1
|
Klemm J, Van Hazel C, Harris R. Regeneration following tissue necrosis is mediated by non-apoptotic caspase activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605350. [PMID: 39091851 PMCID: PMC11291143 DOI: 10.1101/2024.07.26.605350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Tissue necrosis is a devastating complication for many human diseases and injuries. Unfortunately, our understanding of necrosis and how it impacts surrounding healthy tissue - an essential consideration when developing methods to treat such injuries - has been limited by a lack of robust genetically tractable models. Our lab previously established a method to study necrosis-induced regeneration in the Drosophila wing imaginal disc, which revealed a unique phenomenon whereby cells at a distance from the injury upregulate caspase activity in a process called Necrosis-induced Apoptosis (NiA) that is vital for regeneration. Here we have further investigated this phenomenon, showing that NiA is predominantly associated with the highly regenerative pouch region of the disc, shaped by genetic factors present in the presumptive hinge. Furthermore, we find that a proportion of NiA fail to undergo apoptosis, instead surviving effector caspase activation to persist within the tissue and stimulate reparative proliferation late in regeneration. This proliferation relies on the initiator caspase Dronc, and occurs independent of JNK, ROS or mitogens associated with the previously characterized Apoptosis-induced Proliferation (AiP) mechanism. These data reveal a new means by which non-apoptotic Dronc signaling promotes regenerative proliferation in response to necrotic damage.
Collapse
Affiliation(s)
- Jacob Klemm
- School of Life Sciences, Arizona State University, Life Sciences E (LSE) 354, 427 Tyler Mall, Tempe, Arizona, 85287-4501
| | - Chloe Van Hazel
- School of Life Sciences, Arizona State University, Life Sciences E (LSE) 354, 427 Tyler Mall, Tempe, Arizona, 85287-4501
| | - Robin Harris
- School of Life Sciences, Arizona State University, Life Sciences E (LSE) 354, 427 Tyler Mall, Tempe, Arizona, 85287-4501
| |
Collapse
|
2
|
Vucur M, Ghallab A, Schneider AT, Adili A, Cheng M, Castoldi M, Singer MT, Büttner V, Keysberg LS, Küsgens L, Kohlhepp M, Görg B, Gallage S, Barragan Avila JE, Unger K, Kordes C, Leblond AL, Albrecht W, Loosen SH, Lohr C, Jördens MS, Babler A, Hayat S, Schumacher D, Koenen MT, Govaere O, Boekschoten MV, Jörs S, Villacorta-Martin C, Mazzaferro V, Llovet JM, Weiskirchen R, Kather JN, Starlinger P, Trauner M, Luedde M, Heij LR, Neumann UP, Keitel V, Bode JG, Schneider RK, Tacke F, Levkau B, Lammers T, Fluegen G, Alexandrov T, Collins AL, Nelson G, Oakley F, Mann DA, Roderburg C, Longerich T, Weber A, Villanueva A, Samson AL, Murphy JM, Kramann R, Geisler F, Costa IG, Hengstler JG, Heikenwalder M, Luedde T. Sublethal necroptosis signaling promotes inflammation and liver cancer. Immunity 2023; 56:1578-1595.e8. [PMID: 37329888 DOI: 10.1016/j.immuni.2023.05.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 08/30/2022] [Accepted: 05/22/2023] [Indexed: 06/19/2023]
Abstract
It is currently not well known how necroptosis and necroptosis responses manifest in vivo. Here, we uncovered a molecular switch facilitating reprogramming between two alternative modes of necroptosis signaling in hepatocytes, fundamentally affecting immune responses and hepatocarcinogenesis. Concomitant necrosome and NF-κB activation in hepatocytes, which physiologically express low concentrations of receptor-interacting kinase 3 (RIPK3), did not lead to immediate cell death but forced them into a prolonged "sublethal" state with leaky membranes, functioning as secretory cells that released specific chemokines including CCL20 and MCP-1. This triggered hepatic cell proliferation as well as activation of procarcinogenic monocyte-derived macrophage cell clusters, contributing to hepatocarcinogenesis. In contrast, necrosome activation in hepatocytes with inactive NF-κB-signaling caused an accelerated execution of necroptosis, limiting alarmin release, and thereby preventing inflammation and hepatocarcinogenesis. Consistently, intratumoral NF-κB-necroptosis signatures were associated with poor prognosis in human hepatocarcinogenesis. Therefore, pharmacological reprogramming between these distinct forms of necroptosis may represent a promising strategy against hepatocellular carcinoma.
Collapse
Affiliation(s)
- Mihael Vucur
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany.
| | - Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University Dortmund, Dortmund, Germany; Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Anne T Schneider
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Arlind Adili
- Department of Chronic Inflammation and Cancer, German Cancer Research Institute (DKFZ), Heidelberg, Germany
| | - Mingbo Cheng
- Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Mirco Castoldi
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Michael T Singer
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Veronika Büttner
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Leonie S Keysberg
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Lena Küsgens
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Marlene Kohlhepp
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Boris Görg
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Suchira Gallage
- Department of Chronic Inflammation and Cancer, German Cancer Research Institute (DKFZ), Heidelberg, Germany; The M3 Research Institute, Eberhard Karls University, Tübingen, Germany
| | - Jose Efren Barragan Avila
- Department of Chronic Inflammation and Cancer, German Cancer Research Institute (DKFZ), Heidelberg, Germany
| | - Kristian Unger
- Research Unit of Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Claus Kordes
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Anne-Laure Leblond
- Department for pathology and molecular pathology, Zürich University Hospital, Zürich, Switzerland
| | - Wiebke Albrecht
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University Dortmund, Dortmund, Germany
| | - Sven H Loosen
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Carolin Lohr
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Markus S Jördens
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Anne Babler
- Institute of Experimental Medicine and Systems Biology and Department of Nephrology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Sikander Hayat
- Institute of Experimental Medicine and Systems Biology and Department of Nephrology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - David Schumacher
- Institute of Experimental Medicine and Systems Biology and Department of Nephrology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Maria T Koenen
- Department of Medicine, Rhein-Maas-Klinikum, Würselen, Germany
| | - Olivier Govaere
- Department of Imaging and Pathology, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Mark V Boekschoten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Simone Jörs
- Second Department of Internal Medicine, Klinikum Rechts der Isar, Technische Universität München, Germany
| | - Carlos Villacorta-Martin
- Division of Liver Diseases, Liver Cancer Program, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vincenzo Mazzaferro
- Gastrointestinal Surgery and Liver Transplantation Unit, National Cancer Institute, University of Milan, Milan, Italy
| | - Josep M Llovet
- Division of Liver Diseases, Liver Cancer Program, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Liver Cancer Translational Research Laboratory, Barcelona-Clínic Liver Cancer Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Liver Unit, CIBEREHD, Hospital Clínic, Barcelona, Catalonia, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital RWTH Aachen, Aachen, Germany
| | - Jakob N Kather
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Patrick Starlinger
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Mark Luedde
- Department of Cardiology and Angiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Lara R Heij
- Visceral and Transplant Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Ulf P Neumann
- Visceral and Transplant Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany; Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Magdeburg, Medical Faculty of Otto Von Guericke University Magdeburg, Magdeburg, Germany
| | - Johannes G Bode
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Rebekka K Schneider
- Department of Cell Biology, Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Bodo Levkau
- Institute of Molecular Medicine III, University Hospital Dusseldorf, Heinrich Heine University, Dusseldorf, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Georg Fluegen
- Department of Surgery (A), University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University, Dusseldorf, Germany
| | - Theodore Alexandrov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Amy L Collins
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Glyn Nelson
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Derek A Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Christoph Roderburg
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Thomas Longerich
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Achim Weber
- Department for pathology and molecular pathology, Zürich University Hospital, Zürich, Switzerland
| | - Augusto Villanueva
- Division of Liver Diseases, Liver Cancer Program, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andre L Samson
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - James M Murphy
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Rafael Kramann
- Institute of Experimental Medicine and Systems Biology and Department of Nephrology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Fabian Geisler
- Second Department of Internal Medicine, Klinikum Rechts der Isar, Technische Universität München, Germany
| | - Ivan G Costa
- Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University Dortmund, Dortmund, Germany
| | - Mathias Heikenwalder
- Department of Chronic Inflammation and Cancer, German Cancer Research Institute (DKFZ), Heidelberg, Germany; The M3 Research Institute, Eberhard Karls University, Tübingen, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany.
| |
Collapse
|
3
|
Lin J, Su MF, Zheng JL, Gu L, Wu HC, Wu X, Lin HY, Wu ZX, Li DL. Fas/FasL and Complement Activation are Associated with Chronic Active Epstein-Barr Virus Hepatitis. J Clin Transl Hepatol 2023; 11:540-549. [PMID: 36969885 PMCID: PMC10037519 DOI: 10.14218/jcth.2022.00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Chronic active Epstein-Barr virus hepatitis (CAEBVH) is a rare and highly lethal disease characterized by hepatitis and hepatomegaly. This study aimed to investigate the clinicopathological features and pathogenic mechanisms of CAEBVH. METHODS Ten patients with confirmed Epstein-Barr virus hepatitis infection were enrolled. The clinicopathological characteristics of these patients were summarized and analyzed. Flow cytometry was utilized to detect peripheral blood immune cell phenotypes and whole exome sequencing was used to explore pathogenic genetic mechanisms. Lastly, immunohistochemical staining was employed to verify pathogenic mechanisms. RESULTS Clinical features observed in all Epstein-Barr virus hepatitis patients included fever (7/10), splenomegaly (10/10), hepatomegaly (9/10), abnormal liver function (8/10), and CD8+ T cell lymphopenia (6/7). Hematoxylin and eosin staining revealed lymphocytic infiltration in the liver. Positive Epstein-Barr virus-encoded small RNA in-situ hybridization (EBER-ISH) of lymphocytes of liver tissues was noted. Whole exome sequencing indicated that cytotoxic T lymphocytes and the complement system were involved. The expression of CD8, Fas, FasL, and Caspase-8 expression as well as apoptotic markers was enhanced in the Epstein-Barr virus hepatitis group relative to the controls (p<0.05). Lastly, Complement 1q and complement 3d expression, were higher in CAEBVH patients relative to controls (p<0.05). CONCLUSIONS CAEBVH patients developed fever, hepatosplenomegaly, and lymphadenopathy. Histopathological changes were a diffuse lymphocytic sinusoidal infiltrate with EBER-ISH positivity. Fas/FasL and complement activation were involved in CAEBVH patients.
Collapse
Affiliation(s)
- Jing Lin
- Department of Hepatobiliary Medicine, Fuzong Clinical Medical College of Fujian Medical University, 900TH Hospital of the Joint Logistic Support Force, PLA, Fuzhou, Fujian, China
| | - Miao-Fang Su
- Department of Hepatobiliary Medicine, Fuzong Clinical Medical College of Fujian Medical University, 900TH Hospital of the Joint Logistic Support Force, PLA, Fuzhou, Fujian, China
| | - Jiao-Long Zheng
- Department of Hepatobiliary Medicine, Fuzong Clinical Medical College of Fujian Medical University, 900TH Hospital of the Joint Logistic Support Force, PLA, Fuzhou, Fujian, China
| | - Lei Gu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hai-Cong Wu
- Department of Hepatobiliary Medicine, Fuzong Clinical Medical College of Fujian Medical University, 900TH Hospital of the Joint Logistic Support Force, PLA, Fuzhou, Fujian, China
| | - Xia Wu
- Department of Hepatobiliary Medicine, Fuzong Clinical Medical College of Fujian Medical University, 900TH Hospital of the Joint Logistic Support Force, PLA, Fuzhou, Fujian, China
| | - Hai-Yan Lin
- Department of Hepatobiliary Medicine, Fuzong Clinical Medical College of Fujian Medical University, 900TH Hospital of the Joint Logistic Support Force, PLA, Fuzhou, Fujian, China
| | - Zhi-Xian Wu
- Department of Hepatobiliary Medicine, Fuzong Clinical Medical College of Fujian Medical University, 900TH Hospital of the Joint Logistic Support Force, PLA, Fuzhou, Fujian, China
| | - Dong-Liang Li
- Department of Hepatobiliary Medicine, Fuzong Clinical Medical College of Fujian Medical University, 900TH Hospital of the Joint Logistic Support Force, PLA, Fuzhou, Fujian, China
- Correspondence to: Dong-Liang Li, Department of Hepatobiliary Medicine, Fuzong Clinical Medical College of Fujian Medical University, 900TH Hospital of the Joint Logistic Support Force, PLA, Fuzhou, Fujian 350025, China. ORCID: https://orcid.org/0000-0001-5536-8468. Tel/Fax: +86-591-2285-9128, E-mail:
| |
Collapse
|
4
|
Agena R, Cortés-Sánchez ADJ, Hernández-Sánchez H, Álvarez-Salas LM, Martínez-Rodríguez OP, García VHR, Jaramillo Flores ME. Pro-Apoptotic Activity and Cell Cycle Arrest of Caulerpa sertularioides against SKLU-1 Cancer Cell in 2D and 3D Cultures. Molecules 2023; 28:molecules28114361. [PMID: 37298837 DOI: 10.3390/molecules28114361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Cancer is a disease with the highest mortality and morbidity rate worldwide. First-line drugs induce several side effects that drastically reduce the quality of life of people with this disease. Finding molecules to prevent it or generate less aggressiveness or no side effects is significant to counteract this problem. Therefore, this work searched for bioactive compounds of marine macroalgae as an alternative treatment. An 80% ethanol extract of dried Caulerpa sertularioides (CSE) was analyzed by HPLS-MS to identify the chemical components. CSE was utilized through a comparative 2D versus 3D culture model. Cisplatin (Cis) was used as a standard drug. The effects on cell viability, apoptosis, cell cycle, and tumor invasion were evaluated. The IC50 of CSE for the 2D model was 80.28 μg/mL versus 530 μg/mL for the 3D model after 24 h of treatment exposure. These results confirmed that the 3D model is more resistant to treatments and complex than the 2D model. CSE generated a loss of mitochondrial membrane potential, induced apoptosis by extrinsic and intrinsic pathways, upregulated caspases-3 and -7, and significantly decreased tumor invasion of a 3D SKLU-1 lung adenocarcinoma cell line. CSE generates biochemical and morphological changes in the plasma membrane and causes cell cycle arrest at the S and G2/M phases. These findings conclude that C. sertularioides is a potential candidate for alternative treatment against lung cancer. This work reinforced the use of complex models for drug screening and suggested using CSE's primary component, caulerpin, to determine its effect and mechanism of action on SKLU-1 in the future. A multi-approach with molecular and histological analysis and combination with first-line drugs must be included.
Collapse
Affiliation(s)
- Rosette Agena
- Ingeniería Bioquímica-Escuela Nacional de Ciencias Biológicas (ENCB)-Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| | | | - Humberto Hernández-Sánchez
- Ingeniería Bioquímica-Escuela Nacional de Ciencias Biológicas (ENCB)-Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| | - Luis Marat Álvarez-Salas
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México 07360, Mexico
| | - Oswaldo Pablo Martínez-Rodríguez
- Ingeniería Bioquímica-Escuela Nacional de Ciencias Biológicas (ENCB)-Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| | - Víctor Hugo Rosales García
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México 07360, Mexico
| | - María Eugenia Jaramillo Flores
- Ingeniería Bioquímica-Escuela Nacional de Ciencias Biológicas (ENCB)-Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| |
Collapse
|
5
|
Bieuville M, Tissot T, Robert A, Henry P, Pavard S. Modeling of senescent cell dynamics predicts a late‐life decrease in cancer incidence. Evol Appl 2023; 16:609-624. [PMID: 36969142 PMCID: PMC10033854 DOI: 10.1111/eva.13514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 03/05/2023] Open
Abstract
Current oncogenic theories state that tumors arise from cell lineages that sequentially accumulate (epi)mutations, progressively turning healthy cells into carcinogenic ones. While those models found some empirical support, they are little predictive of intraspecies age-specific cancer incidence and of interspecies cancer prevalence. Notably, in humans and lab rodents, a deceleration (and sometimes decline) of cancer incidence rate has been found at old ages. Additionally, dominant theoretical models of oncogenesis predict that cancer risk should increase in large and/or long-lived species, which is not supported by empirical data. Here, we explore the hypothesis that cellular senescence could explain those incongruent empirical patterns. More precisely, we hypothesize that there is a trade-off between dying of cancer and of (other) ageing-related causes. This trade-off between organismal mortality components would be mediated, at the cellular scale, by the accumulation of senescent cells. In this framework, damaged cells can either undergo apoptosis or enter senescence. Apoptotic cells lead to compensatory proliferation, associated with an excess risk of cancer, whereas senescent cell accumulation leads to ageing-related mortality. To test our framework, we build a deterministic model that first describes how cells get damaged, undergo apoptosis, or enter senescence. We then translate those cellular dynamics into a compound organismal survival metric also integrating life-history traits. We address four different questions linked to our framework: can cellular senescence be adaptive, do the predictions of our model reflect epidemiological patterns observed among mammal species, what is the effect of species sizes on those answers, and what happens when senescent cells are removed? Importantly, we find that cellular senescence can optimize lifetime reproductive success. Moreover, we find that life-history traits play an important role in shaping the cellular trade-offs. Overall, we demonstrate that integrating cellular biology knowledge with eco-evolutionary principles is crucial to solve parts of the cancer puzzle.
Collapse
Affiliation(s)
- Margaux Bieuville
- Eco‐Anthropologie (EA UMR 7206), MNHN, CNRS Université Paris‐Diderot Paris France
| | - Tazzio Tissot
- Agent, Interaction and complexity (AIC) research group Southampton University Southampton UK
| | - Alexandre Robert
- Centre d'Ecologie et des Sciences de la Conservation (CESCO UMR 7204), MNHN, CNRS Sorbonne Université Paris France
| | - Pierre‐Yves Henry
- Mécanismes Adaptatifs et Evolution (MECADEV UMR 7179), MNHN, CNRS Brunoy France
| | - Samuel Pavard
- Eco‐Anthropologie (EA UMR 7206), MNHN, CNRS Université Paris‐Diderot Paris France
| |
Collapse
|
6
|
Firouzi F, Echeagaray O, Esquer C, Gude NA, Sussman MA. 'Youthful' phenotype of c-Kit + cardiac fibroblasts. Cell Mol Life Sci 2022; 79:424. [PMID: 35841449 PMCID: PMC10544823 DOI: 10.1007/s00018-022-04449-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/04/2022] [Accepted: 06/24/2022] [Indexed: 01/10/2023]
Abstract
Cardiac fibroblast (CF) population heterogeneity and plasticity present a challenge for categorization of biological and functional properties. Distinct molecular markers and associated signaling pathways provide valuable insight for CF biology and interventional strategies to influence injury response and aging-associated remodeling. Receptor tyrosine kinase c-Kit mediates cell survival, proliferation, migration, and is activated by pathological injury. However, the biological significance of c-Kit within CF population has not been addressed. An inducible reporter mouse detects c-Kit promoter activation with Enhanced Green Fluorescent Protein (EGFP) expression in cardiac cells. Coincidence of EGFP and c-Kit with the DDR2 fibroblast marker was confirmed using flow cytometry and immunohistochemistry. Subsequently, CFs expressing DDR2 with or without c-Kit was isolated and characterized. A subset of DDR2+ CFs also express c-Kit with coincidence in ~ 8% of total cardiac interstitial cells (CICs). Aging is associated with decreased number of c-Kit expressing DDR2+ CFs, whereas pathological injury induces c-Kit and DDR2 as well as the frequency of coincident expression in CICs. scRNA-Seq profiling reveals the transcriptome of c-Kit expressing CFs as cells with transitional phenotype. Cultured cardiac DDR2+ fibroblasts that are c-Kit+ exhibit morphological and functional characteristics consistent with youthful phenotypes compared to c-Kit- cells. Mechanistically, c-Kit expression correlates with signaling implicated in proliferation and cell migration, including phospho-ERK and pro-caspase 3. The phenotype of c-kit+ on DDR2+ CFs correlates with multiple characteristics of 'youthful' cells. To our knowledge, this represents the first evaluation of c-Kit biology within DDR2+ CF population and provides a fundamental basis for future studies to influence myocardial biology, response to pathological injury and physiological aging.
Collapse
Affiliation(s)
- Fareheh Firouzi
- SDSU Integrated Regenerative Research Institute and Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Oscar Echeagaray
- SDSU Integrated Regenerative Research Institute and Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Carolina Esquer
- SDSU Integrated Regenerative Research Institute and Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Natalie A Gude
- SDSU Integrated Regenerative Research Institute and Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Mark A Sussman
- SDSU Integrated Regenerative Research Institute and Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA.
| |
Collapse
|
7
|
Kalinin RE, Suchkov IA, Кlimentova EA, Egorov AA, Karpov VV. Biomarkers of Apoptosis and Cell Proliferation in Diagnosing the Progression of Atherosclerosis in Different Vascular Pools. I.P. PAVLOV RUSSIAN MEDICAL BIOLOGICAL HERALD 2022; 30. [DOI: 10.17816/pavlovj88938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
INTRODUCTION: The development and progression of atherosclerosis in different vascular pools remain unclear. Many studies have considered apoptosis to play a key role in the development of atherosclerosis; apoptosis is a programmed cell death with characteristic morphological signs aimed at providing homeostasis in an organism in general and in the vascular wall in particular. However, all studies that have been devoted to markers of apoptosis were mostly experimental and were conducted on either animals or grown cultures of different cells. The study aimed to examine markers of apoptosis (р53, sFas, Вах, and Всl-2) and proliferation (platelet-derived growth factor [PDGF] BB) in the vessel wall in the area of an atherosclerotic lesion in a patient with multifocal atherosclerosis. The clinical case was of interest because it allowed the assessment of biomarkers in both the area of progression of atherosclerotic lesion on an operated limb and the carotid pool in the long-term postoperative period.
CONCLUSIONS: This case demonstrated that a patient with obliterating atherosclerosis of the lower limb arteries had an elevated level of pro-apoptotic markers р53 and Вах and PDGF ВВ as a marker of cell proliferation and migration, against the background reduced level of anti-apoptotic markers Всl-2 and sFas in comparison with their values in the normal arterial wall. The progression of atherosclerotic lesion in two vascular pools was associated with a further increase in the values of proapoptotic markers (р53 and Вах) and decrease in the values of Всl-2 and sFas compared with the initial samples. With this, the values of PDGF ВВ marker remained elevated relative to the initial level.
Collapse
|
8
|
Pérez E, Venkatanarayan A, Lundell MJ. Hunchback prevents notch-induced apoptosis in the serotonergic lineage of Drosophila Melanogaster. Dev Biol 2022; 486:109-120. [PMID: 35381219 DOI: 10.1016/j.ydbio.2022.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/16/2022] [Accepted: 03/30/2022] [Indexed: 11/19/2022]
Abstract
The serotonergic lineage (NB7-3) in the Drosophila ventral nerve cord produces six cells during neurogenesis. Four of the cells differentiate into neurons: EW1, EW2, EW3 and GW. The other two cells undergo apoptosis. This simple lineage provides an opportunity to examine genes that are required to induce or repress apoptosis during cell specification. Previous studies have shown that Notch signaling induces apoptosis within the NB7-3 lineage. The three EW neurons are protected from Notch-induced apoptosis by asymmetric distribution of Numb protein, an inhibitor of Notch signaling. In a numb1 mutant EW2 and EW3 undergo apoptosis. The EW1 and GW neurons survive even in a numb1 mutant background suggesting that these cells are protected from Notch-induced apoptosis by some factor other than Numb. The EW1 and GW neurons are mitotic sister cells, and uniquely express the transcription factor Hunchback. We present evidence that Hunchback prevents apoptosis in the NB7-3 lineage during normal CNS development and can rescue the two apoptotic cells in the lineage when it is ectopically expressed. We show that hunchback overexpression produces ectopic cells that express markers similar to the EW2 neuron and changes the expression pattern of the EW3 neuron to a EW2 neuron In addition we show that hunchback overexpression can override apoptosis that is genetically induced by the pro-apoptotic genes grim and hid.
Collapse
Affiliation(s)
- Ernesto Pérez
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | | | - Martha J Lundell
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA.
| |
Collapse
|
9
|
Pulianmackal AJ, Kanakousaki K, Flegel K, Grushko OG, Gourley E, Rozich E, Buttitta LA. Misregulation of Nucleoporins 98 and 96 leads to defects in protein synthesis that promote hallmarks of tumorigenesis. Dis Model Mech 2022; 15:dmm049234. [PMID: 35107131 PMCID: PMC8938402 DOI: 10.1242/dmm.049234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/15/2022] [Indexed: 11/20/2022] Open
Abstract
Nucleoporin 98KD (Nup98) is a promiscuous translocation partner in hematological malignancies. Most disease models of Nup98 translocations involve ectopic expression of the fusion protein under study, leaving the endogenous Nup98 loci unperturbed. Overlooked in these approaches is the loss of one copy of normal Nup98 in addition to the loss of Nup96 - a second Nucleoporin encoded within the same mRNA and reading frame as Nup98 - in translocations. Nup98 and Nup96 are also mutated in a number of other cancers, suggesting that their disruption is not limited to blood cancers. We found that reducing Nup98-96 function in Drosophila melanogaster (in which the Nup98-96 shared mRNA and reading frame is conserved) de-regulates the cell cycle. We found evidence of overproliferation in tissues with reduced Nup98-96, counteracted by elevated apoptosis and aberrant signaling associated with chronic wounding. Reducing Nup98-96 function led to defects in protein synthesis that triggered JNK signaling and contributed to hallmarks of tumorigenesis when apoptosis was inhibited. We suggest that partial loss of Nup98-96 function in translocations could de-regulate protein synthesis, leading to signaling that cooperates with other mutations to promote tumorigenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Laura A. Buttitta
- Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Kakisaka K, Suzuki Y, Abe H, Eto H, Kanazawa J, Takikawa Y. Serum alpha-fetoprotein increases prior to fibrosis resolution in a patient with acute liver failure. Clin J Gastroenterol 2021; 14:1470-1475. [PMID: 34212265 DOI: 10.1007/s12328-021-01467-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022]
Abstract
A 78-year-old woman who was diagnosed with acute liver failure due to an undetermined cause presented with liver atrophy. Coagulopathy was normalized at 35 days of hospitalization, although atrophy in the liver persisted. During the observation period, alpha-fetoprotein (AFP) bi-modally increased at 36 and 377 days. Around the second peak of AFP, the liver volume was regained within the normal range. Fucosylated AFP was found at the first peak but not at the second peak. Cytokines/chemokines were simultaneously evaluated, and the results were evaluated using PANTHER ( http://www.pantherdb.org/ ). Although transaminase and prothrombin time were within the normal range, cytokines/chemokines associated with angiogenesis and inflammation increased prior to the second peak of AFP. Our study suggests that the first peak of AFP occurs in response to acute insult, while the second peak may be associated with the resolution of liver fibrosis. The present case provides new insights into the mechanism of AFP elevation.
Collapse
Affiliation(s)
- Keisuke Kakisaka
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, 1-1-1 Idaidori, Yahaba, Morioka, Iwate, 0283694, Japan.
| | - Yuji Suzuki
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, 1-1-1 Idaidori, Yahaba, Morioka, Iwate, 0283694, Japan
| | - Hiroaki Abe
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, 1-1-1 Idaidori, Yahaba, Morioka, Iwate, 0283694, Japan
| | - Hisashi Eto
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, 1-1-1 Idaidori, Yahaba, Morioka, Iwate, 0283694, Japan
| | - Jo Kanazawa
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, 1-1-1 Idaidori, Yahaba, Morioka, Iwate, 0283694, Japan
| | - Yasuhiro Takikawa
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, 1-1-1 Idaidori, Yahaba, Morioka, Iwate, 0283694, Japan
| |
Collapse
|
11
|
The effects of IGF-1 and erythropoietin on apoptosis and telomerase activity in necrotizing enterocolitis model. Pediatr Res 2021; 90:559-564. [PMID: 33096541 DOI: 10.1038/s41390-020-01195-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND Apoptosis that occurs after hypoxia/reoxygenation (H/R) has an important role in the pathogenesis of necrotizing enterocolitis (NEC). Telomerase activity, showing the regeneration capacity, may also be important in the recovery process. Therefore, we aimed to investigate the effects of insulin-like growth factor-1 (IGF-1) and erythropoietin (EPO) on apoptosis and telomerase activity in an H/R model. METHODS Young mice were divided into four groups each containing ten Balb/c mice. Group 1 (H/R) were exposed to H/R; group 2 and group 3 were pretreated with IGF-1 and EPO, respectively, for 7 days before H/R. Group 4 served as control. Intestinal injury was evaluated by histological scoring and assessment of apoptosis was performed by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) test. Proapoptotic and antiapoptotic gene expressions and telomerase activity were analyzed by real-time PCR. RESULTS IGF-1- and EPO-treated animals had decreased histological damage and apoptosis, confirmed by TUNEL test and caspase activity. Telomerase activity was increased in these animals in addition to increased expression of antiapoptotic genes. However, proapoptotic gene expressions were not statistically different. CONCLUSIONS The protective effects of IGF-1 and EPO in H/R damage may be through increased expression of antiapoptotic genes and increased telomerase activity, especially for IGF-1. IMPACT This is a comprehensive study measuring various variables, namely IGF-1, EPO, apoptosis, apoptotic and antiapoptotic genes, and telomerase activity in the NEC model. The intestinal protective effects of IGF-1 and EPO in H/R damage may occur through increased expression of antiapoptotic genes and increased telomerase activity. To the best of our knowledge, telomerase activity has not been investigated in the NEC model before. Regarding our results, novel strategies may be implemented for the early definitive diagnosis, robust preventive measures, and effective treatment modalities for NEC.
Collapse
|
12
|
Eissa IH, Dahab MA, Ibrahim MK, Alsaif NA, Alanazi AZ, Eissa SI, Mehany ABM, Beauchemin AM. Design and discovery of new antiproliferative 1,2,4-triazin-3(2H)-ones as tubulin polymerization inhibitors targeting colchicine binding site. Bioorg Chem 2021; 112:104965. [PMID: 34020238 DOI: 10.1016/j.bioorg.2021.104965] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 04/07/2021] [Accepted: 05/03/2021] [Indexed: 02/08/2023]
Abstract
Thirty-five new colchicine binding site inhibitors have been designed and synthesized based on the 1,2,4-triazin-3(2H)-one nucleus. Such molecules were synthesized through a cascade reaction between readily accessible α-amino ketones and phenyl carbazate as a masked N-isocyanate precursor. The synthesized derivatives are cisoid restricted combretastatin A4 analogues containing 1,2,4-triazin-3(2H)-one in place of the olefinic bond, and they have the same essential pharmacophoric features of colchicine binding site inhibitors. The synthesized compounds were evaluated in vitro for their antiproliferative activities against a panel of three human cancer cell lines (MCF-7, HepG-2, and HCT-116), using colchicine as a positive control. Among them, two compounds 5i and 6i demonstrated a significant antiproliferative effect against all cell lines with IC50 ranging from 8.2 - 18.2 µM. Further investigation was carried out for the most active cytotoxic agents as tubulin polymerization inhibitors. Compounds 5i and 6i effectively inhibited microtubule assembly with IC50 values ranging from 3.9 to 7.8 µM. Tubulin polymerization assay results were found to be comparable with the cytotoxicity results. The cell cycle analysis revealed significant G2/M cell cycle arrest of the analogue 5i in HepG-2 cells. The most active compounds 4i, 4j, 5 g, 5i and 6i did not induce significant cell death in normal human lung cells Wl-38, suggesting their selectivity against cancer cells. Also, These compounds upregulated the level of active caspase-3 and boosted the levels of the pro-apoptotic protein Bax by five to seven folds in comparison to the control. Moreover, apoptosis analyses were conducted for compound 5i to evaluate its apoptotic potential. Finally, in silico studies were conducted to reveal the probable interaction with the colchicine binding site. ADME prediction study of the designed compounds showed that they are not only with promising tubulin polymerization inhibitory activity but also with favorable pharmacokinetic and drug-likeness properties.
Collapse
Affiliation(s)
- Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt.
| | - Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt; Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ontario K1N6N5, Canada.
| | - Mohamed K Ibrahim
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Nawaf A Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - A Z Alanazi
- Department of pharmacology and toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sally I Eissa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt; Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Dariyah, Riyadh, 13713, Saudi Arabia
| | - Ahmed B M Mehany
- Department of Zoology, Faculty of Science (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - André M Beauchemin
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ontario K1N6N5, Canada
| |
Collapse
|
13
|
Mielczarek-Palacz A, Jasińska S, Strzelec A. Evaluation of the Potential Diagnostic Utility of the Determination of Selected Caspases-Markers Involved in the Regulation of Apoptosis-In Patients with Ovarian Cancer. Diagnostics (Basel) 2021; 11:704. [PMID: 33919909 PMCID: PMC8070894 DOI: 10.3390/diagnostics11040704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 11/25/2022] Open
Abstract
Ovarian cancer remains a major diagnostic and therapeutic problem in modern gynecological oncology. For this reason, research which focuses on the search for new diagnostic markers and the assessment of their possible usefulness in clinical practice is still being conducted. The aim of this study was to evaluate serum levels of caspase-3, caspase-8, and caspase-9 in women with ovarian cancer. Patients with ovarian serous cystadenoma (Cystadenoma serosum) and papillary serous cystadenocarcinoma (Cystadenocarcinoma papillare serosum IIIC) were included in the study, as well as healthy women who constituted the control group. The results of the study revealed a statistically significantly decreased mean serum levels of caspase-3, caspase-8, and caspase-9 in women with ovarian cancer as compared to the control group (p ˂ 0.001), which indicates the involvement of the studied parameters in immune system disturbances occurring in the process of apoptosis by the extrinsic and intrinsic pathway and may be one of the mechanisms of immunosuppression accompanying these tumors. Determination of serum levels of examined caspases and CA 125 antigen in women with ovarian cancer in combination with other markers may prove useful in the future in the diagnosis of ovarian cancer, but this requires further studies.
Collapse
Affiliation(s)
- Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (S.J.); (A.S.)
| | | | | |
Collapse
|
14
|
Guntur AR, Venkatanarayan A, Gangula S, Lundell MJ. Zfh-2 facilitates Notch-induced apoptosis in the CNS and appendages of Drosophila melanogaster. Dev Biol 2021; 475:65-79. [PMID: 33705738 DOI: 10.1016/j.ydbio.2021.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/26/2022]
Abstract
Apoptosis is a fundamental remodeling process for most tissues during development. In this manuscript we examine a pro-apoptotic function for the Drosophila DNA binding protein Zfh-2 during development of the central nervous system (CNS) and appendages. In the CNS we find that a loss-of-function zfh-2 allele gives an overall reduction of apoptotic cells in the CNS, and an altered pattern of expression for the axonal markers 22C10 and FasII. This same loss-of-function zfh-2 allele causes specific cells in the NB7-3 lineage of the CNS that would normally undergo apoptosis to be inappropriately maintained, whereas a gain-of-function zfh-2 allele has the opposite effect, resulting in a loss of normal NB 7-3 progeny. We also demonstrate that Zfh-2 and Hunchback reciprocally repress each other's gene expression which limits apoptosis to later born progeny of the NB7-3 lineage. Apoptosis is also required for proper segmentation of the fly appendages. We find that Zfh-2 co-localizes with apoptotic cells in the folds of the imaginal discs and presumptive cuticular joints. A reduction of Zfh-2 levels with RNAi inhibits expression of the pro-apoptotic gene reaper, and produces abnormal joints in the leg, antenna and haltere. Apoptosis has previously been shown to be activated by Notch signaling in both the NB7-3 CNS lineage and the appendage joints. Our results indicate that Zfh-2 facilitates Notch-induced apoptosis in these structures.
Collapse
Affiliation(s)
- Ananya R Guntur
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | | | - Sindhura Gangula
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Martha J Lundell
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA.
| |
Collapse
|
15
|
Apoptotic Cells induce Proliferation of Peritoneal Macrophages. Int J Mol Sci 2021; 22:ijms22052230. [PMID: 33668084 PMCID: PMC7956251 DOI: 10.3390/ijms22052230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/23/2022] Open
Abstract
The interaction of macrophages with apoptotic cells is required for efficient resolution of inflammation. While apoptotic cell removal prevents inflammation due to secondary necrosis, it also alters the macrophage phenotype to hinder further inflammatory reactions. The interaction between apoptotic cells and macrophages is often studied by chemical or biological induction of apoptosis, which may introduce artifacts by affecting the macrophages as well and/or triggering unrelated signaling pathways. Here, we set up a pure cell death system in which NIH 3T3 cells expressing dimerizable Caspase-8 were co-cultured with peritoneal macrophages in a transwell system. Phenotype changes in macrophages induced by apoptotic cells were evaluated by RNA sequencing, which revealed an unexpectedly dominant impact on macrophage proliferation. This was confirmed in functional assays with primary peritoneal macrophages and IC-21 macrophages. Moreover, inhibition of apoptosis during Zymosan-induced peritonitis in mice decreased mRNA levels of cell cycle mediators in peritoneal macrophages. Proliferation of macrophages in response to apoptotic cells may be important to increase macrophage numbers in order to allow efficient clearance and resolution of inflammation.
Collapse
|
16
|
Aravani D, Foote K, Figg N, Finigan A, Uryga A, Clarke M, Bennett M. Cytokine regulation of apoptosis-induced apoptosis and apoptosis-induced cell proliferation in vascular smooth muscle cells. Apoptosis 2020; 25:648-662. [PMID: 32627119 PMCID: PMC7527356 DOI: 10.1007/s10495-020-01622-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Vascular smooth muscle cells (VSMCs) are the main structural cell of blood vessels, and VSMC apoptosis occurs in vascular disease, after injury, and in vessel remodeling during development. Although VSMC apoptosis is viewed as silent, recent studies show that apoptotic cells can promote apoptosis-induced compensatory proliferation (AICP), apoptosis-induced apoptosis (AIA), and migration of both local somatic and infiltrating inflammatory cells. However, the effects of VSMC apoptosis on adjacent VSMCs, and their underlying signaling and mechanisms are unknown. We examined the consequences of VSMC apoptosis after activating extrinsic and intrinsic death pathways. VSMCs undergoing apoptosis through Fas/CD95 or the protein kinase inhibitor staurosporine transcriptionally activated interleukin 6 (IL-6) and granulocyte-macrophage colony stimulating factor (GM-CSF), leading to their secretion. Apoptosis induced activation of p38MAPK, JNK, and Akt, but neither p38 and JNK activation nor IL-6 or GM-CSF induction required caspase cleavage. IL-6 induction depended upon p38 activity, while Fas-induced GM-CSF expression required p38 and JNK. Conditioned media from apoptotic VSMCs induced VSMC apoptosis in vitro, and IL-6 and GM-CSF acted as pro-survival factors for AIA. VSMC apoptosis was studied in vivo using SM22α-DTR mice that express the diphtheria toxin receptor in VSMCs only. DT administration induced VSMC apoptosis and VSMC proliferation, and also signficantly induced IL-6 and GM-CSF. We conclude that VSMC apoptosis activates multiple caspase-independent intracellular signaling cascades, leading to release of soluble cytokines involved in regulation of both cell proliferation and apoptosis. VSMC AICP may ameliorate while AIA may amplify the effects of pro-apoptotic stimuli in vessel remodeling and disease.
Collapse
Affiliation(s)
- Dimitra Aravani
- Division of Cardiovascular Medicine, University of Cambridge, ACCI, Addenbrooke's Hospital, Box 110, CB2 0QQ, Cambridge, UK
| | - Kirsty Foote
- Division of Cardiovascular Medicine, University of Cambridge, ACCI, Addenbrooke's Hospital, Box 110, CB2 0QQ, Cambridge, UK
| | - Nichola Figg
- Division of Cardiovascular Medicine, University of Cambridge, ACCI, Addenbrooke's Hospital, Box 110, CB2 0QQ, Cambridge, UK
| | - Alison Finigan
- Division of Cardiovascular Medicine, University of Cambridge, ACCI, Addenbrooke's Hospital, Box 110, CB2 0QQ, Cambridge, UK
| | - Anna Uryga
- Division of Cardiovascular Medicine, University of Cambridge, ACCI, Addenbrooke's Hospital, Box 110, CB2 0QQ, Cambridge, UK
| | - Murray Clarke
- Division of Cardiovascular Medicine, University of Cambridge, ACCI, Addenbrooke's Hospital, Box 110, CB2 0QQ, Cambridge, UK
| | - Martin Bennett
- Division of Cardiovascular Medicine, University of Cambridge, ACCI, Addenbrooke's Hospital, Box 110, CB2 0QQ, Cambridge, UK.
| |
Collapse
|
17
|
Kratochvílová A, Veselá B, Ledvina V, Švandová E, Klepárník K, Dadáková K, Beneš P, Matalová E. Osteogenic impact of pro-apoptotic caspase inhibitors in MC3T3-E1 cells. Sci Rep 2020; 10:7489. [PMID: 32366890 PMCID: PMC7198622 DOI: 10.1038/s41598-020-64294-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/15/2020] [Indexed: 12/19/2022] Open
Abstract
Caspases are proteases traditionally associated with inflammation and cell death. Recently, they have also been shown to modulate cell proliferation and differentiation. The aim of the current research was to search for osteogenic molecules affected by caspase inhibition and to specify the individual caspases critical for these effects with a focus on proapoptotic caspases: caspase-2, -3, -6, -7, -8 and -9. Along with osteocalcin (Ocn), general caspase inhibition significantly decreased the expression of the Phex gene in differentiated MC3T3-E1 cells. The inhibition of individual caspases indicated that caspase-8 is a major contributor to the modification of Ocn and Phex expression. Caspase-2 and-6 had effects on Ocn and caspase-6 had an effect on Phex. These data confirm and expand the current knowledge about the nonapoptotic roles of caspases and the effect of their pharmacological inhibition on the osteogenic potential of osteoblastic cells.
Collapse
Affiliation(s)
- Adéla Kratochvílová
- Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czech Republic
- Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Barbora Veselá
- Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czech Republic.
| | - Vojtěch Ledvina
- Faculty of Science, Masaryk University, Brno, Czech Republic
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Eva Švandová
- Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czech Republic
| | - Karel Klepárník
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Kateřina Dadáková
- Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czech Republic
- Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Beneš
- Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Eva Matalová
- Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czech Republic
- Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| |
Collapse
|
18
|
Xi M, He W, Li B, Zhou J, Xu Z, Wu H, Zhang Y, Song D, Hu L, Lu Y, Bu W, Kong Y, Chen G, Chang S, Shi J, Zhu W. Novel cyclophosphamide of natural products osalmide and pterostilbene induces cytotoxicity and cell cycle arrest in diffuse large B-cell lymphoma cells. Acta Biochim Biophys Sin (Shanghai) 2020; 52:401-410. [PMID: 32259210 DOI: 10.1093/abbs/gmaa009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common category and disease entity of non-Hodgkin lymphoma. Osalmide and pterostilbene are natural products with anticancer activities via different mechanism. In this study, using a new synthetic strategy for the two natural products, we obtained the compound DCZ0801, which was previously found to have anti-multiple myeloma activity. We performed both in vitro and in vivo assays to investigate its bioactivity and explore its underlying mechanism against DLBCL cells. The results showed that DCZ0801 treatment gave rise to a dose- and time-dependent inhibition of cell viability as determined by CCK-8 assay and flow cytometry assay. Western blot analysis results showed that the expression of caspase-3, caspase-8, caspase-9 and Bax was increased, while BCL-2 and BCL-XL levels were decreased, which suggested that DCZ0801 inhibited cell proliferation and promoted intrinsic apoptosis. In addition, DCZ0801 induced G0/G1 phase arrest by downregulating the protein expression levels of CDK4, CDK6 and cyclin D1. Furthermore, DCZ0801 exerted an anti-tumor effect by down-regulating the expressions of p-PI3K and p-AKT. There also existed a trend that the expression of p-JNK and p-P38 was restrained. Intraperitoneal injection of DCZ0801 suppressed tumor development in xenograft mouse models. The preliminary metabolic study showed that DCZ0801 displayed a rapid metabolism within 30 min. These results demonstrated that DCZ0801 may be a new potential anti-DLBCL agent in DLBCL therapy.
Collapse
Affiliation(s)
- Mengyu Xi
- Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wan He
- Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Bo Li
- Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinfeng Zhou
- Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Zhijian Xu
- Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huiqun Wu
- Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yong Zhang
- Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongliang Song
- Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Liangning Hu
- Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ye Lu
- Department of Hematology and Oncology, Soochow University Affiliated Taicang Hospital (The First Peoples Hospital of Taicang), Jiangsu 215400, China
| | - Wenxuan Bu
- Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yuanyuan Kong
- Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Gege Chen
- Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Shuaikang Chang
- Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jumei Shi
- Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Weiliang Zhu
- Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Cell-Free DNA and Apoptosis: How Dead Cells Inform About the Living. Trends Mol Med 2020; 26:519-528. [PMID: 32359482 DOI: 10.1016/j.molmed.2020.01.012] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/13/2020] [Accepted: 01/24/2020] [Indexed: 12/12/2022]
Abstract
Cell-free DNA (cfDNA) is evolving into a widely used prognostic and predictive biomarker, particularly in oncology. However, its versatile clinical use precedes a profound understanding of the underlying biology of cfDNA release. There is much evidence to suggest that cfDNA is mainly derived from dying (i.e., apoptotic) cells. However, numerous cancer studies have shown that cfDNA is informative about acquired resistance to given therapies, which is present in living, proliferating tumor subclones. To explain this contradiction, we review current insights regarding cfDNA release, in particular the interplay between apoptosis and proliferation. We describe how improved knowledge about cfDNA biology could be used for novel therapeutic strategies and how this may affect patient management.
Collapse
|
20
|
Córdoba-David G, Duro-Castano A, Castelo-Branco RC, González-Guerrero C, Cannata P, Sanz AB, Vicent MJ, Ortiz A, Ramos AM. Effective Nephroprotection Against Acute Kidney Injury with a Star-Shaped Polyglutamate-Curcuminoid Conjugate. Sci Rep 2020; 10:2056. [PMID: 32029842 PMCID: PMC7005021 DOI: 10.1038/s41598-020-58974-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/22/2020] [Indexed: 12/19/2022] Open
Abstract
The lack of effective pharmacological treatments for acute kidney injury (AKI) remains a significant public health problem. Given the involvement of apoptosis and regulated necrosis in the initiation and progression of AKI, the inhibition of cell death may contribute to AKI prevention/recovery. Curcuminoids are a family of plant polyphenols that exhibit attractive biological properties that make them potentially suitable for AKI treatment. Now, in cultured tubular cells, we demonstrated that a crosslinked self-assembled star-shaped polyglutamate (PGA) conjugate of bisdemethoxycurcumin (St-PGA-CL-BDMC) inhibits apoptosis and necroptosis induced by Tweak/TNFα/IFNγ alone or concomitant to caspase inhibition. St-PGA-CL-BDMC also reduced NF-κB activation and subsequent gene transcription. In vivo, St-PGA-CL-BDMC prevented renal cell loss and preserved renal function in mice with folic acid-induced AKI. Mechanistically, St-PGA-CL-BDMC inhibited AKI-induced apoptosis and expression of ferroptosis markers and also decreased the kidney expression of genes involved in tubular damage and inflammation, while preserving the kidney expression of the protective factor, Klotho. Thus, due to renal accumulation and attractive pharmacological properties, the application of PGA-based therapeutics may improve nephroprotective properties of current AKI treatments.
Collapse
Affiliation(s)
- Gina Córdoba-David
- Laboratory of Nephrology, IIS-Fundación Jiménez Díaz, School of Medicine, UAM, Madrid, Spain
| | - Aroa Duro-Castano
- Polymer Therapeutics Lab, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | | | - Pablo Cannata
- Pathology, IIS-Fundación Jiménez Díaz, School of Medicine, UAM, Madrid, Spain
| | - Ana B Sanz
- Laboratory of Nephrology, IIS-Fundación Jiménez Díaz, School of Medicine, UAM, Madrid, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - María J Vicent
- Polymer Therapeutics Lab, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Alberto Ortiz
- Laboratory of Nephrology, IIS-Fundación Jiménez Díaz, School of Medicine, UAM, Madrid, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Adrián M Ramos
- Laboratory of Nephrology, IIS-Fundación Jiménez Díaz, School of Medicine, UAM, Madrid, Spain. .,Red de Investigación Renal (REDINREN), Madrid, Spain.
| |
Collapse
|
21
|
Boudreau MW, Peh J, Hergenrother PJ. Procaspase-3 Overexpression in Cancer: A Paradoxical Observation with Therapeutic Potential. ACS Chem Biol 2019; 14:2335-2348. [PMID: 31260254 PMCID: PMC6858495 DOI: 10.1021/acschembio.9b00338] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many anticancer strategies rely on the promotion of apoptosis in cancer cells as a means to shrink tumors. Crucial for apoptotic function are executioner caspases, most notably caspase-3, that proteolyze a variety of proteins, inducing cell death. Paradoxically, overexpression of procaspase-3 (PC-3), the low-activity zymogen precursor to caspase-3, has been reported in a variety of cancer types. Until recently, this counterintuitive overexpression of a pro-apoptotic protein in cancer has been puzzling. Recent studies suggest subapoptotic caspase-3 activity may promote oncogenic transformation, a possible explanation for the enigmatic overexpression of PC-3. Herein, the overexpression of PC-3 in cancer and its mechanistic basis is reviewed; collectively, the data suggest the potential for exploitation of PC-3 overexpression with PC-3 activators as a targeted anticancer strategy.
Collapse
Affiliation(s)
- Matthew W. Boudreau
- Department of Chemistry and Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois, United States
| | - Jessie Peh
- Department of Chemistry and Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois, United States
| | - Paul J. Hergenrother
- Department of Chemistry and Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois, United States
| |
Collapse
|
22
|
The effects of oxygen concentration on cell death, anti-oxidant transcription, acute inflammation, and cell proliferation in precision-cut lung slices. Sci Rep 2019; 9:16239. [PMID: 31700101 PMCID: PMC6838147 DOI: 10.1038/s41598-019-52813-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022] Open
Abstract
Although animal models are often used in drug research, alternative experimental models are becoming more popular as they reduce animal use and suffering. Of particular interest are precision-cut lung slices, which refer to explants – with a reproducible thickness and diameter – that can be cultured ex vivo. Because lung slices (partially) reflect functional and structural features of whole tissue, they are often applied in the field of immunology, pharmacology, toxicology, and virology. Nevertheless, previous research failed to adequately address concerns with respect to the viability of lung slices. For instance, the effect of oxygen concentration on lung slice viability has never been thoroughly investigated. Therefore, the main goal of this study was to investigate the effect of oxygen concentration (20 vs. 80% O2) on the degree of cell death, anti-oxidant transcription, acute inflammation, and cell proliferation in lung slices. According to the results, slices incubated at 20% O2 displayed less cell death, anti-oxidant transcription, and acute inflammation, as well as more cell proliferation, demonstrating that these slices were considerably more viable than slices cultured at 80% O2. These findings expand our knowledge on lung slices and their use as an alternative experimental model in drug research.
Collapse
|
23
|
Uram Ł, Filipowicz-Rachwał A, Misiorek M, Winiarz A, Wałajtys-Rode E, Wołowiec S. Synthesis and Different Effects of Biotinylated PAMAM G3 Dendrimer Substituted with Nimesulide in Human Normal Fibroblasts and Squamous Carcinoma Cells. Biomolecules 2019; 9:biom9090437. [PMID: 31480608 PMCID: PMC6770390 DOI: 10.3390/biom9090437] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022] Open
Abstract
Squamous cell carcinoma (SCC) remains a main cause of mortality in patients with neck and head cancers, with poor prognosis and increased prevalence despite of available therapies. Recent studies have identified a role of cyclooxygenases, particularly inducible isoform cyclooxygenase-2 (COX-2) and its metabolite prostaglandin E2 (PGE2) in cancer cell proliferation, and its inhibition become a target for control of cancer development, particularly in the view of recognized additive or synergic action of COX-2 inhibitors with other forms of therapy. Nimesulide (N), the selective COX-2 inhibitor, inhibits growth and proliferation of various types of cancer cells by COX-2 dependent and independent mechanisms. In the presented study, the conjugates of biotinylated third generation poly(amidoamine) dendrimer (PAMAM) with covalently linked 18 (G3B18N) and 31 (G3B31N) nimesulide residues were synthesized and characterized by NMR spectroscopy. Biological properties of conjugates were evaluated, including cytotoxicity, proliferation, and caspase 3/7 activities in relation to COX-2/PGE2 axis signaling in human normal fibroblast (BJ) and squamous cell carcinoma (SCC-15). Both conjugates exerted a selective cytotoxicity against SCC-15 as compared with BJ cells at low 1.25-10 µM concentration range and their action in cancer cells was over 250-fold stronger than nimesulide alone. Conjugates overcome apoptosis resistance and sensitized SCC-15 cells to the apoptotic death independently of COX-2/PGE2 axis. In normal human fibroblasts the same concentrations of G3B31N conjugate were less effective in inhibition of proliferation and induction of apoptosis, as measured by caspase 3/7 activity in a manner depending on increase of PGE2 production by either COX-1/COX-2.
Collapse
Affiliation(s)
- Łukasz Uram
- Faculty of Chemistry, Rzeszow University of Technology, 6 Powstancow Warszawy, 35-959 Rzeszow, Poland.
| | | | - Maria Misiorek
- Faculty of Chemistry, Rzeszow University of Technology, 6 Powstancow Warszawy, 35-959 Rzeszow, Poland
| | - Aleksandra Winiarz
- Faculty of Chemistry, Rzeszow University of Technology, 6 Powstancow Warszawy, 35-959 Rzeszow, Poland
| | - Elżbieta Wałajtys-Rode
- Department of Drug Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Stanisław Wołowiec
- Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, University of Rzeszow, 35-310 Rzeszow, Poland
| |
Collapse
|
24
|
Changes in apoptosis, proliferation and T lymphocyte subtype on thymic cells of SPF chickens infected with reticuloendotheliosis virus. Mol Immunol 2019; 111:87-94. [PMID: 31048099 DOI: 10.1016/j.molimm.2019.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 01/28/2019] [Accepted: 04/10/2019] [Indexed: 11/22/2022]
Abstract
Reticuloendotheliosis virus (REV), an avian retrovirus is able to infect a variety of birds and can cause immunosuppression. The aim of this study was to investigate the relationship of thymic lymphocytes apoptosis, proliferation and T cell subtype with immunosuppression. In this study, a hundred and twenty one-day old SPF chickens were randomly divided into control groups (group C) and a REV infection groups (group I). The chickens of group I received intraperitoneal injections of REV with 104.62/0.1 ml TCID50. On day 14, 21, 28 and 35 post-inoculation, the chickens of C group and I group were sacrificed by cardiac puncture blood collection, and the thymic lymphocytes was sterile collected. The proliferation ability of lymphocytes was tested by Cell Counting Kit-8. Flow cytometry was performed to detect apoptosis, cell cycle stage and the change in T cell subtype. The RNA genome copy numbers of REV virus were detected using real-time PCR. Real-time PCR and western blotting were performed to analyze the expression of CyclinD1 and Bcl-2. Our results showed that REV genome copy number steadily declined, the proliferation potential of thymic lymphocytes was inhibited, lymphocytes apoptosed, the ratio of CD4+/CD8+ decreased and the expression of CyclinD1 and Bcl-2 were firstly inhibited, then rapidly recovered. Thus, immunosuppression lead by REV is closely related to the change of T cell subtype, apoptosis, and proliferation of thymic lymphocytes.
Collapse
|
25
|
Voices from the dead: The complex vocabulary and intricate grammar of dead cells. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 116:1-90. [PMID: 31036289 DOI: 10.1016/bs.apcsb.2019.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Of the roughly one million cells per second dying throughout the body, the vast majority dies by apoptosis, the predominant form of regulated cell death in higher organisms. Long regarded as mere waste, apoptotic cells are now recognized as playing a prominent and active role in homeostatic maintenance, especially resolution of inflammation, and in the sculpting of tissues during development. The activities associated with apoptotic cells are continually expanding, with more recent studies demonstrating their ability to modulate such vital functions as proliferation, survival, differentiation, metabolism, migration, and angiogenesis. In each case, the role of apoptotic cells is active, exerting their effects via new activities acquired during the apoptotic program. Moreover, the capacity to recognize and respond to apoptotic cells is not limited to professional phagocytes. Most, if not all, cells receive and integrate an array of signals from cells dying in their vicinity. These signals comprise a form of biochemical communication. As reviewed in this chapter, this communication is remarkably sophisticated; each of its three critical steps-encoding, transmission, and decoding of the apoptotic cell's "message"-is endowed with exquisite robustness. Together, the abundance and intricacy of the variables at each step comprise the vocabulary and grammar of the language by which dead cells achieve their post-mortem voice. The combinatorial complexity of the resulting communication network permits dying cells, through the signals they emit and the responses those signals elicit, to partake of an expanded role in homeostasis, acting as both sentinels of environmental change and agents of adaptation.
Collapse
|
26
|
Two Sides of the Same Coin - Compensatory Proliferation in Regeneration and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1167:65-85. [PMID: 31520349 DOI: 10.1007/978-3-030-23629-8_4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Apoptosis has long been regarded as a tumor suppressor mechanism and evasion from apoptosis is considered to be one hallmark of cancer. However, this principle is not always consistent with clinical data which often illustrate a correlation between apoptosis and poor prognosis. Work in the last 15 years has provided an explanation for this apparent paradox. Apoptotic cells communicate with their environment and can produce signals which promote compensatory proliferation of surviving cells. This behavior of apoptotic cells is important for tissue regeneration in several model organisms, ranging from hydra to mammals. However, it may also play an important feature for tumorigenesis and tumor relapse. Several distinct forms of apoptosis-induced compensatory proliferation (AiP) have been identified, many of which involve reactive oxygen species (ROS) and immune cells. One type of AiP, "undead" AiP, in which apoptotic cells are kept in an immortalized state and continuously divide, may have particular relevance for tumorigenesis. Furthermore, given that chemo- and radiotherapy often aim to kill tumor cells, an improved understanding of the effects of apoptotic cells on the tumor and the tumor environment is of critical importance for the well-being of the patient. In this review, we summarize the current knowledge of AiP and focus our attention on recent findings obtained in Drosophila and other model organisms, and relate them to tumorigenesis.
Collapse
|
27
|
Baena-Lopez LA, Arthurton L, Bischoff M, Vincent JP, Alexandre C, McGregor R. Novel initiator caspase reporters uncover previously unknown features of caspase-activating cells. Development 2018; 145:dev170811. [PMID: 30413561 PMCID: PMC6288387 DOI: 10.1242/dev.170811] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/31/2018] [Indexed: 12/30/2022]
Abstract
The caspase-mediated regulation of many cellular processes, including apoptosis, justifies the substantial interest in understanding all of the biological features of these enzymes. To complement functional assays, it is crucial to identify caspase-activating cells in live tissues. Our work describes novel initiator caspase reporters that, for the first time, provide direct information concerning the initial steps of the caspase activation cascade in Drosophila tissues. One of our caspase sensors capitalises on the rapid subcellular localisation change of a fluorescent marker to uncover novel cellular apoptotic events relating to the actin-mediated positioning of the nucleus before cell delamination. The other construct benefits from caspase-induced nuclear translocation of a QF transcription factor. This feature enables the genetic manipulation of caspase-activating cells and reveals the spatiotemporal patterns of initiator caspase activity. Collectively, our sensors offer experimental opportunities not available by using previous reporters and have proven useful to illuminate previously unknown aspects of caspase-dependent processes in apoptotic and non-apoptotic cellular scenarios.
Collapse
Affiliation(s)
- Luis Alberto Baena-Lopez
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxfordshire, OX1 3RE, UK
| | - Lewis Arthurton
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxfordshire, OX1 3RE, UK
| | - Marcus Bischoff
- Biomolecular Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife, Scotland, KY16 9ST, UK
| | | | | | - Reuben McGregor
- Faculty of Medical and Health Sciences, Molecular Medicine & Pathology, The University of Auckland, M&HS Building 502, 85 Park Road, Grafton, Auckland 1023, New Zealand
| |
Collapse
|
28
|
Su TT. Cellular plasticity, caspases and autophagy; that which does not kill us, well, makes us different. Open Biol 2018; 8:rsob.180157. [PMID: 30487302 PMCID: PMC6282069 DOI: 10.1098/rsob.180157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023] Open
Abstract
The ability to regenerate is a fundamental requirement for tissue homeostasis. Regeneration draws on three sources of cells. First and best-studied are dedicated stem/progenitor cells. Second, existing cells may proliferate to compensate for the lost cells of the same type. Third, a different cell type may change fate to compensate for the lost cells. This review focuses on regeneration of the third type and will discuss the contributions by post-transcriptional mechanisms including the emerging evidence for cell-autonomous and non-lethal roles of cell death pathways.
Collapse
Affiliation(s)
- Tin Tin Su
- Department of Molecular, Cellular and Developmental Biology, 347 UCB, University of Colorado, Boulder, CO 80309-0347, USA .,University of Colorado Comprehensive Cancer Center, Anschutz Medical Campus, 13001 E. 17th Pl., Aurora, CO 80045, USA
| |
Collapse
|
29
|
Sondka Z, Bamford S, Cole CG, Ward SA, Dunham I, Forbes SA. The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers. Nat Rev Cancer 2018; 18:696-705. [PMID: 30293088 PMCID: PMC6450507 DOI: 10.1038/s41568-018-0060-1] [Citation(s) in RCA: 875] [Impact Index Per Article: 145.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Catalogue of Somatic Mutations in Cancer (COSMIC) Cancer Gene Census (CGC) is an expert-curated description of the genes driving human cancer that is used as a standard in cancer genetics across basic research, medical reporting and pharmaceutical development. After a major expansion and complete re-evaluation, the 2018 CGC describes in detail the effect of 719 cancer-driving genes. The recent expansion includes functional and mechanistic descriptions of how each gene contributes to disease generation in terms of the key cancer hallmarks and the impact of mutations on gene and protein function. These functional characteristics depict the extraordinary complexity of cancer biology and suggest multiple cancer-related functions for many genes, which are often highly tissue-dependent or tumour stage-dependent. The 2018 CGC encompasses a second tier, describing an expanding list of genes (currently 145) from more recent cancer studies that show supportive but less detailed indications of a role in cancer.
Collapse
Affiliation(s)
- Zbyslaw Sondka
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Sally Bamford
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Charlotte G Cole
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Sari A Ward
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ian Dunham
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Simon A Forbes
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| |
Collapse
|
30
|
Mirzayans R, Andrais B, Murray D. Viability Assessment Following Anticancer Treatment Requires Single-Cell Visualization. Cancers (Basel) 2018; 10:cancers10080255. [PMID: 30071623 PMCID: PMC6115892 DOI: 10.3390/cancers10080255] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 12/03/2022] Open
Abstract
A subset of cells within solid tumors become highly enlarged and enter a state of dormancy (sustained proliferation arrest) in response to anticancer treatment. Although dormant cancer cells might be scored as “dead” in conventional preclinical assays, they remain viable, secrete growth-promoting factors, and can give rise to progeny with stem cell-like properties. Furthermore, cancer cells exhibiting features of apoptosis (e.g., caspase-3 activation) following genotoxic stress can undergo a reversal process called anastasis and survive. Consistent with these observations, single-cell analysis of adherent cultures (solid tumor-derived cell lines with differing p53 status) has demonstrated that virtually all cells—irrespective of their size and morphology—that remain adherent to the culture dish for a long time (weeks) after treatment with anticancer agents exhibit the ability to metabolize 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl- tetrazolium bromide (MTT). The purpose of this commentary is to briefly review these findings and discuss the significance of single-cell (versus population averaged) observation methods for assessment of cancer cell viability and metabolic activity.
Collapse
Affiliation(s)
- Razmik Mirzayans
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada.
| | - Bonnie Andrais
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada.
| | - David Murray
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada.
| |
Collapse
|
31
|
Spead O, Verreet T, Donelson CJ, Poulain FE. Characterization of the caspase family in zebrafish. PLoS One 2018; 13:e0197966. [PMID: 29791492 PMCID: PMC5965869 DOI: 10.1371/journal.pone.0197966] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/13/2018] [Indexed: 12/21/2022] Open
Abstract
First discovered for their role in mediating programmed cell death and inflammatory responses, caspases have now emerged as crucial regulators of other cellular and physiological processes including cell proliferation, differentiation, migration, and survival. In the developing nervous system, for instance, the non-apoptotic functions of caspases have been shown to play critical roles in the formation of neuronal circuits by regulating axon outgrowth, guidance and pruning. How caspase activity is spatially and temporally maintained at sub-lethal levels within cells remains however poorly understood, especially in vivo. Thanks to its transparency and accessibility, the zebrafish offers the unique ability to directly visualize caspase activation in vivo. Yet, detailed information about the caspase family in zebrafish is lacking. Here, we report the identification and characterization of 19 different caspase genes in zebrafish, and show that caspases have diverse expression profiles from cleavage to larval stages, suggesting highly specialized and/or redundant functions during embryonic development.
Collapse
Affiliation(s)
- Olivia Spead
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Tine Verreet
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Cory J. Donelson
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Fabienne E. Poulain
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| |
Collapse
|
32
|
Xu DC, Arthurton L, Baena-Lopez LA. Learning on the Fly: The Interplay between Caspases and Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5473180. [PMID: 29854765 PMCID: PMC5949197 DOI: 10.1155/2018/5473180] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/14/2018] [Indexed: 02/07/2023]
Abstract
The ease of genetic manipulation, as well as the evolutionary conservation of gene function, has placed Drosophila melanogaster as one of the leading model organisms used to understand the implication of many proteins with disease development, including caspases and their relation to cancer. The family of proteases referred to as caspases have been studied over the years as the major regulators of apoptosis: the most common cellular mechanism involved in eliminating unwanted or defective cells, such as cancerous cells. Indeed, the evasion of the apoptotic programme resulting from caspase downregulation is considered one of the hallmarks of cancer. Recent investigations have also shown an instrumental role for caspases in non-lethal biological processes, such as cell proliferation, cell differentiation, intercellular communication, and cell migration. Importantly, malfunction of these essential biological tasks can deeply impact the initiation and progression of cancer. Here, we provide an extensive review of the literature surrounding caspase biology and its interplay with many aspects of cancer, emphasising some of the key findings obtained from Drosophila studies. We also briefly describe the therapeutic potential of caspase modulation in relation to cancer, highlighting shortcomings and hopeful promises.
Collapse
Affiliation(s)
- Derek Cui Xu
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX13RE, UK
- Cell Biology Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Lewis Arthurton
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX13RE, UK
| | | |
Collapse
|
33
|
Zhao Q, Wang X, Chen A, Cheng X, Zhang G, Sun J, Zhao Y, Huang Y, Zhu Y. Rhein protects against cerebral ischemic‑/reperfusion‑induced oxidative stress and apoptosis in rats. Int J Mol Med 2018; 41:2802-2812. [PMID: 29436613 PMCID: PMC5846655 DOI: 10.3892/ijmm.2018.3488] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 02/08/2018] [Indexed: 12/14/2022] Open
Abstract
The present study aimed to investigate the protective effects of rhein on cerebral ischemic/reperfusion (I/R) injury in rats. The present study focused on the effect of rhein on oxidative stress and apoptotic factors, which are considered to serve an important role in the onset of I/R injury. Sprague-Dawley rats were subjected to middle cerebral artery occlusion. Neurological functional scores (NFSs) were evaluated according to the Zea Longa's score criteria and the area of brain infarct was determined by triphenyltetrazolium chloride staining. The morphology of the nerve cells in the cortex was observed following hematoxylin and eosin staining. In addition, levels of oxidative stress were assessed by measuring the levels of superoxide dismutase (SOD), glutathione-peroxidase (GSH-Px), catalase (CAT) and malondialdehyde (MDA). Levels of B-cell lymphoma-2 (Bcl-2), apoptosis regulator Bax (BAX), caspase-9, caspase-3 and cleaved caspase-3 expression were analyzed using western blot analysis. Levels of caspase-9 and caspase-3 mRNA expression were obtained using reverse transcription-quantitative polymerase chain reaction. The results revealed that treatment with 50 or 100 mg/kg rhein significantly improved the NFS and markedly attenuated the area of infarction. Rhein also significantly reduced the content of MDA and significantly increased SOD, GSH-Px and CAT activity. Western blot analysis indicated that rhein significantly decreased the expression of BAX and enhanced the expression of Bcl-2. Compared with the I/R group, levels of caspase-9, caspase-3 and cleaved caspase-3 protein expression were significantly decreased in the rhein treatment groups. Additionally, rhein treatment significantly reduced levels of caspase-9 and caspase-3 mRNA expression. These results suggest that rhein exhibits protective effects during cerebral I/R injury and its underlying mechanism of action may involve the inhibition of oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Qipeng Zhao
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Xiaobo Wang
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Ailing Chen
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Xiuli Cheng
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Guoxin Zhang
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Jianmin Sun
- College of Basic Medicine, Yinchuan, Ningxia 750004, P.R. China
| | - Yunsheng Zhao
- Ningxia Hui Modern Medicine Engineering Research Center, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yu Huang
- Ningxia Hui Modern Medicine Engineering Research Center, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yafei Zhu
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|