1
|
Wang X, Carvajal-Moreno J, Zhao X, Li J, Hernandez VA, Yalowich JC, Elton TS. Circumvention of Topoisomerase II α Intron 19 Intronic Polyadenylation in Acquired Etoposide-Resistant Human Leukemia K562 Cells. Mol Pharmacol 2024; 106:33-46. [PMID: 38719474 PMCID: PMC11187689 DOI: 10.1124/molpharm.124.000868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/12/2024] [Indexed: 06/20/2024] Open
Abstract
DNA topoisomerase IIα (TOP2α; 170 kDa, TOP2α/170) is an essential enzyme for proper chromosome dysjunction by producing transient DNA double-stranded breaks and is an important target for DNA damage-stabilizing anticancer agents, such as etoposide. Therapeutic effects of TOP2α poisons can be limited due to acquired drug resistance. We previously demonstrated decreased TOP2α/170 levels in an etoposide-resistant human leukemia K562 subline, designated K/VP.5, accompanied by increased expression of a C-terminal truncated TOP2α isoform (90 kDa; TOP2α/90), which heterodimerized with TOP2α/170 and was a determinant of resistance by exhibiting dominant-negative effects against etoposide activity. Based on 3'-rapid amplification of cDNA ends, we confirmed TOP2α/90 as the translation product of a TOP2α mRNA in which a cryptic polyadenylation site (PAS) harbored in intron 19 (I19) was used. In this report, we investigated whether the resultant intronic polyadenylation (IPA) would be attenuated by blocking or mutating the I19 PAS, thereby circumventing acquired drug resistance. An antisense morpholino oligonucleotide was used to hybridize/block the PAS in TOP2α pre-mRNA in K/VP.5 cells, resulting in decreased TOP2α/90 mRNA/protein levels in K/VP.5 cells and partially circumventing drug resistance. Subsequently, CRISPR/CRISPR-associated protein 9 with homology-directed repair was used to mutate the cryptic I19 PAS (AATAAA→ACCCAA) to prevent IPA. Gene-edited clones exhibited increased TOP2α/170 and decreased TOP2α/90 mRNA/protein and demonstrated restored sensitivity to etoposide and other TOP2α-targeted drugs. Together, results indicated that blocking/mutating a cryptic I19 PAS in K/VP.5 cells reduced IPA and restored sensitivity to TOP2α-targeting drugs. SIGNIFICANCE STATEMENT: The results presented in this study indicate that CRISPR/CRISPR-associated protein 9 gene editing of a cryptic polyadenylation site (PAS) within I19 of the TOP2α gene results in the reversal of acquired resistance to etoposide and other TOP2-targeted drugs. An antisense morpholino oligonucleotide targeting the PAS also partially circumvented resistance.
Collapse
Affiliation(s)
- Xinyi Wang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (X.W., J.C.-M., X.Z., V.A.H., J.C.Y., T.S.E.) and Division of Outcomes and Translational Science (J.L.), The Ohio State University, Columbus, Ohio
| | - Jessika Carvajal-Moreno
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (X.W., J.C.-M., X.Z., V.A.H., J.C.Y., T.S.E.) and Division of Outcomes and Translational Science (J.L.), The Ohio State University, Columbus, Ohio
| | - Xinyu Zhao
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (X.W., J.C.-M., X.Z., V.A.H., J.C.Y., T.S.E.) and Division of Outcomes and Translational Science (J.L.), The Ohio State University, Columbus, Ohio
| | - Junan Li
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (X.W., J.C.-M., X.Z., V.A.H., J.C.Y., T.S.E.) and Division of Outcomes and Translational Science (J.L.), The Ohio State University, Columbus, Ohio
| | - Victor A Hernandez
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (X.W., J.C.-M., X.Z., V.A.H., J.C.Y., T.S.E.) and Division of Outcomes and Translational Science (J.L.), The Ohio State University, Columbus, Ohio
| | - Jack C Yalowich
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (X.W., J.C.-M., X.Z., V.A.H., J.C.Y., T.S.E.) and Division of Outcomes and Translational Science (J.L.), The Ohio State University, Columbus, Ohio
| | - Terry S Elton
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (X.W., J.C.-M., X.Z., V.A.H., J.C.Y., T.S.E.) and Division of Outcomes and Translational Science (J.L.), The Ohio State University, Columbus, Ohio
| |
Collapse
|
2
|
Carvajal-Moreno J, Wang X, Hernandez VA, Mondal M, Zhao X, Yalowich JC, Elton TS. Use of CRISPR/Cas9 with Homology-Directed Repair to Gene-Edit Topoisomerase II β in Human Leukemia K562 Cells: Generation of a Resistance Phenotype. J Pharmacol Exp Ther 2024; 389:186-196. [PMID: 38508753 PMCID: PMC11026151 DOI: 10.1124/jpet.123.002038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
DNA topoisomerase IIβ (TOP2β/180; 180 kDa) is a nuclear enzyme that regulates DNA topology by generation of short-lived DNA double-strand breaks, primarily during transcription. TOP2β/180 can be a target for DNA damage-stabilizing anticancer drugs, whose efficacy is often limited by chemoresistance. Our laboratory previously demonstrated reduced levels of TOP2β/180 (and the paralog TOP2α/170) in an acquired etoposide-resistant human leukemia (K562) clonal cell line, K/VP.5, in part due to overexpression of microRNA-9-3p/5p impacting post-transcriptional events. To evaluate the effect on drug sensitivity upon reduction/elimination of TOP2β/180, a premature stop codon was generated at the TOP2β/180 gene exon 19/intron 19 boundary (AGAA//GTAA→ATAG//GTAA) in parental K562 cells (which contain four TOP2β/180 alleles) by CRISPR/Cas9 editing with homology-directed repair to disrupt production of full-length TOP2β/180. Gene-edited clones were identified and verified by quantitative polymerase chain reaction and Sanger sequencing, respectively. Characterization of TOP2β/180 gene-edited clones, with one or all four TOP2β/180 alleles mutated, revealed partial or complete loss of TOP2β mRNA/protein, respectively. The loss of TOP2β/180 protein correlated with decreased (2-{4-[(7-chloro-2-quinoxalinyl)oxy]phenoxy}propionic acid)-induced DNA damage and partial resistance in growth inhibition assays. Partial resistance to mitoxantrone was also noted in the gene-edited clone with all four TOP2β/180 alleles modified. No cross-resistance to etoposide or mAMSA was noted in the gene-edited clones. Results demonstrated the role of TOP2β/180 in drug sensitivity/resistance in K562 cells and revealed differential paralog activity of TOP2-targeted agents. SIGNIFICANCE STATEMENT: Data indicated that CRISPR/Cas9 editing of the exon 19/intron 19 boundary in the TOP2β/180 gene to introduce a premature stop codon resulted in partial to complete disruption of TOP2β/180 expression in human leukemia (K562) cells depending on the number of edited alleles. Edited clones were partially resistant to mitoxantrone and XK469, while lacking resistance to etoposide and mAMSA. Results demonstrated the import of TOP2β/180 in drug sensitivity/resistance in K562 cells and revealed differential paralog activity of TOP2-targeted agents.
Collapse
Affiliation(s)
- Jessika Carvajal-Moreno
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Xinyi Wang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Victor A Hernandez
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Milon Mondal
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Xinyu Zhao
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Jack C Yalowich
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Terry S Elton
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| |
Collapse
|
3
|
Sharma NK, Bahot A, Sekar G, Bansode M, Khunteta K, Sonar PV, Hebale A, Salokhe V, Sinha BK. Understanding Cancer's Defense against Topoisomerase-Active Drugs: A Comprehensive Review. Cancers (Basel) 2024; 16:680. [PMID: 38398072 PMCID: PMC10886629 DOI: 10.3390/cancers16040680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
In recent years, the emergence of cancer drug resistance has been one of the crucial tumor hallmarks that are supported by the level of genetic heterogeneity and complexities at cellular levels. Oxidative stress, immune evasion, metabolic reprogramming, overexpression of ABC transporters, and stemness are among the several key contributing molecular and cellular response mechanisms. Topo-active drugs, e.g., doxorubicin and topotecan, are clinically active and are utilized extensively against a wide variety of human tumors and often result in the development of resistance and failure to therapy. Thus, there is an urgent need for an incremental and comprehensive understanding of mechanisms of cancer drug resistance specifically in the context of topo-active drugs. This review delves into the intricate mechanistic aspects of these intracellular and extracellular topo-active drug resistance mechanisms and explores the use of potential combinatorial approaches by utilizing various topo-active drugs and inhibitors of pathways involved in drug resistance. We believe that this review will help guide basic scientists, pre-clinicians, clinicians, and policymakers toward holistic and interdisciplinary strategies that transcend resistance, renewing optimism in the ongoing battle against cancer.
Collapse
Affiliation(s)
- Nilesh Kumar Sharma
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Anjali Bahot
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Gopinath Sekar
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Mahima Bansode
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Kratika Khunteta
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Priyanka Vijay Sonar
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Ameya Hebale
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Vaishnavi Salokhe
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Birandra Kumar Sinha
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| |
Collapse
|
4
|
Barachini S, Ghelardoni S, Varga ZV, Mehanna RA, Montt-Guevara MM, Ferdinandy P, Madonna R. Antineoplastic drugs inducing cardiac and vascular toxicity - An update. Vascul Pharmacol 2023; 153:107223. [PMID: 37678516 DOI: 10.1016/j.vph.2023.107223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/14/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
With the improvement in cancer prognosis due to advances in antitumor therapeutic protocols and new targeted and immunotherapies, we are witnessing a growing increase in survival, however, at the same timeincrease in morbidity among cancer survivors as a consequences of the increased cardiovascular adverse effects of antineoplastic drugs. Common cardiovascular complications of antineoplastic therapies may include cardiac complications such as arrhythmias, myocardial ischemia, left ventricular dysfunction culminating in heart failure as well as vascular complications including arterial hypertension, thromboembolic events, and accelerated atherosclerosis. The toxicity results from the fact that these drugs not only target cancer cells but also affect normal cells within the cardiovascular system. In this article, we review the clinical features and main mechanisms implicated in antineoplastic drug-induced cardiovascular toxicity, including oxidative stress, inflammation, immunothrombosis and growth factors-induced signaling pathways.
Collapse
Affiliation(s)
- Serena Barachini
- Department of Clinical and Experimental Medicine, Laboratory for Cell Therapy, University of Pisa, Pisa, Italy
| | - Sandra Ghelardoni
- Department of Pathology, Laboratory of Biochemistry, University of Pisa, Pisa, Italy
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary; MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Radwa A Mehanna
- Medical Physiology Department, Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Egypt
| | | | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Rosalinda Madonna
- Department of Pathology, Cardiology Division, University of Pisa, Pisa, Italy.
| |
Collapse
|
5
|
Piska K, Koczurkiewicz-Adamczyk P, Jamrozik M, Bucki A, Kołaczkowski M, Pękala E. Comparative study on ABCB1-dependent efflux of anthracyclines and their metabolites: consequences for cancer resistance. Xenobiotica 2023; 53:507-514. [PMID: 37753851 DOI: 10.1080/00498254.2023.2264391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/25/2023] [Indexed: 09/28/2023]
Abstract
1. ABCB1 (P-glycoprotein, MDR1) is one of the most important transporter involved in cancer multi-drug resistance. It also plays a significant role in cancer resistance against anthracyclines, an anticancer group of drugs, including doxorubicin and daunorubicin. Several intracellular enzymes metabolise anthracyclines to carbonyl-reduced, hydroxy metabolites, which have impaired cytotoxic properties. However, metabolite efflux by ABCB1 transporter is not well characterised, while it may be the mechanism responsible for the metabolites' lack of activity.2. In this study recombinant ABCB1 ATPase transporter assay; anthracyclines accumulation assay in resistant cells overexpressing ABCB1; and molecular modelling were used to investigate anthracyclines: doxorubicin and daunorubicin and their carbonyl-reduced metabolites (doxorubicinol, daunorubicinol) susceptibility for ABCB1-dependent efflux.3. Based on the kinetics parameters of ATPase activity of ABCB1, it was found that daunorubicinol exerted an exceptionally high potential for being effluxed by the ABCB1 transporter. ABCB1 significantly affected the accumulation pattern of studied chemicals in resistant cancer cells. Doxorubicin and daunorubicinol accumulation were influenced by the activity of ABCB1 modulator - valspodar.4. Results indicate that ABCB1 activity affects not only anthracyclines but also their metabolites. Therefore crosstalk between the process of anthracyclines metabolism and metabolite efflux may be the mechanism of impairing anticancer properties of anthracyclines metabolites.
Collapse
Affiliation(s)
- Kamil Piska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | | | - Marek Jamrozik
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Adam Bucki
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Marcin Kołaczkowski
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
6
|
Melo BL, Lima-Sousa R, Alves CG, Correia IJ, de Melo-Diogo D. Sulfobetaine methacrylate-coated reduced graphene oxide-IR780 hybrid nanosystems for effective cancer photothermal-photodynamic therapy. Int J Pharm 2023; 647:123552. [PMID: 37884216 DOI: 10.1016/j.ijpharm.2023.123552] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Nanomaterials with near infrared light absorption can mediate an antitumoral photothermal-photodynamic response that is weakly affected by cancer cells' resistance mechanisms. Such nanosystems are commonly prepared by loading photosensitizers into nanomaterials displaying photothermal capacity, followed by functionalization to achieve biological compatibility. However, the translation of these multifunctional nanomaterials has been limited by the fact that many of the photosensitizers are not responsive to near infrared light. Furthermore, the reliance on poly(ethylene glycol) for functionalizing the nanomaterials is also not ideal due to some immunogenicity reports. Herein, a novel photoeffective near infrared light-responsive nanosystem for cancer photothermal-photodynamic therapy was assembled. For such, dopamine-reduced graphene oxide was, for the first time, functionalized with sulfobetaine methacrylate-brushes, and then loaded with IR780 (IR780/SB/DOPA-rGO). This hybrid system revealed a nanometric size distribution, optimal surface charge and colloidal stability. The interaction of IR780/SB/DOPA-rGO with near infrared light prompted a temperature increase (photothermal effect) and production of singlet oxygen (photodynamic effect). In in vitro studies, the IR780/SB/DOPA-rGO per se did not elicit cytotoxicity (viability > 78 %). In contrast, the combination of IR780/SB/DOPA-rGO with near infrared light decreased breast cancer cells' viability to just 21 %, at a very low nanomaterial dose, highlighting its potential for cancer photothermal-photodynamic therapy.
Collapse
Affiliation(s)
- Bruna L Melo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Rita Lima-Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Cátia G Alves
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal; CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal.
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal.
| |
Collapse
|
7
|
Mesén-Porras S, Rojas-Céspedes A, Molina-Mora JA, Vega-Baudrit J, Siles F, Quiros S, Mora-Rodríguez R. Sphingolipid-Based Synergistic Interactions to Enhance Chemosensitivity in Lung Cancer Cells. Cells 2023; 12:2588. [PMID: 37998323 PMCID: PMC10670127 DOI: 10.3390/cells12222588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/13/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
Tumor heterogeneity leads to drug resistance in cancer treatment with the crucial role of sphingolipids in cell fate and stress signaling. We analyzed sphingolipid metabolism and autophagic flux to study chemotherapeutic interactions on the A549 lung cancer model. Loaded cells with fluorescent sphingomyelin analog (BODIPY) and mCherry-EGFP-LC3B were used to track autophagic flux and assess cytotoxicity when cells are exposed to chemotherapy (epirubicin, cisplatin, and paclitaxel) together with sphingolipid pathway inhibitors and autophagy modulators. Our cell model approach employed fluorescent sphingolipid biosensors and a Gaussian Mixture Model of cell heterogeneity profiles to map the influence of chemotherapy on the sphingolipid pathway and infer potential synergistic interactions. Results showed significant synergy, especially when combining epirubicin with autophagy inducers (rapamycin and Torin), reducing cell viability. Cisplatin also synergized with a ceramidase inhibitor. However, paclitaxel often led to antagonistic effects. Our mapping model suggests that combining chemotherapies with autophagy inducers increases vesicle formation, possibly linked to ceramide accumulation, triggering cell death. However, the in silico model proposed ceramide accumulation in autophagosomes, and kinetic analysis provided evidence of sphingolipid colocalization in autophagosomes. Further research is needed to identify specific sphingolipids accumulating in autophagosomes. These findings offer insights into potential strategies for overcoming chemotherapy resistance by targeting the sphingolipid pathway.
Collapse
Affiliation(s)
- Susana Mesén-Porras
- Research Center on Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, San José 11501-2060, Costa Rica; (S.M.-P.); (A.R.-C.); (J.A.M.-M.); (S.Q.)
- Research Center on Surgery and Cancer (CICICA), Campus Rodrigo Facio, University of Costa Rica, San José 11501-2060, Costa Rica;
- Master Program in Microbiology, University of Costa Rica, San José 11501-2060, Costa Rica
- National Laboratory of Nanotechnology (LANOTEC), National Center of High Technology (CeNAT), Pavas, San José 1174-1200, Costa Rica;
| | - Andrea Rojas-Céspedes
- Research Center on Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, San José 11501-2060, Costa Rica; (S.M.-P.); (A.R.-C.); (J.A.M.-M.); (S.Q.)
| | - José Arturo Molina-Mora
- Research Center on Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, San José 11501-2060, Costa Rica; (S.M.-P.); (A.R.-C.); (J.A.M.-M.); (S.Q.)
| | - José Vega-Baudrit
- National Laboratory of Nanotechnology (LANOTEC), National Center of High Technology (CeNAT), Pavas, San José 1174-1200, Costa Rica;
| | - Francisco Siles
- Research Center on Surgery and Cancer (CICICA), Campus Rodrigo Facio, University of Costa Rica, San José 11501-2060, Costa Rica;
- Pattern Recognition and Intelligent Systems Laboratory (PRIS-Lab), Department and Postgraduate Studies in Electrical Engineering, University of Costa Rica, San José 11501-2060, Costa Rica
| | - Steve Quiros
- Research Center on Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, San José 11501-2060, Costa Rica; (S.M.-P.); (A.R.-C.); (J.A.M.-M.); (S.Q.)
- Research Center on Surgery and Cancer (CICICA), Campus Rodrigo Facio, University of Costa Rica, San José 11501-2060, Costa Rica;
| | - Rodrigo Mora-Rodríguez
- Research Center on Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, San José 11501-2060, Costa Rica; (S.M.-P.); (A.R.-C.); (J.A.M.-M.); (S.Q.)
- Research Center on Surgery and Cancer (CICICA), Campus Rodrigo Facio, University of Costa Rica, San José 11501-2060, Costa Rica;
- Master Program in Microbiology, University of Costa Rica, San José 11501-2060, Costa Rica
| |
Collapse
|
8
|
Shi S, Wen G, Lei C, Chang J, Yin X, Liu X, Huang S. A DNA Replication Stress-Based Prognostic Model for Lung Adenocarcinoma. Acta Naturae 2023; 15:100-110. [PMID: 37908773 PMCID: PMC10615186 DOI: 10.32607/actanaturae.25112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
Tumor cells endure continuous DNA replication stress, which opens the way to cancer development. Despite previous research, the prognostic implications of DNA replication stress on lung adenocarcinoma (LUAD) have yet to be investigated. Here, we aimed to investigate the potential of DNA replication stress-related genes (DNARSs) in predicting the prognosis of individuals with LUAD. Differentially expressed genes (DEGs) originated from the TCGA-LUAD dataset, and we constructed a 10-gene LUAD prognostic model based on DNARSs-related DEGs (DRSDs) using Cox regression analysis. The receiver operating characteristic (ROC) curve demonstrated excellent predictive capability for the LUAD prognostic model, while the Kaplan-Meier survival curve indicated a poorer prognosis in a high-risk (HR) group. Combined with clinical data, the Riskscore was found to be an independent predictor of LUAD prognosis. By incorporating Riskscore and clinical data, we developed a nomogram that demonstrated a capacity to predict overall survival and exhibited clinical utility, which was validated through the calibration curve, ROC curve, and decision curve analysis curve tests, confirming its effectiveness in prognostic evaluation. Immune analysis revealed that individuals belonging to the low-risk (LR) group exhibited a greater abundance of immune cell infiltration and higher levels of immune function. We calculated the immunopheno score and TIDE scores and tested them on the IMvigor210 and GSE78220 cohorts and found that individuals categorized in the LR group exhibited a higher likelihood of deriving therapeutic benefits from immunotherapy intervention. Additionally, we predicted that patients classified in the HR group would demonstrate enhanced sensitivity to Docetaxel using anti-tumor drugs. To summarize, we successfully developed and validated a prognostic model for LUAD by incorporating DNA replication stress as a key factor.
Collapse
Affiliation(s)
- S. Shi
- Department of Cardiothoracic Surgery, The People’s Hospital of Dazu District, Chongqing, 402360 China
| | - G. Wen
- Department of Cardiothoracic Surgery, The People’s Hospital of Dazu District, Chongqing, 402360 China
| | - C. Lei
- Department of Cardiothoracic Surgery, The People’s Hospital of Dazu District, Chongqing, 402360 China
| | - J. Chang
- Department of Cardiothoracic Surgery, The People’s Hospital of Dazu District, Chongqing, 402360 China
| | - X. Yin
- Department of Cardiothoracic Surgery, The People’s Hospital of Dazu District, Chongqing, 402360 China
| | - X. Liu
- Department of Cardiothoracic Surgery, The People’s Hospital of Dazu District, Chongqing, 402360 China
| | - S. Huang
- Department of Orthopedics, The People’s Hospital of Dazu District, Chongqing, 402360 China
| |
Collapse
|
9
|
Zhao J, Zhang N, Ma X, Li M, Feng H. The dual role of ferroptosis in anthracycline-based chemotherapy includes reducing resistance and increasing toxicity. Cell Death Discov 2023; 9:184. [PMID: 37344500 DOI: 10.1038/s41420-023-01483-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023] Open
Abstract
In conjunction with previous studies, we have noted that ferroptosis, as an emerging mode of regulated cell death (RCD), is intimately related to anthracycline pharmacotherapy. Not only does ferroptosis significantly modulate tumour resistance and drug toxicity, which are core links of the relevant chemotherapeutic process, but it also appears to play a conflicting role that has yet to be appreciated. By targeting the dual role of ferroptosis in anthracycline-based chemotherapy, this review aims to focus on the latest findings at this stage, identify the potential associations and provide novel perspectives for subsequent research directions and therapeutic strategies.
Collapse
Affiliation(s)
- Jiazheng Zhao
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei, 050011, China
| | - Ning Zhang
- Department of Cardiology, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei, 050011, China
| | - Xiaowei Ma
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Nanli, Panjiayuan, Chaoyang District, Beijing, 100021, China
| | - Ming Li
- Department of Orthopedics, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijia-zhuang, Hebei, China
| | - Helin Feng
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Nanli, Panjiayuan, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
10
|
Ben Chabchoubi I, Lam SS, Pane SE, Ksibi M, Guerriero G, Hentati O. Hazard and health risk assessment of exposure to pharmaceutical active compounds via toxicological evaluation by zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:120698. [PMID: 36435277 DOI: 10.1016/j.envpol.2022.120698] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The uncontrolled or continuous release of effluents from wastewater treatment plants leads to the omnipresence of pharmaceutical active compounds (PhACs) in the aquatic media. Today, this is a confirmed problem becoming a main subject of twin public and scientific concerns. However, still little information is available about the long-term impacts of these PhACs on aquatic organisms. In this review, efforts were made to reveal correlation between the occurrence in the environment, ecotoxicological and health risks of different PhACs via toxicological evaluation by zebrafish (Danio rerio). This animal model served as a bioindicator for any health impacts after the exposure to these contaminants and to better understand the responses in relation to human diseases. This review paper focused on the calculation of Risk Quotients (RQs) of 34 PhACs based on environmental and ecotoxicological data available in the literature and prediction from the ECOSAR V2.2 software. To the best of the authors' knowledge, this is the first report on the risk assessment of PhACs by the two different methods as mentioned above. RQs showed greater difference in potential environmental risks of the PhACs. These differences in risk values underline the importance of environmental and experimental factors in exposure conditions and the interpretation of RQ values. While the results showed high risk to Danio rerio of the majority of PhACs, risk qualification of the others varied between moderate to insignifiant. Further research is needed to assess pharmaceutical hazards when present in wastewater before discharge and monitor the effectiveness of treatment processes. The recent new advances in the morphological assessment of toxicant-exposed zebrafish larvae for the determination of test compounds effects on the developmental endpoints were also discussed. This review emphasizes the need for strict regulations on the release of PhACs into environmental media in order to minimize their toxicity to aquatic organisms.
Collapse
Affiliation(s)
- Imen Ben Chabchoubi
- Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Rue Taher Haddad, 5000, Monastir, Tunisia; Laboratoire Génie de l'Environnement et Ecotechnologie (GEET), Université de Sfax, Ecole Nationale d'Ingénieurs de Sfax (ENIS), Route de Soukra, Km 3.5, B.P. 1173, 3038, Sfax, Tunisia
| | - Su Shiung Lam
- Higher Institution Center of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), University Malaysia Terengganu, Kuala Nerus, 21030, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Stacey Ellen Pane
- Department of Biology, Federico II University of Naples, Via Cinthia 26, 80126, Napoli, Italy
| | - Mohamed Ksibi
- Laboratoire Génie de l'Environnement et Ecotechnologie (GEET), Université de Sfax, Ecole Nationale d'Ingénieurs de Sfax (ENIS), Route de Soukra, Km 3.5, B.P. 1173, 3038, Sfax, Tunisia
| | - Giulia Guerriero
- Department of Biology, Federico II University of Naples, Via Cinthia 26, 80126, Napoli, Italy
| | - Olfa Hentati
- Laboratoire Génie de l'Environnement et Ecotechnologie (GEET), Université de Sfax, Ecole Nationale d'Ingénieurs de Sfax (ENIS), Route de Soukra, Km 3.5, B.P. 1173, 3038, Sfax, Tunisia; Institut Supérieur de Biotechnologie de Sfax, Université de Sfax, Route de Soukra, Km 4.5, B.P 1175, 3038, Sfax, Tunisia.
| |
Collapse
|
11
|
Al-Shafie TA, Mahrous EA, Shukry M, Alshahrani MY, Ibrahim SF, Fericean L, Abdelkader A, Ali MA. A Proposed Association between Improving Energy Metabolism of HepG2 Cells by Plant Extracts and Increasing Their Sensitivity to Doxorubicin. TOXICS 2023; 11:182. [PMID: 36851057 PMCID: PMC9967676 DOI: 10.3390/toxics11020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/01/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Increasing cancer cell sensitivity to chemotherapy by amending aberrant metabolism using plant extracts represents a promising strategy to lower chemotherapy doses while retaining the same therapeutic outcome. Here, we incubated HepG2 cells with four plant extracts that were selected based on an earlier assessment of their cytotoxicity, viz asparagus, green tea, rue, and avocado, separately, before treatment with doxorubicin. MTT assays elucidated a significant decrease in doxorubicin-IC50 following HepG2 incubation with each extract, albeit to a variable extent. The investigated extract's ultra-performance liquid chromatography and gas chromatography coupled with mass spectrometry (UPLC/MS and GC/MS) revealed several constituents with anticancer activity. Biochemical investigation displayed several favorable effects, including the inhibition of hypoxia-inducible factor1α (HIF1α), c-Myc, pyruvate kinase-M2 (PKM2), lactate dehydrogenase-A (LDH-A), glucose-6-phosphate dehydrogenase (G6PD), and glutaminase by asparagus and rue extracts. To less extent, HIF1α, c-Myc, PKM2, and LDH-A were partially inhibited by green tea extract, and HIF1α and glutaminase activity was inhibited by avocado oil. Undesirably, green tea extract increased glutaminase; avocado oil rose c-Myc, and both increased G6PD. In conclusion, our study confirms the potential cytotoxic effects of these plant extracts. It highlights a strong association between the ability of asparagus, green tea, rue, and avocado to sensitize HepG2 cells to doxorubicin and their power to amend cell metabolism, suggesting their use as add-on agents that might aid in clinically lowering the doxorubicin dose.
Collapse
Affiliation(s)
- Tamer A. Al-Shafie
- Faculty of Dentistry, Biochemistry Department, Pharos University in Alexandria, Alexandria 21532, Egypt
| | - Engy A. Mahrous
- Faculty of Pharmacy, Pharmacognosy Department, Cairo University, Cairo 11435, Egypt
| | - Mustafa Shukry
- Faculty of Veterinary Medicine, Department of Physiology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Mohammad Y. Alshahrani
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | - Samah F. Ibrahim
- Department of Clinical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Liana Fericean
- Faculty of Agriculture, Department of Biology and Plant Protection, University of Life Sciences “King Michael I” from Timișoara, Calea Aradului 119, CUI 3487181, 300645 Timisoara, Romania
| | - Afaf Abdelkader
- Faculty of Medicine, Department of Forensic Medicine and Clinical Toxicology, Benha University, Benha 13518, Egypt
| | - Mennatallah A. Ali
- Faculty of Pharmacy, Pharmacology and Therapeutics Department, Pharos University in Alexandria, Alexandria 21532, Egypt
| |
Collapse
|
12
|
Carvajal-Moreno J, Hernandez VA, Wang X, Li J, Yalowich JC, Elton TS. Effects of hsa-miR-9-3p and hsa-miR-9-5p on Topoisomerase II β Expression in Human Leukemia K562 Cells with Acquired Resistance to Etoposide. J Pharmacol Exp Ther 2023; 384:265-276. [PMID: 36410793 PMCID: PMC9875313 DOI: 10.1124/jpet.122.001429] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/23/2022] Open
Abstract
DNA topoisomerase IIα (TOP2α/170; 170 kDa) and topoisomerase IIβ (TOP2β/180; 180 kDa) are targets for a number of anticancer drugs, whose clinical efficacy is attenuated by chemoresistance. Our laboratory selected for an etoposide-resistant K562 clonal subline designated K/VP.5. These cells exhibited decreased TOP2α/170 and TOP2β/180 expression. We previously demonstrated that a microRNA-9 (miR-9)-mediated posttranscriptional mechanism plays a role in drug resistance via reduced TOP2α/170 protein in K/VP.5 cells. Here, it is hypothesized that a similar miR-9 mechanism is responsible for decreased TOP2β/180 levels in K/VP.5 cells. Both miR-9-3p and miR-9-5p are overexpressed in K/VP.5 compared with K562 cells, demonstrated by microRNA (miRNA) sequencing and quantitative polymerase chain reaction. The 3'-untranslated region (3'-UTR) of TOP2β/180 contains miRNA recognition elements (MRE) for both miRNAs. Cotransfection of K562 cells with a luciferase reporter plasmid harboring TOP2β/180 3'-UTR plus miR-9-3p or miR-9-5p mimics resulted in statistically significant decreased luciferase expression. miR-9-3p and miR-9-5p MRE mutations prevented this decrease, validating direct interaction between these miRNAs and TOP2β/180 mRNA. Transfection of K562 cells with miR-9-3p/5p mimics led to decreased TOP2β protein levels without a change in TOP2β/180 mRNA and resulted in reduced TOP2β-specific XK469-induced DNA damage. Conversely, K/VP.5 cells transfected with miR-9-3p/5p inhibitors led to increased TOP2β/180 protein without a change in TOP2β/180 mRNA and resulted in enhancement of XK469-induced DNA damage. Taken together, these results strongly suggest that TOP2β/180 mRNA is translationally repressed by miR-9-3p/5p, that these miRNAs play a role in acquired resistance to etoposide, and that they are potential targets for circumvention of resistance to TOP2-targeted agents. SIGNIFICANCE STATEMENT: Results presented here indicate that miR-9-3p and miR-9-5p play a role in acquired resistance to etoposide via decreased DNA topoisomerase IIβ 180 kDa protein levels. These findings contribute further information about and potential strategies for circumvention of drug resistance by modulation of microRNA levels. In addition, miR-9-3p and miR-9-5p overexpression in cancer chemoresistance may lead to future validation as biomarkers of responsiveness to DNA topoisomerase II-targeted therapy.
Collapse
Affiliation(s)
- Jessika Carvajal-Moreno
- Division of Pharmaceutics and Pharmacology (J.C.-M., V.A.H., X.W., J.C.Y., T.S.E.) and Division of Outcomes and Translational Science (J.I.), College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Victor A Hernandez
- Division of Pharmaceutics and Pharmacology (J.C.-M., V.A.H., X.W., J.C.Y., T.S.E.) and Division of Outcomes and Translational Science (J.I.), College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Xinyi Wang
- Division of Pharmaceutics and Pharmacology (J.C.-M., V.A.H., X.W., J.C.Y., T.S.E.) and Division of Outcomes and Translational Science (J.I.), College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Junan Li
- Division of Pharmaceutics and Pharmacology (J.C.-M., V.A.H., X.W., J.C.Y., T.S.E.) and Division of Outcomes and Translational Science (J.I.), College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Jack C Yalowich
- Division of Pharmaceutics and Pharmacology (J.C.-M., V.A.H., X.W., J.C.Y., T.S.E.) and Division of Outcomes and Translational Science (J.I.), College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Terry S Elton
- Division of Pharmaceutics and Pharmacology (J.C.-M., V.A.H., X.W., J.C.Y., T.S.E.) and Division of Outcomes and Translational Science (J.I.), College of Pharmacy, The Ohio State University, Columbus, Ohio
| |
Collapse
|
13
|
Li J, Li X, Guo Q. Drug Resistance in Cancers: A Free Pass for Bullying. Cells 2022; 11:3383. [PMID: 36359776 PMCID: PMC9654341 DOI: 10.3390/cells11213383] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 08/13/2023] Open
Abstract
The cancer burden continues to grow globally, and drug resistance remains a substantial challenge in cancer therapy. It is well established that cancerous cells with clonal dysplasia generate the same carcinogenic lesions. Tumor cells pass on genetic templates to subsequent generations in evolutionary terms and exhibit drug resistance simply by accumulating genetic alterations. However, recent evidence has implied that tumor cells accumulate genetic alterations by progressively adapting. As a result, intratumor heterogeneity (ITH) is generated due to genetically distinct subclonal populations of cells coexisting. The genetic adaptive mechanisms of action of ITH include activating "cellular plasticity", through which tumor cells create a tumor-supportive microenvironment in which they can proliferate and cause increased damage. These highly plastic cells are located in the tumor microenvironment (TME) and undergo extreme changes to resist therapeutic drugs. Accordingly, the underlying mechanisms involved in drug resistance have been re-evaluated. Herein, we will reveal new themes emerging from initial studies of drug resistance and outline the findings regarding drug resistance from the perspective of the TME; the themes include exosomes, metabolic reprogramming, protein glycosylation and autophagy, and the relates studies aim to provide new targets and strategies for reversing drug resistance in cancers.
Collapse
Affiliation(s)
| | | | - Qie Guo
- The Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
14
|
Yang F, Limjunyawong N, Peng Q, Schroeder JT, Saini S, MacGlashan D, Dong X, Gao L. Biological screening of a unique drug library targeting MRGPRX2. Front Immunol 2022; 13:997389. [DOI: 10.3389/fimmu.2022.997389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundAllergic drug reaction or drug allergy is an immunologically mediated drug hypersensitivity reaction (DHR). G-protein coupled receptors (GPCRs) are common drug targets and communicate extracellular signals that initiate cellular responses. Recent evidence shows that GPCR MRGPRX2 is of major importance in IgE-independent pseudo-allergic DHRs based on the suspected interactions between many FDA-approved peptidergic compounds and MRGPRX2.ObjectiveOur aim was to uncover novel MRGPRX2-selective and -potent agonists as drug candidates responsible for clinical features of pseudo-allergic DHRs.MethodsWe conducted a primary high-throughput screening (HTS), coupled with mutagenesis targeting the MRGPRX2 N62S mutation, on a panel of 3,456 library compounds. We discovered pharmacologically active hit compounds as agonists of the MRGPRX2 protein according to high degrees of potency evaluated by the calcium response and validated by the degranulation assay. Using the molecular tool Forge, we also characterized the structure-activity relationship shared by identified hit compounds.ResultsThe alternative allele of single nucleotide polymorphism rs10833049 (N62S) in MRGPRX2 demonstrated loss-of-function property in response to substance P and antineoplastic agent daunorubicin hydrochloride. We applied a unique assay system targeting the N62S mutation to the HTS and identified 84 MRGPRX2-selective active hit compounds representing diverse classes according to primary drug indications. The top five highly represented groups included fluoroquinolone and non-fluoroquinolone antibiotics; antidepressive/antipsychotic; antihistaminic and antineoplastic agents. We classified hit compounds into 14 clusters representing a variety of chemical and drug classes beyond those reported, such as opioids, neuromuscular blocking agents, and fluoroquinolones. We further demonstrated MRGPRX2-dependent degranulation in the human mast cell line LAD2 cells induced by three novel agonists representing the non-fluoroquinolone antibiotics (bacitracin A), anti-allergic agents (brompheniramine maleate) and tyrosine-kinase inhibitors (imatinib mesylate).ConclusionOur findings could facilitate the development of interventions for personalized prevention and treatment of DHRs, as well as future pharmacogenetic investigations of MRGPRX2 in relevant disease cohorts.
Collapse
|
15
|
Cappabianca L, Sebastiano M, Ruggieri M, Sbaffone M, Zelli V, Farina AR, Mackay AR. Doxorubicin-Induced TrkAIII Activation: A Selection Mechanism for Resistant Dormant Neuroblastoma Cells. Int J Mol Sci 2022; 23:ijms231810895. [PMID: 36142807 PMCID: PMC9503591 DOI: 10.3390/ijms231810895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Patients with advanced neuroblastoma (NB) receive multimodal clinical therapy, including the potent anthracycline chemotherapy drug doxorubicin (Dox). The acquisition of Dox resistance, however, is a major barrier to a sustained response and leads to a poor prognosis in advanced disease states, reinforcing the need to identify and inhibit Dox resistance mechanisms. In this context, we report on the identification and inhibition of a novel Dox resistance mechanism. This mechanism is characterized by the Dox-induced activation of the oncogenic TrkAIII alternative splice variant, resulting in increased Dox resistance, and is blocked by lestaurtinib, entrectinib, and crizotinib tyrosine kinase and LY294002 IP3-K inhibitors. Using time lapse live cell imaging, conventional and co-immunoprecipitation Western blots, RT-PCR, and inhibitor studies, we report that the Dox-induced TrkAIII activation correlates with proliferation inhibition and is CDK1- and Ca2+-uniporter-independent. It is mediated by ryanodine receptors; involves Ca2+-dependent interactions between TrkAIII, calmodulin and Hsp90; requires oxygen and oxidation; occurs within assembled ERGICs; and does not occur with fully spliced TrkA. The inhibitory effects of lestaurtinib, entrectinib, crizotinib, and LY294002 on the Dox-induced TrkAIII and Akt phosphorylation and resistance confirm roles for TrkAIII and IP3-K consistent with Dox-induced, TrkAIII-mediated pro-survival IP3K/Akt signaling. This mechanism has the potential to select resistant dormant TrkAIII-expressing NB cells, supporting the use of Trk inhibitors during Dox therapy in TrkAIII-expressing NBs.
Collapse
|
16
|
Morell A, Budagaga Y, Vagiannis D, Zhang Y, Laštovičková L, Novotná E, Haddad A, Haddad M, Portillo R, Hofman J, Wsól V. Isocitrate dehydrogenase 2 inhibitor enasidenib synergizes daunorubicin cytotoxicity by targeting aldo-keto reductase 1C3 and ATP-binding cassette transporters. Arch Toxicol 2022; 96:3265-3277. [PMID: 35972551 DOI: 10.1007/s00204-022-03359-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/03/2022] [Indexed: 12/01/2022]
Abstract
Targeting mutations that trigger acute myeloid leukaemia (AML) has emerged as a refined therapeutic approach in recent years. Enasidenib (Idhifa) is the first selective inhibitor of mutated forms of isocitrate dehydrogenase 2 (IDH2) approved against relapsed/refractory AML. In addition to its use as monotherapy, a combination trial of enasidenib with standard intensive induction therapy (daunorubicin + cytarabine) is being evaluated. This study aimed to decipher enasidenib off-target molecular mechanisms involved in anthracycline resistance, such as reduction by carbonyl reducing enzymes (CREs) and drug efflux by ATP-binding cassette (ABC) transporters. We analysed the effect of enasidenib on daunorubicin (Daun) reduction by several recombinant CREs and different human cell lines expressing aldo-keto reductase 1C3 (AKR1C3) exogenously (HCT116) or endogenously (A549 and KG1a). Additionally, A431 cell models overexpressing ABCB1, ABCG2, or ABCC1 were employed to evaluate enasidenib modulation of Daun efflux. Furthermore, the potential synergism of enasidenib over Daun cytotoxicity was quantified amongst all the cell models. Enasidenib selectively inhibited AKR1C3-mediated inactivation of Daun in vitro and in cell lines expressing AKR1C3, as well as its extrusion by ABCB1, ABCG2, and ABCC1 transporters, thus synergizing Daun cytotoxicity to overcome resistance. This work provides in vitro evidence on enasidenib-mediated targeting of the anthracycline resistance actors AKR1C3 and ABC transporters under clinically achievable concentrations. Our findings may encourage its combination with intensive chemotherapy and even suggest that the effectiveness of enasidenib as monotherapy against AML could lie beyond the targeting of mIDH2.
Collapse
Affiliation(s)
- Anselm Morell
- Department of Biochemical Sciences, Charles University, Faculty of Pharmacy, Akademika Heyrovskeho 1203, 50005, Hradec Kralove, Czech Republic
| | - Youssif Budagaga
- Department of Pharmacology, Charles University, Faculty of Pharmacy, Akademika Heyrovskeho 1203, 50005, Hradec Kralove, Czech Republic
| | - Dimitrios Vagiannis
- Department of Pharmacology, Charles University, Faculty of Pharmacy, Akademika Heyrovskeho 1203, 50005, Hradec Kralove, Czech Republic
| | - Yu Zhang
- Department of Pharmacology, Charles University, Faculty of Pharmacy, Akademika Heyrovskeho 1203, 50005, Hradec Kralove, Czech Republic
| | - Lenka Laštovičková
- Department of Biochemical Sciences, Charles University, Faculty of Pharmacy, Akademika Heyrovskeho 1203, 50005, Hradec Kralove, Czech Republic
| | - Eva Novotná
- Department of Biochemical Sciences, Charles University, Faculty of Pharmacy, Akademika Heyrovskeho 1203, 50005, Hradec Kralove, Czech Republic
| | - Andrew Haddad
- Department of Biochemical Sciences, Charles University, Faculty of Pharmacy, Akademika Heyrovskeho 1203, 50005, Hradec Kralove, Czech Republic
| | - Melodie Haddad
- Department of Biochemical Sciences, Charles University, Faculty of Pharmacy, Akademika Heyrovskeho 1203, 50005, Hradec Kralove, Czech Republic
| | - Ramon Portillo
- Department of Pharmacology, Charles University, Faculty of Pharmacy, Akademika Heyrovskeho 1203, 50005, Hradec Kralove, Czech Republic
| | - Jakub Hofman
- Department of Pharmacology, Charles University, Faculty of Pharmacy, Akademika Heyrovskeho 1203, 50005, Hradec Kralove, Czech Republic
| | - Vladimír Wsól
- Department of Biochemical Sciences, Charles University, Faculty of Pharmacy, Akademika Heyrovskeho 1203, 50005, Hradec Kralove, Czech Republic.
| |
Collapse
|
17
|
Current Status and Trends of Research on Anthracycline-Induced Cardiotoxicity from 2002 to 2021: A Twenty-Year Bibliometric and Visualization Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6260243. [PMID: 35993025 PMCID: PMC9388240 DOI: 10.1155/2022/6260243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 07/24/2022] [Indexed: 12/30/2022]
Abstract
Anthracyclines constitute the cornerstone of numerous chemotherapy regimens for various cancers. However, the clinical application of anthracyclines is significantly limited to their dose-dependent cardiotoxicity. A comprehensive understanding of the current status of anthracycline-induced cardiotoxicity is necessary for in-depth research and optimal clinical protocols. Bibliometric analysis is widely applied in depicting development trends and tracking frontiers of a specific field. The present study is aimed at revealing the status and trends of anthracycline-induced cardiotoxicity during the past two decades by employing bibliometric software including R-bibliometric, VOSviewer, and CiteSpace. A total of 3504 publications concerning anthracycline-induced cardiotoxicity from 2002 to 2021 were collected from the Web of Science Core Collection database. Results showed significant growth in annual yields from 90 records in 2002 to 304 papers in 2021. The United States was the most productive country with the strongest collaboration worldwide in the field. Charles University in the Czech Republic was the institution that contributed the most papers, while 7 of the top 10 productive institutions were from the United States. The United States Department of Health and Human Services and the National Institutes of Health are the two agencies that provide financial support for more than 50% of sponsored publications. The research categories of included publications mainly belong to Oncology and Cardiac Cardiovascular Systems. The Journal of Clinical Oncology had a comprehensive impact on this research field with the highest IF value and many publications. Simunek Tomas from Charles University contributed the most publications, while Lipshultz Steven E. from the State University of New York possessed the highest H-index. In addition, the future research frontiers of anthracycline-induced cardiotoxicity might include early detection, pharmacogenomics, molecular mechanism, and cardiooncology. The present bibliometric analysis may provide a valuable reference for researchers and practitioners in future research directions.
Collapse
|
18
|
Thiosemicarbazones Can Act Synergistically with Anthracyclines to Downregulate CHEK1 Expression and Induce DNA Damage in Cell Lines Derived from Pediatric Solid Tumors. Int J Mol Sci 2022; 23:ijms23158549. [PMID: 35955683 PMCID: PMC9369312 DOI: 10.3390/ijms23158549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/10/2022] Open
Abstract
Anticancer therapy by anthracyclines often leads to the development of multidrug resistance (MDR), with subsequent treatment failure. Thiosemicarbazones have been previously suggested as suitable anthracycline partners due to their ability to overcome drug resistance through dual Pgp-dependent cytotoxicity-inducing effects. Here, we focused on combining anthracyclines (doxorubicin, daunorubicin, and mitoxantrone) and two thiosemicarbazones (DpC and Dp44mT) for treating cell types derived from the most frequent pediatric solid tumors. Our results showed synergistic effects for all combinations of treatments in all tested cell types. Nevertheless, further experiments revealed that this synergism was independent of Pgp expression but rather resulted from impaired DNA repair control leading to cell death via mitotic catastrophe. The downregulation of checkpoint kinase 1 (CHEK1) expression by thiosemicarbazones and the ability of both types of agents to induce double-strand breaks in DNA may explain the Pgp-independent synergism between anthracyclines and thiosemicarbazones. Moreover, the concomitant application of these agents was found to be the most efficient approach, achieving the strongest synergistic effect with lower concentrations of these drugs. Overall, our study identified a new mechanism that offers an avenue for combining thiosemicarbazones with anthracyclines to treat tumors regardless the Pgp status.
Collapse
|
19
|
Effects of hsa-miR-28-5p on Adriamycin Sensitivity in Diffuse Large B-Cell Lymphoma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4290994. [PMID: 35873635 PMCID: PMC9300279 DOI: 10.1155/2022/4290994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 12/02/2022]
Abstract
Background Adriamycin (doxorubicin) is an important traditional drug that exhibits cytotoxicity in Diffuse Large B-cell Lymphoma (DLBCL). Doxorubicin affects the DLBCL cells at all stages of their cell cycle. Combined with our previous results, this study discovered that the overexpression of hsa-miR-28-5p inhibited the proliferation, promoted apoptosis, and triggered cell cycle arrest at the S-phase in DLBCL cells. However, the effect of (Homo sapiens, hsa)-microRNA (miR)-28-5p on doxorubicin sensitivity in DLBCL has not been investigated. This study aims to reveal the effects of hsa-miR-28-5p on doxorubicin sensitivity at the level of DLBCL cells. Methods To determine the optimal concentration of doxorubicin, different concentrations of doxorubicin were used to treat DLBCL cells. CCK-8 assay was used to detect the proliferation of DLBCL cells. The hsa-miR-28-5p-mimic NC and hsa-miR-28-5p mimic were transfected to doxorubicin-mediated DLBCL cells. Simultaneously, blank control groups were set up. The cells were cultured and transfected for 24 h. Next, each group was administered with different concentrations of doxorubicin and cultured again for 24 h to observe the effects of hsa-miR-28-5p on doxorubicin sensitivity at different times. The proliferation, early apoptosis, and late apoptosis in DLBCL cells were determined using soft agar colony-forming assay, mitochondrial membrane potential assay, and caspase-3 activity assay, respectively. The apoptosis and cell cycle were explored using Annexin V-PE/7-AAD and PI/RNase staining buffer, respectively. We speculated that PD-L1 might be involved in the effect of hsa-miR-28-5p on the sensitivity of adriamycin (doxorubicin) in the DLBCL cells. Hence, we performed immunohistochemistry (IHC) to determine PD-L1 expression within formalin-fixed paraffin-embedded (FFPE) samples from 52 DLBCL cases. Results The optimal concentration of doxorubicin targeting DLBCL cells was found to be 3.028 μmol/l. The effect of doxorubicin on DLBCL cells was time- and concentration-dependent. hsa-miR-28-5p mimic + doxorubicin remarkably decreased proliferation of DLBCL. DLBCL cell apoptosis rate was the highest in hsa-miR-28-5p mimic + doxorubicin group. Apart from that, hsa-miR-28-5p mimic plus doxorubicin had the best effect in promoting DLBCL cell apoptosis. After the intervention of hsa-miR-28-5p mimic + doxorubicin on DLBCL cells, the cell cycle was arrested in the S-phase and DNA synthesis was blocked. hsa-miR-28-5p mimic + doxorubicin could regulate the cycle of DLBCL cells. As a result, overexpression of hsa-miR-28-5p combined with doxorubicin is possibly involved in the development of DLBCL by affecting the proliferation, apoptosis, and cycle of DLBCL cells. PD-L1 showed an association with the prognosis of DLBCL patients. Combining with the literature, this suggested hsa-miR-28-5p may influence DLBCL occurrence and therapeutic effect by regulating the PD-L1 level. Conclusion The combination of hsa-miR-28-5p mimic and doxorubicin may be considered more effective in inhibiting growth, arresting the cell cycle, and promoting cell apoptosis of DLBCL cells compared to using doxorubicin alone. The effects of doxorubicin on DLBCL cells were found to be time- and concentration-dependent. The overexpression of hsa-miR-28-5p enhanced the effect of doxorubicin on DLBCL cells, which may be attributed to the regulation of PD-L1 levels.
Collapse
|
20
|
Elton TS, Hernandez VA, Carvajal-Moreno J, Wang X, Ipinmoroti D, Yalowich JC. Intronic Polyadenylation in Acquired Cancer Drug Resistance Circumvented by Utilizing CRISPR/Cas9 with Homology-Directed Repair: The Tale of Human DNA Topoisomerase IIα. Cancers (Basel) 2022; 14:cancers14133148. [PMID: 35804920 PMCID: PMC9265003 DOI: 10.3390/cancers14133148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary DNA topoisomerase IIα (170 kDa, TOP2α/170) resolves nucleic acid topological entanglements by generating transient double-strand DNA breaks. TOP2α inhibitors/poisons stabilize TOP2α-DNA covalent complexes resulting in persistent DNA damage and are frequently utilized to treat a variety of cancers. Acquired resistance to these chemotherapeutic agents is often associated with decreased TOP2α/170 expression levels. Studies have demonstrated that a reduction in TOP2α/170 results from a type of alternative polyadenylation designated intronic polyadenylation (IPA). As a consequence of IPA, variant TOP2α mRNA transcripts have been characterized that have resulted in the translation of C-terminal truncated TOP2α isoforms with altered biological activities. In this paper, an example is discussed where circumvention of acquired TOP2α-mediated drug resistance was achieved by utilizing CRISPR/Cas9 specific gene editing of an exon/intron boundary through homology directed repair (HDR) to reduce TOP2α IPA. These results illustrate the therapeutic potential of CRISPR/Cas9/HDR to impact drug resistance associated with aberrant IPA. Abstract Intronic polyadenylation (IPA) plays a critical role in malignant transformation, development, progression, and cancer chemoresistance by contributing to transcriptome/proteome alterations. DNA topoisomerase IIα (170 kDa, TOP2α/170) is an established clinical target for anticancer agents whose efficacy is compromised by drug resistance often associated with a reduction of nuclear TOP2α/170 levels. In leukemia cell lines with acquired resistance to TOP2α-targeted drugs and reduced TOP2α/170 expression, variant TOP2α mRNA transcripts have been reported due to IPA that resulted in the translation of C-terminal truncated isoforms with altered nuclear-cytoplasmic distribution or heterodimerization with wild-type TOP2α/170. This review provides an overview of the various mechanisms regulating pre-mRNA processing and alternative polyadenylation, as well as the utilization of CRISPR/Cas9 specific gene editing through homology directed repair (HDR) to decrease IPA when splice sites are intrinsically weak or potentially mutated. The specific case of TOP2α exon 19/intron 19 splice site editing is discussed in etoposide-resistant human leukemia K562 cells as a tractable strategy to circumvent acquired TOP2α-mediated drug resistance. This example supports the importance of aberrant IPA in acquired drug resistance to TOP2α-targeted drugs. In addition, these results demonstrate the therapeutic potential of CRISPR/Cas9/HDR to impact drug resistance associated with aberrant splicing/polyadenylation.
Collapse
|
21
|
Zhang Y, You C, Pei Y, Yang F, Li D, Jiang YZ, Shao Z. Integration of radiogenomic features for early prediction of pathological complete response in patients with triple-negative breast cancer and identification of potential therapeutic targets. Lab Invest 2022; 20:256. [PMID: 35672824 PMCID: PMC9171937 DOI: 10.1186/s12967-022-03452-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/20/2022] [Indexed: 12/28/2022]
Abstract
Background We established a radiogenomic model to predict pathological complete response (pCR) in triple-negative breast cancer (TNBC) and explored the association between high-frequency mutations and drug resistance. Methods From April 2018 to September 2019, 112 patients who had received neoadjuvant chemotherapy were included. We randomly split the study population into training and validation sets (2:1 ratio). Contrast-enhanced magnetic resonance imaging scans were obtained at baseline and after two cycles of treatment and were used to extract quantitative radiomic features and to construct two radiomics-only models using a light gradient boosting machine. By incorporating the variant allele frequency features obtained from baseline core tissues, a radiogenomic model was constructed to predict pCR. Additionally, we explored the association between recurrent mutations and drug resistance. Results The two radiomics-only models showed similar performance with AUCs of 0.71 and 0.73 (p = 0.55). The radiogenomic model had a higher predictive ability than the radiomics-only model in the validation set (p = 0.04), with a corresponding AUC of 0.87 (0.73–0.91). Two highly frequent mutations were selected after comparing the mutation sites of pCR and non-pCR populations. The MED23 mutation p.P394H caused epirubicin resistance in vitro (p < 0.01). The expression levels of γ-H2A.X, p-ATM and p-CHK2 in MED23 p.P394H cells were significantly lower than those in wild type cells (p < 0.01). In the HR repair system, the GFP positivity rate of MED23 p.P394H cells was higher than that in wild-type cells (p < 0.01). Conclusions The proposed radiogenomic model has the potential to accurately predict pCR in TNBC patients. Epirubicin resistance after MED23 p.P394H mutation might be affected by HR repair through regulation of the p-ATM-γ-H2A.X-p-CHK2 pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03452-1.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui District, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Chao You
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Yuchen Pei
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Fan Yang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui District, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Daqiang Li
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui District, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui District, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Zhimin Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui District, Shanghai, People's Republic of China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
22
|
Tőkés AM, Vári-Kakas S, Kulka J, Törőcsik B. Tumor Glucose and Fatty Acid Metabolism in the Context of Anthracycline and Taxane-Based (Neo)Adjuvant Chemotherapy in Breast Carcinomas. Front Oncol 2022; 12:850401. [PMID: 35433453 PMCID: PMC9008716 DOI: 10.3389/fonc.2022.850401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is characterized by considerable metabolic diversity. A relatively high percentage of patients diagnosed with breast carcinoma do not respond to standard-of-care treatment, and alteration in metabolic pathways nowadays is considered one of the major mechanisms responsible for therapeutic resistance. Consequently, there is an emerging need to understand how metabolism shapes therapy response, therapy resistance and not ultimately to analyze the metabolic changes occurring after different treatment regimens. The most commonly applied neoadjuvant chemotherapy regimens in breast cancer contain an anthracycline (doxorubicin or epirubicin) in combination or sequentially administered with taxanes (paclitaxel or docetaxel). Despite several efforts, drug resistance is still frequent in many types of breast cancer, decreasing patients’ survival. Understanding how tumor cells rapidly rewire their signaling pathways to persist after neoadjuvant cancer treatment have to be analyzed in detail and in a more complex system to enable scientists to design novel treatment strategies that target different aspects of tumor cells and tumor resistance. Tumor heterogeneity, the rapidly changing environmental context, differences in nutrient use among different cell types, the cooperative or competitive relationships between cells pose additional challenges in profound analyzes of metabolic changes in different breast carcinoma subtypes and treatment protocols. Delineating the contribution of metabolic pathways to tumor differentiation, progression, and resistance to different drugs is also the focus of research. The present review discusses the changes in glucose and fatty acid pathways associated with the most frequently applied chemotherapeutic drugs in breast cancer, as well the underlying molecular mechanisms and corresponding novel therapeutic strategies.
Collapse
Affiliation(s)
- Anna Mária Tőkés
- 2nd Department of Pathology, Semmelweis University Budapest, Budapest, Hungary
- *Correspondence: Anna Mária Tőkés,
| | - Stefan Vári-Kakas
- Department of Computers and Information Technology, Faculty of Electrical Engineering and Information Technology, University of Oradea, Oradea, Romania
| | - Janina Kulka
- 2nd Department of Pathology, Semmelweis University Budapest, Budapest, Hungary
| | - Beáta Törőcsik
- Department of Biochemistry, Semmelweis University Budapest, Budapest, Hungary
| |
Collapse
|
23
|
Saha T, Lukong KE. Breast Cancer Stem-Like Cells in Drug Resistance: A Review of Mechanisms and Novel Therapeutic Strategies to Overcome Drug Resistance. Front Oncol 2022; 12:856974. [PMID: 35392236 PMCID: PMC8979779 DOI: 10.3389/fonc.2022.856974] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most frequent type of malignancy in women worldwide, and drug resistance to the available systemic therapies remains a major challenge. At the molecular level, breast cancer is heterogeneous, where the cancer-initiating stem-like cells (bCSCs) comprise a small yet distinct population of cells within the tumor microenvironment (TME) that can differentiate into cells of multiple lineages, displaying varying degrees of cellular differentiation, enhanced metastatic potential, invasiveness, and resistance to radio- and chemotherapy. Based on the expression of estrogen and progesterone hormone receptors, expression of human epidermal growth factor receptor 2 (HER2), and/or BRCA mutations, the breast cancer molecular subtypes are identified as TNBC, HER2 enriched, luminal A, and luminal B. Management of breast cancer primarily involves resection of the tumor, followed by radiotherapy, and systemic therapies including endocrine therapies for hormone-responsive breast cancers; HER2-targeted therapy for HER2-enriched breast cancers; chemotherapy and poly (ADP-ribose) polymerase inhibitors for TNBC, and the recent development of immunotherapy. However, the complex crosstalk between the malignant cells and stromal cells in the breast TME, rewiring of the many different signaling networks, and bCSC-mediated processes, all contribute to overall drug resistance in breast cancer. However, strategically targeting bCSCs to reverse chemoresistance and increase drug sensitivity is an underexplored stream in breast cancer research. The recent identification of dysregulated miRNAs/ncRNAs/mRNAs signatures in bCSCs and their crosstalk with many cellular signaling pathways has uncovered promising molecular leads to be used as potential therapeutic targets in drug-resistant situations. Moreover, therapies that can induce alternate forms of regulated cell death including ferroptosis, pyroptosis, and immunotherapy; drugs targeting bCSC metabolism; and nanoparticle therapy are the upcoming approaches to target the bCSCs overcome drug resistance. Thus, individualizing treatment strategies will eliminate the minimal residual disease, resulting in better pathological and complete response in drug-resistant scenarios. This review summarizes basic understanding of breast cancer subtypes, concept of bCSCs, molecular basis of drug resistance, dysregulated miRNAs/ncRNAs patterns in bCSCs, and future perspective of developing anticancer therapeutics to address breast cancer drug resistance.
Collapse
Affiliation(s)
- Taniya Saha
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kiven Erique Lukong
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
24
|
Shen M, Yang L, Lei T, Zhang P, Xiao L, Cao S, Chen F, Li L, Ye F, Bu H. Correlation between CA12 and TFF3 and their prediction value of neoadjuvant chemotherapy response in breast cancer. J Clin Pharm Ther 2022; 47:609-618. [PMID: 35229335 DOI: 10.1111/jcpt.13580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/01/2021] [Accepted: 11/16/2021] [Indexed: 02/05/2023]
Abstract
WHAT IS KNOWN AND OBJECTIVE Compared with other molecular subtypes, hormone receptor-positive breast cancer often shows worse neoadjuvant chemotherapy efficacy. This study aims to explore the relationship between the oestrogen receptor (ER)-related genes carbonic anhydrase 12 (CA12) and trefoil factor 3 (TFF3) and their predictive value of neoadjuvant chemotherapy for breast cancer. METHODS We investigated the relationships between CA12, TFF3 and ER status and their predictive value of anthracycline-taxane neoadjuvant chemotherapy in 115 female breast cancer patients via real-time polymerase chain reaction (RT-PCR) and 4 GEO datasets: GSE41998, GSE25065, GSE20194 and GSE20271. Then, the effects of CA12 and TFF3 on the chemotherapy drugs doxorubicin and docetaxel were verified in vitro in the breast cancer cell lines MCF-7 and BT474. RESULTS AND DISCUSSION The GEO datasets and RT-PCR results showed that the relative expression of both CA12 and TFF3 was higher in oestrogen receptor-positive samples compared with the other samples (p < 0.05). CA12 was significantly correlated with TFF3 (p < 0.05). In MCF-7 cells, inhibition of TFF3 induced downregulation of CA12 and ESR1 (p < 0.05) at both the mRNA and the protein levels, while inhibition of CA12 also downregulated TFF3 and ESR1 (p < 0.05). In BT474 cells, inhibition of TFF3 downregulated CA12 and ESR1 (p < 0.05) at both the mRNA and the protein levels, while inhibition of CA12 led to slight upregulation of TFF3 and ESR1 (p > 0.05). Moreover, GEO datasets and RT-PCR results showed that CA12 and TFF3 were more highly expressed in nonpathological complete response (non-pCR) samples than in pCR samples (p < 0.05). Cell viability assays of MCF-7 and BT474 cells showed that inhibiting CA12 and TFF3 could enhance sensitivity to doxorubicin and docetaxel (p < 0.05). WHAT IS NEW AND CONCLUSION CA12 and TFF3 were correlated with each other, and their high expression might explain the worse efficacy of neoadjuvant chemotherapy in oestrogen receptor-positive breast cancer patients.
Collapse
Affiliation(s)
- Mengjia Shen
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Libo Yang
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Lei
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Peichuan Zhang
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Lab of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Xiao
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shiyu Cao
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fei Chen
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Li
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Ye
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Lab of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Bu
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Lab of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
25
|
Tanaka S, Takizawa K, Nakamura F. One-step visualization of natural cell activities in non-labeled living spheroids. Sci Rep 2022; 12:1500. [PMID: 35087105 PMCID: PMC8795241 DOI: 10.1038/s41598-022-05347-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/11/2022] [Indexed: 11/09/2022] Open
Abstract
3D cultured cell aggregates, including spheroids, reflect the gene expression patterns of living tissues/organs. Mass preparation of spheroids enables high-throughput drug screening (HTS). However, conventional optical imaging of spheroids makes it difficult to obtain sufficient resolution of individual living cells in the thick cellular stack. Rapid and accurate assessment of cellular responses in spheroids is required for effective drug screening. Here, we show that negative contrast imaging (NCI) of spheroids overcomes this issue. Hydrophilic fluorescent dye added into the culture medium rapidly diffused into the intercellular space of living spheroids within a few minutes. Confocal microscopy showed the NCI of individual cells as dark and detailed contours clearly separated with fluorescence signals in the intercellular space. NCI enables the visualization of the alteration of cell morphology after anti-tumor drug application to living spheroids and the measurement of the fluorescent dye diffusion rate without any complicated pretreatments. Using this system, we found that the antitumor drug doxorubicin reduced the intercellular space of spheroids consisting of the human hepatocyte carcinoma cell line HepG2, through the activation of TGF-β signaling and upregulation of ECM protein expression, implicating a drug resistance mechanism. Collectively, the combination of NCI of spheroids and HTS may enhance the efficiency of drug discovery.
Collapse
Affiliation(s)
- Shotaro Tanaka
- Department of Biochemistry, Tokyo Women's Medical University School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Kotaro Takizawa
- Department of Biochemistry, Tokyo Women's Medical University School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Fumio Nakamura
- Department of Biochemistry, Tokyo Women's Medical University School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| |
Collapse
|
26
|
Kang DW, Wilson RL, Christopher CN, Normann AJ, Barnes O, Lesansee JD, Choi G, Dieli-Conwright CM. Exercise Cardio-Oncology: Exercise as a Potential Therapeutic Modality in the Management of Anthracycline-Induced Cardiotoxicity. Front Cardiovasc Med 2022; 8:805735. [PMID: 35097024 PMCID: PMC8796963 DOI: 10.3389/fcvm.2021.805735] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/23/2021] [Indexed: 12/19/2022] Open
Abstract
Anthracyclines are one of the most effective chemotherapy agents and have revolutionized cancer therapy. However, anthracyclines can induce cardiac injuries through ‘multiple-hits', a series of cardiovascular insults coupled with lifestyle risk factors, which increase the risk of developing short- and long-term cardiac dysfunction and cardiovascular disease that potentially lead to premature mortality following cancer remission. Therefore, the management of anthracycline-induced cardiotoxicity is a serious unmet clinical need. Exercise therapy, as a non-pharmacological intervention, stimulates numerous biochemical and physiologic adaptations, including cardioprotective effects, through the cardiovascular system and cardiac muscles, where exercise has been proposed to be an effective clinical approach that can protect or reverse the cardiotoxicity from anthracyclines. Many preclinical and clinical trials demonstrate the potential impacts of exercise on cardiotoxicity; however, the underlying mechanisms as well as how to implement exercise in clinical settings to improve or protect against long-term cardiovascular disease outcomes are not clearly defined. In this review, we summarize the current evidence in the field of “exercise cardio-oncology” and emphasize the utilization of exercise to prevent and manage anthracycline-induced cardiotoxicities across high-risk and vulnerable populations diagnosed with cancer.
Collapse
Affiliation(s)
- Dong-Woo Kang
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Rebekah L. Wilson
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Cami N. Christopher
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA, United States
| | - Amber J. Normann
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Health Sciences, Boston University, Boston, MA, United States
| | - Oscar Barnes
- Green Templeton College, University of Oxford, Oxford, United Kingdom
| | - Jordan D. Lesansee
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | | | - Christina M. Dieli-Conwright
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- *Correspondence: Christina M. Dieli-Conwright
| |
Collapse
|
27
|
Yang Z, Deng W, Zhang X, An Y, Liu Y, Yao H, Zhang Z. Opportunities and Challenges of Nanoparticles in Digestive Tumours as Anti-Angiogenic Therapies. Front Oncol 2022; 11:789330. [PMID: 35083147 PMCID: PMC8784389 DOI: 10.3389/fonc.2021.789330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/10/2021] [Indexed: 01/04/2023] Open
Abstract
Digestive tumours, a common kind of malignancy worldwide, have recently led to the most tumour-related deaths. Angiogenesis, the process of forming novel blood vessels from pre-existing vessels, is involved in various physiological and pathological processes in the body. Many studies suggest that abnormal angiogenesis plays an important role in the growth, progression, and metastasis of digestive tumours. Therefore, anti-angiogenic therapy is considered a promising target for improving therapeutic efficacy. Traditional strategies such as bevacizumab and regorafenib can target and block the activity of proangiogenic factors to treat digestive tumours. However, due to resistance and some limitations, such as poor pharmacokinetics, their efficacy is not always satisfactory. In recent years, nanotechnology-based anti-angiogenic therapies have emerged as a new way to treat digestive tumours. Compared with commonly used drugs, nanoparticles show great potential in tumour targeted delivery, controlled drug release, prolonged cycle time, and increased drug bioavailability. Therefore, anti-angiogenic nanoparticles may be an effective complementary therapy to treat digestive tumours. In this review, we outline the different mechanisms of angiogenesis, the effects of nanoparticles on angiogenesis, and their biomedical applications in various kinds of digestive tumours. In addition, the opportunities and challenges are briefly discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Hongwei Yao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University and National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University and National Clinical Research Center for Digestive Diseases, Beijing, China
| |
Collapse
|
28
|
Barbălată CI, Porfire AS, Sesarman A, Rauca VF, Banciu M, Muntean D, Știufiuc R, Moldovan A, Moldovan C, Tomuță I. A Screening Study for the Development of Simvastatin-Doxorubicin Liposomes, a Co-Formulation with Future Perspectives in Colon Cancer Therapy. Pharmaceutics 2021; 13:pharmaceutics13101526. [PMID: 34683821 PMCID: PMC8537800 DOI: 10.3390/pharmaceutics13101526] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 01/25/2023] Open
Abstract
An increasing number of studies published so far have evidenced the benefits of Simvastatin (SIM) and Doxorubicin (DOX) co-treatment in colorectal cancer. In view of this, the current study aimed to investigate the pharmaceutical development of liposomes co-encapsulating SIM and DOX, by implementing the Quality by Design (QbD) concept, as a means to enhance the antiproliferative effect of the co-formulation on C26 murine colon cancer cells co-cultured with macrophages. It is known that the quality profile of liposomes is dependent on the critical quality attributes (CQAs) of liposomes (drug entrapped concentration, encapsulation efficiency, size, zeta potential, and drug release profile), which are, in turn, directly influenced by various formulation factors and processing parameters. By using the design of experiments, it was possible to outline the increased variability of CQAs in relation to formulation factors and identify by means of statistical analysis the material attributes that are critical (phospholipids, DOX and SIM concentration) for the quality of the co-formulation. The in vitro studies performed on a murine colon cancer cell line highlighted the importance of delivering the optimal drug ratio at the target site, since the balance antiproliferative vs. pro-proliferative effects can easily be shifted when the molar ratio between DOX and SIM changes.
Collapse
Affiliation(s)
- Cristina Ioana Barbălată
- Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 41 Victor Babes Street, 400012 Cluj-Napoca, Romania; (C.I.B.); (D.M.); (I.T.)
| | - Alina Silvia Porfire
- Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 41 Victor Babes Street, 400012 Cluj-Napoca, Romania; (C.I.B.); (D.M.); (I.T.)
- Correspondence:
| | - Alina Sesarman
- Department of Molecular Biology and Biotechnology, Centre for Systems Biology, Biodiversity and Bioresources (3B), Faculty of Biology and Geology, Babes-Bolyai University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania; (A.S.); (V.-F.R.); (M.B.)
- Molecular Biology Center, Institute for Interdisciplinary Research in Bio-Nano-Sciences of Babes-Bolyai University, 42 Treboniu Laurian Street, 400271 Cluj-Napoca, Romania
| | - Valentin-Florian Rauca
- Department of Molecular Biology and Biotechnology, Centre for Systems Biology, Biodiversity and Bioresources (3B), Faculty of Biology and Geology, Babes-Bolyai University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania; (A.S.); (V.-F.R.); (M.B.)
- Molecular Biology Center, Institute for Interdisciplinary Research in Bio-Nano-Sciences of Babes-Bolyai University, 42 Treboniu Laurian Street, 400271 Cluj-Napoca, Romania
| | - Manuela Banciu
- Department of Molecular Biology and Biotechnology, Centre for Systems Biology, Biodiversity and Bioresources (3B), Faculty of Biology and Geology, Babes-Bolyai University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania; (A.S.); (V.-F.R.); (M.B.)
- Molecular Biology Center, Institute for Interdisciplinary Research in Bio-Nano-Sciences of Babes-Bolyai University, 42 Treboniu Laurian Street, 400271 Cluj-Napoca, Romania
| | - Dana Muntean
- Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 41 Victor Babes Street, 400012 Cluj-Napoca, Romania; (C.I.B.); (D.M.); (I.T.)
| | - Rareș Știufiuc
- MedFuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, 400337 Cluj-Napoca, Romania; (R.Ș.); (A.M.); (C.M.)
| | - Alin Moldovan
- MedFuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, 400337 Cluj-Napoca, Romania; (R.Ș.); (A.M.); (C.M.)
| | - Cristian Moldovan
- MedFuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, 400337 Cluj-Napoca, Romania; (R.Ș.); (A.M.); (C.M.)
| | - Ioan Tomuță
- Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 41 Victor Babes Street, 400012 Cluj-Napoca, Romania; (C.I.B.); (D.M.); (I.T.)
| |
Collapse
|
29
|
Pukhov SA, Semakov AV, Globa AA, Anikina LV, Afanasyeva SV, Yandulova EY, Aleksandrova YR, Neganova ME, Klochkov SG. New Conjugates of Daunorubicin with Sesquiterpene Lactones and Their Biological Activity. ChemistrySelect 2021. [DOI: 10.1002/slct.202102244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sergey A. Pukhov
- Laboratory of natural compounds Institute of Physiologically Active Compounds of the Russian Academy of Sciences 1 Severnyi Proezd Chernogolovka 142432 Russia
| | - Alexey V. Semakov
- Laboratory of natural compounds Institute of Physiologically Active Compounds of the Russian Academy of Sciences 1 Severnyi Proezd Chernogolovka 142432 Russia
| | - Anastasiya A. Globa
- Laboratory of natural compounds Institute of Physiologically Active Compounds of the Russian Academy of Sciences 1 Severnyi Proezd Chernogolovka 142432 Russia
| | - Lada V. Anikina
- Laboratory of natural compounds Institute of Physiologically Active Compounds of the Russian Academy of Sciences 1 Severnyi Proezd Chernogolovka 142432 Russia
| | - Svetlana V. Afanasyeva
- Laboratory of natural compounds Institute of Physiologically Active Compounds of the Russian Academy of Sciences 1 Severnyi Proezd Chernogolovka 142432 Russia
| | - Ekaterina Y. Yandulova
- Laboratory of natural compounds Institute of Physiologically Active Compounds of the Russian Academy of Sciences 1 Severnyi Proezd Chernogolovka 142432 Russia
| | - Yulia R. Aleksandrova
- Laboratory of natural compounds Institute of Physiologically Active Compounds of the Russian Academy of Sciences 1 Severnyi Proezd Chernogolovka 142432 Russia
| | - Margarita E. Neganova
- Laboratory of natural compounds Institute of Physiologically Active Compounds of the Russian Academy of Sciences 1 Severnyi Proezd Chernogolovka 142432 Russia
| | - Sergey G. Klochkov
- Laboratory of natural compounds Institute of Physiologically Active Compounds of the Russian Academy of Sciences 1 Severnyi Proezd Chernogolovka 142432 Russia
| |
Collapse
|
30
|
Sathiyaseelan A, Saravanakumar K, Mariadoss AVA, Wang MH. pH-controlled nucleolin targeted release of dual drug from chitosan-gold based aptamer functionalized nano drug delivery system for improved glioblastoma treatment. Carbohydr Polym 2021; 262:117907. [PMID: 33838795 DOI: 10.1016/j.carbpol.2021.117907] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/19/2020] [Accepted: 03/03/2021] [Indexed: 12/18/2022]
Abstract
This study developed the pH, and over-expressed nucleolin receptor responsive nano-drug delivery system (nDDS) composed by bio-synthesized gold nanoparticles (Au NPs), chitosan (CS) with aptamer (Apt) to deliver the 5-fluorouracil (5FU) and doxorubicin (Dox) for the improved glioblastoma treatment. The characterization results demonstrated that Apt-Dox-CS-Au-5FU NPs were monodispersed in nature with an average hydrodynamic particle size of 196.2 ± 2.89 nm and zeta potential of 16.26 ± 0.51 mV. The drug release, drug encapsulation efficiency (DEE), and loading efficiency (DLE) were measured by HPLC. The pH-responsive dual drug release was instigated the higher glioblastoma cell death instead of the single drug release through G0/G1 phase cell cycle arrest. In addition, the internalization of Apt-Dox-CS-Au-5FU NPs in cell organelles was affirmed by bio-TEM analysis. Overall, this work revealed the newly designed drug-loaded smart nDDS improved the glioblastoma treatments.
Collapse
Affiliation(s)
- Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 200-701, Republic of Korea.
| | - Kandasamy Saravanakumar
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 200-701, Republic of Korea.
| | | | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 200-701, Republic of Korea.
| |
Collapse
|
31
|
N-Alkylation of Anthracycline Antibiotics by Natural Sesquiterpene Lactones as a Way to Obtain Antitumor Agents with Reduced Side Effects. Biomedicines 2021; 9:biomedicines9050547. [PMID: 34068225 PMCID: PMC8153121 DOI: 10.3390/biomedicines9050547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 12/25/2022] Open
Abstract
Anthracycline antitumor antibiotics are one of the promising classes of chemotherapeutic agents for cancer treatment. The main deterrent to their use is high toxicity to a healthy environment, including cumulative cardiotoxicity. In our work, bipharmacophore molecules containing in their structure a fragment of the known anthracycline antibiotics daunorubicin and doxorubicin and natural sesquiterpene lactones were obtained for the first time. When studying the biological activity of the synthesized compounds, it was found that with equal and, in some cases, higher cytotoxicity and glycolysis inhibition by anthracycline antibiotics conjugates with sesquiterpene lactones in comparison with doxo- and daunorubicin, a reduced damaging effect on the functioning of rat heart mitochondria was observed. The results obtained allow us to confirm the assumption that the chemical modification of the anthracycline antibiotics molecules doxo- and daunorubicin by natural sesquiterpene lactones can be a promising strategy for creating potential antitumor chemotherapeutic drugs with a pronounced cytotoxic effect on tumor cells and a reduced damaging effect on healthy cells of the human organism.
Collapse
|
32
|
Kelbert M, Pereira CS, Daronch NA, Cesca K, Michels C, de Oliveira D, Soares HM. Laccase as an efficacious approach to remove anticancer drugs: A study of doxorubicin degradation, kinetic parameters, and toxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124520. [PMID: 33239208 DOI: 10.1016/j.jhazmat.2020.124520] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
The degradation of an anticancer drug by laccase was investigated for the first time, bringing a new approach to treat these hazardous substances through the direct enzymatic application. Degradations of doxorubicin by laccase were performed in different enzymatic concentrations, pH values and temperatures through kinetic studies. The highest enzymatic degradation of doxorubicin was achieved at pH 7 and 30 ºC, which resembles effluent characteristics from wastewater treatment plants. Assays were carried out in different doxorubicin concentrations to comprehend the enzymatic kinetics of degradation. Michaelis-Menten kinetic parameters obtained were maximum velocity obtained (Vmax) of 702.8 µgDOX h-1 L-1 and Michaelis-Menten constant (KM) of 4.05 µM, which showed a good affinity for the substrate. The toxicity was evaluated against L-929 cell line, and the degraded doxorubicin solution did not show a reduction in cell viability in the concentration of 250 µg L-1. In contrast, the doxorubicin shows a reduction of 27% in cell viability. Furthermore, in the highest tested concentration (1000 µg L-1), enzymatic degradation reduced in up 41.4% the toxicity of doxorubicin, which indicates laccase degrades doxorubicin to non-toxic compounds. In conclusion, this study provides a new application to laccase since the results showed great potential to remove anticancer drugs from effluents.
Collapse
Affiliation(s)
- Maikon Kelbert
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| | - Camila Senna Pereira
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| | - Naionara Ariete Daronch
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| | - Karina Cesca
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| | - Camila Michels
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| | - Débora de Oliveira
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| | - Hugo Moreira Soares
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| |
Collapse
|
33
|
From Proteomic Mapping to Invasion-Metastasis-Cascade Systemic Biomarkering and Targeted Drugging of Mutant BRAF-Dependent Human Cutaneous Melanomagenesis. Cancers (Basel) 2021; 13:cancers13092024. [PMID: 33922182 PMCID: PMC8122743 DOI: 10.3390/cancers13092024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Despite the recent advances in human malignancy therapy, metastasis and chemoresistance remain the principal causes of cancer-derived deaths. Given the fatal forms of cutaneous metastatic melanoma, we herein employed primary (WM115) and metastatic (WM266-4) melanoma cells, both obtained from the same patient, to identify novel biomarkers and therapeutic agents. Through state-of-the-art technologies including deep proteome landscaping, immunofluorescence phenotyping, and drug toxicity screening, we were able to describe new molecular programs, oncogenic drivers, and drug regimens, controlling the invasion-metastasis cascade during BRAFV600D-dependent melanomagenesis. It proved that proteomic navigation could foster the development of systemic biomarkering and targeted drugging for successful treatment of advanced disease. Abstract Melanoma is classified among the most notoriously aggressive human cancers. Despite the recent progress, due to its propensity for metastasis and resistance to therapy, novel biomarkers and oncogenic molecular drivers need to be promptly identified for metastatic melanoma. Hence, by employing nano liquid chromatography-tandem mass spectrometry deep proteomics technology, advanced bioinformatics algorithms, immunofluorescence, western blotting, wound healing protocols, molecular modeling programs, and MTT assays, we comparatively examined the respective proteomic contents of WM115 primary (n = 3955 proteins) and WM266-4 metastatic (n = 6681 proteins) melanoma cells. It proved that WM115 and WM266-4 cells have engaged hybrid epithelial-to-mesenchymal transition/mesenchymal-to-epithelial transition states, with TGF-β controlling their motility in vitro. They are characterized by different signatures of SOX-dependent neural crest-like stemness and distinct architectures of the cytoskeleton network. Multiple signaling pathways have already been activated from the primary melanoma stage, whereas HIF1α, the major hypoxia-inducible factor, can be exclusively observed in metastatic melanoma cells. Invasion-metastasis cascade-specific sub-routines of activated Caspase-3-triggered apoptosis and LC3B-II-dependent constitutive autophagy were also unveiled. Importantly, WM115 and WM266-4 cells exhibited diverse drug response profiles, with epirubicin holding considerable promise as a beneficial drug for metastatic melanoma clinical management. It is the proteome navigation that enables systemic biomarkering and targeted drugging to open new therapeutic windows for advanced disease.
Collapse
|
34
|
Liu RX, Luo RY, Tang MT, Liu YC, Chen ZF, Liang H. The first copper(I) complex of anthrahydrazone with potential ROS scavenging activity showed significant in vitro anticancer activity by inducing apoptosis and autophagy. J Inorg Biochem 2021; 218:111390. [PMID: 33721719 DOI: 10.1016/j.jinorgbio.2021.111390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 12/26/2022]
Abstract
Based on the anticancer pharmacophore of anthrahydrazone and quinoline, a new quinolylanthrahydrazone ligand, 9-AQH (anthracene-9-quinolylhydrazone), was synthesized to further afford four metal complexes, [CoII(9-AQH)(NO3)2(H2O)] (1), [NiII(9-AQH)2(H2O)2]·2NO3 (2), [CuI(9-AQH)2]·NO3 (3), [ZnII(9-AQH)2(NO3)]·NO3 (4), determined by X-ray single crystal diffraction analysis. The reaction of Cu(NO3)2 with 9-AQH formed the stable and repeatable copper(I) complex 3. In vitro screening demonstrated only 3 showed significant and broad-spectrum anticancer activity, indicating that Cu(I) played a key role in exerting the anticancer activity. In solution, Cu(I) was not naturally oxidized to Cu(II) suggested by 1H-NMR (Nuclear Magnetic Resonance) and EPR (Electron Paramagnetic Resonance) analysis. The presence of 3 could also catalyze the H2O2 system to give hydroxyl free radicals, suggested by further EPR and electrophoresis assay. At the cellular level, although no obvious Cu(II) signals were detected and the total ROS (Reactive Oxygen Species) scavenging in the tumor cells treated with 3, the potential redox property between Cu(I)/Cu(II), as a key role, should not be denied for the significant anticancer activity of 3, considering the much complicated circumstance and other reductive substances in cells. The anticancer mechanism of 3 on the most sensitive MGC-803 cells pointed to significant cell apoptosis through mitochondrial pathway, rather than cell cycle arrest. While the autophagy observed in tumor cells treated by 3 suggested its complicated anticancer mechanism, and whether there was an intrinsic correlation still needed to be further investigated.
Collapse
Affiliation(s)
- Rui-Xue Liu
- School of Chemistry & Pharmaceutical Sciences, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Ru-Yi Luo
- School of Chemistry & Pharmaceutical Sciences, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Meng-Ting Tang
- School of Chemistry & Pharmaceutical Sciences, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Yan-Cheng Liu
- School of Chemistry & Pharmaceutical Sciences, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China.
| | - Zhen-Feng Chen
- School of Chemistry & Pharmaceutical Sciences, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Hong Liang
- School of Chemistry & Pharmaceutical Sciences, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China.
| |
Collapse
|
35
|
The effect of acyl chain length and saturation on the interactions of pirarubicin with phosphatidylethanolamines in 2D model urothelial cancer cell membranes. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114633] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
36
|
Zheng Q, Zhang M, Zhou F, Zhang L, Meng X. The Breast Cancer Stem Cells Traits and Drug Resistance. Front Pharmacol 2021; 11:599965. [PMID: 33584277 PMCID: PMC7876385 DOI: 10.3389/fphar.2020.599965] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
Drug resistance is a major challenge in breast cancer (BC) treatment at present. Accumulating studies indicate that breast cancer stem cells (BCSCs) are responsible for the BC drugs resistance, causing relapse and metastasis in BC patients. Thus, BCSCs elimination could reverse drug resistance and improve drug efficacy to benefit BC patients. Consequently, mastering the knowledge on the proliferation, resistance mechanisms, and separation of BCSCs in BC therapy is extremely helpful for BCSCs-targeted therapeutic strategies. Herein, we summarize the principal BCSCs surface markers and signaling pathways, and list the BCSCs-related drug resistance mechanisms in chemotherapy (CT), endocrine therapy (ET), and targeted therapy (TT), and display therapeutic strategies for targeting BCSCs to reverse drug resistance in BC. Even more importantly, more attention should be paid to studies on BCSC-targeted strategies to overcome the drug resistant dilemma of clinical therapies in the future.
Collapse
Affiliation(s)
- Qinghui Zheng
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Mengdi Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou, China
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xuli Meng
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| |
Collapse
|
37
|
Assessment of the Nutraceutical Effects of Oleuropein and the Cytotoxic Effects of Adriamycin, When Administered Alone and in Combination, in MG-63 Human Osteosarcoma Cells. Nutrients 2021; 13:nu13020354. [PMID: 33503913 PMCID: PMC7911555 DOI: 10.3390/nu13020354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
Oleuropein (OLEU) is the most distinguished phenolic compound found in olive fruit and the leaves of Olea europaea L., with several pharmacological properties, including anti-cancer actions. Adriamycin (ADR) is an anthracycline widely used as a chemotherapeutic agent, although it presents significant side effects. The aim of the present study was to investigate the effect of oleuropein alone (20 μg/mL) and in co-treatment with ADR (50 nM), in MG-63 human osteosarcoma cells. Therefore, cellular and molecular techniques, such as MTT assay, flow cytometry, real-time Polymerase Chain Reaction (PCR), western blot and Elisa method, as well as Nuclear Magnetic Resonance (NMR) spectroscopy, were applied to unveil changes in the signal transduction pathways involved in osteosarcoma cells survival. The observed alterations in gene, protein and metabolite levels denote that OLEU not only inhibits MG-63 cells proliferation and potentiates ADR’s cytotoxicity, but also exerts its action, at least in part, through the induction of autophagy.
Collapse
|
38
|
Hernandez VA, Carvajal-Moreno J, Papa JL, Shkolnikov N, Li J, Ozer HG, Yalowich JC, Elton TS. CRISPR/Cas9 Genome Editing of the Human Topoisomerase II α Intron 19 5' Splice Site Circumvents Etoposide Resistance in Human Leukemia K562 Cells. Mol Pharmacol 2021; 99:226-241. [PMID: 33446509 DOI: 10.1124/molpharm.120.000173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/28/2020] [Indexed: 01/17/2023] Open
Abstract
An essential function of DNA topoisomerase IIα (TOP2α; 170 kDa, TOP2α/170) is to resolve DNA topologic entanglements during chromosome disjunction by introducing transient DNA double-stranded breaks. TOP2α/170 is an important target for DNA damage-stabilizing anticancer drugs, whose clinical efficacy is compromised by drug resistance often associated with decreased TOP2α/170 expression. We recently demonstrated that an etoposide-resistant K562 clonal subline, K/VP.5, with reduced levels of TOP2α/170, expresses high levels of a novel C-terminal truncated TOP2α isoform (90 kDa, TOP2α/90). TOP2α/90, the translation product of a TOP2α mRNA that retains a processed intron 19 (I19), heterodimerizes with TOP2α/170 and is a resistance determinant through a dominant-negative effect on drug activity. We hypothesized that genome editing to enhance I19 removal would provide a tractable strategy to circumvent acquired TOP2α-mediated drug resistance. To enhance I19 removal in K/VP.5 cells, CRISPR/Cas9 was used to make changes (GAG//GTAA AC →GAG//GTAA GT ) in the TOP2α gene's suboptimal exon 19/intron 19 5' splice site (E19/I19 5' SS). Gene-edited clones were identified by quantitative polymerase chain reaction and verified by sequencing. Characterization of a clone with all TOP2α alleles edited revealed improved I19 removal, decreased TOP2α/90 mRNA/protein, and increased TOP2α/170 mRNA/protein. Sensitivity to etoposide-induced DNA damage (γH2AX, Comet assays) and growth inhibition was restored to levels comparable to those in parental K562 cells. Together, the results indicate that our gene-editing strategy for optimizing the TOP2α E19/I19 5' SS in K/VP.5 cells circumvents resistance to etoposide and other TOP2α-targeted drugs. SIGNIFICANCE STATEMENT: Results presented here indicate that CRISPR/Cas9 gene editing of a suboptimal exon 19/intron 19 5' splice site in the DNA topoisomerase IIα (TOP2α) gene results in circumvention of acquired drug resistance to etoposide and other TOP2α-targeted drugs in a clonal K562 cell line by enhancing removal of intron 19 and thereby decreasing formation of a truncated TOP2α 90 kDa isoform and increasing expression of full-length TOP2α 170 kDa in these resistant cells. Results demonstrate the importance of RNA processing in acquired drug resistance to TOP2α-targeted drugs.
Collapse
Affiliation(s)
- Victor A Hernandez
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (V.A.H., J.C.-M., J.L.P., J.L., J.C.Y., T.S.E., N.S.) and Department of Biomedical Informatics, College of Medicine (H.G.O), The Ohio State University, Columbus, Ohio
| | - Jessika Carvajal-Moreno
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (V.A.H., J.C.-M., J.L.P., J.L., J.C.Y., T.S.E., N.S.) and Department of Biomedical Informatics, College of Medicine (H.G.O), The Ohio State University, Columbus, Ohio
| | - Jonathan L Papa
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (V.A.H., J.C.-M., J.L.P., J.L., J.C.Y., T.S.E., N.S.) and Department of Biomedical Informatics, College of Medicine (H.G.O), The Ohio State University, Columbus, Ohio
| | - Nicholas Shkolnikov
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (V.A.H., J.C.-M., J.L.P., J.L., J.C.Y., T.S.E., N.S.) and Department of Biomedical Informatics, College of Medicine (H.G.O), The Ohio State University, Columbus, Ohio
| | - Junan Li
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (V.A.H., J.C.-M., J.L.P., J.L., J.C.Y., T.S.E., N.S.) and Department of Biomedical Informatics, College of Medicine (H.G.O), The Ohio State University, Columbus, Ohio
| | - Hatice Gulcin Ozer
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (V.A.H., J.C.-M., J.L.P., J.L., J.C.Y., T.S.E., N.S.) and Department of Biomedical Informatics, College of Medicine (H.G.O), The Ohio State University, Columbus, Ohio
| | - Jack C Yalowich
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (V.A.H., J.C.-M., J.L.P., J.L., J.C.Y., T.S.E., N.S.) and Department of Biomedical Informatics, College of Medicine (H.G.O), The Ohio State University, Columbus, Ohio
| | - Terry S Elton
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (V.A.H., J.C.-M., J.L.P., J.L., J.C.Y., T.S.E., N.S.) and Department of Biomedical Informatics, College of Medicine (H.G.O), The Ohio State University, Columbus, Ohio
| |
Collapse
|
39
|
Olaparib Synergizes the Anticancer Activity of Daunorubicin via Interaction with AKR1C3. Cancers (Basel) 2020; 12:cancers12113127. [PMID: 33114555 PMCID: PMC7693014 DOI: 10.3390/cancers12113127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 02/08/2023] Open
Abstract
Sample summary Anthracyclines (ANT) are anti-tumor agents frequently used for the treatment of various cancers. Unfortunately, their clinical success is overshadowed by the emergence of drug resistance. Metabolism by carbonyl reducing enzymes (CREs) represents a critical mechanism of ANT resistance. Here, we have explored possible interactions of CREs with olaparib, an FDA-approved targeted chemotherapeutic. Although olaparib has been demonstrated to potentiate the antiproliferative effect of ANT in experimental models, the causing mechanisms remain unclear. In our study, we demonstrated that olaparib potently inhibits the AKR1C3 reductase at clinically relevant concentrations. Furthermore, we showed that this interaction mediates the reversal of ANT resistance and thus represents a critical mechanism of the synergy between ANT and olaparib. Our observations represent valuable knowledge that could be transformed into the more effective therapy of AKR1C3-expressing tumors. Abstract Olaparib is a potent poly (ADP-ribose) polymerase inhibitor currently used in targeted therapy for treating cancer cells with BRCA mutations. Here we investigate the possible interference of olaparib with daunorubicin (Daun) metabolism, mediated by carbonyl-reducing enzymes (CREs), which play a significant role in the resistance of cancer cells to anthracyclines. Incubation experiments with the most active recombinant CREs showed that olaparib is a potent inhibitor of the aldo–keto reductase 1C3 (AKR1C3) enzyme. Subsequent inhibitory assays in the AKR1C3-overexpressing cellular model transfected human colorectal carcinoma HCT116 cells, demonstrating that olaparib significantly inhibits AKR1C3 at the intracellular level. Consequently, molecular docking studies have supported these findings and identified the possible molecular background of the interaction. Drug combination experiments in HCT116, human liver carcinoma HepG2, and leukemic KG1α cell lines showed that this observed interaction can be exploited for the synergistic enhancement of Daun’s antiproliferative effect. Finally, we showed that olaparib had no significant effect on the mRNA expression of AKR1C3 in HepG2 and KG1α cells. In conclusion, our data demonstrate that olaparib interferes with anthracycline metabolism, and suggest that this phenomenon might be utilized for combating anthracycline resistance.
Collapse
|
40
|
Gong Y, Hu N, Ma L, Li W, Cheng X, Zhang Y, Zhu Y, Yang Y, Peng X, Zou D, Tian J, Yang L, Mei S, Wang X, Lo CH, Chang J, Hou T, Zhang H, Xu B, Zhong R, Yuan P. ABTB2 Regulatory Variant as Predictor of Epirubicin-Based Neoadjuvant Chemotherapy in Luminal A Breast Cancer. Front Oncol 2020; 10:571517. [PMID: 33102228 PMCID: PMC7545368 DOI: 10.3389/fonc.2020.571517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/26/2020] [Indexed: 12/27/2022] Open
Abstract
Background: Epirubicin combined with docetaxel is the cornerstone of neoadjuvant chemotherapy (NAC) for breast cancer. The efficacy of NAC for luminal A breast cancer patients is very limited, and single nucleotide polymorphism is one of the most important factors that influences the efficacy. Our study is aimed to explore genetic markers for the efficacy of epirubicin combined with docetaxel for NAC in patients with luminal A breast cancer. Methods: A total of 421 patients with two stages of luminal A breast cancer were enrolled in this study from 2 centers. Among them 231 patients were included in the discovery cohort and 190 patients are in the replication cohort. All patients received epirubicin 75 mg/m2 and docetaxel 75 mg/m2 on day 1, in a 21-day cycle, a cycle for 2–6 cycles. Before treatment, 2 ml of peripheral blood was collected from each patient to isolate genomic DNA. Fourteen functional variants potentially regulating epirubicin/docetaxel response genes were prioritized by CellMiner and bioinformatics approaches. Moreover, biological assays were performed to determine the effect of genetic variations on response to chemotherapy. Results: The patients carrying rs6484711 variant A allele suffered a poor response to epirubicin and docetaxel for NAC (OR = 0.37, 95% CI: 0.18–0.74, P = 0.005) in combined stage. Moreover, expression quantitative trait loci (eQTL) analyses and luciferase reporter assays revealed that rs6484711 A allele significantly increased the expression of ABTB2. Subsequent biological assays illustrated that upregulation of ABTB2 significantly reduced the apoptosis rate of breast cancer cells and enhanced the chemo-resistance to epirubicin. Conclusions: Our study demonstrated rs6484711 polymorphism regulating ABTB2 expression might predict efficacy to epirubicin based NAC in luminal A breast cancer patients. These results provided valuable information about potential role of genetic variations in individualized chemotherapy.
Collapse
Affiliation(s)
- Yajie Gong
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Nanlin Hu
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Ma
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wentong Li
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiang Cheng
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Zhang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Yang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiating Peng
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danyi Zou
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lan Yang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shufang Mei
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyang Wang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun-Han Lo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Jiang Chang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tieying Hou
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hong Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rong Zhong
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Yuan
- Department of VIP Medical Services, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
41
|
Haggag Y, Abu Ras B, El-Tanani Y, Tambuwala MM, McCarron P, Isreb M, El-Tanani M. Co-delivery of a RanGTP inhibitory peptide and doxorubicin using dual-loaded liposomal carriers to combat chemotherapeutic resistance in breast cancer cells. Expert Opin Drug Deliv 2020; 17:1655-1669. [PMID: 32841584 DOI: 10.1080/17425247.2020.1813714] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Multidrug resistance (MDR) limits the beneficial outcomes of conventional breast cancer chemotherapy. Ras-related nuclear protein (Ran-GTP) plays a key role in these resistance mechanisms, assisting cancer cells to repair damage to DNA. Herein, we investigate the co-delivery of Ran-RCC1 inhibitory peptide (RAN-IP) and doxorubicin (DOX) to breast cancer cells using liposomal nanocarriers. RESEARCH DESIGN A liposomal delivery system, co-encapsulating DOX, and RAN-IP, was prepared using a thin-film rehydration technique. Dual-loaded liposomes were optimized by systematic modification of formulation variables. Real-Time-Polymerase Chain Reaction was used to determine Ran-GTP mRNA expression. In vitro cell lines were used to evaluate the effect of loaded liposomes on the viability of breast and lung cancer cell lines. In vivo testing was performed on a murine Solid Ehrlich Carcinoma model. RESULTS RAN-IP reversed the Ran-expression-mediated MDR by inhibiting the Ran DNA damage repair function. Co-administration of RAN-IP enhanced sensitivity of DOX in breast cancer cell lines. Finally, liposome-mediated co-delivery with RAN-IP improved the anti-tumor effect of DOX in tumor-bearing mice when compared to single therapy. CONCLUSIONS This study is the first to show the simultaneous delivery of RAN-IP and DOX using liposomes can be synergistic with DOX and lead to tumor regression in vitro and in vivo.
Collapse
Affiliation(s)
- Yusuf Haggag
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University , Tanta, Egypt
| | - Bayan Abu Ras
- School of Pharmacy and Clinical Sciences, University of Bradford , Bradford, UK
| | - Yahia El-Tanani
- School of Pharmacy and Clinical Sciences, University of Bradford , Bradford, UK
| | | | - Paul McCarron
- School of Pharmacy and Pharmaceutical Sciences, Ulster University , UK
| | - Mohammed Isreb
- School of Pharmacy and Clinical Sciences, University of Bradford , Bradford, UK
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University , Amman, Jordan.,Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford , Bradford, UK
| |
Collapse
|
42
|
Aquaporin 1 promotes sensitivity of anthracycline chemotherapy in breast cancer by inhibiting β-catenin degradation to enhance TopoIIα activity. Cell Death Differ 2020; 28:382-400. [PMID: 32814878 PMCID: PMC7852611 DOI: 10.1038/s41418-020-00607-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/29/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022] Open
Abstract
Anthracyclines are a class of conventional and commonly used frontline chemotherapy drugs to treat breast cancer. However, the anthracycline-based regimens can only reduce breast cancer mortality by 20–30%. Furthermore, there is no appropriate biomarker for predicting responses to this kind of chemotherapy currently. Here we report our findings that may fill this gap by showing the AQP1 (Aquaporin1) protein as a potential response predictor in the anthracycline chemotherapy. We showed that breast cancer patients with a high level of AQP1 expression who underwent the anthracycline treatment had a better clinical outcome relative to those with a low level of AQP1 expression. In the exploration of the underlying mechanisms, we found that the AQP1 and glycogen synthase kinase-3β (GSK3β) competitively interacted with the 12 armadillo repeats of β-catenin, followed by the inhibition of the β-catenin degradation that led to β-catenin’s accumulation in the cytoplasm and nuclear translocation. The nuclear β-catenin interacted with TopoIIα and enhanced TopoIIα’s activity, which resulted in a high sensitivity of breast cancer cells to anthracyclines. We also found, the miR-320a-3p can attenuate the anthracycline’s chemosensitivity by inhibiting the AQP1 expression. Taken together, our findings suggest the efficacy of AQP1 as a response predictor in the anthracycline chemotherapy. The application of our study includes, but is not limited to, facilitating screening of the most appropriate breast cancer patients (who have a high AQP1 expression) for better anthracycline chemotherapy and improved prognosis purposes.
Collapse
|
43
|
Matyszewska D, Nazaruk E, Campbell RA. Interactions of anticancer drugs doxorubicin and idarubicin with lipid monolayers: New insight into the composition, structure and morphology. J Colloid Interface Sci 2020; 581:403-416. [PMID: 32771749 DOI: 10.1016/j.jcis.2020.07.092] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 12/13/2022]
Abstract
We quantify directly here for the first time the extents of interactions of two different anthracycline drugs with pure and mixed lipid monolayers with respect to the surface pressure and elucidate differences in the resulting interaction mechanisms. The work concerns interactions of doxorubicin (DOx) and idarubicin (IDA) with monolayers of the zwitterionic DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) and negatively charged DMPS (1,2-dimyristoyl-sn-glycero-3-phospho-L-serine (sodium salt)) as well as a 7:3 mixture of the two lipids. These drugs are used in current cancer treatments, while the lipid systems were chosen as phosphocholines are the major lipid component of healthy cell membranes, and phosphoserines are the major lipid component that is externalized into the outer leaflet of cancerous cell membranes. It is shown that DOx interacts with DMPS monolayers to a greater extent than with DMPC monolayers by lower limits of a factor of 5 at a surface pressure of 10 mN/m and a factor of 12 at 30 mN/m. With increasing surface pressure, the small amount of drug (~0.3 µmol/m2) bound to DMPC monolayers is excluded from the interface, yet its interaction with DMPS monolayers is enhanced until there is even more drug (~3.2 µmol/m2) than lipid (~2.6 µmol/m2) at the interface. Direct evidence is presented for all systems studied that upon surface area compression lipid is reproducibly expelled from the monolayer, which we infer to be in the form of drug-lipid aggregates, yet the nature of adsorption of material back to the monolayer upon expansion is system-dependent. At 30 mN/m, most relevant to human physiology, the interactions of DOx and IDA are starkly different. For DOx, there is a conformational change in the interfacial layer driven by aggregation, resulting in the formation of lateral domains that have extended layers of drug. For the more lipophilic IDA, there is penetration of the drug into the hydrophobic acyl chain region of the monolayer and no indication of lateral segregation. In addition to the Langmuir technique, these advances were made as a result of direct measurements of the interfacial composition, structure and morphology using two different implementations of neutron reflectometry and Brewster angle microscopy. The results provide new insight into key processes that determine the uptake of drugs such as limited drug penetration through cell membranes by passive diffusion as well as activation of drug removal mechanisms related to multidrug resistance.
Collapse
Affiliation(s)
- Dorota Matyszewska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland.
| | - Ewa Nazaruk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Richard A Campbell
- Institut Laue-Langevin, 71 avenue des Martyrs, CS20156, 38042 Grenoble, France; Division of Pharmacy and Optometry, University of Manchester, Manchester M13 9PT, United Kingdom.
| |
Collapse
|
44
|
Kaczorowska A, Lamperska W, Frączkowska K, Masajada J, Drobczyński S, Sobas M, Wróbel T, Chybicka K, Tarkowski R, Kraszewski S, Podbielska H, Kałas W, Kopaczyńska M. Profound Nanoscale Structural and Biomechanical Changes in DNA Helix upon Treatment with Anthracycline Drugs. Int J Mol Sci 2020; 21:ijms21114142. [PMID: 32531996 PMCID: PMC7312087 DOI: 10.3390/ijms21114142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/16/2020] [Accepted: 06/04/2020] [Indexed: 11/16/2022] Open
Abstract
In our study, we describe the outcomes of the intercalation of different anthracycline antibiotics in double-stranded DNA at the nanoscale and single molecule level. Atomic force microscopy analysis revealed that intercalation results in significant elongation and thinning of dsDNA molecules. Additionally, using optical tweezers, we have shown that intercalation decreases the stiffness of DNA molecules, that results in greater susceptibility of dsDNA to break. Using DNA molecules with different GC/AT ratios, we checked whether anthracycline antibiotics show preference for GC-rich or AT-rich DNA fragments. We found that elongation, decrease in height and decrease in stiffness of dsDNA molecules was highest in GC-rich dsDNA, suggesting the preference of anthracycline antibiotics for GC pairs and GC-rich regions of DNA. This is important because such regions of genomes are enriched in DNA regulatory elements. By using three different anthracycline antibiotics, namely doxorubicin (DOX), epirubicin (EPI) and daunorubicin (DAU), we could compare their detrimental effects on DNA. Despite their analogical structure, anthracyclines differ in their effects on DNA molecules and GC-rich region preference. DOX had the strongest overall effect on the DNA topology, causing the largest elongation and decrease in height. On the other hand, EPI has the lowest preference for GC-rich dsDNA. Moreover, we demonstrated that the nanoscale perturbations in dsDNA topology are reflected by changes in the microscale properties of the cell, as even short exposition to doxorubicin resulted in an increase in nuclei stiffness, which can be due to aberration of the chromatin organization, upon intercalation of doxorubicin molecules.
Collapse
Affiliation(s)
- Aleksandra Kaczorowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego, 50-370 Wroclaw, Poland; (A.K.); (K.F.); (S.K.); (H.P.)
| | - Weronika Lamperska
- Department of Optics and Photonics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego, 50-370 Wroclaw, Poland; (W.L.); (J.M.); (S.D.)
| | - Kaja Frączkowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego, 50-370 Wroclaw, Poland; (A.K.); (K.F.); (S.K.); (H.P.)
| | - Jan Masajada
- Department of Optics and Photonics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego, 50-370 Wroclaw, Poland; (W.L.); (J.M.); (S.D.)
| | - Sławomir Drobczyński
- Department of Optics and Photonics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego, 50-370 Wroclaw, Poland; (W.L.); (J.M.); (S.D.)
| | - Marta Sobas
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Pasteura 4, 50-367 Wroclaw, Poland; (M.S.); (T.W.)
| | - Tomasz Wróbel
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Pasteura 4, 50-367 Wroclaw, Poland; (M.S.); (T.W.)
| | - Kinga Chybicka
- Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wroclaw, Poland; (K.C.); (W.K.)
| | - Radosław Tarkowski
- Department of Surgical Oncology, Provincial Specialist Hospital, Iwaszkiewicza 5, 59-220 Legnica, Poland;
| | - Sebastian Kraszewski
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego, 50-370 Wroclaw, Poland; (A.K.); (K.F.); (S.K.); (H.P.)
| | - Halina Podbielska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego, 50-370 Wroclaw, Poland; (A.K.); (K.F.); (S.K.); (H.P.)
| | - Wojciech Kałas
- Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wroclaw, Poland; (K.C.); (W.K.)
| | - Marta Kopaczyńska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego, 50-370 Wroclaw, Poland; (A.K.); (K.F.); (S.K.); (H.P.)
- Correspondence: ; Tel.: +48-71-320-46-17
| |
Collapse
|
45
|
Di Sotto A, Di Giacomo S, Rubini E, Macone A, Gulli M, Mammola CL, Eufemi M, Mancinelli R, Mazzanti G. Modulation of STAT3 Signaling, Cell Redox Defenses and Cell Cycle Checkpoints by β-Caryophyllene in Cholangiocarcinoma Cells: Possible Mechanisms Accounting for Doxorubicin Chemosensitization and Chemoprevention. Cells 2020; 9:E858. [PMID: 32252311 PMCID: PMC7226839 DOI: 10.3390/cells9040858] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive group of biliary tract cancers, characterized by late diagnosis, low effective chemotherapies, multidrug resistance, and poor outcomes. In the attempt to identify new therapeutic strategies for CCA, we studied the antiproliferative activity of a combination between doxorubicin and the natural sesquiterpene β-caryophyllene in cholangiocarcinoma Mz-ChA-1 cells and nonmalignant H69 cholangiocytes, under both long-term and metronomic schedules. The modulation of STAT3 signaling, oxidative stress, DNA damage response, cell cycle progression and apoptosis was investigated as possible mechanisms of action. β-caryophyllene was able to synergize the cytotoxicity of low dose doxorubicin in Mz-ChA-1 cells, while producing cytoprotective effects in H69 cholangiocytes, mainly after a long-term exposure of 24 h. The mechanistic analysis highlighted that the sesquiterpene induced a cell cycle arrest in G2/M phase along with the doxorubicin-induced accumulation in S phase, reduced the γH2AX and GSH levels without affecting GSSG. ROS amount was partly lowered by the combination in Mz-ChA-1 cells, while increased in H69 cells. A lowered expression of doxorubicin-induced STAT3 activation was found in the presence of β-caryophyllene in both cancer and normal cholangiocytes. These networking effects resulted in an increased apoptosis rate in Mz-ChA-1 cells, despite a lowering in H69 cholangiocytes. This evidence highlighted a possible role of STAT3 as a final effector of a complex network regulated by β-caryophyllene, which leads to an enhanced doxorubicin-sensitivity of cholangiocarcinoma cells and a lowered chemotherapy toxicity in nonmalignant cholangiocytes, thus strengthening the interest for this natural sesquiterpene as a dual-acting chemosensitizing and chemopreventive agent.
Collapse
Affiliation(s)
- Antonella Di Sotto
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (S.D.G.); (M.G.); (G.M.)
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (S.D.G.); (M.G.); (G.M.)
| | - Elisabetta Rubini
- Department of Biochemical Science “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.R.); (A.M.); (M.E.)
| | - Alberto Macone
- Department of Biochemical Science “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.R.); (A.M.); (M.E.)
| | - Marco Gulli
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (S.D.G.); (M.G.); (G.M.)
- Department of Biochemical Science “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.R.); (A.M.); (M.E.)
| | - Caterina Loredana Mammola
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (C.L.M.); (R.M.)
| | - Margherita Eufemi
- Department of Biochemical Science “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.R.); (A.M.); (M.E.)
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (C.L.M.); (R.M.)
| | - Gabriela Mazzanti
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (S.D.G.); (M.G.); (G.M.)
| |
Collapse
|
46
|
Elton TS, Ozer HG, Yalowich JC. Effects of DNA topoisomerase IIα splice variants on acquired drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:161-170. [PMID: 32566920 PMCID: PMC7304410 DOI: 10.20517/cdr.2019.117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
DNA topoisomerase IIα (170 kDa, TOP2α/170) induces transient DNA double-strand breaks in proliferating cells to resolve DNA topological entanglements during chromosome condensation, replication, and segregation. Therefore, TOP2α/170 is a prominent target for anticancer drugs whose clinical efficacy is often compromised due to chemoresistance. Although many resistance mechanisms have been defined, acquired resistance of human cancer cell lines to TOP2α interfacial inhibitors/poisons is frequently associated with a reduction of Top2α/170 expression levels. Recent studies by our laboratory, in conjunction with earlier findings by other investigators, support the hypothesis that a major mechanism of acquired resistance to TOP2α-targeted drugs is due to alternative RNA processing/splicing. Specifically, several TOP2α mRNA splice variants have been reported which retain introns and are translated into truncated TOP2α isoforms lacking nuclear localization sequences and subsequent dysregulated nuclear-cytoplasmic disposition. In addition, intron retention can lead to truncated isoforms that lack both nuclear localization sequences and the active site tyrosine (Tyr805) necessary for forming enzyme-DNA covalent complexes and inducing DNA damage in the presence of TOP2α-targeted drugs. Ultimately, these truncated TOP2α isoforms result in decreased drug activity against TOP2α in the nucleus and manifest drug resistance. Therefore, the complete characterization of the mechanism(s) regulating the alternative RNA processing of TOP2α pre-mRNA may result in new strategies to circumvent acquired drug resistance. Additionally, novel TOP2α splice variants and truncated TOP2α isoforms may be useful as biomarkers for drug resistance, prognosis, and/or direct future TOP2α-targeted therapies.
Collapse
Affiliation(s)
- Terry S Elton
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Hatice Gulcin Ozer
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jack C Yalowich
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
47
|
Di Sotto A, Irannejad H, Eufemi M, Mancinelli R, Abete L, Mammola CL, Altieri F, Mazzanti G, Di Giacomo S. Potentiation of Low-Dose Doxorubicin Cytotoxicity by Affecting P-Glycoprotein through Caryophyllane Sesquiterpenes in HepG2 Cells: an in Vitro and in Silico Study. Int J Mol Sci 2020; 21:E633. [PMID: 31963614 PMCID: PMC7014471 DOI: 10.3390/ijms21020633] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Doxorubicin represents a valuable choice for different cancers, although the severe side effects occurring at the high effective dose limits its clinical use. In the present study, potential strategies to potentiate low-dose doxorubicin efficacy, including a metronomic schedule, characterized by a short and repeated exposure to the anticancer drug, and the combination with the natural chemosensitizing sesquiterpenes β-caryophyllene and β-caryophyllene oxide, were assessed in human hepatoma HepG2 cells. The involvement of P-glycoprotein (P-gp) in the HepG2-chemosensitization to doxorubicin was evaluated. Also, the direct interaction of caryophyllene sesquiterpenes with P-gp was characterized by molecular docking and dynamic simulation studies. A metronomic schedule allowed us to enhance the low-dose doxorubicin cytotoxicity and the combination with caryophyllane sesquiterpenes further potentiated this effect. Also, an increased intracellular accumulation of doxorubicin and rhodamine 123 induced by caryophyllane sesquiterpenes was found, thus suggesting their interference with P-gp function. A lowered expression of P-gp induced by the combinations, with respect to doxorubicin alone, was observed too. Docking studies found that the binding site of caryophyllane sesquiterpene was next to the ATP binding domain of P-gp and that β-caryophyllene possessed the stronger binding affinity and higher inhibition potential calculated by MM-PBSA. Present findings strengthen our hypothesis about the potential chemosensitizing power of caryophyllane sesquiterpenes and suggest that combining a chemosensitizer and a metronomic schedule can represent a suitable strategy to overcome drawbacks of doxorubicin chemotherapy while exploiting its powerful activity.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Antibiotics, Antineoplastic/pharmacology
- Apoptosis
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Computer Simulation
- Dose-Response Relationship, Drug
- Doxorubicin/pharmacology
- Humans
- In Vitro Techniques
- Liver Neoplasms/drug therapy
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Polycyclic Sesquiterpenes/chemistry
- Sesquiterpenes/chemistry
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Antonella Di Sotto
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (L.A.); (G.M.); (S.D.G.)
| | - Hamid Irannejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, 48175-866 Sari, Iran;
| | - Margherita Eufemi
- Department of Biochemical Science “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (R.M.); (C.L.M.)
| | - Lorena Abete
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (L.A.); (G.M.); (S.D.G.)
| | - Caterina Loredana Mammola
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (R.M.); (C.L.M.)
| | - Fabio Altieri
- Department of Biochemical Science “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Gabriela Mazzanti
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (L.A.); (G.M.); (S.D.G.)
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (L.A.); (G.M.); (S.D.G.)
| |
Collapse
|