1
|
Hamidpour SK, Amiri M, Ketabforoush AHME, Saeedi S, Angaji A, Tavakol S. Unraveling Dysregulated Cell Signaling Pathways, Genetic and Epigenetic Mysteries of Parkinson's Disease. Mol Neurobiol 2024; 61:8928-8966. [PMID: 38573414 DOI: 10.1007/s12035-024-04128-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
Parkinson's disease (PD) is a prevalent and burdensome neurodegenerative disorder that has been extensively researched to understand its complex etiology, diagnosis, and treatment. The interplay between genetic and environmental factors in PD makes its pathophysiology difficult to comprehend, emphasizing the need for further investigation into genetic and epigenetic markers involved in the disease. Early diagnosis is crucial for optimal management of the disease, and the development of novel diagnostic biomarkers is ongoing. Although many efforts have been made in the field of recognition and interpretation of the mechanisms involved in the pathophysiology of the disease, the current knowledge about PD is just the tip of the iceberg. By scrutinizing genetic and epigenetic patterns underlying PD, new avenues can be opened for dissecting the pathology of the disorder, leading to more precise and efficient diagnostic and therapeutic approaches. This review emphasizes the importance of studying dysregulated cell signaling pathways and molecular processes associated with genes and epigenetic alterations in understanding PD, paving the way for the development of novel therapeutic strategies to combat this devastating disease.
Collapse
Affiliation(s)
- Shayesteh Kokabi Hamidpour
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Mobina Amiri
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | | | - Saeedeh Saeedi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Abdolhamid Angaji
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran.
- Department of Research and Development, Tavakol BioMimetic Technologies Company, Tehran, Iran.
| |
Collapse
|
2
|
Zhu X, Gao J, Qiu C. Integrative analysis reveals key lysosomal genes as potential therapeutic targets in Alzheimer's disease. Metab Brain Dis 2024; 39:1433-1445. [PMID: 39150655 PMCID: PMC11513730 DOI: 10.1007/s11011-024-01409-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with early autophagy deficits. Our study probed the role of lysosomal-related genes (LRGs) in AD. Using the Gene Expression Omnibus (GEO) database, we analyzed differentially expressed genes (DEGs) in AD. AD-related genes and lysosomal-related genes (LRGs) were extracted from public databases. Leveraging the UpSetR package, we identified differentially expressed LRGs (DE-LRGs). Subsequently, consensus cluster analysis was used to stratify AD patients into distinct molecular subtypes based on DE-LRGs. Immune cell patterns were studied via Single-Sample Gene Set Enrichment Analysis (ssGSEA). Molecular pathways were assessed through Gene Set Variation Analysis (GSVA), while Mendelian Randomization (MR) discerned potential gene-AD causations. To reinforce our bioinformatics findings, we conducted in vitro experiments. In total, 52 DE-LRGs were identified, with LAMP1, VAMP2, and CTSB as standout hub genes. Leveraging the 52 DE-LRGs, AD patients were categorized into three distinct molecular subtypes. Interestingly, the three aforementioned hub genes exhibited significant predictive accuracy for AD differentiation across the subtypes. The ssGSEA further illuminated correlations between LAMP1, VAMP2, and CTSB with plasma cells, fibroblasts, eosinophils, and endothelial cells. GSVA analysis underscored significant associations of LAMP1, VAMP2, and CTSB with NOTCH, TGFβ, and P53 pathways. Compellingly, MR findings indicated a potential causative relationship between LAMP1, CTSB, and AD. Augmenting our bioinformatics conclusions, in vitro tests revealed that LAMP1 potentially alleviates AD progression by amplifying autophagic processes. LAMP1 and CTSB emerge as potential AD biomarkers, paving the way for innovative therapeutic interventions.
Collapse
Affiliation(s)
- Xiangzhen Zhu
- Department of Psychiatry, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, Zhejiang, China
| | - Jingfang Gao
- Department of Psychiatry, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, Zhejiang, China
| | - Chao Qiu
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310006, Zhejiang, China.
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), No.54 Youdian Road, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
3
|
Cui Y, Zhang X, Liu J, Hou Y, Song Q, Cao M, Zhang J, Wang X, Liu C, Wang P, Wang Y. Myeloid ectopic viral integration site 2 accelerates the progression of Alzheimer's disease. Aging Cell 2024; 23:e14260. [PMID: 38994634 PMCID: PMC11464116 DOI: 10.1111/acel.14260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
Amyloid plaques, a major pathological hallmark of Alzheimer's disease (AD), are caused by an imbalance between the amyloidogenic and non-amyloidogenic pathways of amyloid precursor protein (APP). BACE1 cleavage of APP is the rate-limiting step for amyloid-β production and plaque formation in AD. Although the alteration of BACE1 expression in AD has been investigated, the underlying mechanisms remain unknown. In this study, we determined MEIS2 was notably elevated in AD models and AD patients. Alterations in the expression of MEIS2 can modulate the levels of BACE1. MEIS2 downregulation improved the learning and memory retention of AD mice and decreased the number of amyloid plaques. MEIS2 binds to the BACE1 promoter, positively regulates BACE1 expression, and accelerates APP amyloid degradation in vitro. Therefore, our findings suggest that MEIS2 might be a critical transcription factor in AD, since it regulates BACE1 expression and accelerates BACE1-mediated APP amyloidogenic cleavage. MEIS2 is a promising early intervention target for AD treatment.
Collapse
Affiliation(s)
- Yuting Cui
- Clinical Laboratory of Xuanwu Hospital, Capital Medical UniversityBeijingPeople's Republic of China
| | - Xiaomin Zhang
- Clinical Laboratory of Xuanwu Hospital, Capital Medical UniversityBeijingPeople's Republic of China
| | - Jing Liu
- Clinical Laboratory of Xuanwu Hospital, Capital Medical UniversityBeijingPeople's Republic of China
| | - Yuli Hou
- Clinical Laboratory of Xuanwu Hospital, Capital Medical UniversityBeijingPeople's Republic of China
| | - Qiao Song
- Clinical Laboratory of Xuanwu Hospital, Capital Medical UniversityBeijingPeople's Republic of China
| | - Min Cao
- Department of Clinical LaboratoryBeijing Huairou HospitalBeijingPeople's Republic of China
| | - Jingjing Zhang
- Clinical Laboratory of Xuanwu Hospital, Capital Medical UniversityBeijingPeople's Republic of China
| | - Xiaoling Wang
- Clinical Laboratory of Xuanwu Hospital, Capital Medical UniversityBeijingPeople's Republic of China
| | - Congcong Liu
- Clinical Laboratory of Xuanwu Hospital, Capital Medical UniversityBeijingPeople's Republic of China
| | - Peichang Wang
- Clinical Laboratory of Xuanwu Hospital, Capital Medical UniversityBeijingPeople's Republic of China
| | - Yaqi Wang
- Clinical Laboratory of Xuanwu Hospital, Capital Medical UniversityBeijingPeople's Republic of China
| |
Collapse
|
4
|
Liu F, Schrack JA, Walston J, Mathias RA, Windham BG, Grams ME, Coresh J, Walker KA. Mid-life plasma proteins associated with late-life prefrailty and frailty: a proteomic analysis. GeroScience 2024; 46:5247-5265. [PMID: 38856871 PMCID: PMC11336072 DOI: 10.1007/s11357-024-01219-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/21/2024] [Indexed: 06/11/2024] Open
Abstract
Physical frailty is a syndrome that typically manifests in later life, although the pathogenic process causing physical frailty likely begins decades earlier. To date, few studies have examined the biological signatures in mid-life associated with physical frailty later in life. Among 4,189 middle-aged participants (57.8 ± 5.0 years, 55.8% women) from the Atherosclerosis Risk in Community (ARIC) study, we evaluated the associations of 4,955 plasma proteins (log 2-transformed and standardized) measured using the SomaScan platform with their frailty status approximately 20 years later. Using multinomial logistic regression models adjusting for demographics, health behaviors, kidney function, total cholesterol, and comorbidities, 12 and 221 proteins were associated with prefrailty and frailty in later life, respectively (FDR p < 0.05). Top frailty-associated proteins included neurocan core protein (NCAN, OR = 0.66), fatty acid-binding protein heart (FABP3, OR = 1.62) and adipocyte (FABP4, OR = 1.65), as well proteins involved in the contactin-1 (CNTN1), toll-like receptor 5 (TLR5), and neurogenic locus notch homolog protein 1 (NOTCH1) signaling pathway relevant to skeletal muscle regeneration, myelination, and inflammation. Pathway analyses suggest midlife dysregulation of inflammation, metabolism, extracellular matrix, angiogenesis, and lysosomal autophagy among those at risk for late-life frailty. After further adjusting for midlife body mass index (BMI) - an established frailty risk factor - only CNTN1 (OR = 0.75) remained significantly associated with frailty. Post-hoc analyses demonstrated that the top 41 midlife frailty-associated proteins mediate 32% of the association between mid-life BMI and late-life frailty. Our findings provide new insights into frailty etiology earlier in the life course, enhancing the potential for prevention.
Collapse
Affiliation(s)
- Fangyu Liu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Jennifer A Schrack
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Center On Aging and Health, Johns Hopkins University, Baltimore, MD, USA
| | - Jeremy Walston
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Rasika A Mathias
- Genomics and Precision Health Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infection Disease, Bethesda, MD, USA
| | - B Gwen Windham
- Department of Medicine, MIND Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Morgan E Grams
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Division of Precision Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Population Health and Medicine, Optimal Aging Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Keenan A Walker
- Laboratory of Behavioral Neuroscience, National Institute On Aging, Baltimore, MD, USA
| |
Collapse
|
5
|
Wang D, Jing L, Zhao Z, Huang S, Xie L, Hu S, Liang H, Chen Y, Zhao E. MicroRNA-124a promoted the differentiation of bone marrow mesenchymal stem cells into neurons through Notch signal pathway. Eur J Med Res 2024; 29:472. [PMID: 39342366 PMCID: PMC11437963 DOI: 10.1186/s40001-024-02061-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
This study investigated the possible mechanisms of microRNA-124a on the differentiation of bone marrow mesenchymal stem cells (BMSCs) and its underlying mechanism. β-Thiol ethanol induced Notch1 mRNA expression, microRNA-124a inhibitor reduced the effects of β-thiol ethanol on Notch1 mRNA expression in BMSCs. Baicalin induced Hes1 mRNA expression, and microRNA-124a inhibitor reduced the effects of baicalin on Hes1 mRNA expression in BMSCs. Si-Notch1 suppressed Hes1 mRNA expression in BMSCs. Baicalin increased the effects of Notch1 on Hes1 mRNA expression in BMSCs. Si-Notch1 increased cell growth of BMSCs. Baicalin reduced the effects of si-Notch1 on cell growth and the differentiation of BMSCs. We demonstrated that microRNA-124a promoted the differentiation of BMSCs into neurons through Notch/Hes1 signal pathway.
Collapse
Affiliation(s)
- Daimei Wang
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No. 19 Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, China
| | - Lijun Jing
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhongyan Zhao
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No. 19 Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, China
| | - Shixiong Huang
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No. 19 Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, China
| | - Ling Xie
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No. 19 Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, China
| | - Shijun Hu
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No. 19 Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, China
| | - Hui Liang
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No. 19 Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, China
| | - Yanquan Chen
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No. 19 Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, China
| | - Eryi Zhao
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No. 19 Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, China.
| |
Collapse
|
6
|
Shekho D, Mishra R, Kamal R, Bhatia R, Awasthi A. Breaking Barriers in Alzheimer's Disease: the Role of Advanced Drug Delivery Systems. AAPS PharmSciTech 2024; 25:207. [PMID: 39237748 DOI: 10.1208/s12249-024-02923-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/18/2024] [Indexed: 09/07/2024] Open
Abstract
Alzheimer's disease (AD), characterized by cognitive impairment, brain plaques, and tangles, is a global health concern affecting millions. It involves the build-up of amyloid-β (Aβ) and tau proteins, the formation of neuritic plaques and neurofibrillary tangles, cholinergic system dysfunction, genetic variations, and mitochondrial dysfunction. Various signaling pathways and metabolic processes are implicated in AD, along with numerous biomarkers used for diagnosis, risk assessment, and research. Despite these, there is no cure or effective treatment for AD. It is critically important to address this immediately to develop novel drug delivery systems (NDDS) capable of targeting the brain and delivering therapeutic agents to modulate the pathological processes of AD. This review summarizes AD, its pathogenesis, related signaling pathways, biomarkers, conventional treatments, the need for NDDS, and their application in AD treatment. It also covers preclinical, clinical, and ongoing trials, patents, and marketed AD formulations.
Collapse
Affiliation(s)
- Devank Shekho
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Ritika Mishra
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Raj Kamal
- Department of Quality Assurance, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Rohit Bhatia
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ankit Awasthi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India.
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| |
Collapse
|
7
|
Salman O, Zamani P, Zhao L, Dib MJ, Gan S, Azzo JD, Pourmussa B, Richards AM, Javaheri A, Mann DL, Rietzschel E, Zhao M, Wang Z, Ebert C, Liu L, Gunawardhana KL, Greenawalt D, Carayannopoulos L, Chang CP, van Empel V, Gogain J, Schafer PH, Gordon DA, Ramirez-Valle F, Cappola TP, Chirinos JA. Prognostic Significance and Biologic Associations of Senescence-Associated Secretory Phenotype Biomarkers in Heart Failure. J Am Heart Assoc 2024; 13:e033675. [PMID: 39206715 DOI: 10.1161/jaha.123.033675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/16/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The role of cellular senescence in human heart failure (HF) remains unclear. The senescence-associated secretory phenotype (SASP) is composed of proteins released by senescent cells. We assessed the prognostic significance and biologic pathways associated with the SASP in human HF using a plasma proteomics approach. METHODS AND RESULTS We measured 25 known SASP proteins among 2248 PHFS (Penn HF Study) participants using the SOMAScan V4 assay. We extracted the common variance in these proteins to generate SASP factor scores and assessed the relationship between these SASP factor scores and (1) all-cause death and (2) the composite of death or HF hospital admission. We also assessed the relationship of each SASP factor to 4746 other proteins, correcting for multiple comparisons, followed by pathway analyses. Two SASP factors were identified. Both factors were associated with older age, lower estimated glomerular filtration rate, and more advanced New York Heart Association class, among other clinical variables. Both SASP factors exhibited a significant positive association with the risk of death independent of the Meta-Analysis of Global-Group in Chronic HF score and NT-proBNP (N-terminal pro-B-type natriuretic peptide) levels. The 2 identified SASP factors were associated with 1201 and 1554 proteins, respectively, belonging to various pathways including the coagulation system, complement system, acute phase response signaling, and retinoid X receptor-related pathways that regulate cell metabolism. CONCLUSIONS Increased SASP components are independently associated with adverse outcomes in HF. Biologic pathways associated with SASP are predominantly related to coagulation, inflammation, and cell metabolism.
Collapse
Affiliation(s)
- Oday Salman
- Hospital of the University of Pennsylvania Philadelphia PA USA
| | - Payman Zamani
- Hospital of the University of Pennsylvania Philadelphia PA USA
- University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
| | - Lei Zhao
- Bristol Myers Squibb Company Princeton NJ USA
| | - Marie Joe Dib
- Hospital of the University of Pennsylvania Philadelphia PA USA
| | - Sushrima Gan
- Hospital of the University of Pennsylvania Philadelphia PA USA
| | - Joe David Azzo
- Hospital of the University of Pennsylvania Philadelphia PA USA
| | - Bianca Pourmussa
- University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
| | - Arthur Mark Richards
- Cardiovascular Research Institute, National University of Singapore Singapore City Singapore
- Christchurch Heart Institute, University of Otago Dunedin New Zealand
| | - Ali Javaheri
- Washington University School of Medicine St. Louis MO USA
| | - Douglas L Mann
- Washington University School of Medicine St. Louis MO USA
| | - Ernst Rietzschel
- Department of Cardiovascular Diseases Ghent University and Ghent University Hospital Ghent Belgium
| | - Manyun Zhao
- Hospital of the University of Pennsylvania Philadelphia PA USA
| | | | | | - Laura Liu
- Bristol Myers Squibb Company Princeton NJ USA
| | | | | | | | | | - Vanessa van Empel
- Department of Cardiology Cardiovascular Research Institute Maastricht (CARIM) Maastricht Netherlands
| | | | | | | | | | - Thomas P Cappola
- Hospital of the University of Pennsylvania Philadelphia PA USA
- University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
| | - Julio A Chirinos
- Hospital of the University of Pennsylvania Philadelphia PA USA
- University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
| |
Collapse
|
8
|
Qiao Y, Mei Y, Xia M, Luo D, Gao L. The role of m6A modification in the risk prediction and Notch1 pathway of Alzheimer's disease. iScience 2024; 27:110235. [PMID: 39040060 PMCID: PMC11261416 DOI: 10.1016/j.isci.2024.110235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 03/17/2024] [Accepted: 05/19/2024] [Indexed: 07/24/2024] Open
Abstract
N6-methyladenosine (m6A) methylation and abnormal immune responses are implicated in neurodegenerative diseases, yet their relationship in Alzheimer's disease (AD) remains unclear. We obtained AD datasets from GEO databases and used AD mouse and cell models, observing abnormal expression of m6A genes in the AD group, alongside disruptions in the immune microenvironment. Key m6A genes (YTHDF2, LRPPRC, and FTO) selected by machine learning were associated with the Notch pathway, with FTO and Notch1 displaying the strongest correlation. Specifically, FTO expression decreased and m6A methylation of Notch1 increased in AD mouse and cell models. We further silenced FTO expression in HT22 cells, resulting in upregulation of the Notch1 signaling pathway. Additionally, increased Notch1 expression in dendritic cells heightened inflammatory cytokine secretion in vitro. These results suggest that reduced FTO expression may contribute to the pathogenesis of AD by activating the Notch1 pathway to interfere with the immune response.
Collapse
Affiliation(s)
- Yingdan Qiao
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Yingna Mei
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Minqi Xia
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Deng Luo
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Ling Gao
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| |
Collapse
|
9
|
Catlin JP, Tooley CES. Exploring potential developmental origins of common neurodegenerative disorders. Biochem Soc Trans 2024; 52:1035-1044. [PMID: 38661189 PMCID: PMC11440815 DOI: 10.1042/bst20230422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/12/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
In the United States, it is now estimated that 6.7 million people over the age of 65 are afflicted by Alzheimer's disease (AD), over 1 million people are living with Parkinson's disease (PD), and over 200 000 have or are at risk for developing Huntington's disease (HD). All three of these neurodegenerative diseases result in the ultimate death of distinct neuronal subtypes, and it is widely thought that age-related damage is the single biggest contributing factor to this neuronal death. However, recent studies are now suggesting that developmental defects during early neurogenesis could also play a role in the pathology of neurodegenerative diseases. Loss or overexpression of proteins associated with HD, PD, and AD also result in embryonic phenotypes but whether these developmental defects slowly unmask over time and contribute to age-related neurodegeneration remains highly debated. Here, we discuss known links between embryonic neurogenesis and neurodegenerative disorders (including common signaling pathways), potential compensatory mechanisms that could delay presentation of neurodegenerative disorders, and the types of model systems that could be used to study these links in vivo.
Collapse
Affiliation(s)
- James P. Catlin
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Christine E. Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
10
|
Saranya KR, Vimina ER, Pinto FR. TransNeT-CGP: A cluster-based comorbid gene prioritization by integrating transcriptomics and network-topological features. Comput Biol Chem 2024; 110:108038. [PMID: 38461796 DOI: 10.1016/j.compbiolchem.2024.108038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/11/2024] [Accepted: 02/25/2024] [Indexed: 03/12/2024]
Abstract
The local disruptions caused by the genes of one disease can influence the pathways associated with the other diseases resulting in comorbidity. For gene therapies, it is necessary to prioritize the key genes that regulate common biological mechanisms to tackle the issues caused by overlapping diseases. This work proposes a clustering-based computational approach for prioritising the comorbid genes within the overlapping disease modules by analyzing Protein-Protein Interaction networks. For this, a sub-network with gene interactions of the disease pair was extracted from the interactome. The edge weights are assigned by combining the pairwise gene expression correlation and betweenness centrality scores. Further, a weighted graph clustering algorithm is applied and dominant nodes of high-density clusters are ranked based on clustering coefficients and neighborhood connectivity. Case studies based on neurodegenerative diseases such as Amyotrophic Lateral Sclerosis- Spinal Muscular Atrophy (ALS-SMA) pair and cancers such as Ovarian Carcinoma-Invasive Ductal Breast Carcinoma (OC-IDBC) pair were conducted to examine the efficacy of the proposed method. To identify the mechanistic role of top-ranked genes, we used Functional and Pathway enrichment analysis, connectivity analysis with leave-one-out (LOO) method, analysis of associated disease-related protein complexes, and prioritization tools such as TOPPGENE and Heml2.0. From pathway analysis, it was observed that the top 10 genes obtained using the proposed method were associated with 10 pathways in ALS-SMA comorbidity and 15 in the case of OC-IDBC, while that in similar methods like SAPDSB and S2B were 4, 6 respectively for ALS-SMA and 9, 10 respectively for OC-IDBC. In both case studies, 70 % of the disease-specific benchmark protein complexes were linked to top-ranked genes of the proposed method while that of SAPDSB and S2B were 55 % and 60 % respectively. Additionally, it was found that the removal of the top 10 genes disconnect the network into 14 distinct components in the case of ALS-SMA and 9 in the case of OC-IDBC. The experimental results shows that the proposed method can be effectively used for identifying key genes in comorbidity and can offer insights about the intricate molecular relationship driving comorbid diseases.
Collapse
Affiliation(s)
- K R Saranya
- Department of Computer Science & IT, School of Computing, Amrita Vishwa Vidyapeetham, Kochi Campus, India.
| | - E R Vimina
- Department of Computer Science & IT, School of Computing, Amrita Vishwa Vidyapeetham, Kochi Campus, India.
| | - F R Pinto
- Chemistry and Biochemistry Department, Faculty of Sciences, University of Lisbon, Portugal.
| |
Collapse
|
11
|
Parambath S, Selvraj NR, Venugopal P, Aradhya R. Notch Signaling: An Emerging Paradigm in the Pathogenesis of Reproductive Disorders and Diverse Pathological Conditions. Int J Mol Sci 2024; 25:5423. [PMID: 38791461 PMCID: PMC11121885 DOI: 10.3390/ijms25105423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/27/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
The highly conserved Notch pathway, a pillar of juxtacrine signaling, orchestrates intricate intercellular communication, governing diverse developmental and homeostatic processes through a tightly regulated cascade of proteolytic cleavages. This pathway, culminating in the migration of the Notch intracellular domain (NICD) to the nucleus and the subsequent activation of downstream target genes, exerts a profound influence on a plethora of molecular processes, including cell cycle progression, lineage specification, cell-cell adhesion, and fate determination. Accumulating evidence underscores the pivotal role of Notch dysregulation, encompassing both gain and loss-of-function mutations, in the pathogenesis of numerous human diseases. This review delves deep into the multifaceted roles of Notch signaling in cellular dynamics, encompassing proliferation, differentiation, polarity maintenance, epithelial-mesenchymal transition (EMT), tissue regeneration/remodeling, and its intricate interplay with other signaling pathways. We then focus on the emerging landscape of Notch aberrations in gynecological pathologies predisposing individuals to infertility. By highlighting the exquisite conservation of Notch signaling in Drosophila and its power as a model organism, we pave the way for further dissection of disease mechanisms and potential therapeutic interventions through targeted modulation of this master regulatory pathway.
Collapse
Affiliation(s)
| | | | | | - Rajaguru Aradhya
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India; (S.P.); (N.R.S.); (P.V.)
| |
Collapse
|
12
|
Oviya IR, Sankar D, Manoharan S, Prabahar A, Raja K. Comorbidity-Guided Text Mining and Omics Pipeline to Identify Candidate Genes and Drugs for Alzheimer's Disease. Genes (Basel) 2024; 15:614. [PMID: 38790243 PMCID: PMC11121575 DOI: 10.3390/genes15050614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/28/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Alzheimer's disease (AD), a multifactorial neurodegenerative disorder, is prevalent among the elderly population. It is a complex trait with mutations in multiple genes. Although the US Food and Drug Administration (FDA) has approved a few drugs for AD treatment, a definitive cure remains elusive. Research efforts persist in seeking improved treatment options for AD. Here, a hybrid pipeline is proposed to apply text mining to identify comorbid diseases for AD and an omics approach to identify the common genes between AD and five comorbid diseases-dementia, type 2 diabetes, hypertension, Parkinson's disease, and Down syndrome. We further identified the pathways and drugs for common genes. The rationale behind this approach is rooted in the fact that elderly individuals often receive multiple medications for various comorbid diseases, and an insight into the genes that are common to comorbid diseases may enhance treatment strategies. We identified seven common genes-PSEN1, PSEN2, MAPT, APP, APOE, NOTCH, and HFE-for AD and five comorbid diseases. We investigated the drugs interacting with these common genes using LINCS gene-drug perturbation. Our analysis unveiled several promising candidates, including MG-132 and Masitinib, which exhibit potential efficacy for both AD and its comorbid diseases. The pipeline can be extended to other diseases.
Collapse
Affiliation(s)
- Iyappan Ramalakshmi Oviya
- Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa Vidyapeetham, Chennai 641112, India;
| | - Divya Sankar
- Department of Sciences, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Chennai 601103, India;
| | - Sharanya Manoharan
- Department of Bioinformatics, Stella Maris College, Chennai 600086, India;
| | - Archana Prabahar
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences (BGES), Cleveland State University, Cleveland, OH 44115, USA;
| | - Kalpana Raja
- School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX 77030, USA
- Section for Biomedical Informatics and Data Science, School of Medicine, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
13
|
Chen Y, Xu R, Liu Q, Zeng Y, Chen W, Liu Y, Cao Y, Liu G, Chen Y. Rosmarinic acid ameliorated oxidative stress, neuronal injuries, and mitochondrial dysfunctions mediated by polyglutamine and ɑ-synuclein in Caenorhabditis elegans models. Mol Neurobiol 2024:10.1007/s12035-024-04206-4. [PMID: 38703342 DOI: 10.1007/s12035-024-04206-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Numerous natural antioxidants have been developed into agents for neurodegenerative diseases (NDs) treatment. Rosmarinic acid (RA), an excellent antioxidant, exhibits neuroprotective activity, but its anti-NDs efficacy remains puzzling. Here, Caenorhabditis elegans models were employed to systematically reveal RA-mediated mechanisms in delaying NDs from diverse facets, including oxidative stress, the homeostasis of neural and protein, and mitochondrial disorders. Firstly, RA significantly inhibited reactive oxygen species accumulation, reduced peroxide malonaldehyde production, and strengthened the antioxidant defense system via increasing superoxide dismutase activity. Besides, RA reduced neuronal loss and ameliorated polyglutamine and ɑ-synuclein-mediated dyskinesia in NDs models. Further, in combination with the data and molecular docking results, RA may bind specifically to Huntington protein and ɑ-synuclein to prevent toxic protein aggregation and thus enhance proteostasis. Finally, RA ameliorated mitochondrial dysfunction including increasing adenosine triphosphate and mitochondrial membrane potential levels and rescuing mitochondrial membrane proteins' expressions and mitochondrial structural abnormalities via regulating mitochondrial dynamics genes and improving the mitochondrial kinetic homeostasis. Thus, this study systematically revealed the RA-mediated neuroprotective mechanism and promoted RA as a promising nutritional intervention strategy to prevent NDs.
Collapse
Affiliation(s)
- Yun Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640, Guangdong, China
| | - Ruina Xu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640, Guangdong, China
| | - Qiaoxing Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640, Guangdong, China
| | - Yanting Zeng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640, Guangdong, China
| | - Weitian Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640, Guangdong, China
| | - Yongfa Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640, Guangdong, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640, Guangdong, China
| | - Guo Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640, Guangdong, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640, Guangdong, China.
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China.
| | - Yunjiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640, Guangdong, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640, Guangdong, China.
| |
Collapse
|
14
|
Papageorgiou L, Papa L, Papakonstantinou E, Mataragka A, Dragoumani K, Chaniotis D, Beloukas A, Iliopoulos C, Bongcam-Rudloff E, Chrousos GP, Kossida S, Eliopoulos E, Vlachakis D. SNP and Structural Study of the Notch Superfamily Provides Insights and Novel Pharmacological Targets against the CADASIL Syndrome and Neurodegenerative Diseases. Genes (Basel) 2024; 15:529. [PMID: 38790158 PMCID: PMC11120892 DOI: 10.3390/genes15050529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
The evolutionary conserved Notch signaling pathway functions as a mediator of direct cell-cell communication between neighboring cells during development. Notch plays a crucial role in various fundamental biological processes in a wide range of tissues. Accordingly, the aberrant signaling of this pathway underlies multiple genetic pathologies such as developmental syndromes, congenital disorders, neurodegenerative diseases, and cancer. Over the last two decades, significant data have shown that the Notch signaling pathway displays a significant function in the mature brains of vertebrates and invertebrates beyond neuronal development and specification during embryonic development. Neuronal connection, synaptic plasticity, learning, and memory appear to be regulated by this pathway. Specific mutations in human Notch family proteins have been linked to several neurodegenerative diseases including Alzheimer's disease, CADASIL, and ischemic injury. Neurodegenerative diseases are incurable disorders of the central nervous system that cause the progressive degeneration and/or death of brain nerve cells, affecting both mental function and movement (ataxia). There is currently a lot of study being conducted to better understand the molecular mechanisms by which Notch plays an essential role in the mature brain. In this study, an in silico analysis of polymorphisms and mutations in human Notch family members that lead to neurodegenerative diseases was performed in order to investigate the correlations among Notch family proteins and neurodegenerative diseases. Particular emphasis was placed on the study of mutations in the Notch3 protein and the structure analysis of the mutant Notch3 protein that leads to the manifestation of the CADASIL syndrome in order to spot possible conserved mutations and interpret the effect of these mutations in the Notch3 protein structure. Conserved mutations of cysteine residues may be candidate pharmacological targets for the potential therapy of CADASIL syndrome.
Collapse
Affiliation(s)
- Louis Papageorgiou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (L.P.); (L.P.); (E.P.); (A.M.); (K.D.); (E.E.)
- Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, Agioy Spyridonos, 12243 Egaleo, Greece; (D.C.); (A.B.)
| | - Lefteria Papa
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (L.P.); (L.P.); (E.P.); (A.M.); (K.D.); (E.E.)
| | - Eleni Papakonstantinou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (L.P.); (L.P.); (E.P.); (A.M.); (K.D.); (E.E.)
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece;
| | - Antonia Mataragka
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (L.P.); (L.P.); (E.P.); (A.M.); (K.D.); (E.E.)
| | - Konstantina Dragoumani
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (L.P.); (L.P.); (E.P.); (A.M.); (K.D.); (E.E.)
| | - Dimitrios Chaniotis
- Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, Agioy Spyridonos, 12243 Egaleo, Greece; (D.C.); (A.B.)
| | - Apostolos Beloukas
- Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, Agioy Spyridonos, 12243 Egaleo, Greece; (D.C.); (A.B.)
| | - Costas Iliopoulos
- School of Informatics, Faculty of Natural & Mathematical Sciences, King’s College London, Bush House, Strand, London WC2R 2LS, UK;
| | - Erik Bongcam-Rudloff
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, 756 51 Uppsala, Sweden;
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece;
| | - Sofia Kossida
- IMGT, The International ImMunoGenetics Information System, Laboratoire d’ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine, (IGH), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), 34000 Montpellier, France;
| | - Elias Eliopoulos
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (L.P.); (L.P.); (E.P.); (A.M.); (K.D.); (E.E.)
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (L.P.); (L.P.); (E.P.); (A.M.); (K.D.); (E.E.)
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece;
- School of Informatics, Faculty of Natural & Mathematical Sciences, King’s College London, Bush House, Strand, London WC2R 2LS, UK;
| |
Collapse
|
15
|
Cho SB. Comorbidity Genes of Alzheimer's Disease and Type 2 Diabetes Associated with Memory and Cognitive Function. Int J Mol Sci 2024; 25:2211. [PMID: 38396891 PMCID: PMC10889845 DOI: 10.3390/ijms25042211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) are comorbidities that result from the sharing of common genes. The molecular background of comorbidities can provide clues for the development of treatment and management strategies. Here, the common genes involved in the development of the two diseases and in memory and cognitive function are reviewed. Network clustering based on protein-protein interaction network identified tightly connected gene clusters that have an impact on memory and cognition among the comorbidity genes of AD and T2DM. Genes with functional implications were intensively reviewed and relevant evidence summarized. Gene information will be useful in the discovery of biomarkers and the identification of tentative therapeutic targets for AD and T2DM.
Collapse
Affiliation(s)
- Seong Beom Cho
- Department of Biomedical Informatics, College of Medicine, Gachon University, 38-13, Dokgeom-ro 3 Street, Namdon-gu, Incheon 21565, Republic of Korea
| |
Collapse
|
16
|
Zeylan M, Senyuz S, Picón-Pagès P, García-Elías A, Tajes M, Muñoz FJ, Oliva B, Garcia-Ojalvo J, Barbu E, Vicente R, Nattel S, Ois A, Puig-Pijoan A, Keskin O, Gursoy A. Shared Proteins and Pathways of Cardiovascular and Cognitive Diseases: Relation to Vascular Cognitive Impairment. J Proteome Res 2024; 23:560-573. [PMID: 38252700 PMCID: PMC10846560 DOI: 10.1021/acs.jproteome.3c00289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/29/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024]
Abstract
One of the primary goals of systems medicine is the detection of putative proteins and pathways involved in disease progression and pathological phenotypes. Vascular cognitive impairment (VCI) is a heterogeneous condition manifesting as cognitive impairment resulting from vascular factors. The precise mechanisms underlying this relationship remain unclear, which poses challenges for experimental research. Here, we applied computational approaches like systems biology to unveil and select relevant proteins and pathways related to VCI by studying the crosstalk between cardiovascular and cognitive diseases. In addition, we specifically included signals related to oxidative stress, a common etiologic factor tightly linked to aging, a major determinant of VCI. Our results show that pathways associated with oxidative stress are quite relevant, as most of the prioritized vascular cognitive genes and proteins were enriched in these pathways. Our analysis provided a short list of proteins that could be contributing to VCI: DOLK, TSC1, ATP1A1, MAPK14, YWHAZ, CREB3, HSPB1, PRDX6, and LMNA. Moreover, our experimental results suggest a high implication of glycative stress, generating oxidative processes and post-translational protein modifications through advanced glycation end-products (AGEs). We propose that these products interact with their specific receptors (RAGE) and Notch signaling to contribute to the etiology of VCI.
Collapse
Affiliation(s)
- Melisa
E. Zeylan
- Computational
Sciences and Engineering, Graduate School of Science and Engineering, Koç University, Istanbul 34450, Türkiye
| | - Simge Senyuz
- Computational
Sciences and Engineering, Graduate School of Science and Engineering, Koç University, Istanbul 34450, Türkiye
| | - Pol Picón-Pagès
- Laboratory
of Molecular Physiology, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Anna García-Elías
- Laboratory
of Molecular Physiology, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Marta Tajes
- Laboratory
of Molecular Physiology, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Francisco J. Muñoz
- Laboratory
of Molecular Physiology, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Baldomero Oliva
- Laboratory
of Structural Bioinformatics (GRIB), Department of Medicine and Life
Sciences, Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Jordi Garcia-Ojalvo
- Laboratory
of Dynamical Systems Biology, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Eduard Barbu
- Institute
of Computer Science, University of Tartu, Tartu, 50090, Estonia
| | - Raul Vicente
- Institute
of Computer Science, University of Tartu, Tartu, 50090, Estonia
| | - Stanley Nattel
- Department
of Medicine and Research Center, Montreal Heart Institute and Université
de Montréal; Institute of Pharmacology, West German Heart and
Vascular Center, University Duisburg-Essen,
Germany; IHU LIRYC and Fondation Bordeaux Université, Bordeaux 33000, France
| | - Angel Ois
- Department
of Neurology, Hospital Del Mar. Hospital
Del Mar - Medical Research Institute and Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Albert Puig-Pijoan
- Department
of Neurology, Hospital Del Mar. Hospital
Del Mar - Medical Research Institute and Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Ozlem Keskin
- Department
of Chemical and Biological Engineering, Koç University, Istanbul 34450, Türkiye
| | - Attila Gursoy
- Department
of Computer Engineering, Koç University, Istanbul 34450, Türkiye
| |
Collapse
|
17
|
Zhang M, Zhang Z, Li H, Xia Y, Xing M, Xiao C, Cai W, Bu L, Li Y, Park TE, Tang Y, Ye X, Lin WJ. Blockage of VEGF function by bevacizumab alleviates early-stage cerebrovascular dysfunction and improves cognitive function in a mouse model of Alzheimer's disease. Transl Neurodegener 2024; 13:1. [PMID: 38173017 PMCID: PMC10763201 DOI: 10.1186/s40035-023-00388-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder and the predominant type of dementia worldwide. It is characterized by the progressive and irreversible decline of cognitive functions. In addition to the pathological beta-amyloid (Aβ) deposition, glial activation, and neuronal injury in the postmortem brains of AD patients, increasing evidence suggests that the often overlooked vascular dysfunction is an important early event in AD pathophysiology. Vascular endothelial growth factor (VEGF) plays a critical role in regulating physiological functions and pathological changes in blood vessels, but whether VEGF is involved in the early stage of vascular pathology in AD remains unclear. METHODS We used an antiangiogenic agent for clinical cancer treatment, the humanized monoclonal anti-VEGF antibody bevacizumab, to block VEGF binding to its receptors in the 5×FAD mouse model at an early age. After treatment, memory performance was evaluated by a novel object recognition test, and cerebral vascular permeability and perfusion were examined by an Evans blue assay and blood flow scanning imaging analysis. Immunofluorescence staining was used to measure glial activation and Aβ deposits. VEGF and its receptors were analyzed by enzyme-linked immunosorbent assay and immunoblotting. RNA sequencing was performed to elucidate bevacizumab-associated transcriptional signatures in the hippocampus of 5×FAD mice. RESULTS Bevacizumab treatment administered from 4 months of age dramatically improved cerebrovascular functions, reduced glial activation, and restored long-term memory in both sexes of 5×FAD mice. Notably, a sex-specific change in different VEGF receptors was identified in the cortex and hippocampus of 5×FAD mice. Soluble VEGFR1 was decreased in female mice, while full-length VEGFR2 was increased in male mice. Bevacizumab treatment reversed the altered expression of receptors to be comparable to the level in the wild-type mice. Gene Set Enrichment Analysis of transcriptomic changes revealed that bevacizumab effectively reversed the changes in the gene sets associated with blood-brain barrier integrity and vascular smooth muscle contraction in 5×FAD mice. CONCLUSIONS Our study demonstrated the mechanistic roles of VEGF at the early stage of amyloidopathy and the protective effects of bevacizumab on cerebrovascular function and memory performance in 5×FAD mice. These findings also suggest the therapeutic potential of bevacizumab for the early intervention of AD.
Collapse
Affiliation(s)
- Min Zhang
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China
| | - Zhan Zhang
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Honghong Li
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yuting Xia
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Mengdan Xing
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Chuan Xiao
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Wenbao Cai
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China
| | - Lulu Bu
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yi Li
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Tae-Eun Park
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yamei Tang
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China.
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China.
| | - Xiaojing Ye
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China.
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Wei-Jye Lin
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China.
| |
Collapse
|
18
|
Piergiorge RM, da Silva Francisco Junior R, de Vasconcelos ATR, Santos-Rebouças CB. Multi-layered transcriptomic analysis reveals a pivotal role of FMR1 and other developmental genes in Alzheimer's disease-associated brain ceRNA network. Comput Biol Med 2023; 166:107494. [PMID: 37769462 DOI: 10.1016/j.compbiomed.2023.107494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023]
Abstract
Alzheimer's disease (AD) is an increasingly neurodegenerative disorder that causes progressive cognitive decline and memory impairment. Despite extensive research, the underlying causes of late-onset AD (LOAD) are still in progress. This study aimed to establish a network of competing regulatory interactions involving circular RNAs (circRNAs), microRNAs (miRNAs), RNA-binding proteins (RBPs), and messenger RNAs (mRNAs) connected to LOAD. A systematic analysis of publicly available expression data was conducted to identify integrated differentially expressed genes (DEGs) from the hippocampus of LOAD patients. Subsequently, gene co-expression analysis identified modules comprising highly expressed DEGs that act cooperatively. The competition between co-expressed DEGs and miRNAs/RBPs and the simultaneous interactions between circRNA and miRNA/RBP revealed a complex ceRNA network responsible for post-transcriptional regulation in LOAD. Hippocampal expression data for miRNAs, circRNAs, and RBPs were used to filter relevant relationships for AD. An integrated topological score was used to identify the highly connected hub gene, from which a brain core ceRNA subnetwork was generated. The Fragile X Messenger Ribonucleoprotein 1 (FMR1) coding for the RBP FMRP emerged as the prominent driver gene in this subnetwork. FMRP has been previously related to AD but not in a ceRNA network context. Also, the substantial number of neurodevelopmental genes in the ceRNA subnetwork and their related biological pathways strengthen that AD shares common pathological mechanisms with developmental conditions. Our results enhance the current knowledge about the convergent ceRNA regulatory pathways underlying AD and provide potential targets for identifying early biomarkers and developing novel therapeutic interventions.
Collapse
Affiliation(s)
- Rafael Mina Piergiorge
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Cíntia Barros Santos-Rebouças
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
19
|
Sanadgol N, Amini J, Beyer C, Zendedel A. Presenilin-1-Derived Circular RNAs: Neglected Epigenetic Regulators with Various Functions in Alzheimer's Disease. Biomolecules 2023; 13:1401. [PMID: 37759801 PMCID: PMC10527059 DOI: 10.3390/biom13091401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/28/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The presenilin-1 (PSEN1) gene is crucial in developing Alzheimer's disease (AD), a progressive neurodegenerative disorder and the most common cause of dementia. Circular RNAs (circRNAs) are non-coding RNA generated through back-splicing, resulting in a covalently closed circular molecule. This study aimed to investigate PSEN1-gene-derived circular RNAs (circPSEN1s) and their potential functions in AD. Our in silico analysis indicated that circPSEN1s (hsa_circ_0008521 and chr14:73614502-73614802) act as sponge molecules for eight specific microRNAs. Surprisingly, two of these miRNAs (has-mir-4668-5p and has-mir-5584-5p) exclusively interact with circPSEN1s rather than mRNA-PSEN1. Furthermore, the analysis of pathways revealed that these two miRNAs predominantly target mRNAs associated with the PI3K-Akt signaling pathway. With sponging these microRNAs, circPSEN1s were found to protect mRNAs commonly targeted by these miRNAs, including QSER1, BACE2, RNF157, PTMA, and GJD3. Furthermore, the miRNAs sequestered by circPSEN1s have a notable preference for targeting the TGF-β and Hippo signaling pathways. We also demonstrated that circPSEN1s potentially interact with FOXA1, ESR1, HNF1B, BRD4, GATA4, EP300, CBX3, PRDM9, and PPARG proteins. These proteins have a prominent preference for targeting the TGF-β and Notch signaling pathways, where EP300 and FOXA1 have the highest number of protein interactions. Molecular docking analysis also confirms the interaction of these hub proteins and Aβ42 with circPSEN1s. Interestingly, circPSEN1s-targeted molecules (miRNAs and proteins) impacted TGF-β, which served as a shared signaling pathway. Finally, the analysis of microarray data unveiled distinct expression patterns of genes influenced by circPSEN1s (WTIP, TGIF, SMAD4, PPP1CB, and BMPR1A) in the brains of AD patients. In summary, our findings suggested that the interaction of circPSEN1s with microRNAs and proteins could affect the fate of specific mRNAs, interrupt the function of unique proteins, and influence cell signaling pathways, generally TGF-β. Further research is necessary to validate these findings and gain a deeper understanding of the precise mechanisms and significance of circPSEN1s in the context of AD.
Collapse
Affiliation(s)
- Nima Sanadgol
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Javad Amini
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 94149-75516, Iran
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Adib Zendedel
- Department of Biomedicine, Institut of Anatomy, University of Basel, 4031 Basel, Switzerland
| |
Collapse
|
20
|
Gao L, Sun W, Zhang D, Shang Y, Li L, Tao W, Zhang L, Liu H. HIV-1 subtype B Tat enhances NOTCH3 signaling in astrocytes to mediate oxidative stress, inflammatory response, and neuronal apoptosis. J Neurovirol 2023; 29:479-491. [PMID: 37358698 DOI: 10.1007/s13365-023-01151-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023]
Abstract
NOTCH receptors are relevant to multiple neurodegenerative diseases. However, the roles and mechanisms of NOTCH receptors in HIV-associated neurocognitive disorder (HAND) remain largely unclear. Transactivator of transcription (Tat) induces oxidative stress and inflammatory response in astrocytes, thereby leading to neuronal apoptosis in the central nervous system. We determined that NOTCH3 expression was upregulated during subtype B or C Tat expression in HEB astroglial cells. Moreover, bioinformatics analysis of the Gene Expression Omnibus (GEO) dataset revealed that NOTCH3 mRNA expression in the frontal cortex tissues of HIV encephalitis patients was higher than that of HIV control patients. Of note, subtype B Tat, rather than subtype C Tat, interacted with the extracellular domain of the NOTCH3 receptor, thus activating NOTCH3 signaling. Downregulation of NOTCH3 attenuated subtype B Tat-induced oxidative stress and reactive oxygen species generation. In addition, we demonstrated that NOTCH3 signaling facilitated subtype B Tat-activated NF-κB signaling pathway, thereby mediating pro-inflammatory cytokines IL-6 and TNF-α production. Furthermore, downregulation of NOTCH3 in HEB astroglial cells protected SH-SY5Y neuronal cells from astrocyte-mediated subtype B Tat neurotoxicity. Taken together, our study clarifies the potential role of NOTCH3 in subtype B Tat-induced oxidative stress and inflammatory response in astrocytes, which could be a novel therapeutic target for the relief of HAND.
Collapse
Affiliation(s)
- Lin Gao
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong, 226001, People's Republic of China
- Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China
- Nantong Municipal Medical Key Laboratory of Molecular Immunology, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China
- Nantong Municipal Key Laboratory of Metabolic Immunology and Disease Microenvironment, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China
| | - Weixi Sun
- Disease Prevention and Control Center of Chongchuan District, Nantong, 226000, People's Republic of China
- Health Commission of Chongchuan District, Nantong, 226000, People's Republic of China
| | - Dongmei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong, 226001, People's Republic of China
- Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China
- Nantong Municipal Medical Key Laboratory of Molecular Immunology, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China
- Nantong Municipal Key Laboratory of Metabolic Immunology and Disease Microenvironment, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China
| | - Yanxing Shang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong, 226001, People's Republic of China
- Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China
- Nantong Municipal Medical Key Laboratory of Molecular Immunology, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China
- Nantong Municipal Key Laboratory of Metabolic Immunology and Disease Microenvironment, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China
| | - Li Li
- Department of Pathology, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, Nantong, 226001, People's Republic of China
| | - Wenhua Tao
- Department of Traditional Chinese Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, People's Republic of China
| | - Lei Zhang
- Nantong Health College of Jiangsu Province, Nantong, 226001, People's Republic of China.
| | - Hongbin Liu
- Department of Pathology, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, Nantong, 226001, People's Republic of China.
| |
Collapse
|
21
|
Silva-García CG. Devo-Aging: Intersections Between Development and Aging. GeroScience 2023; 45:2145-2159. [PMID: 37160658 PMCID: PMC10651630 DOI: 10.1007/s11357-023-00809-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/25/2023] [Indexed: 05/11/2023] Open
Abstract
There are two fundamental questions in developmental biology. How does a single fertilized cell give rise to a whole body? and how does this body later produce progeny? Synchronization of these embryonic and postembryonic developments ensures continuity of life from one generation to the next. An enormous amount of work has been done to unravel the molecular mechanisms behind these processes, but more recently, modern developmental biology has been expanded to study development in wider contexts, including regeneration, environment, disease, and even aging. However, we have just started to understand how the mechanisms that govern development also regulate aging. This review discusses examples of signaling pathways involved in development to elucidate how their regulation influences healthspan and lifespan. Therefore, a better knowledge of developmental signaling pathways stresses the possibility of using them as innovative biomarkers and targets for aging and age-related diseases.
Collapse
Affiliation(s)
- Carlos Giovanni Silva-García
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA.
- Center on the Biology of Aging, Brown University, Providence, RI, USA.
| |
Collapse
|
22
|
Montero-Calle A, Coronel R, Garranzo-Asensio M, Solís-Fernández G, Rábano A, de Los Ríos V, Fernández-Aceñero MJ, Mendes ML, Martínez-Useros J, Megías D, Moreno-Casbas MT, Peláez-García A, Liste I, Barderas R. Proteomics analysis of prefrontal cortex of Alzheimer's disease patients revealed dysregulated proteins in the disease and novel proteins associated with amyloid-β pathology. Cell Mol Life Sci 2023; 80:141. [PMID: 37149819 PMCID: PMC11073180 DOI: 10.1007/s00018-023-04791-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 04/06/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive, chronic, and neurodegenerative disease, and the most common cause of dementia worldwide. Currently, the mechanisms underlying the disease are far from being elucidated. Thus, the study of proteins involved in its pathogenesis would allow getting further insights into the disease and identifying new markers for AD diagnosis. METHODS We aimed here to analyze protein dysregulation in AD brain by quantitative proteomics to identify novel proteins associated with the disease. 10-plex TMT (tandem mass tags)-based quantitative proteomics experiments were performed using frozen tissue samples from the left prefrontal cortex of AD patients and healthy individuals and vascular dementia (VD) and frontotemporal dementia (FTD) patients as controls (CT). LC-MS/MS analyses were performed using a Q Exactive mass spectrometer. RESULTS In total, 3281 proteins were identified and quantified using MaxQuant. Among them, after statistical analysis with Perseus (p value < 0.05), 16 and 155 proteins were defined as upregulated and downregulated, respectively, in AD compared to CT (Healthy, FTD and VD) with an expression ratio ≥ 1.5 (upregulated) or ≤ 0.67 (downregulated). After bioinformatics analysis, ten dysregulated proteins were selected as more prone to be associated with AD, and their dysregulation in the disease was verified by qPCR, WB, immunohistochemistry (IHC), immunofluorescence (IF), pull-down, and/or ELISA, using tissue and plasma samples of AD patients, patients with other dementias, and healthy individuals. CONCLUSIONS We identified and validated novel AD-associated proteins in brain tissue that should be of further interest for the study of the disease. Remarkably, PMP2 and SCRN3 were found to bind to amyloid-β (Aβ) fibers in vitro, and PMP2 to associate with Aβ plaques by IF, whereas HECTD1 and SLC12A5 were identified as new potential blood-based biomarkers of the disease.
Collapse
Affiliation(s)
- Ana Montero-Calle
- Functional Proteomics Unit, Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, E-28220, Madrid, Spain
| | - Raquel Coronel
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - María Garranzo-Asensio
- Functional Proteomics Unit, Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, E-28220, Madrid, Spain
| | - Guillermo Solís-Fernández
- Functional Proteomics Unit, Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, E-28220, Madrid, Spain
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Celestijnenlaan 200F, Heverlee, 3001, Louvain, Belgium
| | - Alberto Rábano
- Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, E-28031, Madrid, Spain
| | | | | | - Marta L Mendes
- Department of Infection and Immunity, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
| | - Javier Martínez-Useros
- Translational Oncology Division, OncoHealth Institute, Health Research Institute-University Hospital Fundación Jiménez Díaz-Universidad Autónoma de Madrid, E-28040, Madrid, Spain
- Area of Physiology, Department of Basic Health Sciences, Faculty of Health Sciences, Rey Juan Carlos University, E-28922, Madrid, Spain
| | - Diego Megías
- Advanced Optical Microscopy Unit, UCCTs, Instituto de Salud Carlos III (ISCIII), E-28220, Majadahonda, Madrid, Spain
| | | | - Alberto Peláez-García
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), E-28046, Madrid, Spain
| | - Isabel Liste
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Rodrigo Barderas
- Functional Proteomics Unit, Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, E-28220, Madrid, Spain.
| |
Collapse
|
23
|
Wu Z, Liu P, Huang B, Deng S, Song Z, Huang X, Yang J, Cheng S. A novel Alzheimer's disease prognostic signature: identification and analysis of glutamine metabolism genes in immunogenicity and immunotherapy efficacy. Sci Rep 2023; 13:6895. [PMID: 37106067 PMCID: PMC10140060 DOI: 10.1038/s41598-023-33277-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Alzheimer's disease (AD) is characterized as a distinct onset and progression of cognitive and functional decline associated with age, as well as a specific neuropathology. It has been discovered that glutamine (Gln) metabolism plays a crucial role in cancer. However, a full investigation of its role in Alzheimer's disease is still missing. This study intended to find and confirm potential Gln-related genes associated with AD using bioinformatics analysis. The discovery of GlnMgs was made possible by the intersection of the WGCNA test and 26 Gln-metabolism genes (GlnMgs). GlnMgs' putative biological functions and pathways were identified using GSVA. The LASSO method was then used to identify the hub genes as well as the diagnostic efficiency of the four GlnMgs in identifying AD. The association between hub GlnMgs and clinical characteristics was also studied. Finally, the GSE63060 was utilized to confirm the levels of expression of the four GlnMgs. Four GlnMgs were discovered (ATP5H, NDUFAB1, PFN2, and SPHKAP). For biological function analysis, cell fate specification, atrioventricular canal development, and neuron fate specification were emphasized. The diagnostic ability of the four GlnMgs in differentiating AD exhibited a good value. This study discovered four GlnMgs that are linked to AD. They shed light on potential new biomarkers for AD and tracking its progression.
Collapse
Affiliation(s)
- Zixuan Wu
- Hunan University of Chinese Medicine, Changsha, 410128, China
| | - Ping Liu
- Hunan University of Chinese Medicine, Changsha, 410128, China
| | - Baisheng Huang
- Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Sisi Deng
- Hunan University of Chinese Medicine, Changsha, 410128, China
| | - Zhenyan Song
- Hunan University of Chinese Medicine, Changsha, 410128, China
| | - Xindi Huang
- Hunan University of Chinese Medicine, Changsha, 410128, China
| | - Jing Yang
- Hunan University of Chinese Medicine, Changsha, 410128, China.
| | - Shaowu Cheng
- Hunan University of Chinese Medicine, Changsha, 410128, China.
| |
Collapse
|
24
|
Fang X, Zhang X, Zhang Y, Zhang X, Shan M, Guan S, Qiu Z, Zhu D, Luo H. Exploring the potential of ginseng glycoprotein to improve learning and memory in mice via Notch signaling pathway and structural analysis using multi-information fusion based on liquid chromatography-mass spectrometry. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115978. [PMID: 36519753 DOI: 10.1016/j.jep.2022.115978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax ginseng C.A. Meyer reportedly exhibits various beneficial pharmacological activities. Panax ginseng glycoproteins (PGG) are a class of glycosylated protein components extracted from ginseng and can exert significant activity for improving learning and memory abilities. AIM OF THE STUDY The objective of the present study was to investigate the PGG-mediated protective mechanism against neurodegenerative diseases via the Notch signaling pathway using proteomic methods. MATERIALS AND METHODS We examined learning and memory in mice using the Morris water maze and nest-building paradigms. The PGG structure was determined using multi-information fusion based on liquid chromatography-mass spectrometry (LC/MS). Accurate glycosylation sites of glycoproteins were identified using the advanced glycosylation analysis software Byonic. Furthermore, connection modes of the oligosaccharide chain were clarified by methylation analysis of sugar residues. The differentially expressed proteins (DEPs) between wild-type (WT) and APP/APS1 mice were measured and compared using label-free quantitative proteomics, and related signaling pathways were identified. For validation, we performed a series of in vitro tests, including an assessment of cell viability, apoptosis assay, quantitative real-time polymerase chain reaction, and western blotting. RESULTS In the Morris water maze and nesting experiments, PGG-treated WT mice exhibited significantly improved learning and memory. The structures of 171 glycoprotein fragments in PGG matched the credible score, and typical structures were identified using LC/MS data analysis. According to the proteomic analysis results, 188 DEPs were detected between the model and administration groups, and two downregulated DEPs were related to the Notch signaling pathway. Based on the in vitro verification tests, PGG significantly inhibited the expression of key proteins in the Notch signaling pathway in microglia. CONCLUSIONS PGG could prevent the development of neuroinflammation by inhibiting excessive activation of the Notch signaling pathway, thereby inhibiting neuroapoptosis.
Collapse
Affiliation(s)
- Xiaoxue Fang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China; Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xiaoying Zhang
- The First Hospital of Jilin University, Changchun, 130117, China
| | - Yegang Zhang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China; Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xun Zhang
- Changchun Customs District P.R. China, The Former Jilin Entry-Exit Inspection and Quarantine Bureau, Changchun, 130062, China
| | - Mengyao Shan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China; Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Shuguang Guan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China; Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Zhidong Qiu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China; Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Difu Zhu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China; Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Haoming Luo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China; Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
25
|
Zhang Q, Liu J, Chen L, Zhang M. Promoting Endogenous Neurogenesis as a Treatment for Alzheimer's Disease. Mol Neurobiol 2023; 60:1353-1368. [PMID: 36445633 DOI: 10.1007/s12035-022-03145-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/19/2022] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is the most universal neurodegenerative disorder characterized by memory loss and cognitive impairment. AD is biologically defined by production and aggregation of misfolded protein including extracellular amyloid β (Aβ) peptide and intracellular microtubule-associated protein tau tangles in neurons, leading to irreversible neuronal loss. At present, regulation of endogenous neurogenesis to supplement lost neurons has been proposed as a promising strategy for treatment of AD. However, the exact underlying mechanisms of impaired neurogenesis in AD have not been fully explained and effective treatments targeting neurogenesis for AD are limited. In this review, we mainly focus on the latest research of impaired neurogenesis in AD. Then we discuss the factors affecting stages of neurogenesis and the interplay between neural stem cells (NSCs) and neurogenic niche under AD pathological conditions. This review aims to explore potential therapeutic strategies that promote endogenous neurogenesis for AD treatments.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Jingyue Liu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Li Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China. .,School of Nursing, Jilin University, Changchun, China.
| | - Ming Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
26
|
Liu Y, Bilen M, McNicoll MM, Harris RA, Fong BC, Iqbal MA, Paul S, Mayne J, Walker K, Wang J, Figeys D, Slack RS. Early postnatal defects in neurogenesis in the 3xTg mouse model of Alzheimer's disease. Cell Death Dis 2023; 14:138. [PMID: 36801910 PMCID: PMC9938901 DOI: 10.1038/s41419-023-05650-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 01/26/2023] [Accepted: 02/03/2023] [Indexed: 02/19/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder leading to dementia. The hippocampus, which is one of the sites where neural stem cells reside and new neurons are born, exhibits the most significant neuronal loss in AD. A decline in adult neurogenesis has been described in several animal models of AD. However, the age at which this defect first appears remains unknown. To determine at which stage, from birth to adulthood, the neurogenic deficits are found in AD, we used the triple transgenic mouse model of AD (3xTg). We show that defects in neurogenesis are present as early as postnatal stages, well before the onset of any neuropathology or behavioral deficits. We also show that 3xTg mice have significantly fewer neural stem/progenitor cells, with reduced proliferation and decreased numbers of newborn neurons at postnatal stages, consistent with reduced volumes of hippocampal structures. To determine whether there are early changes in the molecular signatures of neural stem/progenitor cells, we perform bulk RNA-seq on cells sorted directly from the hippocampus. We show significant changes in the gene expression profiles at one month of age, including genes of the Notch and Wnt pathways. These findings reveal impairments in neurogenesis very early in the 3xTg AD model, which provides new opportunities for early diagnosis and therapeutic interventions to prevent neurodegeneration in AD.
Collapse
Affiliation(s)
- Yubing Liu
- grid.28046.380000 0001 2182 2255Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research institute, K1H 8M5 Ottawa, Canada
| | - Maria Bilen
- grid.28046.380000 0001 2182 2255Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research institute, K1H 8M5 Ottawa, Canada
| | - Marie-Michelle McNicoll
- grid.28046.380000 0001 2182 2255Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research institute, K1H 8M5 Ottawa, Canada
| | - Richard A. Harris
- grid.28046.380000 0001 2182 2255Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research institute, K1H 8M5 Ottawa, Canada
| | - Bensun C. Fong
- grid.28046.380000 0001 2182 2255Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research institute, K1H 8M5 Ottawa, Canada
| | - Mohamed Ariff Iqbal
- grid.28046.380000 0001 2182 2255Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research institute, K1H 8M5 Ottawa, Canada
| | - Smitha Paul
- grid.28046.380000 0001 2182 2255Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research institute, K1H 8M5 Ottawa, Canada
| | - Janice Mayne
- grid.28046.380000 0001 2182 2255Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, K1H 8M5 Ottawa, Canada
| | - Krystal Walker
- grid.28046.380000 0001 2182 2255Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, K1H 8M5 Ottawa, Canada
| | - Jing Wang
- grid.28046.380000 0001 2182 2255Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research institute, K1H 8M5 Ottawa, Canada ,grid.412687.e0000 0000 9606 5108Regenerative Medicine Program, Ottawa Hospital Research Institute, K1H 8L6 Ottawa, Canada
| | - Daniel Figeys
- grid.28046.380000 0001 2182 2255Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, K1H 8M5 Ottawa, Canada
| | - Ruth S. Slack
- grid.28046.380000 0001 2182 2255Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research institute, K1H 8M5 Ottawa, Canada
| |
Collapse
|
27
|
Kulminski AM, Feng F, Loiko E, Nazarian A, Loika Y, Culminskaya I. Prevailing Antagonistic Risks in Pleiotropic Associations with Alzheimer's Disease and Diabetes. J Alzheimers Dis 2023; 94:1121-1132. [PMID: 37355909 PMCID: PMC10666173 DOI: 10.3233/jad-230397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
BACKGROUND The lack of efficient preventive interventions against Alzheimer's disease (AD) calls for identifying efficient modifiable risk factors for AD. As diabetes shares many pathological processes with AD, including accumulation of amyloid plaques and neurofibrillary tangles, insulin resistance, and impaired glucose metabolism, diabetes is thought to be a potentially modifiable risk factor for AD. Mounting evidence suggests that links between AD and diabetes may be more complex than previously believed. OBJECTIVE To examine the pleiotropic architecture of AD and diabetes mellitus (DM). METHODS Univariate and pleiotropic analyses were performed following the discovery-replication strategy using individual-level data from 10 large-scale studies. RESULTS We report a potentially novel pleiotropic NOTCH2 gene, with a minor allele of rs5025718 associated with increased risks of both AD and DM. We confirm previously identified antagonistic associations of the same variants with the risks of AD and DM in the HLA and APOE gene clusters. We show multiple antagonistic associations of the same variants with AD and DM in the HLA cluster, which were not explained by the lead SNP in this cluster. Although the ɛ2 and ɛ4 alleles played a major role in the antagonistic associations with AD and DM in the APOE cluster, we identified non-overlapping SNPs in this cluster, which were adversely and beneficially associated with AD and DM independently of the ɛ2 and ɛ4 alleles. CONCLUSION This study emphasizes differences and similarities in the heterogeneous genetic architectures of AD and DM, which may differentiate the pathogenic mechanisms of these diseases.
Collapse
Affiliation(s)
- Alexander M Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27705, USA
| | - Fan Feng
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27705, USA
| | - Elena Loiko
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27705, USA
| | - Alireza Nazarian
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27705, USA
| | - Yury Loika
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27705, USA
| | - Irina Culminskaya
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27705, USA
| |
Collapse
|
28
|
Wu T, Lin D, Cheng Y, Jiang S, Riaz MW, Fu N, Mou C, Ye M, Zheng Y. Amyloid Cascade Hypothesis for the Treatment of Alzheimer's Disease: Progress and Challenges. Aging Dis 2022; 13:1745-1758. [PMID: 36465173 PMCID: PMC9662281 DOI: 10.14336/ad.2022.0412] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/12/2022] [Indexed: 07/29/2023] Open
Abstract
The amyloid cascade hypothesis has always been a research focus in the therapeutic field of Alzheimer's disease (AD) since it was put forward. Numerous researchers attempted to find drugs for AD treatment based on this hypothesis. To promote the research of anti-AD drugs development, the current hypothesis and pathogenesis were reviewed with expounding of β-amyloid generation from its precursor protein and related transformations. Meanwhile, the present drug development strategies aimed at each stage in this hypothesis were also summarized. Several strategies especially immunotherapy showed the optimistic results in clinical trials, but only a small percentage of them eventually succeeded. In this review, we also tried to point out some common problems of drug development in preclinical and clinical studies which might be settled through multidisciplinary cooperation as well as the understanding that reinforces the amyloid cascade hypothesis.
Collapse
Affiliation(s)
- Tong Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Ding Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Yaqian Cheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Senze Jiang
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Muhammad Waheed Riaz
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Nina Fu
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Chenhao Mou
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Menglu Ye
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Ying Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
29
|
ESR1 dysfunction triggers neuroinflammation as a critical upstream causative factor of the Alzheimer’s disease process. Aging (Albany NY) 2022; 14:8595-8614. [DOI: 10.18632/aging.204359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
|
30
|
Hirschfeld LR, Risacher SL, Nho K, Saykin AJ. Myelin repair in Alzheimer's disease: a review of biological pathways and potential therapeutics. Transl Neurodegener 2022; 11:47. [PMID: 36284351 PMCID: PMC9598036 DOI: 10.1186/s40035-022-00321-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/15/2022] [Indexed: 11/29/2022] Open
Abstract
This literature review investigates the significant overlap between myelin-repair signaling pathways and pathways known to contribute to hallmark pathologies of Alzheimer's disease (AD). We discuss previously investigated therapeutic targets of amyloid, tau, and ApoE, as well as other potential therapeutic targets that have been empirically shown to contribute to both remyelination and progression of AD. Current evidence shows that there are multiple AD-relevant pathways which overlap significantly with remyelination and myelin repair through the encouragement of oligodendrocyte proliferation, maturation, and myelin production. There is a present need for a single, cohesive model of myelin homeostasis in AD. While determining a causative pathway is beyond the scope of this review, it may be possible to investigate the pathological overlap of myelin repair and AD through therapeutic approaches.
Collapse
Affiliation(s)
- Lauren Rose Hirschfeld
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Shannon L Risacher
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kwangsik Nho
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Andrew J Saykin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
31
|
Wang Y, Yuan P, Ding L, Zhu J, Qi X, Zhang Y, Li Y, Xia X, Zheng JC. Circulating extracellular vesicle-containing microRNAs reveal potential pathogenesis of Alzheimer’s disease. Front Cell Neurosci 2022; 16:955511. [PMID: 36339820 PMCID: PMC9630335 DOI: 10.3389/fncel.2022.955511] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
Abstract
The pathogenesis of Alzheimer’s disease (AD) remains unknown till today, hindering the research and development of AD therapeutics and diagnostics. Circulating extracellular vesicles (EVs) can be utilized as a new window to spy upon AD pathogenesis. Altered microRNA profiles were noted in both the cerebrospinal fluid (CSF)- and blood-isolated EVs of AD patients, implying the outstanding potential of circulating EV-containing miRNAs (CEmiRs) to serve as important regulators in AD pathogenesis. Although several CEmiRs were found to play a part in AD, the association of globally altered miRNA profiles in patients’ serum-derived EVs with AD pathogenesis remains unclear. In this study, we first investigated the miRNA profile in serum-derived EVs from AD, mild cognitive impairment (MCI) patients, and healthy individuals. We observed differential expression patterns of CEmiRs and classified them into 10 clusters. We identified the predicted targets of these differentially expressed CEmiRs (DECEmiRs) and analyzed their biological functions and interactions. Our study revealed the temporal regulation of complex and precise signaling networks on AD pathogenesis, shedding light on the development of novel therapeutic strategies, including multi-target drug combination for AD treatment.
Collapse
Affiliation(s)
- Yi Wang
- Translational Research Center, Shanghai Yangzhi Rehabilitation Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Ping Yuan
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Lu Ding
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Jie Zhu
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Xinrui Qi
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Yanyan Zhang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Yunxia Li
- Department of Neurology, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Yunxia Li,
| | - Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Tongji University, Shanghai, China
- Xiaohuan Xia,
| | - Jialin C. Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Tongji University, Shanghai, China
- Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
- *Correspondence: Jialin C. Zheng,
| |
Collapse
|
32
|
Chen Y, Qin Q, Zhao W, Luo D, Huang Y, Liu G, Kuang Y, Cao Y, Chen Y. Carnosol Reduced Pathogenic Protein Aggregation and Cognitive Impairment in Neurodegenerative Diseases Models via Improving Proteostasis and Ameliorating Mitochondrial Disorders. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10490-10505. [PMID: 35973126 DOI: 10.1021/acs.jafc.2c02665] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neurodegenerative diseases (NDs) such as Alzheimer's disease, Parkinson's disease, and Huntington's disease are incurable diseases with progressive loss of neural function and require urgent development of effective treatments. Carnosol (CL) reportedly has a pharmacological effect in the prevention of dementia. Nevertheless, the mechanisms of CL's neuroprotection are not entirely clear. The present study aimed to investigate the effects and mechanisms of CL-mediated neuroprotection through Caenorhabditis elegans models. First, CL restored ND protein homeostasis via inhibiting the IIS pathway, regulating MAPK signaling, and simultaneously activating molecular chaperone, thus inhibiting amyloid peptide (Aβ), polyglutamine (polyQ), and α-synuclein (α-syn) deposition and reducing protein disruption-mediated behavioral and cognitive impairments as well as neuronal damages. Furthermore, CL could repair mitochondrial structural damage via improving the mitochondrial membrane protein function and mitochondrial structural homeostasis and improve mitochondrial functional defects via increasing adenosine triphosphate contents, mitochondrial membrane potential, and reactive oxygen species levels, suggesting that CL could improve the ubiquitous mitochondrial defects in NDs. More importantly, we found that CL activated mitochondrial kinetic homeostasis related genes to improve the mitochondrial homeostasis and dysfunction in NDs. Meanwhile, CL up-regulated unc-17, cho-1, and cha-1 genes to alleviate Aβ-mediated cholinergic neurological disorders and activated Notch signaling and the Wnt pathway to diminish polyQ- and α-syn-induced ASH neurons as well as dopaminergic neuron damages. Overall, our study clarified the beneficial anti-ND neuroprotective effects of CL in different aspects and provided new insights into developing CL into products with preventive and therapeutic effects on NDs.
Collapse
Affiliation(s)
- Yun Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640 Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong, China
| | - Qiao Qin
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640 Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong, China
| | - Wen Zhao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640 Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong, China
| | - Danxia Luo
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640 Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong, China
| | - Yingyin Huang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640 Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong, China
| | - Guo Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640 Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong, China
| | - Yong Kuang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640 Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640 Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong, China
| | - Yunjiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640 Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong, China
| |
Collapse
|
33
|
Drugs and Endogenous Factors as Protagonists in Neurogenic Stimulation. Stem Cell Rev Rep 2022; 18:2852-2871. [PMID: 35962176 DOI: 10.1007/s12015-022-10423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 10/15/2022]
Abstract
Neurogenesis is a biological process characterized by new neurons formation from stem cells. For decades, it was believed that neurons only multiplied during development and in the postnatal period but the discovery of neural stem cells (NSCs) in mature brain promoted a revolution in neuroscience field. In mammals, neurogenesis consists of migration, differentiation, maturation, as well as functional integration of newborn cells into the pre-existing neuronal circuit. Actually, NSC density drops significantly after the first stages of development, however in specific places in the brain, called neurogenic niches, some of these cells retain their ability to generate new neurons and glial cells in adulthood. The subgranular (SGZ), and the subventricular zones (SVZ) are examples of regions where the neurogenesis process occurs in the mature brain. There, the potential of NSCs to produce new neurons has been explored by new advanced methodologies and in neuroscience for the treatment of brain damage and/or degeneration. Based on that, this review highlights endogenous factors and drugs capable of stimulating neurogenesis, as well as the perspectives for the use of NSCs for neurological and neurodegenerative diseases.
Collapse
|
34
|
A Novel Based-Network Strategy to Identify Phytochemicals from Radix Salviae Miltiorrhizae (Danshen) for Treating Alzheimer's Disease. Molecules 2022; 27:molecules27144463. [PMID: 35889336 PMCID: PMC9317794 DOI: 10.3390/molecules27144463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is a common age-related neurodegenerative disease that strikes millions worldwide. Herein, we demonstrate a new approach based on network target to identify anti-AD compounds from Danshen. Network pharmacology and molecular docking were employed to establish the DS-AD network, which mainly involved apoptosis of neuron cells. Then network scoring was confirmed via Connectivity Map analysis. M308 (Danshenxinkun D) was an anti-AD candidate with a high score (p < 0.01). Furthermore, we conducted ex vivo experiments with H2O2-treated PC12 cells to verify the neuroprotective effect of Salvia miltiorrhiza-containing plasma (SMP), and UPLC-Q-TOF/MS and RT-qPCR were performed to demonstrate the anti-AD activity of M308 from SMP. Results revealed that SMP could enhance cell viability and level of acetylcholine. AO/EB staining and Mitochondrial membrane potential (MMP) analysis showed that SMP significantly suppressed apoptosis, which may be due to anti-oxidative stress activity. Moreover, the effects of M308 and SMP on expressions of PSEN1, DRD2, and APP mRNA were consistent, and M308 can significantly reverse the expression of PSEN1 and DRD2 mRNA in H2O2-treated PC12 cells. The strategy based on the network could be employed to identify anti-AD compounds from Chinese herbs. Notably, M308 stands out as a promising anti-AD candidate for development.
Collapse
|
35
|
Yeh PK, Liang CS, Tsai CL, Lin YK, Lin GY, Tsai CK, Tsai MC, Liu Y, Tai YM, Hung KS, Yang FC. Genetic Variants Associated With Subjective Cognitive Decline in Patients With Migraine. Front Aging Neurosci 2022; 14:860604. [PMID: 35783123 PMCID: PMC9248861 DOI: 10.3389/fnagi.2022.860604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
The genetic association between subjective cognitive decline (SCD) and migraine comorbidity remains unclear. Furthermore, single nucleotide polymorphisms (SNP) associated with SCD have not been identified previously. Migraineurs were genotyped using an Affymetrix array. The correlation between different SNP variants in migraineurs with or without SCD and non-migraine controls was investigated. Migraineurs with or without SCD were further divided for the analysis of relevant SNP variants linked to migraine with aura (MA), migraine without aura (MoA), episodic migraine (EM), and chronic migraine (CM). Significant connectivity between SNPs and clinical indices in migraineurs and non-migraine controls with SCD were assessed using multivariate regression analysis. The rs144191744 SNP was found in migraineurs (p = 3.19E-08), EM (p = 1.34E-07), and MoA(p = 7.69E-07) with and without SCD. The T allele frequency for rs144191744 in TGFBR3 was 0.0054 and 0.0445 in migraineurs with and without SCD (odds ratio, 0.12), respectively. rs2352564, rs6089473 in CDH4, rs112400385 in ST18, rs4488224 and rs17111203 in ARHGAP29 SNPs were found, respectively, in non-migraineurs (p = 4.85E-06, p = 8.28E-06), MoA (p = 3.13E-07), and CM subgroups (p = 1.05E-07, 6.24E-07) with and without SCD. Rs144191744 closely relates to SCD with the all-migraine group and the EM and MoA subgroups. In conclusion, rs144191744 in TGFBR3 was significantly associated with SCD in migraineurs, especially in the EM, MoA, and female patient subgroups. Furthermore, three SNPs (rs112400385, rs4488224, and rs17111203) were associated with SCD in migraineurs but not in non-migraine controls.
Collapse
Affiliation(s)
- Po-Kuan Yeh
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Sung Liang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Lin Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Kai Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Guan-Yu Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Neurology, Songshan Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Kuang Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Chen Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi Liu
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yueh-Ming Tai
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Sheng Hung
- Center for Precision Medicine and Genomics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Fu-Chi Yang
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- *Correspondence: Fu-Chi Yang
| |
Collapse
|
36
|
Mullins R, Kapogiannis D. Alzheimer’s Disease-Related Genes Identified by Linking Spatial Patterns of Pathology and Gene Expression. Front Neurosci 2022; 16:908650. [PMID: 35774552 PMCID: PMC9237461 DOI: 10.3389/fnins.2022.908650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022] Open
Abstract
Background Alzheimer’s Disease (AD) is an age-related neurodegenerative disease with a poorly understood etiology, shown to be partly genetic. Glucose hypometabolism, extracellular Amyloid-beta (Aβ) deposition, and intracellular Tau deposition are cardinal features of AD and display characteristic spatial patterns in the brain. We hypothesize that regional differences in underlying gene expression confer either resistance or susceptibility to AD pathogenic processes and are associated with these spatial patterns. Data-driven methods for the identification of genes involved in AD pathogenesis complement hypothesis-driven approaches that reflect current theories about the disease. Here we present a data driven method for the identification of genes involved in AD pathogenesis based on comparing spatial patterns of normal gene expression to Positron Emission Tomography (PET) images of glucose hypometabolism, Aβ deposition, and Tau deposition. Methods We performed correlations between the cerebral cortex microarray samples from the six cognitively normal (CN) post-mortem Allen Human Brain Atlas (AHBA) specimens and PET FDG-18, AV-45, and AV-1451 tracer images from AD and CN participants in the Alzheimer’s Disease and Neuroimaging Initiative (ADNI) database. Correlation coefficients for each gene by each ADNI subject were then entered into a partial least squares discriminant analysis (PLS-DA) to determine sets that best classified the AD and CN groups. Pathway analysis via BioPlanet 2019 was then used to infer the function of implicated genes. Results We identified distinct sets of genes strongly associated with each PET modality. Pathway analyses implicated novel genes involved in mitochondrial function, and Notch signaling, as well as genes previously associated with AD. Conclusion Using an unbiased approach, we derived sets of genes with expression patterns spatially associated with FDG hypometabolism, Aβ deposition, and Tau deposition in AD. This methodology may complement population-based approaches for identifying the genetic underpinnings of AD.
Collapse
|
37
|
Lampinen R, Górová V, Avesani S, Liddell JR, Penttilä E, Závodná T, Krejčík Z, Lehtola JM, Saari T, Kalapudas J, Hannonen S, Löppönen H, Topinka J, Koivisto AM, White AR, Giugno R, Kanninen KM. Biometal Dyshomeostasis in Olfactory Mucosa of Alzheimer's Disease Patients. Int J Mol Sci 2022; 23:ijms23084123. [PMID: 35456941 PMCID: PMC9032618 DOI: 10.3390/ijms23084123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022] Open
Abstract
Olfactory function, orchestrated by the cells of the olfactory mucosa at the rooftop of the nasal cavity, is disturbed early in the pathogenesis of Alzheimer's disease (AD). Biometals including zinc and calcium are known to be important for sense of smell and to be altered in the brains of AD patients. Little is known about elemental homeostasis in the AD patient olfactory mucosa. Here we aimed to assess whether the disease-related alterations to biometal homeostasis observed in the brain are also reflected in the olfactory mucosa. We applied RNA sequencing to discover gene expression changes related to metals in olfactory mucosal cells of cognitively healthy controls, individuals with mild cognitive impairment and AD patients, and performed analysis of the elemental content to determine metal levels. Results demonstrate that the levels of zinc, calcium and sodium are increased in the AD olfactory mucosa concomitantly with alterations to 17 genes related to metal-ion binding or metal-related function of the protein product. A significant elevation in alpha-2-macroglobulin, a known metal-binding biomarker correlated with brain disease burden, was observed on the gene and protein levels in the olfactory mucosa cells of AD patients. These data demonstrate that the olfactory mucosa cells derived from AD patients recapitulate certain impairments of biometal homeostasis observed in the brains of patients.
Collapse
Affiliation(s)
- Riikka Lampinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland; (R.L.); (V.G.)
| | - Veronika Górová
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland; (R.L.); (V.G.)
| | - Simone Avesani
- Department of Computer Science, University of Verona, 37134 Verona, Italy; (S.A.); (R.G.)
| | - Jeffrey R. Liddell
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Elina Penttilä
- Department of Otorhinolaryngology, University of Eastern Finland and Kuopio University Hospital, 70210 Kuopio, Finland; (E.P.); (H.L.)
| | - Táňa Závodná
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (T.Z.); (Z.K.); (J.T.)
| | - Zdeněk Krejčík
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (T.Z.); (Z.K.); (J.T.)
| | - Juha-Matti Lehtola
- Brain Research Unit, Department of Neurology, School of Medicine, University of Eastern Finland, 70210 Kuopio, Finland; (J.-M.L.); (T.S.); (J.K.); (S.H.); (A.M.K.)
- Department of Neurology, NeuroCentre, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Toni Saari
- Brain Research Unit, Department of Neurology, School of Medicine, University of Eastern Finland, 70210 Kuopio, Finland; (J.-M.L.); (T.S.); (J.K.); (S.H.); (A.M.K.)
| | - Juho Kalapudas
- Brain Research Unit, Department of Neurology, School of Medicine, University of Eastern Finland, 70210 Kuopio, Finland; (J.-M.L.); (T.S.); (J.K.); (S.H.); (A.M.K.)
| | - Sanna Hannonen
- Brain Research Unit, Department of Neurology, School of Medicine, University of Eastern Finland, 70210 Kuopio, Finland; (J.-M.L.); (T.S.); (J.K.); (S.H.); (A.M.K.)
- Department of Neurology, NeuroCentre, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Heikki Löppönen
- Department of Otorhinolaryngology, University of Eastern Finland and Kuopio University Hospital, 70210 Kuopio, Finland; (E.P.); (H.L.)
| | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (T.Z.); (Z.K.); (J.T.)
| | - Anne M. Koivisto
- Brain Research Unit, Department of Neurology, School of Medicine, University of Eastern Finland, 70210 Kuopio, Finland; (J.-M.L.); (T.S.); (J.K.); (S.H.); (A.M.K.)
- Department of Neurology, NeuroCentre, Kuopio University Hospital, 70210 Kuopio, Finland
- Department of Neurology and Geriatrics, Helsinki University Hospital and Neurosciences, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Anthony R. White
- Department of Cell and Molecular Biology, Mental Health Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia;
| | - Rosalba Giugno
- Department of Computer Science, University of Verona, 37134 Verona, Italy; (S.A.); (R.G.)
| | - Katja M. Kanninen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland; (R.L.); (V.G.)
- Correspondence:
| |
Collapse
|
38
|
Finding New Ways How to Control BACE1. J Membr Biol 2022; 255:293-318. [PMID: 35305135 DOI: 10.1007/s00232-022-00225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/24/2022] [Indexed: 01/18/2023]
Abstract
Recently, all applications of BACE1 inhibitors failed as therapeutical targets for Alzheimer´s disease (AD) due to severe side effects. Therefore, alternative ways for treatment development are a hot research topic. The present analysis investigates BACE1 protein-protein interaction networks and attempts to solve the absence of complete knowledge about pathways involving BACE1. A bioinformatics analysis matched the functions of the non-substrate interaction network with Voltage-gated potassium channels, which also appear as top priority protein nodes. Targeting BACE1 interactions with PS1 and GGA-s, blocking of BACE1 access to APP by BRI3 and RTN-s, activation of Wnt signaling and upregulation of β-catenin, and brain delivery of the extracellular domain of p75NTR, are the main alternatives to the use of BACE 1 inhibitors highlighted by the analysis. The pathway enrichment analysis also emphasized substrates and substrate candidates with essential biological functions, which cleavage must remain controlled. They include ephrin receptors, ROBO1, ROBO2, CNTN-s, CASPR-s, CD147, CypB, TTR, APLP1/APLP2, NRXN-s, and PTPR-s. The analysis of the interaction subnetwork of BACE1 functionally related to inflammation identified a connection to three cardiomyopathies, which supports the hypothesis of the common molecular mechanisms with AD. A lot of potential shows the regulation of BACE1 activity through post-translational modifications. The interaction network of BACE1 and its phosphorylation enzyme CSNK1D functionally match the Circadian clock, p53, and Hedgehog signaling pathways. The regulation of BACE1 glycosylation could be achieved through N-acetylglucosamine transferases, α-(1→6)-fucosyltransferase, β-galactoside α-(2→6)-sialyltransferases, galactosyltransferases, and mannosidases suggested by the interaction network analysis of BACE1-MGAT3. The present analysis proposes possibilities for the alternative control of AD pathology.
Collapse
|
39
|
Jha NK, Chen WC, Kumar S, Dubey R, Tsai LW, Kar R, Jha SK, Gupta PK, Sharma A, Gundamaraju R, Pant K, Mani S, Singh SK, Maccioni RB, Datta T, Singh SK, Gupta G, Prasher P, Dua K, Dey A, Sharma C, Mughal YH, Ruokolainen J, Kesari KK, Ojha S. Molecular mechanisms of developmental pathways in neurological disorders: a pharmacological and therapeutic review. Open Biol 2022; 12:210289. [PMID: 35291879 PMCID: PMC8924757 DOI: 10.1098/rsob.210289] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 02/01/2022] [Indexed: 01/07/2023] Open
Abstract
Developmental signalling pathways such as Wnt/β-catenin, Notch and Sonic hedgehog play a central role in nearly all the stages of neuronal development. The term 'embryonic' might appear to be a misnomer to several people because these pathways are functional during the early stages of embryonic development and adulthood, albeit to a certain degree. Therefore, any aberration in these pathways or their associated components may contribute towards a detrimental outcome in the form of neurological disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and stroke. In the last decade, researchers have extensively studied these pathways to decipher disease-related interactions, which can be used as therapeutic targets to improve outcomes in patients with neurological abnormalities. However, a lot remains to be understood in this domain. Nevertheless, there is strong evidence supporting the fact that embryonic signalling is indeed a crucial mechanism as is manifested by its role in driving memory loss, motor impairments and many other processes after brain trauma. In this review, we explore the key roles of three embryonic pathways in modulating a range of homeostatic processes such as maintaining blood-brain barrier integrity, mitochondrial dynamics and neuroinflammation. In addition, we extensively investigated the effect of these pathways in driving the pathophysiology of a range of disorders such as Alzheimer's, Parkinson's and diabetic neuropathy. The concluding section of the review is dedicated to neurotherapeutics, wherein we identify and list a range of biological molecules and compounds that have shown enormous potential in improving prognosis in patients with these disorders.
Collapse
Affiliation(s)
- Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Wei-Chih Chen
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Sanjay Kumar
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Rajni Dubey
- Department of Medicine Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Lung-Wen Tsai
- Department of Medicine Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department of Information Technology Office, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei 110, Taiwan
| | - Rohan Kar
- Indian Institute of Management Ahmedabad (IIMA), Gujarat 380015, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Piyush Kumar Gupta
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Ankur Sharma
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Laboratory, School of Health Sciences, University of Tasmania, Launceston, Tasmania 7248, Australia
| | - Kumud Pant
- Department of Biotechnology, Graphic Era deemed to be University Dehradun Uttarakhand, 248002 Dehradun, India
| | - Shalini Mani
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida, Uttar Pradesh 201301, India
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow 226002, India
| | - Ricardo B. Maccioni
- Laboratory of Neurosciences and Functional Medicine, International Center for Biomedicine (ICC) and Faculty of Sciences, University of Chile, Santiago de Chile, Chile
| | - Tirtharaj Datta
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Gaurav Gupta
- Department of Pharmacology, School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, 302017 Jagatpura, Jaipur, India
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
- Department of Applied Physics, School of Science, and
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Yasir Hayat Mughal
- Department of Health Administration, College of Public Health and Health Informatics, Qassim University, Buraidah, Saudi Arabia
| | | | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, and
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 00076, Finland
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| |
Collapse
|
40
|
Du Y, Mao L, Wang Z, Yan K, Zhang L, Zou J. Osteopontin - The stirring multifunctional regulatory factor in multisystem aging. Front Endocrinol (Lausanne) 2022; 13:1014853. [PMID: 36619570 PMCID: PMC9813443 DOI: 10.3389/fendo.2022.1014853] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Osteopontin (OPN) is a multifunctional noncollagenous matrix phosphoprotein that is expressed both intracellularly and extracellularly in various tissues. As a growth regulatory protein and proinflammatory immunochemokine, OPN is involved in the pathological processes of many diseases. Recent studies have found that OPN is widely involved in the aging processes of multiple organs and tissues, such as T-cell senescence, atherosclerosis, skeletal muscle regeneration, osteoporosis, neurodegenerative changes, hematopoietic stem cell reconstruction, and retinal aging. However, the regulatory roles and mechanisms of OPN in the aging process of different tissues are not uniform, and OPN even has diverse roles in different developmental stages of the same tissue, generating uncertainty for the future study and utilization of OPN. In this review, we will summarize the regulatory role and molecular mechanism of OPN in different tissues and cells, such as the musculoskeletal system, central nervous system, cardiovascular system, liver, and eye, during senescence. We believe that a better understanding of the mechanism of OPN in the aging process will help us develop targeted and comprehensive therapeutic strategies to fight the spread of age-related diseases.
Collapse
|
41
|
Seervai RNH, Cho WC, Chu EY, Marques-Piubelli ML, Ledesma DA, Richards K, Heberton MM, Nelson KC, Nagarajan P, Torres-Cabala CA, Prieto VG, Curry JL. Diverse landscape of dermatologic toxicities from small-molecule inhibitor cancer therapy. J Cutan Pathol 2021; 49:61-81. [PMID: 34622477 DOI: 10.1111/cup.14145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/29/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Advances in molecular biology and genetics have contributed to breakthrough treatments directed at specific pathways associated with the development of cancer. Small-molecule inhibitors (Nibs) aimed at a variety of cellular pathways have been efficacious; however, they are associated with significant dermatologic toxicities. METHODS We conducted a comprehensive review of dermatologic toxicities associated with Nibs categorized into the following five groups: (a) mitogen-activated protein kinase; (b) growth factor/multi-tyrosine kinase; (c) cell division/DNA repair; (d) signaling associated with myeloproliferative neoplasms; and (e) other signaling pathways. Prospective phase I, II, or III clinical trials, retrospective literature reviews, systematic reviews/meta-analyses, and case reviews/reports were included for analysis. RESULTS Dermatologic toxicities reviewed were associated with every class of Nibs and ranged from mild to severe or life-threatening adverse skin reactions. Inflammatory reactions manifesting as maculopapular, papulopustular/acneiform, and eczematous lesions were frequent types of dermatologic toxicities seen with Nibs. Squamous cell carcinoma with keratoacanthoma-like features was associated with a subset of Nibs. Substantial overlap in dermatologic toxicities was found between Nibs. CONCLUSIONS Dermatologic toxicities from Nibs are diverse and may overlap between classes of Nibs. Recognition of the various types of toxicities from Nibs is critical for patient care in the era of "oncodermatology/dermatopathology."
Collapse
Affiliation(s)
- Riyad N H Seervai
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.,Department of Dermatology, Baylor College of Medicine, Houston, Texas, USA
| | - Woo Cheal Cho
- Department of Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Emily Y Chu
- Department of Dermatology, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mario L Marques-Piubelli
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Debora A Ledesma
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kristen Richards
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Meghan M Heberton
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kelly C Nelson
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Priyadharsini Nagarajan
- Department of Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Carlos A Torres-Cabala
- Department of Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Victor G Prieto
- Department of Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jonathan L Curry
- Department of Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|