1
|
Mansouri E, Orazizadeh M, Mard SA, Gorji AV, Rashno M, Fakhredini F. Therapeutic Effect of Kidney Tubular Cells-Derived Conditioned Medium on the Expression of MicroRNA-377, MicroRNA-29a, Aquapurin-1, Biochemical, and Histopathological Parameters Following Diabetic Nephropathy Injury in Rats. Adv Biomed Res 2022; 11:119. [PMID: 36798914 PMCID: PMC9926036 DOI: 10.4103/abr.abr_375_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/07/2022] [Accepted: 02/02/2022] [Indexed: 12/28/2022] Open
Abstract
Background Diabetic nephropathy (DN) is a critical complication of diabetes mellitus. This study evaluates whether administration of conditioned medium from kidney tubular cells (KTCs-CM) has the ability to be efficacious as an alternative to cell-based therapy for DN. Materials and Methods CM of rabbit kidney tubular cells (RK13; KTCs) has been collected and after centrifugation, filtered with 0.2 filters. Four groups of rats have been utilized, including control, DN, DN treated with CM, and sham group. After diabetes induction by streptozotocin (50 mg/kg body weight) in rats, 0.8 ml of the CM was injected to each rat three times per day for 3 consecutive days. Then, 24-h urine protein, blood urea nitrogen (BUN), and serum creatinine (Scr) have been measured through detection kits. The histopathological effects of CM on kidneys were evaluated by periodic acid-Schiff staining and the expression of microRNAs (miRNAs) 29a and 377 by using the real-time polymerase chain reaction. The expression of aquapurin-1 (AQP1) protein was also examined by Western blotting. Results Intravenous injections of KTCs-CM significantly reduced the urine volume, protein 24-h, BUN, and Scr, decreased the miRNA-377, and increased miRNA-29a and AQP1 in DN treated with CM rats. Conclusion KTCs-CM may have the potential to prevent kidney injury from diabetes by regulating the microRNAs related to DN and improving the expression of AQP1.
Collapse
Affiliation(s)
- Esrafil Mansouri
- Department of Anatomical Sciences, Faculty of Medicine, Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahmoud Orazizadeh
- Department of Anatomical Sciences, Faculty of Medicine, Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyed Ali Mard
- Physiology Research Center, Research Institute for Infectious Diseases of Digestive System, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Armita Valizadeh Gorji
- Bone Marrow Transplantation Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Rashno
- Immunology Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fereshtesadat Fakhredini
- Department of Anatomical Sciences, Faculty of Medicine, Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Address for correspondence: Dr. Fereshtesadat Fakhredini, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. E-mail:
| |
Collapse
|
2
|
Yadav E, Yadav N, Hus A, Yadav JS. Aquaporins in lung health and disease: Emerging roles, regulation, and clinical implications. Respir Med 2020; 174:106193. [PMID: 33096317 DOI: 10.1016/j.rmed.2020.106193] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/17/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022]
Abstract
Aquaporins (AQPs) aka water channels are a family of conserved transmembrane proteins (~30 kDa monomers) expressed in various organ systems. Of the 13 AQPs (AQP0 through AQP12) in the human body, four (AQPs 1, 3, 4, and 5) are expressed in the respiratory system. These channels are conventionally known for mediating transcellular fluid movements. Certain AQPs (aquaglyceroporins) have the capability to transport glycerol and potentially other solutes. There is an emerging body of literature unveiling the non-conventional roles of AQPs such as in cell proliferation and migration, gas permeation, signal potentiation, etc. Initial gene knock-out studies established a physiological role for lung AQPs, particularly AQP5, in maintaining homeostasis, by mediating fluid secretion from submucosal glands onto the airway surface liquid (ASL) lining. Subsequent studies have highlighted the functional significance of AQPs, particularly AQP1 and AQP5 in lung pathophysiology and diseases, including but not limited to chronic and acute lung injury, chronic obstructive pulmonary disease (COPD), other inflammatory lung conditions, and lung cancer. AQP1 has been suggested as a potential prognostic marker for malignant mesothelioma. Recent efforts are directed toward exploiting AQPs as targets for diagnosis, prevention, intervention, and/or treatment of various lung conditions. Emerging information on regulatory pathways and directed mechanistic research are posited to unravel novel strategies for these clinical implications. Future considerations should focus on development of AQP inhibitors, blockers, and modulators for therapeutic needs, and better understanding the role of lung-specific AQPs in inter-individual susceptibility to chronic lung diseases such as COPD and cancer.
Collapse
Affiliation(s)
- Ekta Yadav
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Niket Yadav
- Medical Scientist Training Program, University of Virginia School of Medicine, Charlottesville, VA, 22908-0738, USA
| | - Ariel Hus
- Department of Biology, University of Miami, Coral Gables, Florida, 33146, USA
| | - Jagjit S Yadav
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
3
|
AQP1 expression in the proximal tubule of diabetic rat kidney. Heliyon 2020; 6:e03192. [PMID: 31956716 PMCID: PMC6956755 DOI: 10.1016/j.heliyon.2020.e03192] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/08/2019] [Accepted: 01/03/2020] [Indexed: 11/21/2022] Open
Abstract
Polyuria is a hallmark symptom and the first clinical manifestation of diabetes mellitus (DM). The glucose that remains in renal tubules was proposed to produce an osmotic effect resulting in polyuria. Although water is reabsorbed in proximal tubules through an aquaporin-1 (AQP1) dependent mechanism, AQP1 role in the genesis of polyuria is unknown. AQP1 expression was studied in a rat model of Type-1 DM at 15-days and 5-months of evolution. A different AQP1 expression pattern was found in both experimental groups, with no changes in AQP1 localization, suggesting that changes in AQP1 may be involved in the development of polyuria.
Collapse
|
4
|
Voinova M, Repin N, Sokol E, Tkachuk B, Gorelik L. Physical Processes in Polymeric Filters Used for Dialysis. Polymers (Basel) 2019; 11:E389. [PMID: 30960373 PMCID: PMC6473866 DOI: 10.3390/polym11030389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/06/2019] [Accepted: 02/12/2019] [Indexed: 01/03/2023] Open
Abstract
The key physical processes in polymeric filters used for the blood purification include transport across the capillary wall and the interaction of blood cells with the polymer membrane surface. Theoretical modeling of membrane transport is an important tool which provides researchers with a quantification of the complex phenomena involved in dialysis. In the paper, we present a dense review of the most successful theoretical approaches to the description of transport across the polymeric membrane wall as well as the cell⁻polymer surface interaction, and refer to the corresponding experimental methods while studying these phenomena in dialyzing filters.
Collapse
Affiliation(s)
- Marina Voinova
- Department of Physics, Chalmers University of Technology, 41296 Gothenburg, Sweden.
- Department of Industrial and Biomedical Electronics, Kharkiv Polytechnical Institute, National Technical University, 61002 Kharkov, Ukraine.
| | - Nikolay Repin
- Department of Cryomorphology, Institute for Problems of Cryobiology and Cryomedicine, 61015 Kharkov, Ukraine.
| | - Evgen Sokol
- Department of Industrial and Biomedical Electronics, Kharkiv Polytechnical Institute, National Technical University, 61002 Kharkov, Ukraine.
| | - Bogdan Tkachuk
- Department of Hemodialysis, Municipal Noncommercial Enterprise of Kharkiv Regional Council "Regional Medical Clinical Center of Urology and Nephrology n.a. V.I. Shapoval", 61037 Kharkov, Ukraine.
| | - Leonid Gorelik
- Department of Physics, Chalmers University of Technology, 41296 Gothenburg, Sweden.
| |
Collapse
|
5
|
Sisto M, Ribatti D, Lisi S. Aquaporin water channels: New perspectives on the potential role in inflammation. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 116:311-345. [PMID: 31036295 DOI: 10.1016/bs.apcsb.2018.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aquaporins (AQPs) are a family of membrane water channel proteins that osmotically modulate water fluid homeostasis in several tissues; some of them also transport small solutes such as glycerol. At the cellular level, the AQPs regulate not only cell migration and transepithelial fluid transport across membranes, but also common events that are crucial for the inflammatory response. Emerging data reveal a new function of AQPs in the inflammatory process, as demonstrated by their dysregulation in a wide range of inflammatory diseases including edematous states, cancer, obesity, wound healing and several autoimmune diseases. This chapter summarizes the discoveries made so far about the structure and functions of the AQPs and provides updated information on the underlying mechanisms of AQPs in several human inflammatory diseases. The discovery of new functions for AQPs opens new vistas offering promise for the discovery of mechanisms and therapeutic opportunities in inflammatory disorders.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs (SMBNOS), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", Bari, Italy.
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs (SMBNOS), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", Bari, Italy
| | - Sabrina Lisi
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs (SMBNOS), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
6
|
Szpilbarg N, Martínez NA, Di Paola M, Reppetti J, Medina Y, Seyahian A, Castro Parodi M, Damiano AE. New Insights Into the Role of Placental Aquaporins and the Pathogenesis of Preeclampsia. Front Physiol 2018; 9:1507. [PMID: 30425647 PMCID: PMC6218616 DOI: 10.3389/fphys.2018.01507] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/08/2018] [Indexed: 01/24/2023] Open
Abstract
Accumulated evidence suggests that an abnormal placentation and an altered expression of a variety of trophoblast transporters are associated to preeclampsia. In this regard, an abnormal expression of AQP3 and AQP9 was reported in these placentas. Recent data suggests that placental AQPs are not only water channel proteins and that may participate in relevant processes required for a normal placental development, such as cell migration and apoptosis. Recently we reported that a normal expression of AQP3 is required for the migration of extravillous trophoblast (EVT) cells. Thus, alterations in this protein might lead to an insufficient transformation of the maternal spiral arteries resulting in fluctuations of oxygen tension, a potent stimulus for oxidative damage and trophoblast apoptosis. In this context, the increase of oxygen and nitrogen reactive species could nitrate AQP9, producing the accumulation of a non-functional protein affecting the survival of the villous trophoblast (VT). This may trigger the exacerbated release of apoptotic VT fragments into maternal circulation producing the systemic endothelial dysfunction underlying the maternal syndrome. Therefore, our hypothesis is that the alteration in the expression of placental AQPs observed at the end of gestation may take place during the trophoblast stem cell differentiation, disturbing both EVT and VT cells development, or during the VT differentiation and turnover. In both situations, VT is affected and at last the maternal vascular system is activated leading to the clinical manifestations of preeclampsia.
Collapse
Affiliation(s)
- Natalia Szpilbarg
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)-UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nora A Martínez
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)-UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mauricio Di Paola
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)-UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Cátedra de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julieta Reppetti
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)-UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Yollyseth Medina
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)-UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Abril Seyahian
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)-UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mauricio Castro Parodi
- Cátedra de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alicia E Damiano
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)-UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Cátedra de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
7
|
Takeuchi K, Hayashi S, Matumoto T, Hashimoto S, Takayama K, Chinzei N, Kihara S, Haneda M, Kirizuki S, Kuroda Y, Tsubosaka M, Nishida K, Kuroda R. Downregulation of aquaporin 9 decreases catabolic factor expression through nuclear factor‑κB signaling in chondrocytes. Int J Mol Med 2018; 42:1548-1558. [PMID: 29901079 DOI: 10.3892/ijmm.2018.3729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/07/2018] [Indexed: 11/06/2022] Open
Abstract
Aquaporins (AQPs) are small integral membrane proteins that are essential for water transport across membranes. AQP9, one of the 13 mammalian AQPs (including AQP0 to 12), has been reported to be highly expressed in hydrarthrosis and synovitis patients. Given that several studies have identified signal transduction as an additional function of AQPs, it is hypothesized that AQP9 may modulate inflammatory signal transduction in chondrocytes. Therefore, the present study used a model of interleukin (IL)‑1β‑induced inflammation to determine the mechanisms associated with AQP9 functions in chondrocytes. Osteoarthritis (OA) and normal cartilage samples were subjected to immunohistological analysis. In addition, matrix metalloproteinase (MMP)3, MMP13 and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS‑5) mRNA and protein analysis was conducted in normal human articular chondrocytes from the knee (NHAC‑Kn) stimulated with IL‑1β by reverse transcription‑polymerase chain reaction (RT‑qPCR) and western blotting, respectively. AQP9 knockdown was also performed by transfection of AQP9‑specific small interfering RNA using Lipofectamine. AQP1, 3, 7, 9 and 11 mRNA expression levels were detected in OA human chondrocytes and in IL‑1β‑treated normal human chondrocytes. The levels of AQP9, MMP‑3, MMP‑13 and ADAMTS‑5 mRNA were increased by treatment with 10 ng/ml IL‑1β in a time‑dependent manner, while knockdown of AQP9 expression significantly decreased the mRNA levels of the MMP3, MMP13 and ADAMTS‑5 genes, as well as the phosphorylation of IκB kinase (IKK). Treatment with a specific IKK inhibitor also significantly decreased the expression levels of MMP‑3, MMP‑13 and ADAMTS‑5 in response to IL‑1β stimulation. Furthermore, immunohistochemical analysis demonstrated that AQP9 and inflammatory markers were highly expressed in OA cartilage. In addition, the downregulation of AQP9 in cultured chondrocytes decreased the catabolic gene expression in response to IL‑1β stimulation through nuclear factor‑κB signaling. Therefore, AQP9 may be a promising target for the treatment of OA.
Collapse
Affiliation(s)
- Kazuhiro Takeuchi
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe 650‑0017, Japan
| | - Shinya Hayashi
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe 650‑0017, Japan
| | - Tomoyuki Matumoto
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe 650‑0017, Japan
| | - Shingo Hashimoto
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe 650‑0017, Japan
| | - Koji Takayama
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe 650‑0017, Japan
| | - Nobuaki Chinzei
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe 650‑0017, Japan
| | - Shinsuke Kihara
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe 650‑0017, Japan
| | - Masahiko Haneda
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe 650‑0017, Japan
| | - Shinsuke Kirizuki
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe 650‑0017, Japan
| | - Yuichi Kuroda
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe 650‑0017, Japan
| | - Masanori Tsubosaka
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe 650‑0017, Japan
| | - Kotaro Nishida
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe 650‑0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe 650‑0017, Japan
| |
Collapse
|
8
|
AQP4 and HIVAN. Exp Mol Pathol 2018; 105:71-75. [PMID: 29778884 DOI: 10.1016/j.yexmp.2018.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/13/2018] [Indexed: 11/21/2022]
|
9
|
Sun Y, Yang J, Zhang S, Gao Y, Jin Y, Wang M, Ni L, Wang Z, Kang P, Qiu Y, Liu X, Li Y. Effect of mechanical ventilation on urine volume and expression of aquaporins in rabbits. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2017. [DOI: 10.1016/j.jtcms.2017.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
10
|
Fröhlich L, Hartmann K, Sautter-Louis C, Dorsch R. Postobstructive diuresis in cats with naturally occurring lower urinary tract obstruction: incidence, severity and association with laboratory parameters on admission. J Feline Med Surg 2016; 18:809-17. [PMID: 26179575 PMCID: PMC11112202 DOI: 10.1177/1098612x15594842] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The objectives of this retrospective study were to investigate the actual incidence of postobstructive diuresis after relief of urethral obstruction in cats, as well as to identify changes in blood and urine parameters that might be associated with postobstructive diuresis (POD), and to assess the impact of fluid therapy. METHODS The medical records of 57 male cats with urethral obstruction that were treated with an indwelling urinary catheter were retrospectively analysed. Absolute urine output in ml/kg/h every 4 h and the incidence of cats with polyuria (urine volume >2 ml/kg/h) at any time point over a 48 h period after the re-establishment of urine flow were investigated. In addition, postobstructive diuresis in relation to fluid therapy (PODFR) was defined as urine output greater than the administered amount of intravenous fluids on at least two subsequent time points. Polyuria and PODFR were investigated for their association with blood and urine laboratory parameters. RESULTS After 4 h, 74.1% (40/54) of the cats had polyuria, with a urine output of >2 ml/kg/h. Metabolic acidosis was present in 46.2% of the cats. Venous blood pH and bicarbonate were inversely correlated with urine output in ml/kg/h after 4 h. The overall incidence of POD within 48 h of catheterisation was 87.7%. There was a significant correlation between intravenous fluid rate at time point x and urine output at time point x + 1 at all the time points except for the fluid rate at time point 0 and the urine output after 4 h. PODFR was seen in 21/57 cats (36.8%). CONCLUSIONS AND RELEVANCE POD is a frequent finding in cats treated for urethral obstruction, and can be very pronounced. Further studies are required to determine whether or not a change in venous blood pH actually interferes with renal concentrating ability. The discrepancy between the frequency of cats with polyuria and PODFR (87.7% vs 36.8%) in the present study indicates that administered intravenous fluid therapy might be the driving force for the high incidence of polyuria in some cats with naturally occurring obstructive feline lower urinary tract disease.
Collapse
Affiliation(s)
- Laura Fröhlich
- Clinic of Small Animal Medicine, LMU Munich, Munich, Germany
| | - Katrin Hartmann
- Clinic of Small Animal Medicine, LMU Munich, Munich, Germany
| | - Carola Sautter-Louis
- Clinic for Ruminants with Ambulatory and Herd Health Services, LMU Munich, Munich, Germany
| | - Roswitha Dorsch
- Clinic of Small Animal Medicine, LMU Munich, Munich, Germany
| |
Collapse
|
11
|
Aquaporins in Urinary Extracellular Vesicles (Exosomes). Int J Mol Sci 2016; 17:ijms17060957. [PMID: 27322253 PMCID: PMC4926490 DOI: 10.3390/ijms17060957] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 01/05/2023] Open
Abstract
Since the successful characterization of urinary extracellular vesicles (uEVs) by Knepper’s group in 2004, these vesicles have been a focus of intense basic and translational research worldwide, with the aim of developing novel biomarkers and therapeutics for renal disease. Along with these studies, there is growing evidence that aquaporins (AQPs), water channel proteins, in uEVs have the potential to be diagnostically useful. In this review, we highlight current knowledge of AQPs in uEVs from their discovery to clinical application.
Collapse
|
12
|
Wang Y, Bu J, Zhang Q, Chen K, Zhang J, Bao X. Expression pattern of aquaporins in patients with primary nephrotic syndrome with edema. Mol Med Rep 2015; 12:5625-32. [PMID: 26261083 PMCID: PMC4581814 DOI: 10.3892/mmr.2015.4209] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 04/20/2015] [Indexed: 01/10/2023] Open
Abstract
The association between the expression of aquaporins (AQPs) in kidney tissues and the occurrence of edema in nephrotic syndrome (NS) remains unclear. The current study aimed to investigate this association. A total of 54 patients with primary glomerular disease, diagnosed by renal biopsy, were divided into three groups: Control, NS without edema and NS with edema. The expression of AQP1, AQP2, AQP3 and AQP4 in kidney tissues from these patients was assessed using immunohistochemistry, and urinary AQP concentrations were quantified by ELISA. Comparison of the three groups was conducted using one way analysis of variance, independent samples t-test or the Chi-square test. AQP1 was strongly expressed in the proximal tubules. The proportion of the AQP1-positive area in kidney tissues from patients with NS with edema was significantly reduced, in comparison with the other two groups. By contrast, the proportion of the AQP2-positive area in the NS with edema group was significantly higher than that of the other two groups; significant differences were also observed between the control and NS without edema groups for this parameter. Urinary AQP2 concentrations in patients with NS (with and without edema) were significantly higher than that of the control group, and exhibited a significant positive correlation with kidney tissue AQP2 concentrations. The present study demonstrated the abnormal expression pattern of AQP1-AQP4 in the kidney tissues of patients with NS, providing a basis for an improved understanding of the role of AQP in the pathogenesis of NS.
Collapse
Affiliation(s)
- Yu Wang
- Department of Nephrology, Jinshan Hospital Affiliated to Fudan University, Shanghai 201508, P.R. China
| | - Jimei Bu
- Department of Nephrology, Jinshan Hospital Affiliated to Fudan University, Shanghai 201508, P.R. China
| | - Qing Zhang
- Department of Nephrology, Jinshan Hospital Affiliated to Fudan University, Shanghai 201508, P.R. China
| | - Kai Chen
- Department of Nephrology, Jinshan Hospital Affiliated to Fudan University, Shanghai 201508, P.R. China
| | - Jihong Zhang
- Department of Nephrology, Jinshan Hospital Affiliated to Fudan University, Shanghai 201508, P.R. China
| | - Xiaorong Bao
- Department of Nephrology, Jinshan Hospital Affiliated to Fudan University, Shanghai 201508, P.R. China
| |
Collapse
|
13
|
Ikeda M, Matsuzaki T. Regulation of aquaporins by vasopressin in the kidney. VITAMINS AND HORMONES 2015; 98:307-37. [PMID: 25817873 DOI: 10.1016/bs.vh.2014.12.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vasopressin is the main hormone that regulates water conservation in mammals and one of its major targets is the principal cells in the renal collecting duct. Vasopressin increases the apical water permeability of principal cells, mediated by apical accumulation of aquaporin-2 (AQP2), a water channel protein, thus facilitating water reabsorption by the kidney. The mechanisms underlying the accumulation of AQP2 in response to vasopressin include vesicular trafficking from intracellular storage vesicles expressing AQP2 within several tens of minutes (short-term regulation) and protein expression of AQP2 over a period of hours to days (long-term regulation). This chapter reviews vasopressin signaling in the kidney, focusing on the molecular mechanisms of short- and long-term regulations of AQP2 expression.
Collapse
Affiliation(s)
- Masahiro Ikeda
- Department of Veterinary Pharmacology, University of Miyazaki, Miyazaki, Japan.
| | - Toshiyuki Matsuzaki
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
14
|
GATA2 regulates body water homeostasis through maintaining aquaporin 2 expression in renal collecting ducts. Mol Cell Biol 2014; 34:1929-41. [PMID: 24636993 DOI: 10.1128/mcb.01659-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The transcription factor GATA2 plays pivotal roles in early renal development, but its distribution and physiological functions in adult kidney are largely unknown. We examined the GATA2 expression pattern in the adult kidney by tracing green fluorescent protein (GFP) fluorescence in Gata2(GFP/+) mice that recapitulate endogenous GATA2 expression and found a robust GFP expression specifically in the renal medulla. Upon purification of the GFP-positive cells, we found that collecting duct (CD)-specific markers, including aquaporin 2 (Aqp2), an important channel for water reabsorption from urine, were abundantly expressed. To address the physiological function of GATA2 in the CD cells, we generated renal tubular cell-specific Gata2-deficient mice (Gata2-CKO) by crossing Gata2 floxed mice with inducible Pax8-Cre mice. We found that the Gata2-CKO mice showed a significant decrease in Aqp2 expression. The Gata2-CKO mice exhibited high 24-h urine volume and low urine osmolality, two important signs of diabetes insipidus. We introduced biotin-tagged GATA2 into a mouse CD-derived cell line and conducted chromatin pulldown assays, which revealed direct GATA2 binding to conserved GATA motifs in the Aqp2 promoter region. A luciferase reporter assay using an Aqp2 promoter-reporter showed that GATA2 trans activates Aqp2 through the GATA motifs. These results demonstrate that GATA2 regulates the Aqp2 gene expression in CD cells and contributes to the maintenance of the body water homeostasis.
Collapse
|
15
|
Abstract
Aquaporins (AQPs) are a family of membrane water channels that basically function as regulators of intracellular and intercellular water flow. To date, thirteen aquaporins have been characterized. They are distributed wildly in specific cell types in multiple organs and tissues. Each AQP channel consists of six membrane-spanning alpha-helices that have a central water-transporting pore. Four AQP monomers assemble to form tetramers, which are the functional units in the membrane. Some of AQPs also transport urea, glycerol, ammonia, hydrogen peroxide, and gas molecules. AQP-mediated osmotic water transport across epithelial plasma membranes facilitates transcellular fluid transport and thus water reabsorption. AQP-mediated urea and glycerol transport is involved in energy metabolism and epidermal hydration. AQP-mediated CO2 and NH3 transport across membrane maintains intracellular acid-base homeostasis. AQPs are also involved in the pathophysiology of a wide range of human diseases (including water disbalance in kidney and brain, neuroinflammatory disease, obesity, and cancer). Further work is required to determine whether aquaporins are viable therapeutic targets or reliable diagnostic and prognostic biomarkers.
Collapse
|
16
|
Expression of aquaporin-4 water channels in the digestive tract of the guinea pig. J Mol Histol 2013; 45:229-41. [DOI: 10.1007/s10735-013-9545-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 10/03/2013] [Indexed: 01/14/2023]
|
17
|
Chiu CD, Chen CCV, Shen CC, Chin LT, Ma HI, Chuang HY, Cho DY, Chu CH, Chang C. Hyperglycemia exacerbates intracerebral hemorrhage via the downregulation of aquaporin-4: temporal assessment with magnetic resonance imaging. Stroke 2013; 44:1682-9. [PMID: 23592763 DOI: 10.1161/strokeaha.113.675983] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND PURPOSE Intracerebral hemorrhage (ICH) is associated with high mortality and neurological deficits, and concurrent hyperglycemia usually worsens clinical outcomes. Aquaporin-4 (AQP-4) is important in cerebral water movement. Our aim was to investigate the role of AQP-4 in hyperglycemic ICH. METHODS Hyperglycemia was induced by intraperitoneal injection of streptozotocin (STZ; 60 mg/kg) in adult Sprague-Dawley male rats. ICH was induced by stereotaxic infusion of collagenase/heparin into the right striatum. One set of rats was repeatedly monitored by MRI at 1, 4, and 7 days after ICH induction so as to acquire information on the formation of hematoma and edema. Another set of rats was killed and brains were examined for differences in the degree of hemorrhage and edema, water content, blood-brain barrier destruction, and AQP-4 expression. RESULTS Hyperglycemia ICH rats exhibited increased brain water content, more severe blood-brain barrier destruction, and greater vasogenic edema as seen on diffusion-weighted MRI. Significant downregulation of AQP-4 was observed in STZ-treated rats after ICH as compared with non-STZ-treated rats. Apoptosis was greater on day 1 after ICH in STZ-treated rats. CONCLUSIONS The expression of AQP-4 in the brain is downregulated in hyperglycemic rats as compared with normoglycemic rats after ICH. This change is accompanied by increased vasogenic brain edema and more severe blood-brain barrier destruction.
Collapse
Affiliation(s)
- Cheng-Di Chiu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Klaassen I, Van Noorden CJF, Schlingemann RO. Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditions. Prog Retin Eye Res 2013; 34:19-48. [PMID: 23416119 DOI: 10.1016/j.preteyeres.2013.02.001] [Citation(s) in RCA: 471] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 12/19/2012] [Accepted: 02/01/2013] [Indexed: 12/16/2022]
Abstract
Breakdown of the inner endothelial blood-retinal barrier (BRB), as occurs in diabetic retinopathy, age-related macular degeneration, retinal vein occlusions, uveitis and other chronic retinal diseases, results in vasogenic edema and neural tissue damage, causing loss of vision. The central mechanism of altered BRB function is a change in the permeability characteristics of retinal endothelial cells caused by elevated levels of growth factors, cytokines, advanced glycation end products, inflammation, hyperglycemia and loss of pericytes. Subsequently, paracellular but also transcellular transport across the retinal vascular wall increases via opening of endothelial intercellular junctions and qualitative and quantitative changes in endothelial caveolar transcellular transport, respectively. Functional changes in pericytes and astrocytes, as well as structural changes in the composition of the endothelial glycocalyx and the basal lamina around BRB endothelium further facilitate BRB leakage. As Starling's rules apply, active transcellular transport of plasma proteins by the BRB endothelial cells causing increased interstitial osmotic pressure is probably the main factor in the formation of macular edema. The understanding of the complex cellular and molecular processes involved in BRB leakage has grown rapidly in recent years. Although appropriate animal models for human conditions like diabetic macular edema are lacking, these insights have provided tools for rational design of drugs aimed at restoring the BRB as well as for design of effective transport of drugs across the BRB, to treat the chronic retinal diseases such as diabetic macular edema that affect the quality-of-life of millions of patients.
Collapse
Affiliation(s)
- Ingeborg Klaassen
- Ocular Angiogenesis Group, Department of Ophthalmology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
19
|
Holmes RP. The role of renal water channels in health and disease. Mol Aspects Med 2012; 33:547-52. [PMID: 22252122 PMCID: PMC6900978 DOI: 10.1016/j.mam.2012.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 01/04/2012] [Indexed: 12/21/2022]
Abstract
Seven members of the aquaporin (AQP) family are expressed in different regions of the kidney. AQP1-4 are localized in plasma membranes of renal epithelial cells and are intimately involved in water reabsorption by the kidney. AQP7 is also localized in the plasma membrane and may facilitate glycerol transport. AQP6 and AQP11 are localized within the cell, with AQP6 involved in anion transport and AQP11 water transport. Mutations in AQP2 can result in diabetes insipidus, whereas mutations in other AQPs have not yet been shown to be disease-associated. Genetic polymorphisms may contribute to the susceptibility to defects in urine concentrating mechanisms associated with some diseases. Most of the AQPs are subject to transcriptional regulation and post-translational modifications by a range of biological modifiers. As a result a number of chronic kidney and systemic diseases produce changes in the abundance of AQPs. The more recent developments in this field are reviewed.
Collapse
Affiliation(s)
- Ross P Holmes
- Department of Urology, Wake Forest University School of Medicine, Winston-Salem, Medical Center Blvd., NC 27157, USA.
| |
Collapse
|
20
|
Homozygosity for aquaporin 7 G264V in three unrelated children with hyperglyceroluria and a mild platelet secretion defect. Genet Med 2012; 15:55-63. [PMID: 22899094 DOI: 10.1038/gim.2012.90] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Aquaporin 7 (AQP7) belongs to the aquaglyceroporin family, which transports glycerol and water. AQP7-deficient mice develop obesity, insulin resistance, and hyperglyceroluria. However, AQP7's pathophysiologic role in humans is not yet known. METHODS Three children with psychomotor retardation and hyperglyceroluria were screened for AQP7 mutations. The children were from unrelated families. Urine and plasma glycerol levels were measured using a three-step enzymatic approach. Platelet morphology and function were studied using electron microscopy, aggregations, and adenosine triphosphate (ATP) secretion tests. RESULTS The index patients were homozygous for AQP7 G264V, which has previously been shown to inhibit transport of glycerol in Xenopus oocytes. We also detected a subclinical platelet secretion defect with reduced ATP secretion, and the absence of a secondary aggregation wave after epinephrine stimulation. Electron microscopy revealed round platelets with centrally located granules. Immunostaining showed AQP7 colocalization, with dense granules that seemed to be released after strong platelet activation. Healthy relatives of these patients, who were homozygous (not heterozygous) for G264V, also had hyperglyceroluria and platelet granule abnormalities. CONCLUSION The discovery of an association between urine glycerol loss and a platelet secretion defect is a novel one, and our findings imply the involvement of AQPs in platelet secretion. Additional studies are needed to define whether AQP7 G264V is also a risk factor for mental disability.
Collapse
|
21
|
Cooper GJS. Therapeutic potential of copper chelation with triethylenetetramine in managing diabetes mellitus and Alzheimer's disease. Drugs 2011; 71:1281-320. [PMID: 21770477 DOI: 10.2165/11591370-000000000-00000] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This article reviews recent evidence, much of which has been generated by my group's research programme, which has identified for the first time a previously unknown copper-overload state that is central to the pathogenesis of diabetic organ damage. This state causes tissue damage in the blood vessels, heart, kidneys, retina and nerves through copper-mediated oxidative stress. This author now considers this copper-overload state to provide an important new target for therapeutic intervention, the objective of which is to prevent or reverse the diabetic complications. Triethylenetetramine (TETA) has recently been identified as the first in a new class of anti-diabetic molecules through the original work reviewed here, thus providing a new use for this molecule, which was previously approved by the US FDA in 1985 as a second-line treatment for Wilson's disease. TETA acts as a highly selective divalent copper (Cu(II)) chelator that prevents or reverses diabetic copper overload, thereby suppressing oxidative stress. TETA treatment of diabetic animals and patients has identified and quantified the interlinked defects in copper metabolism that characterize this systemic copper overload state. Copper overload in diabetes mellitus differs from that in Wilson's disease through differences in their respective causative molecular mechanisms, and resulting differences in tissue localization and behaviour of the excess copper. Elevated pathogenetic tissue binding of copper occurs in diabetes. It may well be mediated by advanced-glycation endproduct (AGE) modification of susceptible amino-acid residues in long-lived fibrous proteins, for example, connective tissue collagens in locations such as blood vessel walls. These AGE modifications can act as localized, fixed endogenous chelators that increase the chelatable-copper content of organs such as the heart and kidneys by binding excessive amounts of catalytically active Cu(II) in specific vascular beds, thereby focusing the related copper-mediated oxidative stress in susceptible tissues. In this review, summarized evidence from our clinical studies in healthy volunteers and diabetic patients with left-ventricular hypertrophy, and from nonclinical models of diabetic cardiac, arterial, renal and neural disease is used to construct descriptions of the mechanisms by which TETA treatment prevents injury and regenerates damaged organs. Our recent phase II proof-of-principle studies in patients with type 2 diabetes and in nonclinical models of diabetes have helped to define the pathogenetic defects in copper regulation, and have shown that they are reversible by TETA. The drug tightly binds and extracts excess systemic Cu(II) into the urine whilst neutralizing its catalytic activity, but does not cause systemic copper deficiency, even after prolonged use. Its physicochemical properties, which are pivotal for its safety and efficacy, clearly differentiate it from all other clinically available transition metal chelators, including D-penicillamine, ammonium tetrathiomolybdate and clioquinol. The studies reviewed here show that TETA treatment is generally effective in preventing or reversing diabetic organ damage, and support its ongoing development as a new medicine for diabetes. Trientine (TETA dihydrochloride) has been used since the mid-1980s as a second-line treatment for Wilson's disease, and our recent clinical studies have reinforced the impression that it is likely to be safe for long-term use in patients with diabetes and related metabolic disorders. There is substantive evidence to support the view that diabetes shares many pathogenetic mechanisms with Alzheimer's disease and vascular dementia. Indeed, the close epidemiological and molecular linkages between them point to Alzheimer's disease/vascular dementia as a further therapeutic target where experimental pharmacotherapy with TETA could well find further clinical application.
Collapse
Affiliation(s)
- Garth J S Cooper
- Centre for Advanced Discovery and Experimental Therapeutics, NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, UK.
| |
Collapse
|
22
|
Yang DH, McKee KK, Chen ZL, Mernaugh G, Strickland S, Zent R, Yurchenco PD. Renal collecting system growth and function depend upon embryonic γ1 laminin expression. Development 2011; 138:4535-44. [PMID: 21903675 DOI: 10.1242/dev.071266] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In order to understand the functions of laminins in the renal collecting system, the Lamc1 gene was inactivated in the developing mouse ureteric bud (UB). Embryos bearing null alleles exhibited laminin deficiency prior to mesenchymal tubular induction and either failed to develop a UB with involution of the mesenchyme, or developed small kidneys with decreased proliferation and branching, delayed renal vesicle formation and postnatal emergence of a water transport deficit. Embryonic day 12.5 kidneys revealed an almost complete absence of basement membrane proteins and reduced levels of α6 integrin and FGF2. mRNA levels for fibroblast growth factor 2 (FGF2) and mediators of the GDNF/RET and WNT11 signaling pathway were also decreased. Furthermore, collecting duct cells derived from laminin-deficient kidneys and grown in collagen gels were found to proliferate and branch slowly. The laminin-deficient cells exhibited decreased activation of growth factor- and integrin-dependent pathways, whereas heparin lyase-treated and β1 integrin-null cells exhibited more selective decreases. Collectively, these data support a requirement of γ1 laminins for assembly of the collecting duct system basement membrane, in which immobilized ligands act as solid-phase agonists to promote branching morphogenesis, growth and water transport functions.
Collapse
Affiliation(s)
- Dong-Hua Yang
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Albertini R, Bianchi R. Aquaporins and glia. Curr Neuropharmacol 2011; 8:84-91. [PMID: 21119878 DOI: 10.2174/157015910791233178] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 03/01/2010] [Accepted: 04/07/2010] [Indexed: 01/12/2023] Open
Abstract
Glial cells coordinate the differentiation, metabolism, and excitability of neurons; they modulate synaptic transmission and integrate signals emanating from neurons and other glial cells. Several evidences underlying the relation between these pathways and the regulatory mechanisms of ion concentration, supporting the role of Aquaporins (AQPs) in these processes. The goal of this review is to summarize the localization of different isoforms of AQPs in relation to glial cells both in central and peripheral nervous system, underlying AQP involvement in physiological and in pathophysiological conditions such as brain edema, glioma and epilepsy.
Collapse
Affiliation(s)
- Roberta Albertini
- Division of Human Anatomy, Department of Biomedical Sciences and Biotechnologies, University of Brescia, V.le Europa 11, 25123 Brescia, Italy.
| | | |
Collapse
|
24
|
Brain volume regulation: osmolytes and aquaporin perspectives. Neuroscience 2010; 168:871-84. [DOI: 10.1016/j.neuroscience.2009.11.074] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 11/13/2009] [Accepted: 11/25/2009] [Indexed: 02/08/2023]
|
25
|
Barbara B. Aquaporin biology and nervous system. Curr Neuropharmacol 2010; 8:97-104. [PMID: 21119880 PMCID: PMC2923373 DOI: 10.2174/157015910791233204] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 03/01/2010] [Accepted: 04/07/2010] [Indexed: 12/21/2022] Open
Abstract
Our understanding of the movement of water through cell membranes has been greatly advanced by the discovery of a family of water-specific, membrane-channel proteins: the Aquaporins (AQPs). These proteins are present in organisms at all levels of life, and their unique permeability characteristics and distribution in numerous tissues indicate diverse roles in the regulation of water homeostasis.Phenotype analysis of AQP knock-out mice has confirmed the predicted role of AQPs in osmotically driven transepithelial fluid transport, as occurs in the urinary concentrating mechanism and glandular fluid secretion. Regarding their expression in nervous system, there are evidences suggesting that AQPs are differentially expressed in the peripheral versus central nervous system and that channel-mediated water transport mechanisms may be involved in cerebrospinal fluid formation, neuronal signal transduction and information processing.Moreover, a number of recent studies have revealed the importance of mammalian AQPs in both physiological and pathophysiological mechanisms and have suggested that pharmacological modulation of AQP expression and activity may provide new tools for the treatment of variety of human disorders in which water and small solute transport may be involved. For all the AQPs, new contributions to physiological functions are likely to be discovered with ongoing work in this rapidly expanding field of research.
Collapse
Affiliation(s)
- Buffoli Barbara
- Division of Human Anatomy, Department of Biomedical Sciences and Biotechnologies, University of Brescia, V.le Europa 11, 25123 Brescia, Italy
| |
Collapse
|
26
|
Fenton RA, Moeller HB, Nielsen S, de Groot BL, Rützler M. A plate reader-based method for cell water permeability measurement. Am J Physiol Renal Physiol 2010; 298:F224-30. [DOI: 10.1152/ajprenal.00463.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cell volume and water permeability measurements in cultured mammalian cells are typically conducted under a light microscope. Many of the employed approaches are time consuming and not applicable to a study of confluent epithelial cell monolayers. We present here an adaptation of a calcein-quenching-based approach for a plate reader. A standard curve of fluorescence intensities at equilibrium has been recorded, following a shift from 285 mosmol/kgH2O to a series of altered extracellular osmolyte concentrations, ranging from final concentrations of 185 to 585 mosmol/kgH2O, by changing buffer d-mannitol concentrations. Similarly, according average cell volumes have been measured in suspension in a Coulter counter (particle-sizing device). Based on these measurements, we have derived an equation that facilitates the modeling of cell volume changes based on fluorescence intensity changes. We have utilized the method to study the role of a carboxyl-terminus aquaporin (AQP)-2 phosphorylation site, which is known to affect AQP2 membrane trafficking, in heterologous type I Madin-Darby canine kidney cells. We find that water permeability in cells expressing phosphorylation site mutants was in the following order: AQP2-S256D > AQP2 wild-type > AQP2-S256A. We propose that the method can be applied to study AQP function and more generally to study cell volume changes in adherent cell lines. Furthermore, it should be adaptable for AQP inhibitor screening in chemical compound libraries.
Collapse
Affiliation(s)
- R. A. Fenton
- The Water and Salt Research Center, Institute of Anatomy, University of Aarhus, Aarhus C, Denmark; and
| | - H. B. Moeller
- The Water and Salt Research Center, Institute of Anatomy, University of Aarhus, Aarhus C, Denmark; and
| | - S. Nielsen
- The Water and Salt Research Center, Institute of Anatomy, University of Aarhus, Aarhus C, Denmark; and
| | - B. L. de Groot
- Department of Theoretical and Computational Biophysics, Computational Biomolecular Dynamics Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - M. Rützler
- The Water and Salt Research Center, Institute of Anatomy, University of Aarhus, Aarhus C, Denmark; and
| |
Collapse
|
27
|
Gong D, Chen X, Middleditch M, Huang L, Vazhoor Amarsingh G, Reddy S, Lu J, Zhang S, Ruggiero K, Phillips ARJ, Cooper GJS. Quantitative proteomic profiling identifies new renal targets of copper(II)-selective chelation in the reversal of diabetic nephropathy in rats. Proteomics 2009; 9:4309-20. [PMID: 19634143 DOI: 10.1002/pmic.200900285] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This study aimed to identify new diabetic nephropathy (DN)-related proteins and renal targets of the copper(II)-selective chelator, triethylenetetramine (TETA) in streptozotocin-diabetic rats. We used the recently developed iTRAQ technology to compare renal protein profiles among non-diabetic, diabetic, and TETA-treated diabetic rats. In diabetic kidneys, tubulointerstitial nephritis antigen (TINag), voltage-dependent anion-selective channel (VDAC) 1, and VDAC2 were up-regulated in parallel with alterations in expression of proteins with functions in oxidative stress and oxidative phosphorylation (OxPhos) pathways. By contrast, mitochondrial HSP 60, Cu/Zn-superoxide dismutase, glutathione S-transferase alpha3 and aquaporin-1 were down-regulated in diabetic kidneys. Following TETA treatment, levels of D-amino acid oxidase-1, epoxide hydrolase-1, aquaporin-1, and a number of mitochondrial proteins were normalized, with concomitant amelioration of albuminuria. Changes in levels of TINag, collagen VIalpha1, actinin 4alpha, apoptosis-inducing factor 1, cytochrome C, histone H3, VDAC1, and aquaporin-1 were confirmed by Western blotting or immunohistochemistry. Changes in expression of proteins related to tubulointerstitial function, podocyte structure, and mitochondrial apoptosis are implicated in the mechanism of DN and their reversal by TETA. These findings are consistent with the hypothesis that this new experimental therapy may be useful for treatment of DN.
Collapse
Affiliation(s)
- Deming Gong
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1213-28. [DOI: 10.1016/j.bbamem.2009.03.009] [Citation(s) in RCA: 310] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 03/09/2009] [Accepted: 03/11/2009] [Indexed: 01/09/2023]
|
29
|
Osmolarity and intracellular calcium regulate aquaporin2 expression through TonEBP in nucleus pulposus cells of the intervertebral disc. J Bone Miner Res 2009; 24:992-1001. [PMID: 19138132 PMCID: PMC2683651 DOI: 10.1359/jbmr.090103] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The goal of this study was to examine the expression and regulation of aquaporin2 (AQP2), a tonicity-sensitive water channel in nucleus pulposus cells of the intervertebral disc. We found that AQP2 protein was expressed in vivo in both rat and human discs. We determined whether AQP2 promoter expression was regulated by osmolarity in a tonicity enhancer binding protein (TonEBP)-dependent manner.When TonEBP was suppressed under hypertonic conditions or overexpressed under isotonic conditions,AQP2 promoter activity was correspondingly inhibited or induced. The role of TonEBP in controlling AQP2 expression was confirmed using mouse embryonic fibroblasts (MEFs) derived from TonEBP-null mice. We studied whether calcium in addition to osmolarity played a role in regulation of AQP2 in nucleus pulposus cells. We also determined whether both TonEBP and calcineurin-nuclear factor of activated T cells (NFAT)signaling contributed to ionomycin, a calcium ionophore, mediated induction of AQP2. Co-transfection of AQP2 reporter with calcineurin (CnA/B) and/or NFAT1-4 vectors suggested that this pathway did not control AQP2 promoter activity in nucleus pulposus cells. These findings were also validated using MEFs from TonEBP, fibroblasts from CnAalpha- and CnAbeta-null mice, and mutant TonE reporter constructs. Results of these studies suggest that, in nucleus pulposus cells, osmotic pressure and calcium modulate AQP2 expression through TonEBP and are independent of the calcineurin-NFAT pathway. Because calcium flux reflects a change in applied stress, the possibility exists that NFAT5/TonEBP modulate not just water balance in the disc but also accommodate applied biomechanical forces.
Collapse
|
30
|
Torres VE, Bankir L, Grantham JJ. A case for water in the treatment of polycystic kidney disease. Clin J Am Soc Nephrol 2009; 4:1140-50. [PMID: 19443627 DOI: 10.2215/cjn.00790209] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Autosomal dominant polycystic disease (ADPKD) is an inherited disorder characterized by the development within renal tubules of innumerable cysts that progressively expand to cause renal insufficiency. Tubule cell proliferation and transepithelial fluid secretion combine to enlarge renal cysts, and 3'-5'-cyclic adenosine monophosphate (cAMP) stimulates that growth. The antidiuretic hormone, arginine vasopressin (AVP), operates continuously in ADPKD patients to stimulate the formation of cAMP, thereby contributing to cyst and kidney enlargement and renal dysfunction. Studies in animal models of ADPKD provide convincing evidence that blocking the action of AVP dramatically ameliorates the disease process. In the current analysis, the authors reason that increasing the amount of solute-free water drunk evenly throughout the day in patients with ADPKD and normal renal function will decrease plasma AVP concentrations and mitigate the action of cAMP on the renal cysts. Potential pitfalls of increasing fluid intake in ADPKD patients are considered, and suggestions for how physicians may prudently implement this therapy are offered.
Collapse
Affiliation(s)
- Vicente E Torres
- Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA.
| | | | | |
Collapse
|
31
|
Sorani MD, Manley GT, Giacomini KM. Genetic variation in human aquaporins and effects on phenotypes of water homeostasis. Hum Mutat 2008; 29:1108-17. [DOI: 10.1002/humu.20762] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Chesney RW. The role of the kidney in protecting the brain against cerebral edema and neuronal cell swelling. J Pediatr 2008; 152:4-6. [PMID: 18154887 DOI: 10.1016/j.jpeds.2007.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Accepted: 10/10/2007] [Indexed: 11/24/2022]
|
33
|
Verkman AS. Role of aquaporins in lung liquid physiology. Respir Physiol Neurobiol 2007; 159:324-30. [PMID: 17369110 PMCID: PMC3315286 DOI: 10.1016/j.resp.2007.02.012] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2006] [Revised: 02/08/2007] [Accepted: 02/09/2007] [Indexed: 12/21/2022]
Abstract
Aquaporins (AQPs) are small, integral membrane proteins that facilitate water transport across cell membranes in response to osmotic gradients. Water transport across epithelia and endothelia in the peripheral lung and airways occurs during airway hydration, alveolar fluid transport and submucosal gland secretion. Several AQPs are expressed in the lung and airways: AQP1 in microvascular endothelia, AQP3 and AQP4 in airway epithelia, and AQP5 in type I alveolar epithelial cells, submucosal gland acini, and a subset of airway epithelial cells. Phenotype analysis of transgenic knockout mice lacking AQPs has defined their roles in the lung and airways. AQP1 and AQP5 provide the principal route for osmotically driven water transport between airspace and capillary compartments; however, alveolar fluid clearance in the neonatal and adult lung is not affected by their deletion, nor is lung fluid accumulation in experimental models of lung injury. In the airways, though AQP3 and AQP4 facilitate osmotic water transport, their deletion does not impair airway hydration, regulation of airway surface liquid, or fluid absorption. In contrast to these negative findings, AQP5 deletion in submucosal glands reduced fluid secretion by >50%. The substantially slower fluid transport in the lung compared to renal and secretory epithelia probably accounts for the lack of functional significance of AQPs in the lung and airways. Recent data outside of the lung implicating the involvement of AQPs in cell migration and proliferation suggests possible new roles for lung AQPs to be explored.
Collapse
Affiliation(s)
- A S Verkman
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, CA 94143-0521, USA.
| |
Collapse
|
34
|
Tait MJ, Saadoun S, Bell BA, Papadopoulos MC. Water movements in the brain: role of aquaporins. Trends Neurosci 2007; 31:37-43. [PMID: 18054802 DOI: 10.1016/j.tins.2007.11.003] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 11/11/2007] [Accepted: 11/12/2007] [Indexed: 12/19/2022]
Abstract
About 80% of the brain is water. This review discusses the importance of the three brain water-channel proteins (AQP1, AQP4, AQP9) in brain physiology. AQP1 is expressed in the choroid plexus and participates in forming cerebrospinal fluid. AQP4, found in astrocyte foot processes, glia limitans and ependyma, facilitates water movement into and out of the brain, accelerates astrocyte migration and alters neuronal activity. Recently, AQP4 autoantibodies were discovered in patients with neuromyelitis optica, a demyelinating disease, and are now being used to diagnose this condition. AQP9 is present in some glia and neurons, but its function is unclear. Finally, we discuss how the discovery of AQP activators and inhibitors will be the next major step in this field.
Collapse
Affiliation(s)
- Matthew J Tait
- Academic Neurosurgery Unit, St. George's University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK
| | | | | | | |
Collapse
|
35
|
Lang F, Vallon V, Knipper M, Wangemann P. Functional significance of channels and transporters expressed in the inner ear and kidney. Am J Physiol Cell Physiol 2007; 293:C1187-208. [PMID: 17670895 DOI: 10.1152/ajpcell.00024.2007] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A number of ion channels and transporters are expressed in both the inner ear and kidney. In the inner ear, K+cycling and endolymphatic K+, Na+, Ca2+, and pH homeostasis are critical for normal organ function. Ion channels and transporters involved in K+cycling include K+channels, Na+-2Cl−-K+cotransporter, Na+/K+-ATPase, Cl−channels, connexins, and K+/Cl−cotransporters. Furthermore, endolymphatic Na+and Ca2+homeostasis depends on Ca2+-ATPase, Ca2+channels, Na+channels, and a purinergic receptor channel. Endolymphatic pH homeostasis involves H+-ATPase and Cl−/HCO3−exchangers including pendrin. Defective connexins (GJB2 and GJB6), pendrin (SLC26A4), K+channels (KCNJ10, KCNQ1, KCNE1, and KCNMA1), Na+-2Cl−-K+cotransporter (SLC12A2), K+/Cl−cotransporters (KCC3 and KCC4), Cl−channels (BSND and CLCNKA + CLCNKB), and H+-ATPase (ATP6V1B1 and ATPV0A4) cause hearing loss. All these channels and transporters are also expressed in the kidney and support renal tubular transport or signaling. The hearing loss may thus be paralleled by various renal phenotypes including a subtle decrease of proximal Na+-coupled transport (KCNE1/KCNQ1), impaired K+secretion (KCNMA1), limited HCO3−elimination (SLC26A4), NaCl wasting (BSND and CLCNKB), renal tubular acidosis (ATP6V1B1, ATPV0A4, and KCC4), or impaired urinary concentration (CLCNKA). Thus, defects of channels and transporters expressed in the kidney and inner ear result in simultaneous dysfunctions of these seemingly unrelated organs.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, Eberhard-Karls-University of Tübingen, Gmelinstrasse 5, Tübingen, Germany.
| | | | | | | |
Collapse
|
36
|
Suzuki M, Hasegawa T, Ogushi Y, Tanaka S. Amphibian aquaporins and adaptation to terrestrial environments: A review. Comp Biochem Physiol A Mol Integr Physiol 2007; 148:72-81. [PMID: 17270476 DOI: 10.1016/j.cbpa.2006.12.021] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 12/03/2006] [Accepted: 12/05/2006] [Indexed: 11/23/2022]
Abstract
In many anurans, the pelvic patch of the ventral skin and the urinary bladder are important osmoregulatory organs. Since the discovery of water channel protein, aquaporin (AQP), in mammalian erythrocytes, 17 distinct full sequences of AQP mRNAs have been identified in anurans. Phylogenetic tree of AQP proteins from amphibians and mammals suggested that anuran AQPs can be divided into six types: i.e. types 1, 2, 3, and 5, and anuran-specific types a1 and a2. Among them, two types of anuran AQPs (types 1 and a2) are localized in the skin and urinary bladder by immunohistochemistry. Tree frog type-a2 AQPs, AQP-h2 and AQP-h3, are vasotocin-regulated water channels predominant in the osmoregulatory organs. Both the AQP-h2 and AQP-h3 are expressed at the granular cells underneath the keratinized layer in the pelvic patch, whereas only AQP-h2 is detected at the granular cells in the urinary bladder. In response to vasotocin, both the molecules seem to be translocated from the cytoplasmic pool to the apical plasma membrane of the granular cells. On the other hand, type-1 AQPs, Rana FA-CHIP and Hyla AQP-h1, are detected at the endothelial cells of blood capillaries in frog osmoregulatory organs. These findings suggest that AQP-h2 and AQP-h3 are key players for transepithelial water movement, and that FA-CHIP and AQP-h1 might be important for the transport of absorbed water into the blood flow. Comparative investigation of type-a2 AQPs in anurans further revealed that AQP-h2 and -h3-like molecules might exist at the urinary bladder and the pelvic skin, respectively, in various anurans from aquatic species to arboreal dwellers. AQP-h2-like protein is also detected in the pelvic skin of terrestrial and arboreal species. It is possible that this molecule might have occurred in the pelvic skin as anurans penetrated into drier environments.
Collapse
Affiliation(s)
- Masakazu Suzuki
- Department of Biology, Faculty of Science, Shizuoka University, Ohya 836, Suruga ward, Shizuoka city, Shizuoka 422-8529, Japan.
| | | | | | | |
Collapse
|
37
|
Abstract
Aquaporin-4 (AQP4) is a water-channel protein expressed strongly in the brain, predominantly in astrocyte foot processes at the borders between the brain parenchyma and major fluid compartments, including cerebrospinal fluid (CSF) and blood. This distribution suggests that AQP4 controls water fluxes into and out of the brain parenchyma. Experiments using AQP4-null mice provide strong evidence for AQP4 involvement in cerebral water balance. AQP4-null mice are protected from cellular (cytotoxic) brain edema produced by water intoxication, brain ischemia, or meningitis. However, AQP4 deletion aggravates vasogenic (fluid leak) brain edema produced by tumor, cortical freeze, intraparenchymal fluid infusion, or brain abscess. In cytotoxic edema, AQP4 deletion slows the rate of water entry into brain, whereas in vasogenic edema, AQP4 deletion reduces the rate of water outflow from brain parenchyma. AQP4 deletion also worsens obstructive hydrocephalus. Recently, AQP4 was also found to play a major role in processes unrelated to brain edema, including astrocyte migration and neuronal excitability. These findings suggest that modulation of AQP4 expression or function may be beneficial in several cerebral disorders, including hyponatremic brain edema, hydrocephalus, stroke, tumor, infection, epilepsy, and traumatic brain injury.
Collapse
Affiliation(s)
- Marios C. Papadopoulos
- Departments of Medicine and Physiology, University of California, San Francisco, CA 94143-0521 USA
- Academic Neurosurgery Unit, St. George’s University of London, Cranmer Terrace, Tooting, London, SW17 0RE UK
| | - Alan S. Verkman
- Departments of Medicine and Physiology, University of California, San Francisco, CA 94143-0521 USA
- Cardiovascular Research Institute, University of California, 1246 Health Sciences East Tower, Box 0521, San Francisco, CA 94143-0521 USA
| |
Collapse
|
38
|
Abstract
Nephrogenic diabetes insipidus which can be inherited or acquired, is characterized by an inability to concentrate urine despite normal or elevated plasma concentrations of the antidiuretic hormone, arginine-vasopressine (AVP). Polyuria, with hyposthenuria and polydipsia are the cardinal clinical manifestations of the disease. Hypercalcemia, hypokaliemia, lithium administration and chronic renal failure are the principal causes of acquired nephrogenic diabetes insipidus. About 90 percent of patients with congenital nephrogenic diabetes insipidus are males with X-linked recessive nephrogenic diabetes insipidus who have mutations in the arginine-vasopressin receptor 2 (AVPR2) gene that codes for the vasopressin V2 receptor. The gene is located in chromosome region Xq28. In about 10 percent of the families studied, congenital nephrogenic diabetes insipidus has an autosomal recessive or autosomal dominant mode of inheritance. In these cases, mutations have been identified in the aquaporin-2 gene (AQP2), which is located in chromosome region 12q13 and codes for the vasopressin-sensitive water channel. Other inherited disorders with mild, moderate or severe inability to concentrate urine include Bartter's syndrome and Cystinosis. Identification of the molecular defect underlying congenital nephrogenic diabetes insipidus is of immediate clinical significance because early diagnosis and treatment of affected infants can avert the physical and mental retardation associated with episodes of dehydration.
Collapse
Affiliation(s)
- Daniel Georges Bichet
- Génétique des maladies rénales, service de néphrologie, départements de médecine et de physiologie, centre de recherche, hôpital du Sacré-Coeur de Montréal, université de Montréal, Montréal (Québec), Canada.
| |
Collapse
|