1
|
Dema A, Charafeddine RA, van Haren J, Rahgozar S, Viola G, Jacobs KA, Kutys ML, Wittmann T. Doublecortin reinforces microtubules to promote growth cone advance in soft environments. Curr Biol 2024; 34:5822-5832.e5. [PMID: 39626666 DOI: 10.1016/j.cub.2024.10.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/05/2024] [Accepted: 10/24/2024] [Indexed: 12/11/2024]
Abstract
Doublecortin (DCX) is a microtubule (MT)-associated protein in immature neurons. DCX is essential for early brain development,1 and DCX mutations account for nearly a quarter of all cases of lissencephaly-spectrum brain malformations2,3 that arise from a neuronal migration failure through the developing cortex.4 By analyzing pathogenic DCX missense mutations in non-neuronal cells, we show that disruption of MT binding is central to DCX pathology. In human-induced pluripotent stem cell (hiPSC)-derived cortical i3Neurons, genome edited to express DCX-mEmerald from the endogenous locus, DCX-MT interactions polarize very early during neuron morphogenesis. DCX interacts with MTs through two conserved DCX domains5,6 that bind between protofilaments and adjacent tubulin dimers,7 a site that changes conformation during guanosine triphosphate (GTP) hydrolysis.8 Consequently and consistent with our previous results,5 DCX specifically binds straight growth cone MTs and is excluded from the GTP/guanosine diphosphate (GDP)-inorganic phosphate (Pi) cap recognized by end-binding proteins (EBs). Comparing MT-bound DCX fluorescence to mEmerald-tagged nanocage standards, we measure approximately one hundred DCX molecules per micrometer growth cone MT. DCX is required for i3Neuron growth cone advance in soft microenvironments that mimic the viscoelasticity of brain tissue, and using high-resolution traction force microscopy, we find that growth cones produce comparatively small and transient traction forces. Given our finding that DCX stabilizes MTs in the growth cone periphery by inhibiting MT depolymerization, we propose that DCX contributes to growth cone biomechanics and reinforces the growth cone cytoskeleton to counteract actomyosin-generated contractile forces in soft physiological environments in which weak and transient adhesion-mediated traction may be insufficient for productive growth cone advance.
Collapse
Affiliation(s)
- Alessandro Dema
- Department of Cell & Tissue Biology, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Rabab A Charafeddine
- Department of Cell & Tissue Biology, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Jeffrey van Haren
- Department of Cell & Tissue Biology, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Shima Rahgozar
- Department of Cell & Tissue Biology, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Giulia Viola
- Department of Cell & Tissue Biology, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Kyle A Jacobs
- Department of Cell & Tissue Biology, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Matthew L Kutys
- Department of Cell & Tissue Biology, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Torsten Wittmann
- Department of Cell & Tissue Biology, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.
| |
Collapse
|
2
|
Vulić K, Amos G, Ruff T, Kasm R, Ihle SJ, Küchler J, Vörös J, Weaver S. Impact of microchannel width on axons for brain-on-chip applications. LAB ON A CHIP 2024; 24:5155-5166. [PMID: 39440578 PMCID: PMC11497309 DOI: 10.1039/d4lc00440j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024]
Abstract
Technologies for axon guidance for in vitro disease models and bottom up investigations are increasingly being used in neuroscience research. One of the most prevalent patterning methods is using polydimethylsiloxane (PDMS) microstructures due to compatibility with microscopy and electrophysiology which enables systematic tracking of axon development with precision and efficiency. Previous investigations of these guidance platforms have noted axons tend to follow edges and avoid sharp turns; however, the specific impact of spatial constraints remains only partially explored. We investigated the influence of microchannel width beyond a constriction point, as well as the number of available microchannels, on axon growth dynamics. Further, by manipulating the size of micron/submicron-sized PDMS tunnels we investigated the space restriction that prevents growth cone penetration showing that restrictions smaller than 350 nm were sufficient to exclude axons. This research offers insights into the interplay of spatial constraints, axon development, and neural behavior. The findings are important for designing in vitro platforms and in vivo neural interfaces for both fundamental neuroscience and translational applications in rapidly evolving neural implant technologies.
Collapse
Affiliation(s)
- Katarina Vulić
- Laboratory of Biosensors and Bioelectronics (LBB), ETH Zürich, 8092 Zürich, Switzerland.
| | - Giulia Amos
- Laboratory of Biosensors and Bioelectronics (LBB), ETH Zürich, 8092 Zürich, Switzerland.
| | - Tobias Ruff
- Laboratory of Biosensors and Bioelectronics (LBB), ETH Zürich, 8092 Zürich, Switzerland.
| | - Revan Kasm
- Laboratory of Biosensors and Bioelectronics (LBB), ETH Zürich, 8092 Zürich, Switzerland.
| | - Stephan J Ihle
- Laboratory of Biosensors and Bioelectronics (LBB), ETH Zürich, 8092 Zürich, Switzerland.
| | - Joël Küchler
- Laboratory of Biosensors and Bioelectronics (LBB), ETH Zürich, 8092 Zürich, Switzerland.
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics (LBB), ETH Zürich, 8092 Zürich, Switzerland.
| | - Sean Weaver
- Laboratory of Biosensors and Bioelectronics (LBB), ETH Zürich, 8092 Zürich, Switzerland.
| |
Collapse
|
3
|
Sousa SC, Aroso M, Bessa R, Veríssimo E, Ferreira da Silva T, Lopes CDF, Brites P, Vieira J, Vieira CP, Aguiar PC, Sousa MM. Stretch triggers microtubule stabilization and MARCKS-dependent membrane incorporation in the shaft of embryonic axons. Curr Biol 2024; 34:4577-4588.e8. [PMID: 39265571 DOI: 10.1016/j.cub.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/28/2024] [Accepted: 08/13/2024] [Indexed: 09/14/2024]
Abstract
Neurons have a unique polarized nature that must adapt to environmental changes throughout their lifespan. During embryonic development, axon elongation is led by the growth cone,1 culminating in the formation of a presynaptic terminal. After synapses are formed, axons elongate in a growth cone-independent manner to accompany body growth while maintaining their ultrastructure and function.2,3,4,5,6 To further understand mechanical strains on the axon shaft, we developed a computer-controlled stretchable microfluidic platform compatible with multi-omics and live imaging. Our data show that sensory embryonic dorsal root ganglia (DRGs) neurons have high plasticity, with axon shaft microtubules decreasing polymerization rates, aligning with the direction of tension, and undergoing stabilization. Moreover, in embryonic DRGs, stretch triggers yes-associated protein (YAP) nuclear translocation, supporting its participation in the regulatory network that enables tension-driven axon growth. Other than cytoskeleton remodeling, stretch prompted MARCKS-dependent formation of plasmalemmal precursor vesicles (PPVs), resulting in new membrane incorporation throughout the axon shaft. In contrast, adolescent DRGs showed a less robust adaptation, with axonal microtubules being less responsive to stretch. Also, while adolescent DRGs were still amenable to strain-induced PPV formation at higher stretch rates, new membrane incorporation in the axon shaft failed to occur. In summary, we developed a new resource to study the biology of axon stretch growth. By unraveling cytoskeleton adaptation and membrane remodeling in the axon shaft of stretched neurons, we are moving forward in understanding axon growth.
Collapse
Affiliation(s)
- Sara C Sousa
- Nerve Regeneration Group, IBMC-Instituto de Biologia Molecular e Celular and i3S - Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Graduate Program in Molecular and Cell Biology, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Miguel Aroso
- Neuroengineering and Computational Neuroscience Group, i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Rita Bessa
- Nerve Regeneration Group, IBMC-Instituto de Biologia Molecular e Celular and i3S - Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Eduardo Veríssimo
- Nerve Regeneration Group, IBMC-Instituto de Biologia Molecular e Celular and i3S - Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Graduate Program in Molecular and Cell Biology, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Tiago Ferreira da Silva
- Neurolipid Biology Group, IBMC-Instituto de Biologia Celular e Molecular and i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Cátia D F Lopes
- Neuroengineering and Computational Neuroscience Group, i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Pedro Brites
- Neurolipid Biology Group, IBMC-Instituto de Biologia Celular e Molecular and i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Jorge Vieira
- Phenotypic Evolution Group, IBMC-Instituto de Biologia Molecular e Celular and i3S - Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Cristina P Vieira
- Phenotypic Evolution Group, IBMC-Instituto de Biologia Molecular e Celular and i3S - Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Paulo C Aguiar
- Neuroengineering and Computational Neuroscience Group, i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Monica M Sousa
- Nerve Regeneration Group, IBMC-Instituto de Biologia Molecular e Celular and i3S - Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal.
| |
Collapse
|
4
|
Moceri I, Meehan S, Gonzalez E, Park KK, Hackam A, Lee RK, Bhattacharya S. Concept of Normativity in Multi-Omics Analysis of Axon Regeneration. Biomolecules 2024; 14:735. [PMID: 39062450 PMCID: PMC11274927 DOI: 10.3390/biom14070735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 07/28/2024] Open
Abstract
Transcriptomes and proteomes can be normalized with a handful of RNAs or proteins (or their peptides), such as GAPDH, β-actin, RPBMS, and/or GAP43. Even with hundreds of standards, normalization cannot be achieved across different molecular mass ranges for small molecules, such as lipids and metabolites, due to the non-linearity of mass by charge ratio for even the smallest part of the spectrum. We define the amount (or range of amounts) of metabolites and/or lipids per a defined amount of a protein, consistently identified in all samples of a multiple-model organism comparison, as the normative level of that metabolite or lipid. The defined protein amount (or range) is a normalized value for one cohort of complete samples for which intrasample relative protein quantification is available. For example, the amount of citrate (a metabolite) per µg of aconitate hydratase (normalized protein amount) identified in the proteome is the normative level of citrate with aconitase. We define normativity as the amount of metabolites (or amount range) detected when compared to normalized protein levels. We use axon regeneration as an example to illustrate the need for advanced approaches to the normalization of proteins. Comparison across different pharmacologically induced axon regeneration mouse models entails the comparison of axon regeneration, studied at different time points in several models designed using different agents. For the normalization of the proteins across different pharmacologically induced models, we perform peptide doping (fixed amounts of known peptides) in each sample to normalize the proteome across the samples. We develop Regen V peptides, divided into Regen III (SEB, LLO, CFP) and II (HH4B, A1315), for pre- and post-extraction comparisons, performed with the addition of defined, digested peptides (bovine serum albumin tryptic digest) for protein abundance normalization beyond commercial labeled relative quantification (for example, 18-plex tandem mass tags). We also illustrate the concept of normativity by using this normalization technique on regenerative metabolome/lipidome profiles. As normalized protein amounts are different in different biological states (control versus axon regeneration), normative metabolite or lipid amounts are expected to be different for specific biological states. These concepts and standardization approaches are important for the integration of different datasets across different models of axon regeneration.
Collapse
Affiliation(s)
- Isabella Moceri
- Miami Integrative Metabolomics Research Center, Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, USA; (I.M.); (S.M.); (E.G.); (A.H.); (R.K.L.)
| | - Sean Meehan
- Miami Integrative Metabolomics Research Center, Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, USA; (I.M.); (S.M.); (E.G.); (A.H.); (R.K.L.)
- Graduate Program in Molecular Cellular Pharmacology, University of Miami, Miami, FL 33136, USA
| | - Emily Gonzalez
- Miami Integrative Metabolomics Research Center, Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, USA; (I.M.); (S.M.); (E.G.); (A.H.); (R.K.L.)
| | - Kevin K. Park
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA;
| | - Abigail Hackam
- Miami Integrative Metabolomics Research Center, Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, USA; (I.M.); (S.M.); (E.G.); (A.H.); (R.K.L.)
| | - Richard K. Lee
- Miami Integrative Metabolomics Research Center, Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, USA; (I.M.); (S.M.); (E.G.); (A.H.); (R.K.L.)
| | - Sanjoy Bhattacharya
- Miami Integrative Metabolomics Research Center, Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, USA; (I.M.); (S.M.); (E.G.); (A.H.); (R.K.L.)
- Graduate Program in Molecular Cellular Pharmacology, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
5
|
Ouzounidis VR, Green M, van Capelle CDC, Gebhardt C, Crellin H, Finlayson C, Prevo B, Cheerambathur DK. The outer kinetochore components KNL-1 and Ndc80 complex regulate axon and neuronal cell body positioning in the C. elegans nervous system. Mol Biol Cell 2024; 35:ar83. [PMID: 38656792 PMCID: PMC11238089 DOI: 10.1091/mbc.e23-08-0325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
The KMN (Knl1/Mis12/Ndc80) network at the kinetochore, primarily known for its role in chromosome segregation, has been shown to be repurposed during neurodevelopment. Here, we investigate the underlying neuronal mechanism and show that the KMN network promotes the proper axonal organization within the C. elegans head nervous system. Postmitotic degradation of KNL-1, which acts as a scaffold for signaling and has microtubule-binding activities at the kinetochore, led to disorganized ganglia and aberrant placement and organization of axons in the nerve ring - an interconnected axonal network. Through gene-replacement approaches, we demonstrate that the signaling motifs within KNL-1, responsible for recruiting protein phosphatase 1, and activating the spindle assembly checkpoint are required for neurodevelopment. Interestingly, while the microtubule-binding activity is crucial to KMN's neuronal function, microtubule dynamics and organization were unaffected in the absence of KNL-1. Instead, the NDC-80 microtubule-binding mutant displayed notable defects in axon bundling during nerve ring formation, indicating its role in facilitating axon-axon contacts. Overall, these findings provide evidence for a noncanonical role for the KMN network in shaping the structure and connectivity of the nervous system in C. elegans during brain development.
Collapse
Affiliation(s)
- Vasileios R. Ouzounidis
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Mattie Green
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Charlotte de Ceuninck van Capelle
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Clara Gebhardt
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Helena Crellin
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Cameron Finlayson
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Bram Prevo
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Dhanya K. Cheerambathur
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| |
Collapse
|
6
|
Dema A, Charafeddine RA, van Haren J, Rahgozar S, Viola G, Jacobs KA, Kutys ML, Wittmann T. Doublecortin reinforces microtubules to promote growth cone advance in soft environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582626. [PMID: 38464100 PMCID: PMC10925279 DOI: 10.1101/2024.02.28.582626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Doublecortin (DCX) is a microtubule-associated protein critical for brain development. Although most highly expressed in the developing central nervous system, the molecular function of DCX in neuron morphogenesis remains unknown and controversial. We demonstrate that DCX function is intimately linked to its microtubule-binding activity. By using human induced pluripotent stem cell (hiPSC)- derived cortical i 3 Neurons genome engineered to express mEmerald-tagged DCX from the endogenous locus, we find that DCX-MT interactions become highly polarized very early during neuron morphogenesis. DCX becomes enriched only on straight microtubules in advancing growth cones with approximately 120 DCX molecules bound per micrometer of growth cone microtubule. At a similar saturation, microtubule-bound DCX molecules begin to impede lysosome transport, and thus can potentially control growth cone organelle entry. In addition, by comparing control, DCX-mEmerald and knockout DCX -/Y i 3 Neurons, we find that DCX stabilizes microtubules in the growth cone peripheral domain by reducing the microtubule catastrophe frequency and the depolymerization rate. DCX -/Y i 3 Neuron morphogenesis was inhibited in soft microenvironments that mimic the viscoelasticity of brain tissue and DCX -/Y neurites failed to grow toward brain-derived neurotrophic factor (BDNF) gradients. Together with high resolution traction force microscopy data, we propose a model in which DCX-decorated, rigid growth cone microtubules provide intracellular mechanical resistance to actomyosin generated contractile forces in soft physiological environments in which weak and transient adhesion-mediated forces in the growth cone periphery may be insufficient for productive growth cone advance. These data provide a new mechanistic understanding of how DCX mutations cause lissencephaly-spectrum brain malformations by impacting growth cone dynamics during neuron morphogenesis in physiological environments.
Collapse
|
7
|
Trembleau A, Breau MA. Editorial for the special issue "Driving forces behind the wiring of neuronal circuits". Semin Cell Dev Biol 2023; 140:1-2. [PMID: 36088209 DOI: 10.1016/j.semcdb.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- A Trembleau
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR8246), Inserm U1130, Institut de Biologie Paris Seine (IBPS), Neuroscience Paris Seine (NPS), Paris, France
| | - M A Breau
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR 7622), Institut de Biologie Paris Seine (IBPS), Developmental Biology Laboratory, Paris, France.
| |
Collapse
|
8
|
Wethekam LC, Moore JK. Tubulin isotype regulation maintains asymmetric requirement for α-tubulin over β-tubulin. J Cell Biol 2023; 222:e202202102. [PMID: 36719400 PMCID: PMC9930134 DOI: 10.1083/jcb.202202102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/19/2022] [Accepted: 11/14/2022] [Indexed: 02/01/2023] Open
Abstract
How cells regulate α- and β-tubulin to meet the demand for αβ-heterodimers and avoid consequences of monomer imbalance is not understood. We investigate the role of gene copy number and how shifting expression of α- or β-tubulin genes impacts tubulin proteostasis and microtubule function in Saccharomyces cerevisiae. We find that α-tubulin gene copy number is important for maintaining excess α-tubulin protein compared to β-tubulin protein. Excess α-tubulin prevents accumulation of super-stoichiometric β-tubulin, which leads to loss of microtubules, formation of non-microtubule assemblies of tubulin, and disrupts cell proliferation. In contrast, sub-stoichiometric β-tubulin or overexpression of α-tubulin has minor effects. We provide evidence that yeast cells equilibrate α-tubulin protein concentration when α-tubulin isotype expression is increased. We propose an asymmetric relationship between α- and β-tubulins, in which α-tubulins are maintained in excess to supply αβ-heterodimers and limit the accumulation of β-tubulin monomers.
Collapse
Affiliation(s)
- Linnea C. Wethekam
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jeffrey K. Moore
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|