg), an estuarine bacterium non-pathogenic to plants and humans, can significantly inhibit aflatoxin biosynthesis in the producers. In this study, we investigated the mechanism underlying Vg-dependent aflatoxin inhibition using the prominent aflatoxin producer, Aspergillus flavus. We show that aflatoxin inhibition upon Vg treatment was associated with fungal uptake of Vg-prodigiosin, a red pigment, which was consistently visible inside fungal hyphae during treatment. The association of prodigiosin with aflatoxin inhibition was further evident as Serratia marcescens, another prodigiosin producer, significantly inhibited aflatoxin, while non-producers like Escherichia coli, Staphylococcus aureus, Vibrio harveyi, and Vibrio fischeri did not. Also, pure prodigiosin significantly inhibited aflatoxin biosynthesis. Endocytosis inhibitors, filipin and natamycin, reduced the Vg-prodigiosin uptake by the fungus leading to a significant increase in aflatoxin production, suggesting that uptake is endocytosis-dependent. The Vg treatment also reduced hyphal fusion (>98% inhibition) and branching, which are both endosome-dependent processes. Our results, therefore, collectively support our theory that Vg-associated aflatoxin inhibition is mediated by an endocytosis-dependent uptake of Vg-prodigiosin, which possibly leads to a disruption of normal endosomal functions.
Collapse
Affiliation(s)
| | - Jeffrey W. Cary
- Food and Feed Safety Research Unit, USDA/ARS, Southern Regional Research Center, New Orleans, LA, United States
| | - Matthew D. Lebar
- Food and Feed Safety Research Unit, USDA/ARS, Southern Regional Research Center, New Orleans, LA, United States
| | - Rajtilak Majumdar
- Northwest Irrigation and Soils Research, United States Department of Agriculture, Kimberly, ID, United States
| | - Phani M. Gummadidala
- University of North Carolina School of Medicine, Chapell Hill, NC, United States
| | - Travis Dias
- University of South Carolina School of Medicine, Greenville, NC, United States
| | - Savannah Chandler
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States
| | - Paramita Basu
- New York College of Podiatric Medicine, New York, NY, United States
| | - Alan W. Decho
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| | | |
Collapse
|
5
|
Wernet V, Kriegler M, Kumpost V, Mikut R, Hilbert L, Fischer R. Synchronization of oscillatory growth prepares fungal hyphae for fusion. eLife 2023; 12:e83310. [PMID: 37602797 PMCID: PMC10522335 DOI: 10.7554/elife.83310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 08/19/2023] [Indexed: 08/22/2023] Open
Abstract
Communication is crucial for organismic interactions, from bacteria, to fungi, to humans. Humans may use the visual sense to monitor the environment before starting acoustic interactions. In comparison, fungi, lacking a visual system, rely on a cell-to-cell dialogue based on secreted signaling molecules to coordinate cell fusion and establish hyphal networks. Within this dialogue, hyphae alternate between sending and receiving signals. This pattern can be visualized via the putative signaling protein Soft (SofT), and the mitogen-activated protein kinase MAK-2 (MakB) which are recruited in an alternating oscillatory manner to the respective cytoplasmic membrane or nuclei of interacting hyphae. Here, we show that signal oscillations already occur in single hyphae of Arthrobotrys flagrans in the absence of potential fusion partners (cell monologue). They were in the same phase as growth oscillations. In contrast to the anti-phasic oscillations observed during the cell dialogue, SofT and MakB displayed synchronized oscillations in phase during the monologue. Once two fusion partners came into each other's vicinity, their oscillation frequencies slowed down (entrainment phase) and transit into anti-phasic synchronization of the two cells' oscillations with frequencies of 104±28 s and 117±19 s, respectively. Single-cell oscillations, transient entrainment, and anti-phasic oscillations were reproduced by a mathematical model where nearby hyphae can absorb and secrete a limited molecular signaling component into a shared extracellular space. We show that intracellular Ca2+ concentrations oscillate in two approaching hyphae, and depletion of Ca2+ from the medium affected vesicle-driven extension of the hyphal tip, abolished the cell monologue and the anti-phasic synchronization of two hyphae. Our results suggest that single hyphae engage in a 'monologue' that may be used for exploration of the environment and can dynamically shift their extracellular signaling systems into a 'dialogue' to initiate hyphal fusion.
Collapse
Affiliation(s)
- Valentin Wernet
- Karlsruhe Institute of Technology - South Campus Institute for Applied Biosciences Dept. of MicrobiologyKarlsruheGermany
| | - Marius Kriegler
- Karlsruhe Institute of Technology - South Campus Institute for Applied Biosciences Dept. of MicrobiologyKarlsruheGermany
| | - Vojtech Kumpost
- Karlsruhe Institute of Technology – North Campus Institute for Automation and Applied InformaticsEggenstein-LeopoldshafenGermany
- Karlsruhe Institute of Technology – North Campus Institute of Biological and Chemical Systems – Biological Information ProcessingEggenstein-LeopoldshafenGermany
| | - Ralf Mikut
- Karlsruhe Institute of Technology – North Campus Institute for Automation and Applied InformaticsEggenstein-LeopoldshafenGermany
| | - Lennart Hilbert
- Karlsruhe Institute of Technology – North Campus Institute of Biological and Chemical Systems – Biological Information ProcessingEggenstein-LeopoldshafenGermany
- Karlsruhe Institute of Technology – South Campus Zoological Institute Dept. of Systems Biology / BioinformaticsEggenstein-LeopoldshafenGermany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology - South Campus Institute for Applied Biosciences Dept. of MicrobiologyKarlsruheGermany
| |
Collapse
|
6
|
Mela AP, Glass NL. Permissiveness and competition within and between Neurospora crassa syncytia. Genetics 2023; 224:iyad112. [PMID: 37313736 PMCID: PMC10411585 DOI: 10.1093/genetics/iyad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/15/2023] Open
Abstract
A multinucleate syncytium is a common growth form in filamentous fungi. Comprehensive functions of the syncytial state remain unknown, but it likely allows for a wide range of adaptations to enable filamentous fungi to coordinate growth, reproduction, responses to the environment, and to distribute nuclear and cytoplasmic elements across a colony. Indeed, the underlying mechanistic details of how syncytia regulate cellular and molecular processes spatiotemporally across a colony are largely unexplored. Here, we implemented a strategy to analyze the relative fitness of different nuclear populations in syncytia of Neurospora crassa, including nuclei with loss-of-function mutations in essential genes, based on production of multinucleate asexual spores using flow cytometry of pairings between strains with differentially fluorescently tagged nuclear histones. The distribution of homokaryotic and heterokaryotic asexual spores in pairings was assessed between different auxotrophic and morphological mutants, as well as with strains that were defective in somatic cell fusion or were heterokaryon incompatible. Mutant nuclei were compartmentalized into both homokaryotic and heterokaryotic asexual spores, a type of bet hedging for maintenance and evolution of mutational events, despite disadvantages to the syncytium. However, in pairings between strains that were blocked in somatic cell fusion or were heterokaryon incompatible, we observed a "winner-takes-all" phenotype, where asexual spores originating from paired strains were predominantly one genotype. These data indicate that syncytial fungal cells are permissive and tolerate a wide array of nuclear functionality, but that cells/colonies that are unable to cooperate via syncytia formation actively compete for resources.
Collapse
Affiliation(s)
- Alexander P Mela
- The Plant and Microbial Biology Department, University of California Berkeley, Berkeley, CA 94720, USA
| | - N Louise Glass
- The Plant and Microbial Biology Department, University of California Berkeley, Berkeley, CA 94720, USA
- The Environmental Genomics and Systems Biology Division, The Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
7
|
Panstruga R, Antonin W, Lichius A. Looking outside the box: a comparative cross-kingdom view on the cell biology of the three major lineages of eukaryotic multicellular life. Cell Mol Life Sci 2023; 80:198. [PMID: 37418047 PMCID: PMC10329083 DOI: 10.1007/s00018-023-04843-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/08/2023]
Abstract
Many cell biological facts that can be found in dedicated scientific textbooks are based on findings originally made in humans and/or other mammals, including respective tissue culture systems. They are often presented as if they were universally valid, neglecting that many aspects differ-in part considerably-between the three major kingdoms of multicellular eukaryotic life, comprising animals, plants and fungi. Here, we provide a comparative cross-kingdom view on the basic cell biology across these lineages, highlighting in particular essential differences in cellular structures and processes between phyla. We focus on key dissimilarities in cellular organization, e.g. regarding cell size and shape, the composition of the extracellular matrix, the types of cell-cell junctions, the presence of specific membrane-bound organelles and the organization of the cytoskeleton. We further highlight essential disparities in important cellular processes such as signal transduction, intracellular transport, cell cycle regulation, apoptosis and cytokinesis. Our comprehensive cross-kingdom comparison emphasizes overlaps but also marked differences between the major lineages of the three kingdoms and, thus, adds to a more holistic view of multicellular eukaryotic cell biology.
Collapse
Affiliation(s)
- Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany.
| | - Wolfram Antonin
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany
| | - Alexander Lichius
- inncellys GmbH, Dorfstrasse 20/3, 6082, Patsch, Austria
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| |
Collapse
|
8
|
Schalamun M, Beier S, Hinterdobler W, Wanko N, Schinnerl J, Brecker L, Engl DE, Schmoll M. MAPkinases regulate secondary metabolism, sexual development and light dependent cellulase regulation in Trichoderma reesei. Sci Rep 2023; 13:1912. [PMID: 36732590 PMCID: PMC9894936 DOI: 10.1038/s41598-023-28938-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
The filamentous fungus Trichoderma reesei is a prolific producer of plant cell wall degrading enzymes, which are regulated in response to diverse environmental signals for optimal adaptation, but also produces a wide array of secondary metabolites. Available carbon source and light are the strongest cues currently known to impact secreted enzyme levels and an interplay with regulation of secondary metabolism became increasingly obvious in recent years. While cellulase regulation is already known to be modulated by different mitogen activated protein kinase (MAPK) pathways, the relevance of the light signal, which is transmitted by this pathway in other fungi as well, is still unknown in T. reesei as are interconnections to secondary metabolism and chemical communication under mating conditions. Here we show that MAPkinases differentially influence cellulase regulation in light and darkness and that the Hog1 homologue TMK3, but not TMK1 or TMK2 are required for the chemotropic response to glucose in T. reesei. Additionally, MAPkinases regulate production of specific secondary metabolites including trichodimerol and bisorbibutenolid, a bioactive compound with cytostatic effect on cancer cells and deterrent effect on larvae, under conditions facilitating mating, which reflects a defect in chemical communication. Strains lacking either of the MAPkinases become female sterile, indicating the conservation of the role of MAPkinases in sexual fertility also in T. reesei. In summary, our findings substantiate the previously detected interconnection of cellulase regulation with regulation of secondary metabolism as well as the involvement of MAPkinases in light dependent gene regulation of cellulase and secondary metabolite genes in fungi.
Collapse
Affiliation(s)
- Miriam Schalamun
- Center for Health and Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Strasse 24, 3430, Tulln, Austria
| | - Sabrina Beier
- Center for Health and Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Strasse 24, 3430, Tulln, Austria
| | - Wolfgang Hinterdobler
- Center for Health and Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Strasse 24, 3430, Tulln, Austria
- MyPilz GmbH, Wienerbergstrasse 55/13-15, 1120, Vienna, Austria
| | - Nicole Wanko
- Center for Health and Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Strasse 24, 3430, Tulln, Austria
| | - Johann Schinnerl
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030, Vienna, Austria
| | - Lothar Brecker
- Department of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Dorothea Elisa Engl
- Department of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Monika Schmoll
- Center for Health and Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Strasse 24, 3430, Tulln, Austria.
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| |
Collapse
|
9
|
Zhang Q, Shu F, Chen X, Liu W, Bian Y, Kang H. Construction of nucleus-directed fluorescent reporter systems and its application to verification of heterokaryon formation in Morchella importuna. Front Microbiol 2022; 13:1051013. [PMID: 36478869 PMCID: PMC9720127 DOI: 10.3389/fmicb.2022.1051013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/04/2022] [Indexed: 08/26/2023] Open
Abstract
INTRODUCTION Morchella importuna (M. importuna) is a rare fungus with high nutrition value and distinct flavor. Despite the successful artificial cultivation, its genetic characteristics and biological processes such as life cycle, reproductive system, and trophic mode remain poorly understood. METHODS Considering this, we constructed pEH2B and pMH2B vectors by fusing M. importuna endogenous histone protein H2B with fluorescent proteins eGFP or mCherry, respectively. Based on the constructed pEH2B and pMH2B vectors, nuclear fluorescence localization was performed via Agrobacterium tumefaciens-mediated transformation (ATMT). These two vectors were both driven by two endogenous promoters glyceraldehyde 3-phosphate dehydrogenase (GPD) and ubiquitin (UBI). The vector-based reporter systems were tested by the paired culture of two genetically modified strains pEH2B-labeled M04M24 (24e, MAT1-1-1) and pMH2B-abeled M04M26 (26m, MAT1-2-1). RESULTS The fluorescence observation and molecular identification results indicated the successful hyphal fusion and heterokaryon formation. We found that the expression of the reporter genes was stable, and it did not interfere with the growth of the fungus. DISCUSSION Our constructed nucleus-directed fluorescent systems in M. importuna can be used for monitoring the dynamic development and reproductive processes in living cells and also for monitoring the interaction between morels and plant roots. Therefore, morels exhibit the potential to be a candidate organism used for the research on basic biology and genetics of ascomycetes.
Collapse
Affiliation(s)
- Qianqian Zhang
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Fang Shu
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xin Chen
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Wei Liu
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Yinbing Bian
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Heng Kang
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
10
|
Hyphal Fusions Enable Efficient Nutrient Distribution in Colletotrichum graminicola Conidiation and Symptom Development on Maize. Microorganisms 2022; 10:microorganisms10061146. [PMID: 35744664 PMCID: PMC9231406 DOI: 10.3390/microorganisms10061146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Hyphal and germling fusion is a common phenomenon in ascomycetous fungi. Due to the formed hyphal network, this process enables a coordinated development as well as an interaction with plant hosts and efficient nutrient distribution. Recently, our laboratory work demonstrated a positive correlation between germling fusion and the formation of penetrating hyphopodia on maize leaves outgoing from Colletotrichum graminicola oval conidia. To investigate the probable interconnectivity of these processes, we generated a deletion mutant in Cgso, in which homologs are essential for cellular fusion in other fungal species. However, hyphopodia development was not affected, indicating that both processes are not directly connected. Instead, we were able to link the cellular fusion defect in ∆Cgso to a decreased formation of asexual fruiting bodies of C. graminicola on the leaves. The monitoring of a fluorescent-labelled autophagy marker, eGFP-CgAtg8, revealed a high autophagy activity in the hyphae surrounding the acervuli. These results support the hypothesis that the efficient nutrient transport of degraded cellular material by hyphal fusions enables proper acervuli maturation and, therefore, symptom development on the leaves.
Collapse
|
11
|
A dialogue-like cell communication mechanism is conserved in filamentous ascomycete fungi and mediates interspecies interactions. Proc Natl Acad Sci U S A 2022; 119:e2112518119. [PMID: 35286209 PMCID: PMC8944665 DOI: 10.1073/pnas.2112518119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This study reveals that a dialogue-like communication mechanism, which mediates cell–cell fusion in filamentous fungi, is a conserved complex trait. It allows the communication and behavioral coordination of cells of distantly related species and mediates their mutual attraction and subsequent physical contact, although interspecies fusion does not occur. Through the activation of this signaling machinery, one species can reprogram the developmental program of the other fungus. These data promote our understanding of microbial communication, illustrate the mechanism of repurposing of existing building blocks in cellular evolution, revive the hypothesis of vegetative fusion as an avenue of horizontal gene transfer in fungi, and establish the idea of developmental reprogramming as a tool for controlling fungi. In many filamentous fungi, germinating spores cooperate by fusing into supracellular structures, which develop into the mycelial colony. In the model fungus Neurospora crassa, this social behavior is mediated by an intriguing mode of communication, in which two fusing cells take turns in signal sending and receiving. Here we show that this dialogue-like cell communication mechanism is highly conserved in distantly related fungal species and mediates interspecies interactions. In mixed populations, cells of N. crassa and the phytopathogenic gray mold Botrytis cinerea coordinate their behavior over a spatial distance and establish physical contact. Subsequent cell–cell fusion is, however, restricted to germlings of the same species, indicating that species specificity of germling fusion has evolved not on the level of the signal/receptor but at subsequent levels of the fusion process. In B. cinerea, fusion and infectious growth are mutually exclusive cellular programs. Remarkably, the presence of N. crassa can reprogram this behavior and induce fusion of the gray mold on plant surfaces, potentially weakening its pathogenic potential. In a third fungal species, the nematode-trapping fungus Arthrobotrys flagrans, the conserved signaling mechanism mediates vegetative fusion within mycelial colonies but has also been repurposed for the formation of nematode-catching traps. In summary, this study identified the cell dialogue mechanism as a conserved complex trait and revealed that even distantly related fungi possess a common molecular language, which promotes cellular contact formation across species borders.
Collapse
|
12
|
Tracking Fungal Growth: Establishment of Arp1 as a Marker for Polarity Establishment and Active Hyphal Growth in Filamentous Ascomycetes. J Fungi (Basel) 2021; 7:jof7070580. [PMID: 34356959 PMCID: PMC8304394 DOI: 10.3390/jof7070580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/20/2022] Open
Abstract
Polar growth is a key characteristic of all filamentous fungi. It allows these eukaryotes to not only effectively explore organic matter but also interact within its own colony, mating partners, and hosts. Therefore, a detailed understanding of the dynamics in polar growth establishment and maintenance is crucial for several fields of fungal research. We developed a new marker protein, the actin-related protein 1 (Arp1) fused to red and green fluorescent proteins, which allows for the tracking of polar axis establishment and active hyphal growth in microscopy approaches. To exclude a probable redundancy with known polarity markers, we compared the localizations of the Spitzenkörper (SPK) and Arp1 using an FM4-64 staining approach. As we show in applications with the coprophilous fungus Sordaria macrospora and the hemibiotrophic plant pathogen Colletotrichum graminicola, the monitoring of Arp1 can be used for detailed studies of hyphal growth dynamics and ascospore germination, the interpretation of chemotropic growth processes, and the tracking of elongating penetration pegs into plant material. Since the Arp1 marker showed the same dynamics in both fungi tested, we believe this marker can be broadly applied in fungal research to study the manifold polar growth processes determining fungal life.
Collapse
|
13
|
Ghose D, Jacobs K, Ramirez S, Elston T, Lew D. Chemotactic movement of a polarity site enables yeast cells to find their mates. Proc Natl Acad Sci U S A 2021; 118:e2025445118. [PMID: 34050026 PMCID: PMC8179161 DOI: 10.1073/pnas.2025445118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
How small eukaryotic cells can interpret dynamic, noisy, and spatially complex chemical gradients to orient growth or movement is poorly understood. We address this question using Saccharomyces cerevisiae, where cells orient polarity up pheromone gradients during mating. Initial orientation is often incorrect, but polarity sites then move around the cortex in a search for partners. We find that this movement is biased by local pheromone gradients across the polarity site: that is, movement of the polarity site is chemotactic. A bottom-up computational model recapitulates this biased movement. The model reveals how even though pheromone-bound receptors do not mimic the shape of external pheromone gradients, nonlinear and stochastic effects combine to generate effective gradient tracking. This mechanism for gradient tracking may be applicable to any cell that searches for a target in a complex chemical landscape.
Collapse
Affiliation(s)
- Debraj Ghose
- Computational Biology and Bioinformatics, Duke University, Durham, NC 27710
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Katherine Jacobs
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Samuel Ramirez
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Timothy Elston
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Daniel Lew
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710;
| |
Collapse
|
14
|
Vangalis V, Knop M, Typas MA, Papaioannou IA. Establishment of conidial fusion in the asexual fungus Verticillium dahliae as a useful system for the study of non-sexual genetic interactions. Curr Genet 2021; 67:471-485. [PMID: 33582843 PMCID: PMC8139932 DOI: 10.1007/s00294-021-01157-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/11/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023]
Abstract
Cell-to-cell fusion is a fundamental biological process across the tree of life. In filamentous fungi, somatic fusion (or anastomosis) is required for the normal development of their syncytial hyphal networks, and it can initiate non-sexual genetic exchange processes, such as horizontal genetic transfer and the parasexual cycle. Although these could be important drivers of the evolution of asexual fungi, this remains a largely unexplored possibility due to the lack of suitable resources for their study in these puzzling organisms. We thus aimed at the characterization of cell fusion in the important asexual fungus Verticillium dahliae via Conidial Anastomosis Tubes (CATs), which can be useful for the analysis of parasexuality. We optimized appropriate procedures for their highly reproducible quantification and live-cell imaging, which were used to characterize their physiology and cell biology, and to start elucidating their underlying genetic machinery. Formation of CATs was shown to depend on growth conditions and require functional Fus3 and Slt2 MAP kinases, as well as the NADPH oxidase NoxA, whereas the GPCR Ste2 and the mating-type protein MAT1-2-1 were dispensable. We show that nuclei and other organelles can migrate through CATs, which often leads to the formation of transient dikaryons. Their nuclei have possible windows of opportunity for genetic interaction before degradation of one by a presumably homeostatic mechanism. We establish here CAT-mediated fusion in V. dahliae as an experimentally convenient system for the cytological analysis of fungal non-sexual genetic interactions. We expect that it will facilitate the dissection of sexual alternatives in asexual fungi.
Collapse
Affiliation(s)
- Vasileios Vangalis
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Michael Knop
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany.,German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Milton A Typas
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
15
|
Weichert M, Herzog S, Robson SA, Brandt R, Priegnitz BE, Brandt U, Schulz S, Fleißner A. Plasma Membrane Fusion Is Specifically Impacted by the Molecular Structure of Membrane Sterols During Vegetative Development of Neurospora crassa. Genetics 2020; 216:1103-1116. [PMID: 33046504 PMCID: PMC7768248 DOI: 10.1534/genetics.120.303623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/11/2020] [Indexed: 02/07/2023] Open
Abstract
Cell-to-cell fusion is crucial for the development and propagation of most eukaryotic organisms. Despite this importance, the molecular mechanisms mediating this process are only poorly understood in biological systems. In particular, the step of plasma membrane merger and the contributing proteins and physicochemical factors remain mostly unknown. Earlier studies provided the first evidence of a role of membrane sterols in cell-to-cell fusion. By characterizing different ergosterol biosynthesis mutants of the fungus Neurospora crassa, which accumulate different ergosterol precursors, we show that the structure of the sterol ring system specifically affects plasma membrane merger during the fusion of vegetative spore germlings. Genetic analyses pinpoint this defect to an event prior to engagement of the fusion machinery. Strikingly, this effect is not observed during sexual fusion, suggesting that the specific sterol precursors do not generally block membrane merger, but rather impair subcellular processes exclusively mediating fusion of vegetative cells. At a colony-wide level, the altered structure of the sterol ring system affects a subset of differentiation processes, including vegetative sporulation and steps before and after fertilization during sexual propagation. Together, these observations corroborate the notion that the accumulation of particular sterol precursors has very specific effects on defined cellular processes rather than nonspecifically disturbing membrane functioning. Given the phenotypic similarities of the ergosterol biosynthesis mutants of N. crassa during vegetative fusion and of Saccharomyces cerevisiae cells undergoing mating, our data support the idea that yeast mating is evolutionarily and mechanistically more closely related to vegetative than sexual fusion of filamentous fungi.
Collapse
Affiliation(s)
- Martin Weichert
- Institut für Genetik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Stephanie Herzog
- Institut für Genetik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Sarah-Anne Robson
- Institut für Genetik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Raphael Brandt
- Institut für Genetik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Bert-Ewald Priegnitz
- Institut für Genetik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Ulrike Brandt
- Institut für Genetik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Stefan Schulz
- Institut für Organische Chemie, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - André Fleißner
- Institut für Genetik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| |
Collapse
|
16
|
Katayama T, Bayram Ö, Mo T, Karahoda B, Valerius O, Takemoto D, Braus GH, Kitamoto K, Maruyama JI. Novel Fus3- and Ste12-interacting protein FsiA activates cell fusion-related genes in both Ste12-dependent and -independent manners in Ascomycete filamentous fungi. Mol Microbiol 2020; 115:723-738. [PMID: 33155715 DOI: 10.1111/mmi.14639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 01/01/2023]
Abstract
Filamentous fungal cells, unlike yeasts, fuse during vegetative growth. The orthologs of mitogen-activated protein (MAP) kinase Fus3 and transcription factor Ste12 are commonly involved in the regulation of cell fusion. However, the specific regulatory mechanisms underlying cell fusion in filamentous fungi have not been revealed. In the present study, we identified the novel protein FsiA as an AoFus3- and AoSte12-interacting protein in the filamentous fungus Aspergillus oryzae. The expression of AonosA and cell fusion-related genes decreased upon fsiA deletion and increased with fsiA overexpression, indicating that FsiA is a positive regulator of cell fusion. In addition, the induction of cell fusion-related genes by fsiA overexpression was also observed in the Aoste12 deletion mutant, indicating that FsiA can induce the cell fusion-related genes in an AoSte12-independent manner. Surprisingly, the fsiA and Aoste12 double deletion mutant exhibited higher cell fusion efficiency and increased mRNA levels of the cell fusion-related genes as compared to the fsiA single deletion mutant, which revealed that AoSte12 represses the cell fusion-related genes in the fsiA deletion mutant. Taken together, our data demonstrate that FsiA activates the cell fusion-related genes by suppressing the negative function of AoSte12 as well as by an AoSte12-independent mechanism.
Collapse
Affiliation(s)
- Takuya Katayama
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Özgür Bayram
- Biology Department, Maynooth University, Maynooth, Ireland
| | - Taoning Mo
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
| | - Betim Karahoda
- Biology Department, Maynooth University, Maynooth, Ireland
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, and Göttingen Center for Molecular Biosciences (GZMB), Georg-August University, Göttingen, Germany
| | - Daigo Takemoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, and Göttingen Center for Molecular Biosciences (GZMB), Georg-August University, Göttingen, Germany
| | - Katsuhiko Kitamoto
- Pharmaceutical Medical Business Sciences, Nihon Pharmaceutical University, Tokyo, Japan
| | - Jun-Ichi Maruyama
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Schunke C, Pöggeler S, Nordzieke DE. A 3D Printed Device for Easy and Reliable Quantification of Fungal Chemotropic Growth. Front Microbiol 2020; 11:584525. [PMID: 33224121 PMCID: PMC7669831 DOI: 10.3389/fmicb.2020.584525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/12/2020] [Indexed: 01/19/2023] Open
Abstract
Chemical gradients are surrounding living organisms in all habitats of life. Microorganisms, plants and animals have developed specific mechanisms to sense such gradients. Upon perception, chemical gradients can be categorized either as favorable, like nutrients or hormones, or as disadvantageous, resulting in a clear orientation toward the gradient and avoiding strategies, respectively. Being sessile organisms, fungi use chemical gradients for their orientation in the environment. Integration of this data enables them to successfully explore nutrient sources, identify probable plant or animal hosts, and to communicate during sexual reproduction or early colony development. We have developed a 3D printed device allowing a highly standardized, rapid and low-cost investigation of chemotropic growth processes in fungi. Since the 3D printed device is placed on a microscope slide, detailed microscopic investigations and documentation of the chemotropic process is possible. Using this device, we provide evidence that germlings derived from oval conidia of the hemibiotrophic plant pathogen Colletotrichum graminicola can sense gradients of glucose and reorient their growth toward the nutrient source. We describe in detail the method establishment, probable pitfalls, and provide the original program files for 3D printing to enable broad application of the 3D device in basic, agricultural, medical, and applied fungal science.
Collapse
Affiliation(s)
- Carolin Schunke
- Department of Genetics of Eukaryotic Microorganisms, Institute of Microbiology and Genetics, Georg August University Göttingen, Göttingen, Germany
| | - Stefanie Pöggeler
- Department of Genetics of Eukaryotic Microorganisms, Institute of Microbiology and Genetics, Georg August University Göttingen, Göttingen, Germany
| | - Daniela Elisabeth Nordzieke
- Department of Genetics of Eukaryotic Microorganisms, Institute of Microbiology and Genetics, Georg August University Göttingen, Göttingen, Germany
| |
Collapse
|
18
|
Barbosa JR, Carvalho Junior RND. Occurrence and possible roles of polysaccharides in fungi and their influence on the development of new technologies. Carbohydr Polym 2020; 246:116613. [PMID: 32747253 PMCID: PMC7293488 DOI: 10.1016/j.carbpol.2020.116613] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/23/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022]
Abstract
The article summarizes the roles of polysaccharides in the biology of fungi and their relationship in the development of new technologies. The comparative approach between the evolution of fungi and the chemistry of glycobiology elucidated relevant aspects about the role of polysaccharides in fungi. Also, based on the knowledge of fungal glycobiology, it was possible to address the development of new technologies, such as the production of new anti-tumor drugs, vaccines, biomaterials, and applications in the field of robotics. We conclude that polysaccharides activate pathways of apoptosis, secretion of pro-inflammatory substances, and macrophage, inducing anticancer activity. Also, the activation of the immune system, which opens the way for the production of vaccines. The development of biomaterials and parts for robotics is a promising and little-explored field. Finally, the article is multidisciplinary, with a different and integrated approach to the role of nature in the sustainable development of new technologies.
Collapse
Affiliation(s)
- Jhonatas Rodrigues Barbosa
- LABEX/FEA (Extraction Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Raul Nunes de Carvalho Junior
- LABEX/FEA (Extraction Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| |
Collapse
|
19
|
Naranjo‐Ortiz MA, Gabaldón T. Fungal evolution: cellular, genomic and metabolic complexity. Biol Rev Camb Philos Soc 2020; 95:1198-1232. [PMID: 32301582 PMCID: PMC7539958 DOI: 10.1111/brv.12605] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
The question of how phenotypic and genomic complexity are inter-related and how they are shaped through evolution is a central question in biology that historically has been approached from the perspective of animals and plants. In recent years, however, fungi have emerged as a promising alternative system to address such questions. Key to their ecological success, fungi present a broad and diverse range of phenotypic traits. Fungal cells can adopt many different shapes, often within a single species, providing them with great adaptive potential. Fungal cellular organizations span from unicellular forms to complex, macroscopic multicellularity, with multiple transitions to higher or lower levels of cellular complexity occurring throughout the evolutionary history of fungi. Similarly, fungal genomes are very diverse in their architecture. Deep changes in genome organization can occur very quickly, and these phenomena are known to mediate rapid adaptations to environmental changes. Finally, the biochemical complexity of fungi is huge, particularly with regard to their secondary metabolites, chemical products that mediate many aspects of fungal biology, including ecological interactions. Herein, we explore how the interplay of these cellular, genomic and metabolic traits mediates the emergence of complex phenotypes, and how this complexity is shaped throughout the evolutionary history of Fungi.
Collapse
Affiliation(s)
- Miguel A. Naranjo‐Ortiz
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
- Department of Experimental Sciences, Universitat Pompeu Fabra (UPF)Dr. Aiguader 88, 08003BarcelonaSpain
- ICREAPg. Lluís Companys 23, 08010BarcelonaSpain
| |
Collapse
|
20
|
Sporulation in Ashbya gossypii. J Fungi (Basel) 2020; 6:jof6030157. [PMID: 32872517 PMCID: PMC7558398 DOI: 10.3390/jof6030157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/28/2022] Open
Abstract
Ashbya gossypii is a filamentous ascomycete belonging to the yeast family of Saccharomycetaceae. At the end of its growth phase Ashbya generates abundant amounts of riboflavin and spores that form within sporangia derived from fragmented cellular compartments of hyphae. The length of spores differs within species of the genus. Needle-shaped Ashbya spores aggregate via terminal filaments. A. gossypii is a homothallic fungus which may possess a and α mating types. However, the solo-MATa type strain is self-fertile and sporulates abundantly apparently without the need of prior mating. The central components required for the regulation of sporulation, encoded by IME1, IME2, IME4, KAR4, are conserved with Saccharomyces cerevisiae. Nutrient depletion generates a strong positive signal for sporulation via the cAMP-PKA pathway and SOK2, which is also essential for sporulation. Strong inhibitors of sporulation besides mutations in the central regulatory genes are the addition of exogenous cAMP or the overexpression of the mating type gene MATα2. Sporulation has been dissected using gene-function analyses and global RNA-seq transcriptomics. This revealed a role of Msn2/4, another potential PKA-target, for spore wall formation and a key dual role of the protein A kinase Tpk2 at the onset of sporulation as well as for breaking the dormancy of spores to initiate germination. Recent work has provided an overview of ascus development, regulation of sporulation and spore maturation. This will be summarized in the current review with a focus on the central regulatory genes. Current research and open questions will also be discussed.
Collapse
|
21
|
Perez R, Luccioni M, Kamakaka R, Clamons S, Gaut N, Stirling F, Adamala KP, Silver PA, Endy D. Enabling community-based metrology for wood-degrading fungi. Fungal Biol Biotechnol 2020; 7:2. [PMID: 32206323 PMCID: PMC7081594 DOI: 10.1186/s40694-020-00092-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/25/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Lignocellulosic biomass could support a greatly-expanded bioeconomy. Current strategies for using biomass typically rely on single-cell organisms and extensive ancillary equipment to produce precursors for downstream manufacturing processes. Alternative forms of bioproduction based on solid-state fermentation and wood-degrading fungi could enable more direct means of manufacture. However, basic methods for cultivating wood-degrading fungi are often ad hoc and not readily reproducible. Here, we developed standard reference strains, substrates, measurements, and methods sufficient to begin to enable reliable reuse of mycological materials and products in simple laboratory settings. RESULTS We show that a widely-available and globally-regularized consumer product (Pringles™) can support the growth of wood-degrading fungi, and that growth on Pringles™-broth can be correlated with growth on media made from a fully-traceable and compositionally characterized substrate (National Institute of Standards and Technology Reference Material 8492 Eastern Cottonwood Whole Biomass Feedstock). We also establish a Relative Extension Unit (REU) framework that is designed to reduce variation in quantification of radial growth measurements. So enabled, we demonstrate that five laboratories were able to compare measurements of wood-fungus performance via a simple radial extension growth rate assay, and that our REU-based approach reduced variation in reported measurements by up to ~ 75%. CONCLUSIONS Reliable reuse of materials, measures, and methods is necessary to enable distributed bioproduction processes that can be adopted at all scales, from local to industrial. Our community-based measurement methods incentivize practitioners to coordinate the reuse of standard materials, methods, strains, and to share information supporting work with wood-degrading fungi.
Collapse
Affiliation(s)
- Rolando Perez
- Department of Bioengineering, Schools of Engineering and Medicine, Stanford University, Room 252, Shriram Center, 443 Via Ortega, Stanford, CA 94305 USA
| | - Marina Luccioni
- Department of Bioengineering, Schools of Engineering and Medicine, Stanford University, Room 252, Shriram Center, 443 Via Ortega, Stanford, CA 94305 USA
| | - Rohinton Kamakaka
- Department of MCD Biology, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 USA
| | - Samuel Clamons
- Department of Chemistry and Molecular Biophysics, California Institute of Technology, 1200 E. California Blvd, MC 138-78, Pasadena, CA 91125 USA
- Department of Control and Dynamical Systems, California Institute of Technology, 1200 E. California Blvd, MC 138-78, Pasadena, CA 91125 USA
| | - Nathaniel Gaut
- Department of Genetics, Cell Biology, and Development, College of Biological Sciences, University of Minnesota, 420 Washington Ave. SE, 5-178 MCB, Minneapolis, MN 55455 USA
| | - Finn Stirling
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Warren Alpert Building, Boston, MA 02115 USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 200 Longwood Avenue, Warren Alpert Building, Boston, MA 02115 USA
| | - Katarzyna P. Adamala
- Department of Genetics, Cell Biology, and Development, College of Biological Sciences, University of Minnesota, 420 Washington Ave. SE, 5-178 MCB, Minneapolis, MN 55455 USA
| | - Pamela A. Silver
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Warren Alpert Building, Boston, MA 02115 USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 200 Longwood Avenue, Warren Alpert Building, Boston, MA 02115 USA
| | - Drew Endy
- Department of Bioengineering, Schools of Engineering and Medicine, Stanford University, Room 252, Shriram Center, 443 Via Ortega, Stanford, CA 94305 USA
| |
Collapse
|
22
|
Nordzieke DE, Sanken A, Antelo L, Raschke A, Deising HB, Pöggeler S. Specialized infection strategies of falcate and oval conidia of Colletotrichum graminicola. Fungal Genet Biol 2019; 133:103276. [PMID: 31550526 DOI: 10.1016/j.fgb.2019.103276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 01/12/2023]
Abstract
For many filamentous fungi with pathogenic lifestyles, the presence of distinct asexual conidia has been described. However, the role of these spore types remains mostly obscure. Colletotrichum graminicola is a hemibiotrophic filamentous fungus, causing anthracnose on maize plants with a high potential of epidemic disease spreading. C. graminicola generates two types of conidia. Falcate shaped conidia formed in necrotic lesions on maize tissues are able to generate appressoria with high efficiency and are considered key disease spreading propagules. The second conidia type, the smaller oval conidia, is formed in the vascular system of the infected plant, probably causing the distribution of the disease in planta. Barely any knowledge exists about how these conidia are able to exhibit their specific functions in the life cycle and pathogenicity of C. graminicola. Here, we show that germlings derived from both falcate and oval conidia differ in the secretion of a germination inhibitor and signals for germling fusion. Germination experiments combined with HPLC and mass spectrometry analyses revealed that germination of falcate conidia is regulated by the self-inhibitor mycosporine-glutamine, whereas this compound is absent from oval conidia cultures. Additionally, germlings derived from oval conidia undergo germling fusions at high frequencies and are able to induce such a fusion when co-incubated with falcate conidia. Falcate conidia germlings alone, however, were never observed to fuse. Plant infection experiments showed a positive correlation between germling fusions and efficient leaf infection by oval conidia. However, this correlation was not observed for infection by falcate conidia. Together, our findings reveal significant differences of two types of conidia derived from the same pathogenic fungus with distinct roles in pathogenesis.
Collapse
Affiliation(s)
- Daniela E Nordzieke
- Department of Genetics of Eukaryotic Microorganisms, Institute of Microbiology and Genetics, Georg August University Göttingen, Grisebachstrasse 8, DE-37081 Göttingen, Germany.
| | - Alina Sanken
- Department of Genetics of Eukaryotic Microorganisms, Institute of Microbiology and Genetics, Georg August University Göttingen, Grisebachstrasse 8, DE-37081 Göttingen, Germany
| | - Luis Antelo
- Institut für Biotechnologie und Wirkstoff-Forschung gGmbH (IBWF), Erwin-Schrödinger-Strasse 56, DE-67663 Kaiserslautern, Germany
| | - Anja Raschke
- Institute for Agricultural and Nutritional Sciences, Faculty for Natural Sciences III, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Strasse 3, DE-06120 Halle (Saale), Germany
| | - Holger B Deising
- Institute for Agricultural and Nutritional Sciences, Faculty for Natural Sciences III, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Strasse 3, DE-06120 Halle (Saale), Germany
| | - Stefanie Pöggeler
- Department of Genetics of Eukaryotic Microorganisms, Institute of Microbiology and Genetics, Georg August University Göttingen, Grisebachstrasse 8, DE-37081 Göttingen, Germany
| |
Collapse
|
23
|
Martin SG. Molecular mechanisms of chemotropism and cell fusion in unicellular fungi. J Cell Sci 2019; 132:132/11/jcs230706. [PMID: 31152053 DOI: 10.1242/jcs.230706] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In all eukaryotic phyla, cell fusion is important for many aspects of life, from sexual reproduction to tissue formation. Fungal cells fuse during mating to form the zygote, and during vegetative growth to connect mycelia. Prior to fusion, cells first detect gradients of pheromonal chemoattractants that are released by their partner and polarize growth in their direction. Upon pairing, cells digest their cell wall at the site of contact and merge their plasma membrane. In this Review, I discuss recent work on the chemotropic response of the yeast models Saccharomyces cerevisiae and Schizosaccharomyces pombe, which has led to a novel model of gradient sensing: the cell builds a motile cortical polarized patch, which acts as site of communication where pheromones are released and sensed. Initial patch dynamics serve to correct its position and align it with the gradient from the partner cell. Furthermore, I highlight the transition from cell wall expansion during growth to cell wall digestion, which is imposed by physical and signaling changes owing to hyperpolarization that is induced by cell proximity. To conclude, I discuss mechanisms of membrane fusion, whose characterization remains a major challenge for the future.
Collapse
Affiliation(s)
- Sophie G Martin
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
24
|
Fischer MS, Glass NL. Communicate and Fuse: How Filamentous Fungi Establish and Maintain an Interconnected Mycelial Network. Front Microbiol 2019; 10:619. [PMID: 31001214 PMCID: PMC6455062 DOI: 10.3389/fmicb.2019.00619] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/12/2019] [Indexed: 12/22/2022] Open
Abstract
Cell-to-cell communication and cell fusion are fundamental biological processes across the tree of life. Survival is often dependent upon being able to identify nearby individuals and respond appropriately. Communication between genetically different individuals allows for the identification of potential mating partners, symbionts, prey, or predators. In contrast, communication between genetically similar (or identical) individuals is important for mediating the development of multicellular organisms or for coordinating density-dependent behaviors (i.e., quorum sensing). This review describes the molecular and genetic mechanisms that mediate cell-to-cell communication and cell fusion between cells of Ascomycete filamentous fungi, with a focus on Neurospora crassa. Filamentous fungi exist as a multicellular, multinuclear network of hyphae, and communication-mediated cell fusion is an important aspect of colony development at each stage of the life cycle. Asexual spore germination occurs in a density-dependent manner. Germinated spores (germlings) avoid cells that are genetically different at specific loci, while chemotropically engaging with cells that share identity at these recognition loci. Germlings with genetic identity at recognition loci undergo cell fusion when in close proximity, a fitness attribute that contributes to more rapid colony establishment. Communication and cell fusion also occur between hyphae in a colony, which are important for reinforcing colony architecture and supporting the development of complex structures such as aerial hyphae and sexual reproductive structures. Over 70 genes have been identified in filamentous fungi (primarily N. crassa) that are involved in kind recognition, chemotropic interactions, and cell fusion. While the hypothetical signal(s) and receptor(s) remain to be described, a dynamic molecular signaling network that regulates cell-cell interactions has been revealed, including two conserved MAP-Kinase cascades, a conserved STRIPAK complex, transcription factors, a NOX complex involved in the generation of reactive oxygen species, cell-integrity sensors, actin, components of the secretory pathway, and several other proteins. Together these pathways facilitate the integration of extracellular signals, direct polarized growth, and initiate a transcriptional program that reinforces signaling and prepares cells for downstream processes, such as membrane merger, cell fusion and adaptation to heterokaryon formation.
Collapse
Affiliation(s)
- Monika S. Fischer
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley CA, United States
| | - N. Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley CA, United States
- Environmental Genomics and Systems Biology Division, The Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
25
|
Chelius CL, Ribeiro LFC, Huso W, Kumar J, Lincoln S, Tran B, Goo YA, Srivastava R, Harris SD, Marten MR. Phosphoproteomic and transcriptomic analyses reveal multiple functions for Aspergillus nidulans MpkA independent of cell wall stress. Fungal Genet Biol 2019; 125:1-12. [PMID: 30639305 DOI: 10.1016/j.fgb.2019.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/18/2018] [Accepted: 01/04/2019] [Indexed: 12/17/2022]
Abstract
The protein kinase MpkA plays a prominent role in the cell wall integrity signaling (CWIS) pathway, acting as the terminal MAPK activating expression of genes which encode cell wall biosynthetic enzymes and other repair functions. Numerous studies focus on MpkA function during cell wall perturbation. Here, we focus on the role MpkA plays outside of cell wall stress, during steady state growth. In an effort to seek other, as yet unknown, connections to this pathway, an mpkA deletion mutant (ΔmpkA) was subjected to phosphoproteomic and transcriptomic analysis. When compared to the control (isogenic parent of ΔmpkA), there is strong evidence suggesting MpkA is involved with maintaining cell wall strength, branching regulation, and the iron starvation pathway, among others. Particle-size analysis during shake flask growth revealed ΔmpkA mycelia were about 4 times smaller than the control strain and more than 90 cell wall related genes show significantly altered expression levels. The deletion mutant had a significantly higher branching rate than the control and phosphoproteomic results show putative branching-regulation proteins, such as CotA, LagA, and Cdc24, have a significantly different level of phosphorylation. When grown in iron limited conditions, ΔmpkA had no difference in growth rate or production of siderophores, whereas the control strain showed decreased growth rate and increased siderophore production. Transcriptomic data revealed over 25 iron related genes with altered transcript levels. Results suggest MpkA is involved with regulation of broad cellular functions in the absence of stress.
Collapse
Affiliation(s)
- Cynthia L Chelius
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, United States
| | - Liliane F C Ribeiro
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, United States
| | - Walker Huso
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, United States
| | - Jyothi Kumar
- Center for Plant Science Innovation and Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Stephen Lincoln
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, United States
| | - Bao Tran
- Mass Spectrometry Center, University of Maryland School of Pharmacy, Baltimore, MD, 21201, United States
| | - Young Ah Goo
- Mass Spectrometry Center, University of Maryland School of Pharmacy, Baltimore, MD, 21201, United States
| | - Ranjan Srivastava
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, United States
| | - Steven D Harris
- Center for Plant Science Innovation and Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Mark R Marten
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, United States.
| |
Collapse
|
26
|
|
27
|
Kurian SM, Di Pietro A, Read ND. Live-cell imaging of conidial anastomosis tube fusion during colony initiation in Fusarium oxysporum. PLoS One 2018; 13:e0195634. [PMID: 29734342 PMCID: PMC5937734 DOI: 10.1371/journal.pone.0195634] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/26/2018] [Indexed: 01/07/2023] Open
Abstract
Fusarium oxysporum exhibits conidial anastomosis tube (CAT) fusion during colony initiation to form networks of conidial germlings. Here we determined the optimal culture conditions for this fungus to undergo CAT fusion between microconidia in liquid medium. Extensive high resolution, confocal live-cell imaging was performed to characterise the different stages of CAT fusion, using genetically encoded fluorescent labelling and vital fluorescent organelle stains. CAT homing and fusion were found to be dependent on adhesion to the surface, in contrast to germ tube development which occurs in the absence of adhesion. Staining with fluorescently labelled concanavalin A indicated that the cell wall composition of CATs differs from that of microconidia and germ tubes. The movement of nuclei, mitochondria, vacuoles and lipid droplets through fused germlings was observed by live-cell imaging.
Collapse
Affiliation(s)
- Smija M. Kurian
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
| | - Antonio Di Pietro
- Departamento de Genetica, Universidad de Cordoba, Campus Rabanales C5, Cordoba, Spain
| | - Nick D. Read
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Serrano A, Illgen J, Brandt U, Thieme N, Letz A, Lichius A, Read ND, Fleißner A. Spatio-temporal MAPK dynamics mediate cell behavior coordination during fungal somatic cell fusion. J Cell Sci 2018; 131:jcs.213462. [PMID: 29592970 DOI: 10.1242/jcs.213462] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/20/2018] [Indexed: 01/17/2023] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are conserved regulators of proliferation, differentiation and adaptation in eukaryotic cells. Their activity often involves changes in their subcellular localization, indicating an important role for these spatio-temporal dynamics in signal transmission. A striking model illustrating these dynamics is somatic cell fusion in Neurospora crassa Germinating spores of this fungus rapidly alternate between signal sending and receiving, thereby establishing a cell-cell dialog, which involves the alternating membrane recruitment of the MAPK MAK-2 in both fusion partners. Here, we show that the dynamic translocation of MAK-2 is essential for coordinating the behavior of the fusion partners before physical contact. The activation and function of the kinase strongly correlate with its subcellular localization, indicating a crucial contribution of the MAPK dynamics in establishing regulatory feedback loops, which establish the oscillatory signaling mode. In addition, we provide evidence that MAK-2 not only contributes to cell-cell communication, but also mediates cell-cell fusion. The MAK-2 dynamics significantly differ between these two processes, suggesting a role for the MAPK in switching of the cellular program between communication and fusion.
Collapse
Affiliation(s)
- Antonio Serrano
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Julia Illgen
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Ulrike Brandt
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Nils Thieme
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Anja Letz
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Alexander Lichius
- Institute of Microbiology, University of Innsbruck, 6020 Innsbruck, Austria
| | - Nick D Read
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester M13 9NT, UK
| | - André Fleißner
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| |
Collapse
|
29
|
Regulation of Cell-to-Cell Communication and Cell Wall Integrity by a Network of MAP Kinase Pathways and Transcription Factors in Neurospora crassa. Genetics 2018; 209:489-506. [PMID: 29678830 DOI: 10.1534/genetics.118.300904] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/18/2018] [Indexed: 11/18/2022] Open
Abstract
Maintenance of cell integrity and cell-to-cell communication are fundamental biological processes. Filamentous fungi, such as Neurospora crassa, depend on communication to locate compatible cells, coordinate cell fusion, and establish a robust hyphal network. Two MAP kinase (MAPK) pathways are essential for communication and cell fusion in N. crassa: the cell wall integrity/MAK-1 pathway and the MAK-2 (signal response) pathway. Previous studies have demonstrated several points of cross-talk between the MAK-1 and MAK-2 pathways, which is likely necessary for coordinating chemotropic growth toward an extracellular signal, and then mediating cell fusion. Canonical MAPK pathways begin with signal reception and end with a transcriptional response. Two transcription factors, ADV-1 and PP-1, are essential for communication and cell fusion. PP-1 is the conserved target of MAK-2, but it is unclear what targets ADV-1. We did RNA sequencing on Δadv-1, Δpp-1, and wild-type cells and found that ADV-1 and PP-1 have a shared regulon including many genes required for communication, cell fusion, growth, development, and stress response. We identified ADV-1 and PP-1 binding sites across the genome by adapting the in vitro method of DNA-affinity purification sequencing for N. crassa To elucidate the regulatory network, we misexpressed each transcription factor in each upstream MAPK deletion mutant. Misexpression of adv-1 was sufficient to fully suppress the phenotype of the Δpp-1 mutant and partially suppress the phenotype of the Δmak-1 mutant. Collectively, our data demonstrate that the MAK-1/ADV-1 and MAK-2/PP-1 pathways form a tight regulatory network that maintains cell integrity and mediates communication and cell fusion.
Collapse
|
30
|
Nagy LG, Kovács GM, Krizsán K. Complex multicellularity in fungi: evolutionary convergence, single origin, or both? Biol Rev Camb Philos Soc 2018; 93:1778-1794. [DOI: 10.1111/brv.12418] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/23/2018] [Accepted: 03/28/2018] [Indexed: 12/22/2022]
Affiliation(s)
- László G. Nagy
- Synthetic and Systems Biology Unit; Institute of Biochemistry, BRC-HAS, 62 Temesvári krt; 6726 Szeged Hungary
| | - Gábor M. Kovács
- Department of Plant Anatomy; Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C; H-1117 Budapest Hungary
- Plant Protection Institute, Centre for Agricultural Research; Hungarian Academy of Sciences (MTA-ATK); PO Box 102, H-1525 Budapest Hungary
| | - Krisztina Krizsán
- Synthetic and Systems Biology Unit; Institute of Biochemistry, BRC-HAS, 62 Temesvári krt; 6726 Szeged Hungary
| |
Collapse
|
31
|
BiFC-based visualisation system reveals cell fusion morphology and heterokaryon incompatibility in the filamentous fungus Aspergillus oryzae. Sci Rep 2018; 8:2922. [PMID: 29440689 PMCID: PMC5811552 DOI: 10.1038/s41598-018-21323-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/01/2018] [Indexed: 12/13/2022] Open
Abstract
Aspergillus oryzae is an industrially important filamentous fungus used for Japanese traditional food fermentation and heterologous protein production. Although cell fusion is important for heterokaryon formation and sexual/parasexual reproduction required for cross breeding, knowledge on cell fusion and heterokaryon incompatibility in A. oryzae is limited because of low cell fusion frequency. Therefore, we aimed to develop a BiFC system to specifically visualise fused cells and facilitate the analysis of cell fusion in A. oryzae. The cell fusion ability and morphology of 15 A. oryzae strains were investigated using heterodimerising proteins LZA and LZB fused with split green fluorescence protein. Morphological investigation of fused cells revealed that cell fusion occurred mainly as conidial anastomosis during the early growth stage. Self-fusion abilities were detected in most industrial A. oryzae strains, but only a few strain pairs showed non-self fusion. Protoplast fusion assay demonstrated that almost all the pairs capable of non-self fusion were capable of heterokaryon formation and vice versa, thus providing the first evidence of heterokaryon incompatibility in A. oryzae. The BiFC system developed in this study provides an effective method in studying morphology of fused cells and heterokaryon incompatibility in the filamentous fungal species with low cell fusion efficiency.
Collapse
|
32
|
Zhao X, Spraker JE, Bok JW, Velk T, He ZM, Keller NP. A Cellular Fusion Cascade Regulated by LaeA Is Required for Sclerotial Development in Aspergillus flavus. Front Microbiol 2017; 8:1925. [PMID: 29051754 PMCID: PMC5633613 DOI: 10.3389/fmicb.2017.01925] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/21/2017] [Indexed: 11/13/2022] Open
Abstract
Aspergillus flavus is a saprophytic soil fungus that poses a serious threat worldwide as it contaminates many food and feed crops with the carcinogenic mycotoxin called aflatoxin. This pathogen persists as sclerotia in the soil which enables fungal survival in harsh environmental conditions. Sclerotia formation by A. flavus depends on successful cell communication and hyphal fusion events. Loss of LaeA, a conserved developmental regulator in fungi, abolishes sclerotia formation in this species whereas overexpression (OE) of laeA results in enhanced sclerotia production. Here we demonstrate that sclerotia loss and inability to form heterokaryons in A. flavusΔlaeA is mediated by homologs of the Neurospora crassa ham (hyphal anastomosis) genes termed hamE-I in A. flavus. LaeA positively regulates ham gene expression and deletion of hamF, G, H, or I phenocopies ΔlaeA as demonstrated by heterokaryon and sclerotia loss and reduced aflatoxin synthesis and virulence of these mutants. Deletion of hamE showed a less severe phenotype. hamE-I homologs are positively regulated by the clock controlled transcription factor ADV-1 in N. crassa. Similarly, the ADV-1 homolog NosA regulates hamE-I expression in A. flavus, is required for sclerotial development and is itself positively regulated by LaeA. We speculate that a putative LaeA>NosA>fusion cascade underlies the previously described circadian clock regulation of sclerotia production in A. flavus.
Collapse
Affiliation(s)
- Xixi Zhao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| | - Joseph E Spraker
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| | - Jin Woo Bok
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| | - Thomas Velk
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| | - Zhu-Mei He
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States.,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
33
|
Fricker MD, Heaton LLM, Jones NS, Boddy L. The Mycelium as a Network. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0033-2017. [PMID: 28524023 PMCID: PMC11687498 DOI: 10.1128/microbiolspec.funk-0033-2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Indexed: 01/12/2023] Open
Abstract
The characteristic growth pattern of fungal mycelia as an interconnected network has a major impact on how cellular events operating on a micron scale affect colony behavior at an ecological scale. Network structure is intimately linked to flows of resources across the network that in turn modify the network architecture itself. This complex interplay shapes the incredibly plastic behavior of fungi and allows them to cope with patchy, ephemeral resources, competition, damage, and predation in a manner completely different from multicellular plants or animals. Here, we try to link network structure with impact on resource movement at different scales of organization to understand the benefits and challenges of organisms that grow as connected networks. This inevitably involves an interdisciplinary approach whereby mathematical modeling helps to provide a bridge between information gleaned by traditional cell and molecular techniques or biophysical approaches at a hyphal level, with observations of colony dynamics and behavior at an ecological level.
Collapse
Affiliation(s)
- Mark D Fricker
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, United Kingdom
| | - Luke L M Heaton
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, United Kingdom
- Mathematics Department, Imperial College, Queen's Gate, London SW7 2AZ, United Kingdom
| | - Nick S Jones
- Mathematics Department, Imperial College, Queen's Gate, London SW7 2AZ, United Kingdom
| | - Lynne Boddy
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| |
Collapse
|
34
|
Dekhang R, Wu C, Smith KM, Lamb TM, Peterson M, Bredeweg EL, Ibarra O, Emerson JM, Karunarathna N, Lyubetskaya A, Azizi E, Hurley JM, Dunlap JC, Galagan JE, Freitag M, Sachs MS, Bell-Pedersen D. The Neurospora Transcription Factor ADV-1 Transduces Light Signals and Temporal Information to Control Rhythmic Expression of Genes Involved in Cell Fusion. G3 (BETHESDA, MD.) 2017; 7:129-142. [PMID: 27856696 PMCID: PMC5217103 DOI: 10.1534/g3.116.034298] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/01/2016] [Indexed: 12/20/2022]
Abstract
Light and the circadian clock have a profound effect on the biology of organisms through the regulation of large sets of genes. Toward understanding how light and the circadian clock regulate gene expression, we used genome-wide approaches to identify the direct and indirect targets of the light-responsive and clock-controlled transcription factor ADV-1 in Neurospora crassa A large proportion of ADV-1 targets were found to be light- and/or clock-controlled, and enriched for genes involved in development, metabolism, cell growth, and cell fusion. We show that ADV-1 is necessary for transducing light and/or temporal information to its immediate downstream targets, including controlling rhythms in genes critical to somatic cell fusion. However, while ADV-1 targets are altered in predictable ways in Δadv-1 cells in response to light, this is not always the case for rhythmic target gene expression. These data suggest that a complex regulatory network downstream of ADV-1 functions to generate distinct temporal dynamics of target gene expression relative to the central clock mechanism.
Collapse
Affiliation(s)
- Rigzin Dekhang
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Cheng Wu
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Kristina M Smith
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - Teresa M Lamb
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | | | - Erin L Bredeweg
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - Oneida Ibarra
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Jillian M Emerson
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | | | | | - Elham Azizi
- Bioinformatics Program, Boston University, Massachusetts 02215
| | - Jennifer M Hurley
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Jay C Dunlap
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - James E Galagan
- Bioinformatics Program, Boston University, Massachusetts 02215
- National Emerging Infectious Diseases Laboratories, Boston University, Massachusetts 02118
- Department of Microbiology, Boston University, Massachusetts 02215
- Department of Biomedical Engineering, Boston University, Massachusetts 02215
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - Matthew S Sachs
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | | |
Collapse
|