1
|
Zununi Vahed S, Hosseiniyan Khatibi SM, Ardalan M. Canonical effects of cytokines on glomerulonephritis: A new outlook in nephrology. Med Res Rev 2025; 45:144-163. [PMID: 39164945 DOI: 10.1002/med.22074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 08/28/2022] [Accepted: 08/04/2024] [Indexed: 08/22/2024]
Abstract
Glomerulonephritis (GN) is an important cause of renal inflammation resulting from kidney-targeted adaptive and innate immune responses and consequent glomerular damage. Given the lack of autoantibodies, immune complexes, or the infiltrating immune cells in some forms of GN, for example, focal segmental glomerulosclerosis and minimal change disease, along with paraneoplastic syndrome and a special form of renal involvement in some viral infections, the likeliest causative scenario would be secreted factors, mainly cytokine(s). Since cytokines can modulate the inflammatory mechanisms, severity, and clinical outcomes of GN, it is rational to consider the umbrella term of cytokine GN as a new outlook to reclassify a group of previously known GN. We focus here, particularly, on cytokines that have the central "canonical effect" in the development of GN.
Collapse
|
2
|
Jash R, Maparu K, Seksaria S, Das S. Decrypting the Pathological Pathways in IgA Nephropathy. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2024; 18:43-56. [PMID: 37870060 DOI: 10.2174/0127722708275167231011102924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023]
Abstract
IgAN is the most common form of glomerulonephritis affecting 2000000 people annually. The disease ultimately progresses to chronic renal failure and ESRD. In this article, we focused on a comprehensive understanding of the pathogenesis of the disease and thus identifying different target proteins that could be essential in therapeutic approaches in the management of the disease. Aberrantly glycosylated IgA1 produced by the suppression of the enzyme β-1, 3 galactosyltransferase ultimately triggered the formation of IgG autoantibodies which form complexes with Gd-IgA1. The complex gets circulated through the blood vessels through monocytes and ultimately gets deposited in the glomerular mesangial cells via CD71 receptors present locally. This complex triggers the inflammatory pathways activating the alternate complement system, various types of T Cells, toll-like receptors, cytokines, and chemokines ultimately recruiting the phagocytic cells to eliminate the Gd-IgA complex. The inflammatory proteins cause severe mesangial and podocyte damage in the kidney which ultimately initiates the repair process following chronic inflammation by an important protein named TGFβ1. TGF β1 is an important protein produced during chronic inflammation mediating the repair process via various downstream transduction proteins and ultimately producing fibrotic proteins which help in the repair process but permanently damage the glomerular cells.
Collapse
Affiliation(s)
- Rajiv Jash
- Department of Pharmacology, Sanaka Educational Trust's Group Of Institutions, Malandighi, Durgapur, 713212, West Bengal, India
- Department of Pharmacy, JIS University, Kolkata, 700109, West Bengal, India
| | - Kousik Maparu
- Department of Pharmacology, Sanaka Educational Trust's Group Of Institutions, Malandighi, Durgapur, 713212, West Bengal, India
| | - Sanket Seksaria
- Department of Pharmacology, Sanaka Educational Trust's Group Of Institutions, Malandighi, Durgapur, 713212, West Bengal, India
| | - Saptarshi Das
- Department of Pharmacy, JIS University, Kolkata, 700109, West Bengal, India
| |
Collapse
|
3
|
Huo Y, Li C, Li Y, Li X, Xu P, Bao Z, Liu W. Detecting early-warning signals for influenza by dysregulated dynamic network biomarkers. Brief Funct Genomics 2023:7036269. [PMID: 36787234 DOI: 10.1093/bfgp/elad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
As a dynamical system, complex disease always has a sudden state transition at the tipping point, which is the result of the long-term accumulation of abnormal regulations. This paper proposes a novel approach to detect the early-warning signals of influenza A (H3N2 and H1N1) outbreaks by dysregulated dynamic network biomarkers (dysregulated DNBs) for individuals. The results of cross-validation show that our approach can detect early-warning signals before the symptom appears successfully. Unlike the traditional DNBs, our dysregulated DNBs are anchored and very few, which is essential for disease early diagnosis in clinical practice. Moreover, the genes of dysregulated DNBs are significantly enriched in the influenza-related pathways. The source code of this paper can be freely downloaded from https://github.com/YanhaoHuo/dysregulated-DNBs.git.
Collapse
Affiliation(s)
- Yanhao Huo
- Institute of Computing Science and Technology, Guangzhou University, Guangzhou, China
| | - Chuchu Li
- Institute of Computing Science and Technology, Guangzhou University, Guangzhou, China
| | - Yujie Li
- Institute of Computing Science and Technology, Guangzhou University, Guangzhou, China
| | - Xianbin Li
- Institute of Computing Science and Technology, Guangzhou University, Guangzhou, China.,School of Computer Science of Information Technology, Qiannan Normal University for Nationalities, Duyun, China
| | - Peng Xu
- Institute of Computing Science and Technology, Guangzhou University, Guangzhou, China.,School of Computer Science of Information Technology, Qiannan Normal University for Nationalities, Duyun, China
| | - Zhenshen Bao
- Institute of Computing Science and Technology, Guangzhou University, Guangzhou, China.,School of Computer Science of Information Technology, Qiannan Normal University for Nationalities, Duyun, China
| | - Wenbin Liu
- Institute of Computing Science and Technology, Guangzhou University, Guangzhou, China
| |
Collapse
|
4
|
Chan J, Eide IA, Tannæs TM, Waldum-Grevbo B, Jenssen T, Svensson M. Marine n-3 Polyunsaturated Fatty Acids and Cellular Senescence Markers in Incident Kidney Transplant Recipients: The Omega-3 Fatty Acids in Renal Transplantation (ORENTRA) Randomized Clinical Trial. Kidney Med 2021; 3:1041-1049. [PMID: 34939013 PMCID: PMC8664741 DOI: 10.1016/j.xkme.2021.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Rationale & Objective Deterioration of kidney graft function is associated with accelerated cellular senescence. Marine n-3 polyunsaturated fatty acids (PUFAs) have favorable properties that may counteract cellular senescence development and damage caused by the senescence-associated secretory phenotype (SASP) secretome. Our objective was to investigate the potential effects of marine n-3 PUFA supplementation on the SASP secretome in kidney transplant recipients. Study Design Exploratory substudy of the Omega-3 Fatty Acids in Renal Transplantation trial. Setting & Participants Adult kidney transplant recipients with a functional kidney graft (defined as having an estimated glomerular filtration rate of >30 mL/min/1.73 m2) 8 weeks after engraftment were included in this study conducted in Norway. Analytical Approach The intervention consisted of 2.6 g of a marine n-3 PUFA or olive oil (placebo) daily for 44 weeks. The outcome was a predefined panel of SASP components in the plasma and urine. Results A total of 132 patients were enrolled in the Omega-3 Fatty Acids in Renal Transplantation trial, and 66 patients were allocated to receive either the study drug or placebo. The intervention with the marine n-3 PUFA was associated with reduced plasma levels of granulocyte colony-stimulating factor, interleukin 1α, macrophage inflammatory protein 1α, matrix metalloproteinase (MMP)-1, and MMP-13 compared with the intervention in the control group. Limitations Post hoc analysis. Conclusions The results suggest that marine n-3 PUFA supplementation has mitigating effects on the plasma SASP components granulocyte colony-stimulating factor, interleukin 1α, macrophage inflammatory protein 1α, MMP-1, and MMP-13 in kidney transplant recipients. Future studies with kidney transplant recipients in maintenance phase, combined with an evaluation of cellular senescence markers in kidney transplant biopsies, are needed to further elucidate the potential antisenescent effect of marine n-3 PUFAs. This trial is registered as NCT01744067.
Collapse
Affiliation(s)
- Joe Chan
- Department of Renal Medicine, Akershus University Hospital, Lørenskog.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo
| | - Ivar A Eide
- Department of Renal Medicine, Akershus University Hospital, Lørenskog.,Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo
| | - Tone M Tannæs
- Department of Clinical Molecular Biology (EpiGen), Division of Medicine, Akershus University Hospital and University of Oslo, Lørenskog
| | - Bård Waldum-Grevbo
- Department of Nephrology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Trond Jenssen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo.,Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo
| | - My Svensson
- Department of Renal Medicine, Akershus University Hospital, Lørenskog.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo
| |
Collapse
|
5
|
Jayachandran M, Yuzhakov SV, Kumar S, Larson NB, Enders FT, Milliner DS, Rule AD, Lieske JC. Specific populations of urinary extracellular vesicles and proteins differentiate type 1 primary hyperoxaluria patients without and with nephrocalcinosis or kidney stones. Orphanet J Rare Dis 2020; 15:319. [PMID: 33176829 PMCID: PMC7659070 DOI: 10.1186/s13023-020-01607-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/03/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Primary hyperoxaluria type 1 (PH1) is associated with nephrocalcinosis (NC) and calcium oxalate (CaOx) kidney stones (KS). Populations of urinary extracellular vesicles (EVs) can reflect kidney pathology. The aim of this study was to determine whether urinary EVs carrying specific biomarkers and proteins differ among PH1 patients with NC, KS or with neither disease process. METHODS Mayo Clinic Rare Kidney Stone Consortium bio-banked cell-free urine from male and female PH1 patients without (n = 10) and with NC (n = 6) or KS (n = 9) and an eGFR > 40 mL/min/1.73 m2 were studied. Urinary EVs were quantified by digital flow cytometer and results expressed as EVs/ mg creatinine. Expressions of urinary proteins were measured by customized antibody array and results expressed as relative intensity. Data were analyzed by ANCOVA adjusting for sex, and biomarkers differences were considered statistically significant among groups at a false discovery rate threshold of Q < 0.20. RESULTS Total EVs and EVs from different types of glomerular and renal tubular cells (11/13 markers) were significantly (Q < 0.20) altered among PH1 patients without NC and KS, patients with NC or patients with KS alone. Three cellular adhesion/inflammatory (ICAM-1, MCP-1, and tissue factor) markers carrying EVs were statistically (Q < 0.20) different between PH1 patients groups. Three renal injury (β2-microglobulin, laminin α5, and NGAL) marker-positive urinary EVs out of 5 marker assayed were statistically (Q < 0.20) different among PH1 patients without and with NC or KS. The number of immune/inflammatory cell-derived (8 different cell markers positive) EVs were statistically (Q < 0.20) different between PH1 patients groups. EV generation markers (ANO4 and HIP1) and renal calcium/phosphate regulation or calcifying matrixvesicles markers (klotho, PiT1/2) were also statistically (Q < 0.20) different between PH1 patients groups. Only 13 (CD14, CD40, CFVII, CRP, E-cadherin, EGFR, endoglin, fetuin A, MCP-1, neprilysin, OPN, OPGN, and PDGFRβ) out of 40 proteins were significantly (Q < 0.20) different between PH1 patients without and with NC or KS. CONCLUSIONS These results imply activation of distinct renal tubular and interstitial cell populations and processes associated with KS and NC, and suggest specific populations of urinary EVs and proteins are potential biomarkers to assess the pathogenic mechanisms between KS versus NC among PH1 patients.
Collapse
Affiliation(s)
- Muthuvel Jayachandran
- Division of Nephrology and Hypertension, College of Medicine and Science, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
- Division of Hematology Research, College of Medicine and Science, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
- Department of Physiology and Biomedical Engineering, College of Medicine and Science, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Stanislav V. Yuzhakov
- Division of Hematology Research, College of Medicine and Science, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
- Department of Physiology and Biomedical Engineering, College of Medicine and Science, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Sanjay Kumar
- Division of Nephrology and Hypertension, College of Medicine and Science, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Nicholas B. Larson
- Biomedical Statistics and Bioinformatics, College of Medicine and Science, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Felicity T. Enders
- Biomedical Statistics and Bioinformatics, College of Medicine and Science, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Dawn S. Milliner
- Division of Nephrology and Hypertension, College of Medicine and Science, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Andrew D. Rule
- Division of Nephrology and Hypertension, College of Medicine and Science, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - John C. Lieske
- Division of Nephrology and Hypertension, College of Medicine and Science, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
- Department of Laboratory Medicine and Pathology, College of Medicine and Science, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| |
Collapse
|
6
|
Rukavina Mikusic NL, Kouyoumdzian NM, Uceda A, Del Mauro JS, Pandolfo M, Gironacci MM, Puyó AM, Toblli JE, Fernández BE, Choi MR. Losartan prevents the imbalance between renal dopaminergic and renin angiotensin systems induced by fructose overload. l-Dopa/dopamine index as new potential biomarker of renal dysfunction. Metabolism 2018; 85:271-285. [PMID: 29727629 DOI: 10.1016/j.metabol.2018.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/28/2018] [Accepted: 04/25/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND The renin angiotensin system (RAS) and the renal dopaminergic system (RDS) act as autocrine and paracrine systems to regulate renal sodium management and inflammation and their alterations have been associated to hypertension and renal damage. Nearly 30-50% of hypertensive patients have insulin resistance (IR), with a strong correlation between hyperinsulinemia and microalbuminuria. OBJECTIVE The aim of this study was to demonstrate the existence of an imbalance between RAS and RDS associated to IR, hypertension and kidney damage induced by fructose overload (FO), as well as to establish their prevention, by pharmacological inhibition of RAS with losartan. MATERIALS/METHODS Ninety-six male Sprague-Dawley rats were randomly divided into four groups and studied at 4, 8 and 12 weeks: control group (C4, C8 and C12; tap water to drink); fructose-overloaded group (F4, F8 and F12; 10% w/v fructose solution to drink); losartan-treated control (L) group (L4, L8 and L12; losartan 30 mg/kg/day, in drinking water); and fructose-overloaded plus losartan group (F + L4, F + L8 and F + L12, in fructose solution). RESULTS FO induced metabolic and hemodynamic alterations as well as an imbalance between RAS and RDS, characterized by increased renal angiotensin II levels and AT1R overexpression, reduced urinary excretion of dopamine, increased excretion of l-dopa (increased l-dopa/dopamine index) and down-regulation of D1R and tubular dopamine transporters OCT-2, OCT-N1 and total OCTNs. This imbalance was accompanied by an overexpression of renal tubular Na+, K+-ATPase, pro-inflammatory (NF-kB, TNF-α, IL-6) and pro-fibrotic (TGF-β1 and collagen) markers and by renal damage (microalbuminuria and reduced nephrin expression). Losartan prevented the metabolic and hemodynamic alterations induced by FO from week 4. Increased urinary l-dopa/dopamine index and decreased D1R renal expression associated to FO were also prevented by losartan since week 4. The same pattern was observed for renal expression of OCTs/OCTNs, Na+, K+-ATPase, pro-inflammatory and pro-fibrotic markers from week 8. The appearance of microalbuminuria and reduced nephrin expression was prevented by losartan at week 12. CONCLUSION The results of this study provide new insight regarding the mechanisms by which a pro-hypertensive and pro-inflammatory system, such as RAS, downregulates another anti-hypertensive and anti-inflammatory system such as RDS. Additionally, we propose the use of l-dopa/dopamine index as a biochemical marker of renal dysfunction in conditions characterized by sodium retention, IR and/or hypertension, and as a predictor of response to treatment and follow-up of these processes.
Collapse
Affiliation(s)
- Natalia Lucía Rukavina Mikusic
- CONICET, Universidad de Buenos Aires, Instituto de Investigaciones Cardiológicas (ININCA), Marcelo T. de Alvear 2270, C1122AAJ City of Buenos Aires (CABA), Buenos Aires, Argentina; Universidad de Buenos Aires, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Junín 956, C1113AAD CABA, Buenos Aires, Argentina.
| | - Nicolás Martín Kouyoumdzian
- CONICET, Universidad de Buenos Aires, Instituto de Investigaciones Cardiológicas (ININCA), Marcelo T. de Alvear 2270, C1122AAJ City of Buenos Aires (CABA), Buenos Aires, Argentina; Universidad de Buenos Aires, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Junín 956, C1113AAD CABA, Buenos Aires, Argentina
| | - Ana Uceda
- Hospital Alemán, Laboratorio de Medicina Experimental, Av Pueyrredón 1640, C1118AAT CABA, Buenos Aires, Argentina
| | - Julieta Sofía Del Mauro
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Cátedra de Farmacología, Junín 956, C1113AAD CABA, Buenos Aires, Argentina
| | - Marcela Pandolfo
- Universidad de Buenos Aires, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Junín 956, C1113AAD CABA, Buenos Aires, Argentina
| | - Mariela Mercedes Gironacci
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica, Junín 956, C1113AAD CABA, Buenos Aires, Argentina
| | - Ana María Puyó
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Junín 956, C1113AAD CABA, Buenos Aires, Argentina
| | - Jorge Eduardo Toblli
- CONICET, Universidad de Buenos Aires, Instituto de Investigaciones Cardiológicas (ININCA), Marcelo T. de Alvear 2270, C1122AAJ City of Buenos Aires (CABA), Buenos Aires, Argentina; Hospital Alemán, Laboratorio de Medicina Experimental, Av Pueyrredón 1640, C1118AAT CABA, Buenos Aires, Argentina
| | - Belisario Enrique Fernández
- CONICET, Universidad de Buenos Aires, Instituto de Investigaciones Cardiológicas (ININCA), Marcelo T. de Alvear 2270, C1122AAJ City of Buenos Aires (CABA), Buenos Aires, Argentina; Universidad de Buenos Aires, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Junín 956, C1113AAD CABA, Buenos Aires, Argentina; Instituto Universitario de Ciencias de la Salud, Fundación H.A. Barceló, Av. Gral Las Heras 2191, C1127AAD CABA, Buenos Aires, Argentina
| | - Marcelo Roberto Choi
- CONICET, Universidad de Buenos Aires, Instituto de Investigaciones Cardiológicas (ININCA), Marcelo T. de Alvear 2270, C1122AAJ City of Buenos Aires (CABA), Buenos Aires, Argentina; Universidad de Buenos Aires, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Junín 956, C1113AAD CABA, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Junín 956, C1113AAD CABA, Buenos Aires, Argentina; Instituto Universitario de Ciencias de la Salud, Fundación H.A. Barceló, Av. Gral Las Heras 2191, C1127AAD CABA, Buenos Aires, Argentina
| |
Collapse
|
7
|
Weaver JL, Matheson PJ, Matheson A, Graham VS, Downard C, Garrison RN, Smith JW. Direct peritoneal resuscitation reduces inflammation in the kidney after acute brain death. Am J Physiol Renal Physiol 2018; 315:F406-F412. [PMID: 29667907 DOI: 10.1152/ajprenal.00225.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Brain death is associated with significant inflammation within the kidneys, which may contribute to reduced graft survival. Direct peritoneal resuscitation (DPR) has been shown to reduce systemic inflammation after brain death. To determine its effects, brain dead rats were resuscitated with normal saline (targeted intravenous fluid) to maintain a mean arterial pressure of 80 mmHg; DPR animals also received 30 cc of intraperitoneal peritoneal dialysis solution. Rats were euthanized at 0, 2, 4, and 6 h after brain death. Pro-inflammatory cytokines were measured using ELISA. Levels of IL-1β, TNF-α, and IL-6 in the kidney were significantly increased as early as 2 h after brain death and significantly decreased with DPR. Levels of leukocyte adhesion molecules ICAM and VCAM increased after brain death and were decreased with DPR (ICAM 2.33 ± 0.14 vs. 0.42 ± 0.04, P = 0.002; VCAM 82.6 ± 5.8 vs. 37.3 ± 1.9, P = 0.002 at 4 h) as were E-selectin and P-selectin (E-selectin 25,605 vs. 16,144, P = 0.005; P-selectin 82.5 ± 3.3 vs. 71.0 ± 2.3, P = 0.009 at 4 h). Use of DPR reduces inflammation and adhesion molecule expression in the kidneys, and is associated with reduced macrophages and neutrophils on immunohistochemistry. Using DPR in brain dead donors has the potential to reduce the immunologic activity of transplanted kidneys and could improve graft survival.
Collapse
Affiliation(s)
- Jessica L Weaver
- Department of Surgery, University of Louisville , Louisville, Kentucky.,Robley Rex Veterans Affairs Medical Center , Louisville, Kentucky
| | - Paul J Matheson
- Robley Rex Veterans Affairs Medical Center , Louisville, Kentucky
| | - Amy Matheson
- Robley Rex Veterans Affairs Medical Center , Louisville, Kentucky
| | - Victoria S Graham
- Department of Surgery, University of Louisville , Louisville, Kentucky
| | - Cynthia Downard
- Department of Surgery, University of Louisville , Louisville, Kentucky
| | | | - Jason W Smith
- Department of Surgery, University of Louisville , Louisville, Kentucky
| |
Collapse
|
8
|
Tsai F, Perlman H, Cuda CM. The contribution of the programmed cell death machinery in innate immune cells to lupus nephritis. Clin Immunol 2016; 185:74-85. [PMID: 27780774 DOI: 10.1016/j.clim.2016.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/15/2016] [Accepted: 10/20/2016] [Indexed: 12/24/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic multi-factorial autoimmune disease initiated by genetic and environmental factors, which in combination trigger disease onset in susceptible individuals. Damage to the kidney as a consequence of lupus nephritis (LN) is one of the most prevalent and severe outcomes, as LN affects up to 60% of SLE patients and accounts for much of SLE-associated morbidity and mortality. As remarkable strides have been made in unlocking new inflammatory mechanisms associated with signaling molecules of programmed cell death pathways, this review explores the available evidence implicating the action of these pathways specifically within dendritic cells and macrophages in the control of kidney disease. Although advancements into the underlying mechanisms responsible for inducing cell death inflammatory pathways have been made, there still exist areas of unmet need. By understanding the molecular mechanisms by which dendritic cells and macrophages contribute to LN pathogenesis, we can improve their viability as potential therapeutic targets to promote remission.
Collapse
Affiliation(s)
- FuNien Tsai
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, 240 East Huron Street, Room M300, Chicago, IL 60611, USA.
| | - Harris Perlman
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, 240 East Huron Street, Room M300, Chicago, IL 60611, USA.
| | - Carla M Cuda
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, 240 East Huron Street, Room M300, Chicago, IL 60611, USA.
| |
Collapse
|
9
|
Konkalmatt PR, Asico LD, Zhang Y, Yang Y, Drachenberg C, Zheng X, Han F, Jose PA, Armando I. Renal rescue of dopamine D2 receptor function reverses renal injury and high blood pressure. JCI Insight 2016; 1. [PMID: 27358912 DOI: 10.1172/jci.insight.85888] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dopamine D2 receptor (DRD2) deficiency increases renal inflammation and blood pressure in mice. We show here that long-term renal-selective silencing of Drd2 using siRNA increases renal expression of proinflammatory and profibrotic factors and blood pressure in mice. To determine the effects of renal-selective rescue of Drd2 expression in mice, the renal expression of DRD2 was first silenced using siRNA and 14 days later rescued by retrograde renal infusion of adeno-associated virus (AAV) vector with DRD2. Renal Drd2 siRNA treatment decreased the renal expression of DRD2 protein by 55%, and DRD2 AAV treatment increased the renal expression of DRD2 protein by 7.5- to 10-fold. Renal-selective DRD2 rescue reduced the expression of proinflammatory factors and kidney injury, preserved renal function, and normalized systolic and diastolic blood pressure. These results demonstrate that the deleterious effects of renal-selective Drd2 silencing on renal function and blood pressure were rescued by renal-selective overexpression of DRD2. Moreover, the deleterious effects of 45-minute bilateral ischemia/reperfusion on renal function and blood pressure in mice were ameliorated by a renal-selective increase in DRD2 expression by the retrograde ureteral infusion of DRD2 AAV immediately after the induction of ischemia/reperfusion injury. Thus, 14 days after ischemia/reperfusion injury, the renal expression of profibrotic factors, serum creatinine, and blood pressure were lower in mice infused with DRD2 AAV than in those infused with control AAV. These results indicate an important role of renal DRD2 in limiting renal injury and preserving normal renal function and blood pressure.
Collapse
Affiliation(s)
- Prasad R Konkalmatt
- Department of Medicine, The George Washington University, Washington, DC, USA, and Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Laureano D Asico
- Department of Medicine, The George Washington University, Washington, DC, USA, and Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yanrong Zhang
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yu Yang
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Cinthia Drachenberg
- Department of Pathology, University of Maryland Medical Center, Baltimore, Maryland, USA
| | - Xiaoxu Zheng
- Department of Medicine, The George Washington University, Washington, DC, USA, and Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Fei Han
- Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Pedro A Jose
- Department of Medicine, The George Washington University, Washington, DC, USA, and Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Physiology, The George Washington University, Washington, DC, USA, and University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ines Armando
- Department of Medicine, The George Washington University, Washington, DC, USA, and Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Zhang Y, Jiang X, Qin C, Cuevas S, Jose PA, Armando I. Dopamine D2 receptors' effects on renal inflammation are mediated by regulation of PP2A function. Am J Physiol Renal Physiol 2016; 310:F128-34. [PMID: 26290374 PMCID: PMC4719046 DOI: 10.1152/ajprenal.00453.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 06/15/2015] [Indexed: 01/11/2023] Open
Abstract
Lack or downregulation of the dopamine D2 receptor (D2R) results in increased renal expression of injury markers and proinflammatory factors that is independent of a blood pressure increase. This study aimed to determine the mechanisms involved in the regulation of renal inflammation by D2Rs. Silencing D2Rs in mouse renal proximal tubule cells increased the expression of the proinflammatory TNF-α, monocyte chemoattractant protein-1 (MCP-1), and IL-6. D2R downregulation also increased Akt phosphorylation and activity, and glycogen synthase kinase-3β (GSK3β) phosphorylation and cyclin D1 expression, downstream targets of Akt; however. phosphatidylinositol 3-kinase (PI3K) activity was not affected. Conversely, D2R stimulation decreased Akt and GSK3β phosphorylation and cyclin D1 expression. Increased phospho-Akt, in the absence of increased PI3K activity, may result from decreased Akt dephosphorylation. Inhibition of protein phosphatase 2A (PP2A) with okadaic acid reproduced the effects of D2R downregulation on Akt, GSK3β, and cyclin D1. The PP2A catalytic subunit and regulatory subunit PPP2R2C coimmunoprecipitated with the D2R. Basal phosphatase activity and the expression of PPP2R2C were decreased by D2R silencing that also blunted the increase in phosphatase activity induced by D2R stimulation. Similarly, silencing PPP2R2C also increased the phosphorylation of Akt and GSK3β. Moreover, downregulation of PPP2R2C resulted in increased expression of TNF-α, MCP-1, and IL-6, indicating that decreased phosphatase activity may be responsible for the D2R effect on inflammatory factors. Indeed, the increase in NF-κB reporter activity induced by D2R silencing was blunted by increasing PP2A activity with protamine. Our results show that D2R controls renal inflammation, at least in part, by modulation of the Akt pathway through effects on PP2A activity/expression.
Collapse
Affiliation(s)
- Yanrong Zhang
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland; Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing, P. R. China; and
| | - Xiaoliang Jiang
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland; Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing, P. R. China; and
| | - Chuan Qin
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland; Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Centre, Peking Union Medical Collage (PUMC), Beijing, P. R. China; and
| | - Santiago Cuevas
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Pedro A Jose
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland; Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ines Armando
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
11
|
Seleznik G, Seeger H, Bauer J, Fu K, Czerkowicz J, Papandile A, Poreci U, Rabah D, Ranger A, Cohen CD, Lindenmeyer M, Chen J, Edenhofer I, Anders HJ, Lech M, Wüthrich RP, Ruddle NH, Moeller MJ, Kozakowski N, Regele H, Browning JL, Heikenwalder M, Segerer S. The lymphotoxin β receptor is a potential therapeutic target in renal inflammation. Kidney Int 2016; 89:113-26. [PMID: 26398497 DOI: 10.1038/ki.2015.280] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 07/14/2015] [Accepted: 07/16/2015] [Indexed: 02/07/2023]
Abstract
Accumulation of inflammatory cells in different renal compartments is a hallmark of progressive kidney diseases including glomerulonephritis (GN). Lymphotoxin β receptor (LTβR) signaling is crucial for the formation of lymphoid tissue, and inhibition of LTβR signaling has ameliorated several non-renal inflammatory models. Therefore, we tested whether LTβR signaling could also have a role in renal injury. Renal biopsies from patients with GN were found to express both LTα and LTβ ligands, as well as LTβR. The LTβR protein and mRNA were localized to tubular epithelial cells, parietal epithelial cells, crescents, and cells of the glomerular tuft, whereas LTβ was found on lymphocytes and tubular epithelial cells. Human tubular epithelial cells, mesangial cells, and mouse parietal epithelial cells expressed both LTα and LTβ mRNA upon stimulation with TNF in vitro. Several chemokine mRNAs and proteins were expressed in response to LTβR signaling. Importantly, in a murine lupus model, LTβR blockade improved renal function without the reduction of serum autoantibody titers or glomerular immune complex deposition. Thus, a preclinical mouse model and human studies strongly suggest that LTβR signaling is involved in renal injury and may be a suitable therapeutic target in renal diseases.
Collapse
Affiliation(s)
- Gitta Seleznik
- Division of Visceral & Transplantation Surgery, Swiss Hepato-Pancreato-Biliary Center, Zurich, Switzerland; Division of Nephrology, University Hospital, Zurich, Switzerland
| | - Harald Seeger
- Division of Nephrology, University Hospital, Zurich, Switzerland; Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Judith Bauer
- Institute of Virology, Technische Universität München, Helmholz Zentrum, Munich, Germany
| | - Kai Fu
- Department of Immunobiology, Biogen, Cambridge, Massachusetts, USA
| | - Julie Czerkowicz
- Department of Immunobiology, Biogen, Cambridge, Massachusetts, USA
| | - Adrian Papandile
- Department of Immunobiology, Biogen, Cambridge, Massachusetts, USA
| | - Uriana Poreci
- Department of Immunobiology, Biogen, Cambridge, Massachusetts, USA
| | - Dania Rabah
- Department of Immunobiology, Biogen, Cambridge, Massachusetts, USA
| | - Ann Ranger
- Department of Immunobiology, Biogen, Cambridge, Massachusetts, USA
| | - Clemens D Cohen
- Division of Nephrology, University Hospital, Zurich, Switzerland; Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Maja Lindenmeyer
- Division of Nephrology, University Hospital, Zurich, Switzerland; Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Jin Chen
- Division of Nephrology, University Hospital, Zurich, Switzerland; Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Ilka Edenhofer
- Division of Nephrology, University Hospital, Zurich, Switzerland; Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Hans J Anders
- Division of Nephrology, Medizinische Klinik und Poliklinik IV, Campus Innenstadt, University of Munich-LMU, Munich, Germany
| | - Maciej Lech
- Division of Nephrology, Medizinische Klinik und Poliklinik IV, Campus Innenstadt, University of Munich-LMU, Munich, Germany
| | - Rudolf P Wüthrich
- Division of Nephrology, University Hospital, Zurich, Switzerland; Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Nancy H Ruddle
- Epidemiology of Microbial Diseases, School of Public Health, Yale University, New Haven, Connecticut, USA
| | - Marcus J Moeller
- Department of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, Aachen, Germany
| | | | - Heinz Regele
- Clinical Institute of Pathology, University of Vienna, Vienna, Austria
| | - Jeffrey L Browning
- Department of Immunobiology, Biogen, Cambridge, Massachusetts, USA; Department of Microbiology and Section of Rheumatology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Mathias Heikenwalder
- Institute of Virology, Technische Universität München, Helmholz Zentrum, Munich, Germany; Institute of Surgical Pathology, University Hospital, Zurich, Switzerland
| | - Stephan Segerer
- Division of Nephrology, University Hospital, Zurich, Switzerland; Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.
| |
Collapse
|
12
|
Abstract
Despite marked improvements in the survival of patients with severe lupus nephritis over the past 50 years, the rate of complete clinical remission after immune suppression therapy is <50% and renal impairment still occurs in 40% of affected patients. An appreciation of the factors that lead to the development of chronic kidney disease following acute or subacute renal injury in patients with systemic lupus erythematosus is beginning to emerge. Processes that contribute to end-stage renal injury include continuing inflammation, activation of intrinsic renal cells, cell stress and hypoxia, metabolic abnormalities, aberrant tissue repair and tissue fibrosis. A deeper understanding of these processes is leading to the development of novel or adjunctive therapies that could protect the kidney from the secondary non-immune consequences of acute injury. Approaches based on a molecular-proteomic-lipidomic classification of disease should yield new information about the functional basis of disease heterogeneity so that the most effective and least toxic treatment regimens can be formulated for individual patients.
Collapse
|
13
|
AlFadhli S, Ghanem AAM, Nizam R. Genome-wide peripheral blood transcriptome analysis of Arab female lupus and lupus nephritis. Gene 2015; 570:230-8. [PMID: 26072163 DOI: 10.1016/j.gene.2015.06.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/16/2015] [Accepted: 06/07/2015] [Indexed: 01/11/2023]
Abstract
Systemic lupus erythematosus (lupus) is a genetically heterogeneous autoimmune disorder with an obscure etiology. With 92-94% of human genes exhibiting alternative splicing, gaining insights to such events may lead to better diagnostics. Herein, we explored the genome-wide peripheral blood transcriptome of lupus and its severe form lupus-nephritis (LN) compared to healthy controls (HC). Age/gender/ethnically-matched Arab females were tested using high-density arrays and statistical analysis was carried out using appropriate software. Analysis revealed 15 splice variants that are differentially expressed between lupus/HC and 99 variants between LN/HC (p ≤ 0.05, SI> or ≤ 0.5, Benjamin Hochberg-False discovery rate correction). Comparison between LN/lupus revealed 7 variants that significantly differed in expression. Pathway analysis of differentially spliced-genes postulated 11 significant pathways in lupus and 12 in LN (p<0.05). Analysis of peripheral blood transcriptome possibly revealed signature causative genes that are alternatively spliced, signifying their clinical relevance. Present study is the first to reveal the significance of alternative variants in lupus and LN.
Collapse
Affiliation(s)
- Suad AlFadhli
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait University, Kuwait.
| | | | - Rasheeba Nizam
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait University, Kuwait
| |
Collapse
|
14
|
Petrovic-Djergovic D, Popovic M, Chittiprol S, Cortado H, Ransom RF, Partida-Sánchez S. CXCL10 induces the recruitment of monocyte-derived macrophages into kidney, which aggravate puromycin aminonucleoside nephrosis. Clin Exp Immunol 2015; 180:305-15. [PMID: 25561167 DOI: 10.1111/cei.12579] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2014] [Indexed: 01/11/2023] Open
Abstract
The mechanism responsible for trafficking of monocyte-derived macrophages into kidney in the puromycin aminonucleoside model of nephrotic syndrome in rats (PAN-NS), and the significance of this infiltration, remain largely unknown. CXCL10, a chemokine secreted in many T helper type 1 (Th1) inflammatory diseases, exhibits important roles in trafficking of monocytes and activated T cells. We hypothesized that induction of circulating interferon (IFN)-γ and glomerular tumour necrosis factor (TNF)-α during PAN-NS would stimulate the release of CXCL10 by podocytes, leading to infiltration of activated immune cells and greater glomerular injury. We found that serum IFN-γ, glomerular Cxcl10 mRNA and intra- and peri-glomerular macrophage infiltration were induced strongly during the late acute phase of PAN-NS in Wistar rats, but not in nude (Foxn1(rnu/rnu) ) rats lacking functional effector T lymphocytes. Wistar rats also developed significantly greater proteinuria than nude rats, which could be abolished by macrophage depletion. Stimulation of cultured podocytes with both IFN-γ and TNF-α markedly induced the expression of Cxcl10 mRNA and CXCL10 secretion. Together, these data support our hypothesis that increased circulating IFN-γ and glomerular TNF-α induce synergistically the production and secretion of CXCL10 by podocytes, attracting activated macrophages into kidney tissue. The study also suggests that IFN-γ, secreted from Th1 lymphocytes, may prime proinflammatory macrophages that consequently aggravate renal injury.
Collapse
Affiliation(s)
- D Petrovic-Djergovic
- Centers for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
15
|
Choi MR, Kouyoumdzian NM, Rukavina Mikusic NL, Kravetz MC, Rosón MI, Rodríguez Fermepin M, Fernández BE. Renal dopaminergic system: Pathophysiological implications and clinical perspectives. World J Nephrol 2015; 4:196-212. [PMID: 25949933 PMCID: PMC4419129 DOI: 10.5527/wjn.v4.i2.196] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/29/2014] [Accepted: 02/09/2015] [Indexed: 02/06/2023] Open
Abstract
Fluid homeostasis, blood pressure and redox balance in the kidney are regulated by an intricate interaction between local and systemic anti-natriuretic and natriuretic systems. Intrarenal dopamine plays a central role on this interactive network. By activating specific receptors, dopamine promotes sodium excretion and stimulates anti-oxidant and anti-inflammatory pathways. Different pathological scenarios where renal sodium excretion is dysregulated, as in nephrotic syndrome, hypertension and renal inflammation, can be associated with impaired action of renal dopamine including alteration in biosynthesis, dopamine receptor expression and signal transduction. Given its properties on the regulation of renal blood flow and sodium excretion, exogenous dopamine has been postulated as a potential therapeutic strategy to prevent renal failure in critically ill patients. The aim of this review is to update and discuss on the most recent findings about renal dopaminergic system and its role in several diseases involving the kidneys and the potential use of dopamine as a nephroprotective agent.
Collapse
|
16
|
Signaling pathways involved in renal oxidative injury: role of the vasoactive peptides and the renal dopaminergic system. JOURNAL OF SIGNAL TRANSDUCTION 2014; 2014:731350. [PMID: 25436148 PMCID: PMC4243602 DOI: 10.1155/2014/731350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/16/2014] [Indexed: 12/24/2022]
Abstract
The physiological hydroelectrolytic balance and the redox steady state in the kidney are accomplished by an intricate interaction between signals from extrarenal and intrarenal sources and between antinatriuretic and natriuretic factors. Angiotensin II, atrial natriuretic peptide and intrarenal dopamine play a pivotal role in this interactive network. The balance between endogenous antioxidant agents like the renal dopaminergic system and atrial natriuretic peptide, by one side, and the prooxidant effect of the renin angiotensin system, by the other side, contributes to ensuring the normal function of the kidney. Different pathological scenarios, as nephrotic syndrome and hypertension, where renal sodium excretion is altered, are associated with an impaired interaction between two natriuretic systems as the renal dopaminergic system and atrial natriuretic peptide that may be involved in the pathogenesis of renal diseases. The aim of this review is to update and comment the most recent evidences about the intracellular pathways involved in the relationship between endogenous antioxidant agents like the renal dopaminergic system and atrial natriuretic peptide and the prooxidant effect of the renin angiotensin system in the pathogenesis of renal inflammation.
Collapse
|
17
|
Peng X, Xiao Z, Zhang J, Li Y, Dong Y, Du J. IL-17A produced by bothγδT and Th17 cells promotes renal fibrosis via RANTES-mediated leukocyte infiltration after renal obstruction. J Pathol 2014; 235:79-89. [PMID: 25158055 DOI: 10.1002/path.4430] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 08/06/2014] [Accepted: 08/17/2014] [Indexed: 01/11/2023]
Affiliation(s)
- Xiaogang Peng
- Beijing AnZhen Hospital; Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases. The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education; Beijing China
| | - Zhicheng Xiao
- Beijing AnZhen Hospital; Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases. The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education; Beijing China
| | - Jing Zhang
- Beijing AnZhen Hospital; Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases. The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education; Beijing China
| | - Yulin Li
- Beijing AnZhen Hospital; Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases. The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education; Beijing China
| | - Yanjun Dong
- Beijing AnZhen Hospital; Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases. The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education; Beijing China
| | - Jie Du
- Beijing AnZhen Hospital; Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases. The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education; Beijing China
| |
Collapse
|
18
|
Taubitz A, Schwarz M, Eltrich N, Lindenmeyer MT, Vielhauer V. Distinct contributions of TNF receptor 1 and 2 to TNF-induced glomerular inflammation in mice. PLoS One 2013; 8:e68167. [PMID: 23869211 PMCID: PMC3711912 DOI: 10.1371/journal.pone.0068167] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 05/30/2013] [Indexed: 12/29/2022] Open
Abstract
TNF is an important mediator of glomerulonephritis. The two TNF-receptors TNFR1 and TNFR2 contribute differently to glomerular inflammation in vivo, but specific mechanisms of TNFR-mediated inflammatory responses in glomeruli are unknown. We investigated their expression and function in murine kidneys, isolated glomeruli ex vivo, and glomerular cells in vitro. In normal kidney TNFR1 and TNFR2 were preferentially expressed in glomeruli. Expression of both TNFRs and TNF-induced upregulation of TNFR2 mRNA was confirmed in murine glomerular endothelial and mesangial cell lines. In vivo, TNF exposure rapidly induced glomerular accumulation of leukocytes. To examine TNFR-specific inflammatory responses in intrinsic glomerular cells but not infiltrating leukocytes we performed microarray gene expression profiling on intact glomeruli isolated from wildtype and Tnfr-deficient mice following exposure to soluble TNF ex vivo. Most TNF-induced effects were exclusively mediated by TNFR1, including induced glomerular expression of adhesion molecules, chemokines, complement factors and pro-apoptotic molecules. However, TNFR2 contributed to TNFR1-dependent mRNA expression of inflammatory mediators in glomeruli when exposed to low TNF concentrations. Chemokine secretion was absent in TNF-stimulated Tnfr1-deficient glomeruli, but also significantly decreased in glomeruli lacking TNFR2. In vivo, TNF-induced glomerular leukocyte infiltration was abrogated in Tnfr1-deficient mice, whereas Tnfr2-deficiency decreased mononuclear phagocytes infiltrates, but not neutrophils. These data demonstrate that activation of intrinsic glomerular cells by soluble TNF requires TNFR1, whereas TNFR2 is not essential, but augments TNFR1-dependent effects. Previously described TNFR2-dependent glomerular inflammation may therefore require TNFR2 activation by membrane-bound, but not soluble TNF.
Collapse
MESH Headings
- Animals
- Cell Line
- Gene Deletion
- Gene Expression Profiling
- Kidney/metabolism
- Kidney/pathology
- Leukocytes/metabolism
- Leukocytes/pathology
- Leukocytes/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Oligonucleotide Array Sequence Analysis
- Real-Time Polymerase Chain Reaction
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type I/physiology
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Receptors, Tumor Necrosis Factor, Type II/physiology
- Transforming Growth Factors/pharmacology
Collapse
Affiliation(s)
- Anela Taubitz
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Martin Schwarz
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Nuru Eltrich
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Volker Vielhauer
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-University Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
19
|
Brähler S, Ising C, Hagmann H, Rasmus M, Hoehne M, Kurschat C, Kisner T, Goebel H, Shankland S, Addicks K, Thaiss F, Schermer B, Pasparakis M, Benzing T, Brinkkoetter PT. Intrinsic proinflammatory signaling in podocytes contributes to podocyte damage and prolonged proteinuria. Am J Physiol Renal Physiol 2012; 303:F1473-85. [DOI: 10.1152/ajprenal.00031.2012] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Inflammation conveys the development of glomerular injury and is a major cause of progressive kidney disease. NF-κB signaling is among the most important regulators of proinflammatory signaling. Its role in podocytes, the epithelial cells at the kidney filtration barrier, is poorly understood. Here, we inhibited NF-κB signaling in podocytes by specific ablation of the NF-κB essential modulator (NEMO, IKKγ). Podocyte-specific NEMO-deficient mice (NEMOpko) were viable and did not show proteinuria or overt changes in kidney morphology. After induction of glomerulonephritis, both NEMOpkoand control mice developed significant proteinuria. However, NEMOpkomice recovered much faster, showing rapid remission of proteinuria and restoration of podocyte morphology. Interestingly, quantification of infiltrating macrophages, T-lymphocytes, and granulocytes at day 7 revealed no significant difference between wild-type and NEMOpko. To further investigate the underlying mechanisms, we created a stable NEMO knockdown mouse podocyte cell line. Again, no overt changes in morphology were observed. Translocation of NF-κB to the nucleus after stimulation with TNFα or IL-1 was sufficiently inhibited. Moreover, secretion of proinflammatory chemokines from podocytes after stimulation with TNFα or IL-1 was significantly reduced in NEMO-deficient podocytes and in glomerular samples obtained at day 7 after induction of nephrotoxic nephritis. Collectively, these results show that proinflammatory activity of NF-κB in podocytes aggravates proteinuria in experimental glomerulonephritis in mice. Based on these data, it may be speculated that immunosuppressive drugs may not only target professional immune cells but also podocytes directly to convey their beneficial effects in various types of glomerulonephritis.
Collapse
Affiliation(s)
- Sebastian Brähler
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Christina Ising
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Henning Hagmann
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Melanie Rasmus
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Martin Hoehne
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Christine Kurschat
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Tuelay Kisner
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Heike Goebel
- Institute of Pathology, University of Cologne, Cologne, Germany
| | - Stuart Shankland
- Division of Nephrology, University of Washington, Seattle, Washington
| | - Klaus Addicks
- Institute of Anatomy, University of Cologne, Cologne, Germany
| | - Friedrich Thaiss
- Department of Internal Medicine III, University Hospital, Hamburg-Eppendorf, Hamburg, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Manolis Pasparakis
- Institute for Genetics, University of Cologne, Cologne, Germany; and
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Paul Thomas Brinkkoetter
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
20
|
Zhang Y, Cuevas S, Asico LD, Escano C, Yang Y, Pascua AM, Wang X, Jones JE, Grandy D, Eisner G, Jose PA, Armando I. Deficient dopamine D2 receptor function causes renal inflammation independently of high blood pressure. PLoS One 2012; 7:e38745. [PMID: 22719934 PMCID: PMC3375266 DOI: 10.1371/journal.pone.0038745] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 05/10/2012] [Indexed: 12/15/2022] Open
Abstract
Renal dopamine receptors participate in the regulation of blood pressure. Genetic factors, including polymorphisms of the dopamine D(2) receptor gene (DRD2) are associated with essential hypertension, but the mechanisms of their contribution are incompletely understood. Mice lacking Drd2 (D(2)-/-) have elevated blood pressure, increased renal expression of inflammatory factors, and renal injury. We tested the hypothesis that decreased dopamine D(2) receptor (D(2)R) function increases vulnerability to renal inflammation independently of blood pressure, is an immediate cause of renal injury, and contributes to the subsequent development of hypertension. In D(2)-/- mice, treatment with apocynin normalized blood pressure and decreased oxidative stress, but did not affect the expression of inflammatory factors. In mouse RPTCs Drd2 silencing increased the expression of TNFα and MCP-1, while treatment with a D(2)R agonist abolished the angiotensin II-induced increase in TNF-α and MCP-1. In uni-nephrectomized wild-type mice, selective Drd2 silencing by subcapsular infusion of Drd2 siRNA into the remaining kidney produced the same increase in renal cytokines/chemokines that occurs after Drd2 deletion, increased the expression of markers of renal injury, and increased blood pressure. Moreover, in mice with two intact kidneys, short-term Drd2 silencing in one kidney, leaving the other kidney undisturbed, induced inflammatory factors and markers of renal injury in the treated kidney without increasing blood pressure. Our results demonstrate that the impact of decreased D(2)R function on renal inflammation is a primary effect, not necessarily associated with enhanced oxidant activity, or blood pressure; renal damage is the cause, not the result, of hypertension. Deficient renal D(2)R function may be of clinical relevance since common polymorphisms of the human DRD2 gene result in decreased D(2)R expression and function.
Collapse
Affiliation(s)
- Yanrong Zhang
- Division of Nephrology, Department of Medicine, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hopfer H, Holzer J, Hünemörder S, Paust HJ, Sachs M, Meyer-Schwesinger C, Turner JE, Panzer U, Mittrücker HW. Characterization of the renal CD4+ T-cell response in experimental autoimmune glomerulonephritis. Kidney Int 2012; 82:60-71. [PMID: 22437418 DOI: 10.1038/ki.2012.73] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Autoimmunity against the Goodpasture antigen α3IV-NC1 results in antiglomerular basement membrane glomerulonephritis. Although antibodies are central to the pathogenesis, there is good evidence for the participation of T cells in this disease. To define the contribution of T cells, we used the model of experimental autoimmune glomerulonephritis. Immunization of DBA/1 mice with α3IV-NC1 resulted in proteinuria, a biphasic course of the disease, and an eventual loss of kidney function. In the initial phase, the mice developed an α3IV-NC1-specific IgG response, had IgG deposition along the glomerular basement membrane, and steadily increased proteinuria, but only marginal signs of inflammation with limited leukocyte infiltration. After 9-13 weeks, mice proceeded to develop crescentic glomerulonephritis, extensive tubulointerstitial damage, and massive macrophage infiltration. T-cell infiltration was less pronounced, mostly confined to the interstitium, and T cells displayed an activated phenotype with a significant fraction of Th1 or Th17 CD4(+) T cells. Close examination revealed the presence of autoreactive T cells producing IFNγ upon restimulation with α3IV-NC1. Thus, our results suggest that accumulation of effector T cells, including autoreactive T cells, represents a critical step in the progression from mild glomerulonephritis, with limited glomerular damage, to severe crescentic glomerulonephritis accompanied by tubulointerstitial inflammation and loss of kidney function.
Collapse
Affiliation(s)
- Helmut Hopfer
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Satirapoj B, Nast CC, Adler SG. Novel insights into the relationship between glomerular pathology and progressive kidney disease. Adv Chronic Kidney Dis 2012; 19:93-100. [PMID: 22449346 DOI: 10.1053/j.ackd.2011.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 12/12/2011] [Accepted: 12/12/2011] [Indexed: 01/11/2023]
Abstract
Both glomerular and tubulointerstitial damage are important factors in the pathophysiology and progression of nephropathy. Glomerular injury is associated with tubulointerstitial inflammation, and many studies show that tubulointerstitial changes correlate well with progressive renal functional decline. Strong evidence supports the concept that once established, proteinuric glomerular injury can cause tubular injury. This review briefly summarizes the pathophysiological consequences of glomerular damage that are responsible for tubulointerstitial injury. It further focuses on tubule-derived renal injury biomarkers that may be used to monitor the progression of kidney disease. This monitoring is predicted to become increasingly useful as novel therapeutic interventions preventing progressive renal damage are introduced. In particular, biomarkers of kidney dysfunction, such as urinary podocytes, kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, hematopoietic growth factor-inducible neurokinin 1, or periostin, might be useful in the diagnosis or detection of early nephropathy and risk assessment of kidney disease. However, these biomarkers require further study before they are used in routine screening or in guiding patient therapy.
Collapse
|
23
|
Jose PA, Chen S, Armando I. Connections in chronic kidney disease: connexin 43 and connexin 37 interaction. Am J Physiol Renal Physiol 2011; 301:F21-3. [PMID: 21525135 PMCID: PMC3129881 DOI: 10.1152/ajprenal.00204.2011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
24
|
Abstract
To prevent injury to host tissues, complement activation is regulated by a number of plasma and membrane-associated proteins, most of which limit C3 and C5 activation. An influx of circulating C3 from a syngeneic host into donor kidneys deficient in Crry (a membrane protein that reduces C3 convertase activity) causes spontaneous complement activation, primarily in the tubulointerstitum, leading to renal failure. To determine the roles of the C3a and C5a anaphylatoxins in tubulointerstitial inflammation and fibrosis, kidneys from Crry-/-C3-/- mice were transplanted into hosts lacking the C3a and/or C5a receptor. While unrestricted complement activation in the tubules was not affected by receptor status in the transplant recipient, C3a receptor deficiency in the recipients led to significantly reduced renal leukocyte infiltration and the extent of tubulointerstitial inflammation and fibrosis, all of which led to preserved renal function. The absence of C5a receptors in recipients was not only inconsequential, but the protective effect of C3a receptor deficiency was also eliminated, suggesting distinct roles of C3a and C5a receptor signaling in this model. There was significant infiltration of the tubulointerstitum with 7/4+F4/80+CD11b+ myelomonocytic cells and Thy1.2+ T cells along injured tubules, and interstitial collagen I and III deposition, all of which were C3a receptor dependent. Thus, blockade of C3a receptor signaling is a possible treatment to reduce renal inflammation and preserve renal function associated with complement activation.
Collapse
|
25
|
Abstract
The main function of chemokines is to guide inflammatory cells in their migration to sites of inflammation. During the last 2 decades, an expanding number of chemokines and their receptors have driven broad inquiry into how inflammatory cells are recruited in a variety of diseases. Although this review focuses on chemokines and their receptors in renal injury, proinflammatory IL-17, TGFβ, and TWEAK signaling pathways also play a critical role in their expression. Recent studies in transgenic mice as well as blockade of chemokine signaling by neutralizing ligands or receptor antagonists now allow direct interrogation of chemokine action. The emerging role of regulatory T cells and Th17 cells during renal injury also forges tight relationships between chemokines and T cell infiltration in the development of kidney disease. As chemokine receptor blockade inches toward clinical use, the field remains an attractive area with potential for unexpected opportunity in the future.
Collapse
Affiliation(s)
- Arthur C K Chung
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
26
|
Vielhauer V, Kulkarni O, Reichel CA, Anders HJ. Targeting the recruitment of monocytes and macrophages in renal disease. Semin Nephrol 2010; 30:318-33. [PMID: 20620675 DOI: 10.1016/j.semnephrol.2010.03.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Macrophages convert proinflammatory or anti-inflammatory signals of tissue microenvironments into response mechanisms. These response mechanisms largely derive from evolutionary conserved defense programs of innate host defense, wound healing, and tissue homeostasis. Hence, in many settings these programs lead to renal inflammation and tissue remodeling (ie, glomerulonephritis and sclerosis or interstitial nephritis and fibrosis). There is abundant experimental evidence that blocking macrophage recruitment or macrophage activation can ameliorate renal inflammation and fibrosis. In this review we discuss experimental tools to target renal macrophage recruitment by using antagonists against selectins, chemokines, integrins, or other important cytokines that mediate renal injury via macrophage recruitment, some of these already having been used in clinical trials.
Collapse
Affiliation(s)
- Volker Vielhauer
- Klinikum der Universität, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | |
Collapse
|
27
|
Bedke J, Nelson PJ, Kiss E, Muenchmeier N, Rek A, Behnes CL, Gretz N, Kungl AJ, Gröne HJ. A novel CXCL8 protein-based antagonist in acute experimental renal allograft damage. Mol Immunol 2009; 47:1047-57. [PMID: 20004976 DOI: 10.1016/j.molimm.2009.11.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 11/06/2009] [Accepted: 11/13/2009] [Indexed: 01/11/2023]
Abstract
Acute renal allograft damage is caused by early leukocyte infiltration which is mediated in part by chemokines presented by glycosaminoglycan (GAG) structures on endothelial surfaces. CXCL8 can recruit neutrophils and induce the firm arrest of monocytes on activated endothelial cells. A human CXCL8-based antagonist (dnCXCL8) designed to generate a dominant-negative mutant protein with enhanced binding to GAG structures and reduced CXCR1/2 receptor binding ability was tested in models of early allograft injury. The agent displayed enhanced binding to GAG structures in vitro and could antagonize CXCL8-induced firm adhesion of monocytes as well as neutrophils to activated microvascular endothelium in physiologic flow assays. In a rat model of acute renal damage, dnCXCL8 treatment limited proximal tubular damage and reduced granulocyte infiltration. In a Fischer 344 (RT1(lvl)) to Lewis (RT1(l)) rat acute renal allograft model, dnCXCL8 was found to reduce monocyte and CD8+ T-cell infiltration into glomeruli and to limit tubular interstitial inflammation and tubulitis in vivo. Early treatment of allografts with agents like dnCXCL8 may help reduce acute allograft damage and preserve renal morphology and thereby help limit chronic dysfunction.
Collapse
Affiliation(s)
- Jens Bedke
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
T cell cross-talk with kidney dendritic cells in glomerulonephritis. J Mol Med (Berl) 2009; 88:19-26. [DOI: 10.1007/s00109-009-0541-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 09/04/2009] [Accepted: 09/07/2009] [Indexed: 12/28/2022]
|
29
|
Su H, Jack M, McIntosh LM, Perdomo L, Choy BS, Finck BK, McDonald JR. Clinical grade production and characterization of a fusion protein comprised of the chemokine CCL2-ligand genetically fused to a mutated and truncated form of the Shiga A1 subunit. Protein Expr Purif 2009; 66:149-57. [DOI: 10.1016/j.pep.2009.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 02/24/2009] [Accepted: 02/24/2009] [Indexed: 01/11/2023]
|
30
|
Vielhauer V, Allam R, Lindenmeyer MT, Cohen CD, Draganovici D, Mandelbaum J, Eltrich N, Nelson PJ, Anders HJ, Pruenster M, Rot A, Schlöndorff D, Segerer S. Efficient renal recruitment of macrophages and T cells in mice lacking the duffy antigen/receptor for chemokines. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:119-31. [PMID: 19498001 PMCID: PMC2708800 DOI: 10.2353/ajpath.2009.080590] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/09/2009] [Indexed: 12/14/2022]
Abstract
The Duffy antigen/receptor for chemokines (DARC) is a chemokine-binding protein that is expressed on erythrocytes and renal endothelial cells. DARC-mediated endothelial transcytosis of chemokines may facilitate the renal recruitment of macrophages and T cells, as has been suggested for neutrophils. We studied the role of Darc in two mouse models of prolonged renal inflammation, one that primarily involves the tubulointerstitium (unilateral ureteral obstruction), and one that requires an adaptive immune response that leads to glomerulonephritis (accelerated nephrotoxic nephritis). Renal expression of Darc and its ligands was increased in both models. Leukocytes effectively infiltrated obstructed kidneys in Darc-deficient mice with pronounced T-cell infiltration at early time points. Development of interstitial fibrosis was comparable in both genotypes. Nephrotoxic nephritis was inducible in Darc-deficient mice, with both an increased humoral immune response and functional impairment during the early phase of disease. Leukocytes efficiently infiltrated kidneys of Darc-deficient mice, with increased cell numbers at early but not late time points. Taken together, renal inflammation developed more rapidly in DARC-deficient mice, without affecting the extent of renal injury at later time points. Thus, genetic elimination of Darc in mice does not prevent the development of renal infiltrates and may even enhance such development during the early phases of interstitial and glomerular diseases in mouse models of prolonged renal inflammation.
Collapse
Affiliation(s)
- Volker Vielhauer
- Medizinische Poliklinik, Campus Innenstadt, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Schaier M, Vorwalder S, Sommerer C, Dikow R, Hug F, Gross ML, Waldherr R, Zeier M. Role of FTY720 on M1 and M2 macrophages, lymphocytes, and chemokines in 5/6 nephrectomized rats. Am J Physiol Renal Physiol 2009; 297:F769-80. [PMID: 19535570 DOI: 10.1152/ajprenal.90530.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Renal injury is accompanied by the presence of infiltrating inflammatory cells in the glomerulus and tubulointerstitium. FTY720 modifies lymphocyte migration into injured tissues by lymphocyte sequestration to secondary lymphoid organs. The purpose of this study was to examine the potential of FTY720 to influence the inflammatory response in a nonimmunological model of renal failure. Sham-operated and 5/6 nephrectomized (SNX) Sprague-Dawley rats received two different doses of FTY720 or vehicle orally for 14 wk. Treatment with FTY720 reduced glomerular and tubulointerstitial damage in SNX rats but failed to stabilize creatinine clearance. The increase in gene expression of chemokine receptors CCR1, CCR2, and CCR5 in kidneys of vehicle-treated SNX rats was significantly attenuated by high-dose FTY720. Treatment with high-dose FTY720 tended to normalize RANTES and MCP-1 renal gene expression. FTY720 affected not only glomerular and tubulointerstitial lymphocytes, but M1 and M2 phenotype macrophages were also reduced. FTY720 significantly reduced key mediators of renal inflammation and fibrosis. FTY720 also decreased immunoregulation of M2 macrophages, which are beneficial for tissue remodeling and repair.
Collapse
Affiliation(s)
- Matthias Schaier
- Dept. of Nephrology, Univ. of Heidelberg, Im Neuenheimer Feld 162, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Paust HJ, Turner JE, Steinmetz OM, Peters A, Heymann F, Hölscher C, Wolf G, Kurts C, Mittrücker HW, Stahl RAK, Panzer U. The IL-23/Th17 axis contributes to renal injury in experimental glomerulonephritis. J Am Soc Nephrol 2009; 20:969-79. [PMID: 19339380 PMCID: PMC2678032 DOI: 10.1681/asn.2008050556] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 11/25/2008] [Indexed: 12/31/2022] Open
Abstract
T cells infiltrate the kidney in both human and experimental glomerulonephritis, and several lines of evidence indicate that T cell-mediated tissue damage plays an important role in the immunopathogenesis of renal inflammatory diseases. However, the functions of the different T cell subsets, particularly the recently identified interleukin-17 (IL-17)-producing T cells (Th17 cells), are incompletely understood in glomerulonephritis. Here, we identified renal IL-17-producing T cells in the T cell-mediated model of nephrotoxic nephritis in mice. In vitro, IL-17 enhanced the production of the proinflammatory chemokines CCL2/MCP-1, CCL3/MIP-1alpha, and CCL20/LARC, which are implicated in the recruitment of T cells and monocytes, in mouse mesangial cells. To determine the function of Th17 cells in renal inflammation, we induced nephrotoxic nephritis in IL-23 p19(-/-) mice, which have reduced numbers of Th17 cells, and in IL-17(-/-) mice, which are deficient in the effector cytokine IL-17 itself. In comparison with nephritic wild-type mice, IL-23 p19(-/-) mice demonstrated less infiltration of Th17 cells, and both IL-23 p19(-/-) and IL-17(-/-) mice developed less severe nephritis as measured by renal function, albuminuria, and frequency of glomerular crescent formation. These results demonstrate that the IL-23/IL-17 pathway significantly contributes to renal tissue injury in experimental glomerulonephritis. Targeting the IL-23/Th17 axis may be a promising therapeutic strategy for the treatment of proliferative and crescentic glomerulonephritis.
Collapse
Affiliation(s)
- Hans-Joachim Paust
- Universitätsklinikum Hamburg-Eppendorf, III Medizinische Klinik, Martinistrasse 52, 20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Esteban V, Heringer-Walther S, Sterner-Kock A, de Bruin R, van den Engel S, Wang Y, Mezzano S, Egido J, Schultheiss HP, Ruiz-Ortega M, Walther T. Angiotensin-(1-7) and the g protein-coupled receptor MAS are key players in renal inflammation. PLoS One 2009; 4:e5406. [PMID: 19404405 PMCID: PMC2672164 DOI: 10.1371/journal.pone.0005406] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 02/02/2009] [Indexed: 01/09/2023] Open
Abstract
Angiotensin (Ang) II mediates pathophysiologial changes in the kidney. Ang-(1-7) by interacting with the G protein-coupled receptor Mas may also have important biological activities.In this study, renal deficiency for Mas diminished renal damage in models of renal insufficiency as unilateral ureteral obstruction and ischemia/reperfusion injury while the infusion of Ang-(1-7) to wild-type mice pronounced the pathological outcome by aggravating the inflammatory response. Mas deficiency inhibited NF-kappaB activation and thus the elevation of inflammation-stimulating cytokines, while Ang-(1-7) infusion had proinflammatory properties in experimental models of renal failure as well as under basal conditions. The Ang-(1-7)-mediated NF-kappaB activation was Mas dependent but did not involve Ang II receptors. Therefore, the blockade of the NF-kappaB-activating properties of the receptor Mas could be a new strategy in the therapy of failing kidney.
Collapse
Affiliation(s)
- Vanesa Esteban
- Cellular Biology in Renal Diseases Laboratory, Fundación Jimenez Diaz, Universidad Autónoma Madrid, Madrid, Spain
| | - Silvia Heringer-Walther
- Department of Obstetrics, University of Leipzig, Leipzig, Germany
- Department of Cardiology, Charité, Campus Benjamin Franklin (CBF), Berlin, Germany
| | - Anja Sterner-Kock
- Institute for Veterinary Pathology, Freie Universität, Berlin, Germany
| | - Ron de Bruin
- Department of Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Yong Wang
- Department of Cardiology, Charité, Campus Benjamin Franklin (CBF), Berlin, Germany
- Centre for Biomedical Research, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Sergio Mezzano
- Division of Nephrology, School of Medicine, Universidad Austral, Valdivia, Chile
| | - Jesus Egido
- Cellular Biology in Renal Diseases Laboratory, Fundación Jimenez Diaz, Universidad Autónoma Madrid, Madrid, Spain
| | | | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, Fundación Jimenez Diaz, Universidad Autónoma Madrid, Madrid, Spain
| | - Thomas Walther
- Department of Cardiology, Charité, Campus Benjamin Franklin (CBF), Berlin, Germany
- Centre for Biomedical Research, Hull York Medical School, University of Hull, Hull, United Kingdom
| |
Collapse
|
34
|
McIntosh LM, Barnes JL, Barnes VL, McDonald JR. Selective CCR2-targeted macrophage depletion ameliorates experimental mesangioproliferative glomerulonephritis. Clin Exp Immunol 2008; 155:295-303. [PMID: 19040610 DOI: 10.1111/j.1365-2249.2008.03819.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The CCL2/CCR2 chemokine/receptor axis directs the chemotaxis of infiltrating monocytes/macrophages and T cells and plays a pivotal role in tissue damage and fibrosis in kidney diseases. The eradication of the activated leucocytes should diminish the production of inflammatory mediators, limit tissue damage and ameliorate disease. A recombinant fusion protein (OPL-CCL2-LPM) comprised of the human CCL2 (monocyte chemoattractant protein-1) chemokine fused to a truncated form of the enzymatically active A1 domain of Shigella dysenteriae holotoxin (SA1) has been developed. The CCL2 portion binds specifically to CCR2-bearing leucocytes and the fusion protein enters the cells, where the SA1 moiety inhibits protein synthesis resulting in cell death. The compound was tested in a model of anti-thymocyte serum (ATS)-induced mesangioproliferative glomerulonephritis (ATS-GN). Male rats were injected with ATS on day 0 and treated intravenously with vehicle, 50 or 100 microg/kg of OPL-CCL2-LPM Q2D from days 2, 4, 6 and 8. Urine and blood were collected on days 0, 5 and 9. Animals were sacrificed on day 9. No treatment-related effects on body weight or signs of clinical toxicity were observed. Urine protein levels were decreased in treated animals. At the highest dose, histopathological analyses of kidney sections revealed maximum reductions of 36, 31, 30 and 24% for macrophage count, glomerular lesions, alpha-smooth muscle actin and fibronectin respectively. These results indicate a significant protective effect of OPL-CCL2-LPM in this model of nephritis.
Collapse
Affiliation(s)
- L M McIntosh
- Osprey Pharmaceuticals Limited, St Laurent, Quebec, Canada
| | | | | | | |
Collapse
|
35
|
Schramme A, Abdel-Bakky MS, Gutwein P, Obermüller N, Baer PC, Hauser IA, Ludwig A, Gauer S, Schäfer L, Sobkowiak E, Altevogt P, Koziolek M, Kiss E, Gröne HJ, Tikkanen R, Goren I, Radeke H, Pfeilschifter J. Characterization of CXCL16 and ADAM10 in the normal and transplanted kidney. Kidney Int 2008; 74:328-38. [DOI: 10.1038/ki.2008.181] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
36
|
Abstract
Some basic premises must be considered when validating hypothesis about progression of renal disease. In an accompanying series of five articles, specific aspects of progression will be reviewed by experts in the field: mechanisms of tissue and matrix remodelling; interstitial fibrosis; the contribution of ischemia and hypoxia; the role and type of the inflammatory infiltrate; and, finally, glomerular sclerosis.
Collapse
|
37
|
Abstract
Mrug et al. propose that innate immunity is a hallmark of progressive polycystic kidney disease (PKD). We propose that innate immunity is a driving force in the progression of many renal diseases. Renal epithelial cells are capable of expressing a large variety of proinflammatory genes resulting in the production of cytokines, chemokines, cell-adhesion molecules, and complement components. We suggest that future therapeutic interventions should be directed toward control of innate immunity in renal disease.
Collapse
|