1
|
Han C, He C, Ding X, Li Z, Peng T, Zhang C, Chen H, Zuo Z, Huang J, Hu W. WWC1 upregulation accelerates hyperuricemia by reduction in renal uric acid excretion through Hippo signaling pathway. J Biol Chem 2024; 300:107485. [PMID: 38906255 PMCID: PMC11301351 DOI: 10.1016/j.jbc.2024.107485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 06/23/2024] Open
Abstract
Hyperuricemia (HUA) is a metabolic disorder characterized by elevated serum uric acid (UA), primarily attributed to the hepatic overproduction and renal underexcretion of UA. Despite the elucidation of molecular pathways associated with this underexcretion, the etiology of HUA remains largely unknown. In our study, using by Uox knockout rats, HUA mouse, and cell line models, we discovered that the increased WWC1 levels were associated with decreased renal UA excretion. Additionally, using knockdown and overexpression approaches, we found that WWC1 inhibited UA excretion in renal tubular epithelial cells. Mechanistically, WWC1 activated the Hippo pathway, leading to phosphorylation and subsequent degradation of the downstream transcription factor YAP1, thereby impairing the ABCG2 and OAT3 expression through transcriptional regulation. Consequently, this reduction led to a decrease in UA excretion in renal tubular epithelial cells. In conclusion, our study has elucidated the role of upregulated WWC1 in renal tubular epithelial cells inhibiting the excretion of UA in the kidneys and causing HUA.
Collapse
Affiliation(s)
- Changshun Han
- Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Chengyong He
- Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaoyan Ding
- Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zixuan Li
- Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Tianyun Peng
- Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Chensong Zhang
- Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Haibing Chen
- Department of Endocrinology and Metabolism, Shanghai 10th People's Hospital, Tongji University, Shanghai, China
| | - Zhenghong Zuo
- Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jiyi Huang
- Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Weiping Hu
- Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
2
|
Yang S, Liu H, Fang XM, Yan F, Zhang Y. Signaling pathways in uric acid homeostasis and gout: From pathogenesis to therapeutic interventions. Int Immunopharmacol 2024; 132:111932. [PMID: 38560961 DOI: 10.1016/j.intimp.2024.111932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024]
Abstract
Uric acid is a product of purine degradation, and uric acid may have multiple physiologic roles, including the beneficial effects as an antioxidant and neuroprotector, maintenance of blood pressure during low salt ingestion, and modulation of immunity. However, overproduction of metabolic uric acid, and/or imbalance of renal uric acid secretion and reabsorption, and/or underexcretion of extrarenal uric acid, e.g. gut, will contribute to hyperuricemia, which is a common metabolic disease. Long-lasting hyperuricemia can induce the formation and deposition of monosodium urate (MSU) crystals within the joints and periarticular structures. MSU crystals further induce an acute, intensely painful, and sterile inflammation conditions named as gout by NLRP3 inflammasome-mediated cleavage of pro-IL-1β to bioactive IL-1β. Moreover, hyperuricemia and gout are associated with multiple cardiovascular and renal disorders, e.g., hypertension, myocardial infarction, stroke, obesity, hyperlipidemia, type 2 diabetes mellitus and chronic kidney disease. Although great efforts have been made by scientists of modern medicine, however, modern therapeutic strategies with a single target are difficult to exert long-term positive effects, and even some of these agents have severe adverse effects. The Chinese have used the ancient classic prescriptions of traditional Chinese medicine (TCM) to treat metabolic diseases, including gout, by multiple targets, for more than 2200 years. In this review, we discuss the current understanding of urate homeostasis, the pathogenesis of hyperuricemia and gout, and both modern medicine and TCM strategies for this commonly metabolic disorder. We hope these will provide the good references for treating hyperuricemia and gout.
Collapse
Affiliation(s)
- Shuangling Yang
- School of Health Sciences, Guangzhou Xinhua University, Guangzhou, Guangdong 510520, China
| | - Haimei Liu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Xian-Ming Fang
- Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, China.
| | - Fuman Yan
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Yaxing Zhang
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Issue 12(th) of Guangxi Apprenticeship Education of Traditional Chinese Medicine (Shi‑Cheng Class of Guangxi University of Chinese Medicine), College of Continuing Education, Guangxi University of Chinese Medicine, Nanning, Guangxi 530001, China.
| |
Collapse
|
3
|
Schlosser P, Scherer N, Grundner-Culemann F, Monteiro-Martins S, Haug S, Steinbrenner I, Uluvar B, Wuttke M, Cheng Y, Ekici AB, Gyimesi G, Karoly ED, Kotsis F, Mielke J, Gomez MF, Yu B, Grams ME, Coresh J, Boerwinkle E, Köttgen M, Kronenberg F, Meiselbach H, Mohney RP, Akilesh S, Schmidts M, Hediger MA, Schultheiss UT, Eckardt KU, Oefner PJ, Sekula P, Li Y, Köttgen A. Genetic studies of paired metabolomes reveal enzymatic and transport processes at the interface of plasma and urine. Nat Genet 2023:10.1038/s41588-023-01409-8. [PMID: 37277652 DOI: 10.1038/s41588-023-01409-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 04/26/2023] [Indexed: 06/07/2023]
Abstract
The kidneys operate at the interface of plasma and urine by clearing molecular waste products while retaining valuable solutes. Genetic studies of paired plasma and urine metabolomes may identify underlying processes. We conducted genome-wide studies of 1,916 plasma and urine metabolites and detected 1,299 significant associations. Associations with 40% of implicated metabolites would have been missed by studying plasma alone. We detected urine-specific findings that provide information about metabolite reabsorption in the kidney, such as aquaporin (AQP)-7-mediated glycerol transport, and different metabolomic footprints of kidney-expressed proteins in plasma and urine that are consistent with their localization and function, including the transporters NaDC3 (SLC13A3) and ASBT (SLC10A2). Shared genetic determinants of 7,073 metabolite-disease combinations represent a resource to better understand metabolic diseases and revealed connections of dipeptidase 1 with circulating digestive enzymes and with hypertension. Extending genetic studies of the metabolome beyond plasma yields unique insights into processes at the interface of body compartments.
Collapse
Affiliation(s)
- Pascal Schlosser
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany.
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Nora Scherer
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Franziska Grundner-Culemann
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Sara Monteiro-Martins
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Stefan Haug
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Inga Steinbrenner
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Burulça Uluvar
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Matthias Wuttke
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Yurong Cheng
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Arif B Ekici
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Gergely Gyimesi
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, University of Bern, Bern, Switzerland
| | | | - Fruzsina Kotsis
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
- Department of Medicine IV-Nephrology and Primary Care, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Johanna Mielke
- Research and Early Development, Pharmaceuticals Division, Bayer AG, Wuppertal, Germany
| | - Maria F Gomez
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Lund, Sweden
| | - Bing Yu
- Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Morgan E Grams
- New York University Grossman School of Medicine, New York, NY, USA
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Eric Boerwinkle
- Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Michael Köttgen
- Department of Medicine IV-Nephrology and Primary Care, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Department of Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Heike Meiselbach
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Shreeram Akilesh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Miriam Schmidts
- Centre for Integrative Biological Signalling Studies (CIBSS), Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Freiburg University Faculty of Medicine, Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Matthias A Hediger
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Ulla T Schultheiss
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
- Department of Medicine IV-Nephrology and Primary Care, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Peter J Oefner
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Peggy Sekula
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Yong Li
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany.
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Centre for Integrative Biological Signalling Studies (CIBSS), Albert-Ludwigs-University Freiburg, Freiburg, Germany.
| |
Collapse
|
4
|
Li Y, Feng R, Yu X, Li L, Liu Y, Zhang R, Chen X, Zhao Y, Liu Z. SLC35E2 promoter mutation as a prognostic marker of esophageal squamous cell carcinoma. Life Sci 2022; 296:120447. [PMID: 35247439 DOI: 10.1016/j.lfs.2022.120447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/29/2022] [Accepted: 02/26/2022] [Indexed: 12/24/2022]
Abstract
AIMS Esophageal squamous cell carcinoma (ESCC) is one of the deadliest digestive tract cancer with poor prognosis. In our previous comprehensive genomics study, we identified that hotspot mutations in the solute carrier family 35 member E2 (SLC35E2) promoter region was significantly associated with worse prognosis in patients with ESCC. However, the biological function and molecular mechanism of SLC35E2 remains unclear. This study was to investigate the malignant function and mechanism of SLC35E2 in ESCC. MAIN METHODS Western blotting and qRT-PCR were used to assess the expression of SLC35E2 in ESCC cell lines. Luciferase assay and chromatin immunoprecipitation (ChIP) assay were used to assess the transcriptional inhibition of KLF4. Incucyte cell proliferation assay, colony formation assay and subcutaneous tumor formation in nude mice were used to assess the malignant function of SLC35E2. KEY FINDINGS SLC35E2 can promote ESCC cell proliferation in vitro and in vivo. Krüppel-like factor 4 (KLF4), a transcriptional repressor in ESCC, binds to the SLC35E2 promoter and represses the expression of SLC35E2. The transcriptional suppression of KLF4 can be blocked by the mutation at -118 site of the SLC35E2 promoter. Besides, the accumulation of SLC35E2 expression contributes to the malignant phenotype of ESCC. SIGNIFICANCE These results indicate that SLC35E2 may be used as a biomarker for prognosis as well as a therapeutic target for patients with ESCC.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Riyue Feng
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiao Yu
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lei Li
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuhao Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ruixiang Zhang
- State Key Laboratory of Molecular Oncology, Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiankai Chen
- State Key Laboratory of Molecular Oncology, Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yahui Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
5
|
Zhang W, Jin Y, Li J, Huang J, Chen H. Effects of genetic and nongenetic factors on hyperuricemia in Chinese patients with coronary artery disease. Pharmacogenomics 2021; 22:821-831. [PMID: 34505535 DOI: 10.2217/pgs-2021-0053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Aim: The relationship between hyperuricemia and polymorphisms of transporter genes in coronary artery disease (CAD) patients in China remains unclear. Materials & methods: A total of 258 hyperuricemia patients with CAD and 242 control patients with CAD were recruited in this case-control study. Twenty-four SNPs in genes of ABCG2, PDZK1, URAT1, OAT4, GLUT9, ABCC4, NPT1 and NPT4 were genotyped using direct sequencing in all subjects. Results: The mutation of ABCG2 rs2231142 locus increases the risk of hyperuricemia, and there is a gene dose effect in the influence of mutant heterozygotes and homozygotes. rs3825017 in URAT1 and rs62293298 in GLUT9 were also confirmed to be associated with hyperuricemia. Conclusion: Age, weight, creatinine clearance rate, diuretics and SNPs on ABCG2, URAT1 and GLUT9 were all risk factors of hyperuricemia.
Collapse
Affiliation(s)
- Weixia Zhang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yiwen Jin
- Department ofPharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Juan Li
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jingjing Huang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hefeng Chen
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Zhu JX, Yang HY, Hu WQ, Cheng J, Liu Y, Yi LT, Cheng HY. Active components from Lagotis brachystachya maintain uric acid homeostasis by inhibiting renal TLR4-NLRP3 signaling in hyperuricemic mice. Inflammopharmacology 2021; 29:1187-1200. [PMID: 34244900 DOI: 10.1007/s10787-021-00844-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/26/2021] [Indexed: 01/13/2023]
Abstract
Lagotis brachystachya Maxim is a herb widely used in traditional Tibetan medicine. Our previous study indicated that total extracts from Lagotis brachystachya could lower uric acid levels. This study aimed to further elucidate the active components (luteolin, luteoloside and apigenin) isolated from Lagotis brachystachya and the underlying mechanism in vitro and in vivo. The results showed that treatment with luteolin and luteoloside reversed the reduction of organic anion transporter 1 (OAT1) levels, while apigenin attenuated the elevation of urate transporter 1 (URAT1) and glucose transporter 9 (GLUT9) levels in uric acid-treated HK-2 cells, which was consistent with the finding in the kidneys of potassium oxonate (PO)-induced mice. On the other hand, hepatic xanthine oxidase activity was inhibited by the components. In addition, all of these active components improved the morphology of the kidney in hyperuricemic mice. Moreover, molecular docking showed that luteolin, luteoloside and apigenin could bind Toll-like receptor 4 (TLR4) and NLR family pyrin domain containing 3 (NLRP3). Congruently, western blot analysis showed that the components inhibited TLR4/myeloid differentiation primary response 88 (MyD88)/NLRP3 signaling. In conclusion, these results indicated that luteolin, luteoloside and apigenin could attenuate hyperuricemia by decreasing the production and increasing the excretion of uric acid, which were mediated by inhibiting inflammatory signaling pathways.
Collapse
Affiliation(s)
- Ji-Xiao Zhu
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Jiangxi province, Nanchang, 330004, People's Republic of China
| | - Hai-Yan Yang
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Jiangxi province, Nanchang, 330004, People's Republic of China
| | - Wei-Qiong Hu
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Jiangxi province, Nanchang, 330004, People's Republic of China
| | - Jie Cheng
- Department of Chemical and Pharmaceutical Engineering, Huaqiao University, Fujian province, Xiamen, 361021, People's Republic of China
| | - Yang Liu
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Jiangxi province, Nanchang, 330004, People's Republic of China
| | - Li-Tao Yi
- Department of Chemical and Pharmaceutical Engineering, Huaqiao University, Fujian province, Xiamen, 361021, People's Republic of China.
| | - Hong-Yu Cheng
- School of Humanities, Jiangxi University of Chinese Medicine, Jiangxi province, Nanchang, 330004, People's Republic of China.
| |
Collapse
|
7
|
Zhu C, Sun B, Zhang B, Zhou Z. An update of genetics, co-morbidities and management of hyperuricaemia. Clin Exp Pharmacol Physiol 2021; 48:1305-1316. [PMID: 34133780 DOI: 10.1111/1440-1681.13539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022]
Abstract
Hyperuricaemia (HU) caused by disorders of purine metabolism is a metabolic disease. A number of epidemiological reports have confirmed that HU is correlated with multiple disorders, such as chronic kidney diseases, cardiovascular disease and gout. Recent studies showed that the expression and functional changes of uric acid transporters, including URAT1, GLUT9 and ABCG2, were associated with HU. Moreover, a large number of genome-wide association studies have shown that these transporters' dysfunction leads to HU. In this review, we describe the recent progress of aetiology and related transporters of HU, and we also summarise the common co-morbidities possible mechanisms, as well as the potential pharmacological and non-pharmacological treatment methods for HU, aiming to provide new ideas for the treatment of HU.
Collapse
Affiliation(s)
- Chunsheng Zhu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bao Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Bing Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Zheng Zhou
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Li Q, Lin H, Niu Y, Liu Y, Wang Z, Song L, Gao L, Li L. Mangiferin promotes intestinal elimination of uric acid by modulating intestinal transporters. Eur J Pharmacol 2020; 888:173490. [PMID: 32827538 DOI: 10.1016/j.ejphar.2020.173490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 01/13/2023]
Abstract
Increasing evidence shows that the intestinal tract plays an important role in maintaining urate homeostasis and might be a potential therapeutic target for hyperuricaemia. However, uric acid-lowering drugs available in the clinic do not target intestinal excretion as a therapeutic strategy. We previously reported that mangiferin had potent hypouricaemic effects in hyperuricaemic animals. However, the underlying mechanisms are not completely clear. Here, we investigated the effects of mangiferin on the intestinal excretion of urate and its underlying mechanisms. The data revealed that mangiferin concentration-dependently promoted the intestinal secretion of endogenous urate in in situ intestinal closed loops in normal and hyperuricaemic mice, as well as inhibited the absorption of exogenous uric acid perfused into the intestinal loops in rats. Administration of mangiferin not only decreased the serum urate levels in the hyperuricaemic mice but also increased the protein expression of ATP-binding cassette transporter, subfamily G, member 2 (ABCG2) and inhibited the protein expression of glucose transporter 9 (GLUT 9) in the intestine. These findings suggested that intestinal ABCG2 and GLUT9 might be pivotal and possible action sites for the observed hypouricaemic effects. Moreover, no significant changes in intestinal xanthine oxidoreductase activities were observed, suggesting that mangiferin did not affect intestinal uric acid generation in the hyperuricaemic mice. Overall, promoting intestinal elimination of urate by upregulating ABCG2 expression and downregulating GLUT9 expression might be an important mechanism underlying mangiferin lowering serum uric acid levels. Mangiferin supplementation might be beneficial for the prevention and treatment of hyperuricaemia.
Collapse
Affiliation(s)
- Qiurui Li
- Biomedical Engineering Research Center, Kunming Medical University, Kunming, 650500, China
| | - Hua Lin
- Biomedical Engineering Research Center, Kunming Medical University, Kunming, 650500, China
| | - Yanfen Niu
- Biomedical Engineering Research Center, Kunming Medical University, Kunming, 650500, China
| | - Yan Liu
- Biomedical Engineering Research Center, Kunming Medical University, Kunming, 650500, China
| | - Zhenyu Wang
- Biomedical Engineering Research Center, Kunming Medical University, Kunming, 650500, China
| | - Liudong Song
- Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming, 650500, China
| | - Lihui Gao
- Biomedical Engineering Research Center, Kunming Medical University, Kunming, 650500, China.
| | - Ling Li
- Biomedical Engineering Research Center, Kunming Medical University, Kunming, 650500, China.
| |
Collapse
|
9
|
Wada S, Matsunaga N, Tamai I. Mathematical modeling analysis of hepatic uric acid disposition using human sandwich-cultured hepatocytes. Drug Metab Pharmacokinet 2020; 35:432-440. [PMID: 32807664 DOI: 10.1016/j.dmpk.2020.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 05/24/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022]
Abstract
Uric acid is biosynthesized from purine by xanthine oxidase (XO) mainly in the liver and is excreted into urine and feces. Although several transporters responsible for renal and intestinal handling of uric acid have been reported, information on hepatic transporters is limited. In the present study, we studied quantitative contribution of transporters for hepatic handling of uric acid by mathematical modeling analysis in human sandwich-cultured hepatocytes (hSCH). Stable isotope-labeled hypoxanthine, hypoxanthine-13C2,15N (HX), was incubated with hSCH and formed 13C2,15N-labeled xanthine (XA) and uric acid (UA) were measured by LC-MS/MS time dependently. Rate constants for metabolism and efflux and uptake transport across sinusoidal and bile canalicular membranes of HX, XA and UA were estimated in the presence of inhibitors of XO and uric acid transporters. An XO inhibitor allopurinol significantly decreased metabolisms of HX and XA. Efflux into bile canalicular lumen was negligible and sinusoidal efflux was considered main efflux pathway of formed UA. Transporter inhibition study highlighted that GLUT9 strongly and MRP4 intermediately contribute to the sinusoidal efflux of UA with minor contribution of NPT1/4. Modeling analysis developed in the present study should be useful for quantitative prediction of uric acid disposition in liver.
Collapse
Affiliation(s)
- Sho Wada
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan
| | - Norikazu Matsunaga
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Japan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan.
| |
Collapse
|
10
|
Brown TP, Ganapathy V. Lactate/GPR81 signaling and proton motive force in cancer: Role in angiogenesis, immune escape, nutrition, and Warburg phenomenon. Pharmacol Ther 2019; 206:107451. [PMID: 31836453 DOI: 10.1016/j.pharmthera.2019.107451] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/22/2019] [Indexed: 12/15/2022]
Abstract
Reprogramming of biochemical pathways is a hallmark of cancer cells, and generation of lactic acid from glucose/glutamine represents one of the consequences of such metabolic alterations. Cancer cells export lactic acid out to prevent intracellular acidification, not only increasing lactate levels but also creating an acidic pH in extracellular milieu. Lactate and protons in tumor microenvironment are not innocuous bystander metabolites but have special roles in promoting tumor-cell proliferation and growth. Lactate functions as a signaling molecule by serving as an agonist for the G-protein-coupled receptor GPR81, involving both autocrine and paracrine mechanisms. In the autocrine pathway, cancer cell-generated lactate activates GPR81 on cancer cells; in the paracrine pathway, cancer cell-generated lactate activates GPR81 on immune cells, endothelial cells, and adipocytes present in tumor stroma. The end result of GPR81 activation is promotion of angiogenesis, immune evasion, and chemoresistance. The acidic pH creates an inwardly directed proton gradient across the cancer-cell plasma membrane, which provides driving force for proton-coupled transporters in cancer cells to enhance supply of selective nutrients. There are several molecular targets in the pathways involved in the generation of lactic acid by cancer cells and its role in tumor promotion for potential development of novel anticancer therapeutics.
Collapse
Affiliation(s)
- Timothy P Brown
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
11
|
Fine mapping and identification of serum urate loci in American Indians: The Strong Heart Family Study. Sci Rep 2019; 9:17899. [PMID: 31784582 PMCID: PMC6884539 DOI: 10.1038/s41598-019-52924-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 10/12/2019] [Indexed: 02/07/2023] Open
Abstract
While studies have reported genetic loci affecting serum urate (SU) concentrations, few studies have been conducted in minority populations. Our objective for this study was to identify genetic loci regulating SU in a multigenerational family-based cohort of American Indians, the Strong Heart Family Study (SHFS). We genotyped 162,718 single nucleotide polymorphisms (SNPs) in 2000 SHFS participants using an Illumina MetaboChip array. A genome-wide association analysis of SU was conducted using measured genotype analysis approach accounting for kinships in SOLAR, and meta-analysis in METAL. Our results showed strong association of SU with rs4481233, rs9998811, rs7696092 and rs13145758 (minor allele frequency (MAF) = 25–44%; P < 3 × 10−14) of solute carrier family 2, member 9 (SLC2A9) and rs41481455, rs2231142 and rs1481012 (MAF = 29%; p < 3 × 10−9) of ATP-binding cassette protein, subfamily G, member 2 (ABCG2). Carriers of G alleles of rs9998811, rs4148155 and rs1481012 and A alleles of rs4481233, rs7696092 and rs13145758 and rs2231142 had lower SU concentrations as compared to non-carriers. Genetic analysis of SU conditional on significant SLC2A9 and ABCG2 SNPs revealed new loci, nucleobindin 1 (NUCB1) and neuronal PAS domain protein 4 (NPAS4) (p <6× 10−6). To identify American Indian-specific SNPs, we conducted targeted sequencing of key regions of SLC2A9. A total of 233 SNPs were identified of which 89 were strongly associated with SU (p < 7.1 × 10−10) and 117 were American Indian specific. Analysis of key SNPs in cohorts of Mexican-mestizos, European, Indian and East Asian ancestries showed replication of common SNPs, including our lead SNPs. Our results demonstrate the association of SU with uric acid transporters in a minority population of American Indians and potential novel associations of SU with neuronal-related genes which warrant further investigation.
Collapse
|
12
|
Hypouricemia: what the practicing rheumatologist should know about this condition. Clin Rheumatol 2019; 39:135-147. [PMID: 31650389 DOI: 10.1007/s10067-019-04788-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/27/2019] [Accepted: 09/21/2019] [Indexed: 12/15/2022]
Abstract
We presented an update in the field of hypouricemia, which is defined as a serum urate concentration of < 2 mg/dL (119 μmol/L), for the practicing rheumatologist, who usually is the consulting physician in cases of disorders of urate metabolism. We performed a narrative review through a literature search for original and review articles in the field of human hypouricemia published between January 1950 and July 2018. We divided the etiology of hypouricemia into two main categories: those associated with a decrease in urate production and those promoting the elimination of urate via the kidneys. The most common conditions associated with these categories are discussed. Furthermore, the etiology of hypouricemia may be associated with certain medications prescribed by the practicing rheumatologists, such as the following: urate-lowering drugs (allopurinol and febuxostat); recombinant uricase (pegloticase); uricosuric agents (probenecid, benzbromarone); urate transporter URAT1 inhibitor (lesinurad); angiotensin II receptor blocker (losartan); fenofibrate; high-dose trimethoprim-sulfamethoxazole; some NSAID; and high-dose salicylate therapy. The rheumatologist is considered an expert in the metabolism of urate and its associated pathological conditions. Therefore, specialists must recognize hypouricemia as a biomarker of various pathological and potentially harmful conditions, highlighting the importance of conducting a deeper clinical investigation to reach a more accurate diagnosis and treatment.
Collapse
|
13
|
van der Wijst J, Belge H, Bindels RJM, Devuyst O. Learning Physiology From Inherited Kidney Disorders. Physiol Rev 2019; 99:1575-1653. [PMID: 31215303 DOI: 10.1152/physrev.00008.2018] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The identification of genes causing inherited kidney diseases yielded crucial insights in the molecular basis of disease and improved our understanding of physiological processes that operate in the kidney. Monogenic kidney disorders are caused by mutations in genes coding for a large variety of proteins including receptors, channels and transporters, enzymes, transcription factors, and structural components, operating in specialized cell types that perform highly regulated homeostatic functions. Common variants in some of these genes are also associated with complex traits, as evidenced by genome-wide association studies in the general population. In this review, we discuss how the molecular genetics of inherited disorders affecting different tubular segments of the nephron improved our understanding of various transport processes and of their involvement in homeostasis, while providing novel therapeutic targets. These include inherited disorders causing a dysfunction of the proximal tubule (renal Fanconi syndrome), with emphasis on epithelial differentiation and receptor-mediated endocytosis, or affecting the reabsorption of glucose, the handling of uric acid, and the reabsorption of sodium, calcium, and magnesium along the kidney tubule.
Collapse
Affiliation(s)
- Jenny van der Wijst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - Hendrica Belge
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - Olivier Devuyst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
14
|
Ferreira C, Meyer R, Meyer Zu Schwabedissen HE. The nuclear receptors PXR and LXR are regulators of the scaffold protein PDZK1. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:447-456. [PMID: 30831268 DOI: 10.1016/j.bbagrm.2019.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 02/02/2023]
Abstract
PDZK1 (NHERF3) interacts with membrane proteins whereby modulating their spatial arrangement, membrane stability, and function. One of the membrane proteins shown to be stabilized by interaction with PDZK1 is the HDL-receptor SR-BI (SCARB1). Testing the influence of TO 901317, a known activator of liver X receptor alpha (LXRα, NR1H3) which is a central regulator of the lipid homeostasis, Grefhorst et al. reported in 2012 that administration of TO 901317 did not affect PDZK1 expression and reduced the amount of SR-BI protein in mouse liver. Considering that TO 901317 also activates the xenosensor pregnane X receptor (PXR, NR1I2), it was aim of this study to further investigate the influence of LXRα and PXR activation on transcription of PDZK1. First, we tested the transactivation of PDZK1 by LXRα or PXR in cell-based reporter gene assays comparing the effect of prototypical ligands to that of TO 901317. Ligand mediated activation of LXRα increased, while that of PXR lowered luciferase activity. Further, we located the most likely binding site for LXRα and PXR on the PDZK1 promoter between -85 bp and -54 bp. The transcriptional regulation by LXRα was further supported showing enhanced mRNA expression of PDZK1 in HepG2 cells treated with the selective LXRα-agonist GW3965, while treatment with TO 901317 reduced the protein amount of PDZK1. Taken together, we provide evidence that both LXRα and PXR are transcriptional regulators of PDZK1 supporting the previous notion that the scaffold protein is part of cholesterol homeostasis and drug metabolism.
Collapse
Affiliation(s)
- Celio Ferreira
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland
| | - Ramona Meyer
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland
| | | |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Multiple experimental and clinical studies have identified pathways by which uric acid may facilitate the development and progression of chronic kidney disease (CKD) in people with diabetes. However, it remains uncertain if the association of uric acid with CKD represents a pathogenic effect or merely reflects renal impairment. RECENT FINDINGS In contrast to many published reports, a recent Mendelian randomization study did not identify a causal link between uric acid and CKD in people with type 1 diabetes. Two recent multicenter randomized control trials, Preventing Early Renal Function Loss in Diabetes (PERL) and FEbuxostat versus placebo rAndomized controlled Trial regarding reduced renal function in patients with Hyperuricemia complicated by chRonic kidney disease stage 3 (FEATHER), were recently designed to assess if uric acid lowering slows progression of CKD. We review the evidence supporting a role for uric acid in the pathogenesis of CKD in people with diabetes and the putative benefits of uric acid lowering.
Collapse
Affiliation(s)
- Ambreen Gul
- Dialysis Clinic, Inc., Quality Management, 1500 Indian School Rd. NE, Albuquerque, NM, 87102, USA
| | - Philip Zager
- Dialysis Clinic, Inc., Quality Management, 1500 Indian School Rd. NE, Albuquerque, NM, 87102, USA.
- University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
16
|
Natural Products Improving Hyperuricemia with Hepatorenal Dual Effects. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:7390504. [PMID: 27847526 PMCID: PMC5099468 DOI: 10.1155/2016/7390504] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 08/16/2016] [Accepted: 09/28/2016] [Indexed: 11/17/2022]
Abstract
This review aims to put forth an overview of natural products reducing uric acid level with hepatorenal dual effects. The prevalence of hyperuricemia increased rapidly in recent years and has closely interdependent relationship with other metabolic disorders. Current therapeutically used drugs including a few uricostatic and uricosuric chemical drugs are proved efficient to control serum uric acid level. However, their side effects as well as contraindication in some cases with liver, kidney injury, or other conditions frequently limit their clinic application. More attention thus has been paid to natural products as an alternative means in treating hyperuricemia. Many natural products have been proved efficient in downregulating uric acid level, among which some can improve hyperuricemia with hepatorenal dual effects. It means these natural products can regulate both the production and the excretion of uric acid by targeting the key metabolic enzymes mainly in liver or uric acid transporters in kidneys. Thus, these natural products could have stronger efficacy and broader application, which may be developed for the treatment of hyperuricemia in clinic.
Collapse
|
17
|
Effect of Hypoxanthine on Functional Activity of Nucleoside Transporters ENT1 and ENT2 in Caco-2 Polar Epithelial Intestinal Cells. Bull Exp Biol Med 2015; 160:160-4. [DOI: 10.1007/s10517-015-3118-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Indexed: 01/09/2023]
|
18
|
Flynn TJ, Cadzow M, Dalbeth N, Jones PB, Stamp LK, Hindmarsh JH, Todd AS, Walker RJ, Topless R, Merriman TR. Positive association of tomato consumption with serum urate: support for tomato consumption as an anecdotal trigger of gout flares. BMC Musculoskelet Disord 2015; 16:196. [PMID: 26286027 PMCID: PMC4541734 DOI: 10.1186/s12891-015-0661-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 08/04/2015] [Indexed: 01/01/2023] Open
Abstract
Background Gout is a consequence of an innate immune reaction to monosodium urate crystals deposited in joints. Acute gout attacks can be triggered by dietary factors that are themselves associated with serum urate levels. Tomato consumption is an anecdotal trigger of gout flares. This study aimed to measure the frequency of tomato consumption as a self-reported trigger of gout attacks in a large New Zealand sample set, and to test the hypothesis that tomato consumption is associated with serum urate levels. Methods Two thousand fifty one New Zealanders (of Māori, Pacific Island, European or other ancestry) with clinically-ascertained gout were asked about gout trigger foods. European individuals from the Atherosclerosis Risk In Communities (ARIC; n = 7517) Study, Cardiovascular Health Study (CHS; n = 2151) and Framingham Heart Study (FHS; n = 3052) were used to test, in multivariate-adjusted analyses, for association between serum urate and tomato intake. Results Seventy one percent of people with gout reported having ≥1 gout trigger food. Of these 20 % specifically mentioned tomatoes, the 4th most commonly reported trigger food. There was association between tomato intake and serum urate levels in the ARIC, CHS and FHS combined cohort (β = 0.66 μmolL−1 increase in serum urate per additional serve per week; P = 0.006) - evident in both sexes (men: β = 0.84 μmolL−1, P = 0.035; women: β = 0.59 μmolL −1, P = 0.041). Conclusions While our descriptive and observational data are unable to support the claim that tomato consumption is a trigger of gout attacks, the positive association between tomato consumption and serum urate levels suggests that the self-reporting of tomatoes as a dietary trigger by people with gout has a biological basis. Electronic supplementary material The online version of this article (doi:10.1186/s12891-015-0661-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tanya J Flynn
- Department of Biochemistry, University of Otago, Box 56, Dunedin, New Zealand.
| | - Murray Cadzow
- Department of Biochemistry, University of Otago, Box 56, Dunedin, New Zealand.
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand.
| | - Peter B Jones
- Department of Medicine, University of Auckland, Auckland, New Zealand.
| | - Lisa K Stamp
- Department of Medicine, University of Otago, Christchurch, New Zealand.
| | | | - Alwyn S Todd
- Mater Research Institute, Brisbane, Australia and School of Allied Health Sciences, Griffith University, Gold Coast, Australia.
| | - Robert J Walker
- Department of Medicine, University of Otago, Dunedin, New Zealand.
| | - Ruth Topless
- Department of Biochemistry, University of Otago, Box 56, Dunedin, New Zealand.
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Box 56, Dunedin, New Zealand.
| |
Collapse
|
19
|
Lin L, Yee SW, Kim RB, Giacomini KM. SLC transporters as therapeutic targets: emerging opportunities. Nat Rev Drug Discov 2015; 14:543-60. [PMID: 26111766 DOI: 10.1038/nrd4626] [Citation(s) in RCA: 525] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solute carrier (SLC) transporters - a family of more than 300 membrane-bound proteins that facilitate the transport of a wide array of substrates across biological membranes - have important roles in physiological processes ranging from the cellular uptake of nutrients to the absorption of drugs and other xenobiotics. Several classes of marketed drugs target well-known SLC transporters, such as neurotransmitter transporters, and human genetic studies have provided powerful insight into the roles of more-recently characterized SLC transporters in both rare and common diseases, indicating a wealth of new therapeutic opportunities. This Review summarizes knowledge on the roles of SLC transporters in human disease, describes strategies to target such transporters, and highlights current and investigational drugs that modulate SLC transporters, as well as promising drug targets.
Collapse
Affiliation(s)
- Lawrence Lin
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California 94158, USA
| | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California 94158, USA
| | - Richard B Kim
- Division of Clinical Pharmacology, Department of Medicine, University of Western Ontario, London Health Science Centre, London, Ontario N6A 5A5, Canada
| | - Kathleen M Giacomini
- 1] Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California 94158, USA. [2] Institute for Human Genetics, University of California San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
20
|
Xiao J, Zhang XL, Fu C, Han R, Chen W, Lu Y, Ye Z. Soluble uric acid increases NALP3 inflammasome and interleukin-1β expression in human primary renal proximal tubule epithelial cells through the Toll-like receptor 4-mediated pathway. Int J Mol Med 2015; 35:1347-54. [PMID: 25813103 DOI: 10.3892/ijmm.2015.2148] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/02/2015] [Indexed: 11/05/2022] Open
Abstract
Urate crystals activate innate immunity through Toll like receptor 4 (TLR4) activation, leading to the formation of the NACHT, LRR and PYD domains-containing protein 3 [NALP3; also known as NOD-like receptor family, pyrin domain containing 3 (NALP3) and cryopyrin] inflammasome, caspase-1 activation and interleukin (IL)-1β expression in gout. However, whether elevated serum uric acid (UA) levels are associated with the development and progression of renal diseases without renal urate crystal deposition remains unknown. In the present study, human primary renal proximal tubule epithelial cells were incubated with soluble UA (100 µg/ml) with or without the TLR4 inhibitor, TAK242 (1 µM). The gene expression and protein synthesis of TLR4, NALP3, caspase-1, IL-1β and intercellular adhesion molecule-1 (ICAM-1) were detected by real-time PCR, ELISA, western blot analysis and fluorescence-activated cell sorting (FACS), respectively. Soluble UA significantly enhanced TLR4, NALP3, caspase-1, IL-1β and ICAM-1 expression in the human primary renal proximal tubule epithelial cells. The TLR4 inhibitor, TAK242 effectively blocked the soluble UA-induced upregulation of TLR4, NALP3, caspase-1, IL-1β and ICAM-1 expression in the human primary renal proximal tubule epithelial cells. Our findings indicate that soluble UA enhances NALP3 expression, caspase-1 activation, IL-1β and ICAM-1 production in renal proximal tubule epithelial cells in a TLR4-dependent manner, suggesting the activation of innate immunity in human primary renal proximal tubule epithelial cells by soluble UA.
Collapse
Affiliation(s)
- Jing Xiao
- Department of Nephrology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| | - Xiao-Li Zhang
- Department of Nephrology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| | - Chensheng Fu
- Department of Nephrology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| | - Rui Han
- Department of Nephrology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| | - Weijun Chen
- Department of Nephrology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| | - Yijun Lu
- Department of Nephrology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| | - Zhibin Ye
- Department of Nephrology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
21
|
Kadowaki D, Sakaguchi S, Miyamoto Y, Taguchi K, Muraya N, Narita Y, Sato K, Chuang VTG, Maruyama T, Otagiri M, Hirata S. Direct radical scavenging activity of benzbromarone provides beneficial antioxidant properties for hyperuricemia treatment. Biol Pharm Bull 2015; 38:487-92. [PMID: 25757933 DOI: 10.1248/bpb.b14-00514] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Uric acid exerts an important antioxidant effect against external oxidative stress under physiological conditions. However, uric acid itself can increase oxidative stress via reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation in adipocytes and vascular cells. Uric acid transporter 1 is involved in the generation of this oxidative stress. Furthermore, uric acid locally activates the renin-angiotensin system, thus producing angiotensin II and subsequently increasing intracellular oxidative stress. Benzbromarone has been reported to suppress uric acid reabsorption via uric acid transporter 1 inhibition in renal tubular cells. In this study we evaluated the in vitro antioxidant effect of benzbromarone from several perspectives. First, the direct radical-trapping capacity of benzbromarone was measured by chemiluminescence assay and electron paramagnetic resonance spectroscopy. Second, the intracellular antioxidant activity of benzbromarone in hyperuricemia was evaluated using endothelial cells. In light of these results, benzbromarone is hypothesized directly to scavenge the superoxide anion radical. In addition, benzbromarone inhibited reactive oxygen species production that was induced by angiotensin II or uric acid in endothelial cells. These findings suggest that benzbromarone possesses the ability directly to scavenge radicals and may act as an antioxidant against uric acid and angiotensin II-induced oxidative stresses in endothelial cells at therapeutically achievable levels in blood.
Collapse
Affiliation(s)
- Daisuke Kadowaki
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Kumamoto University; Center for Clinical Pharmaceutical Sciences, 5-1 Oe-honmachi, Chuo-ku 862-0973, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
DeBosch BJ, Kluth O, Fujiwara H, Schürmann A, Moley K. Early-onset metabolic syndrome in mice lacking the intestinal uric acid transporter SLC2A9. Nat Commun 2014; 5:4642. [PMID: 25100214 DOI: 10.1038/ncomms5642] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 07/10/2014] [Indexed: 12/14/2022] Open
Abstract
Excess circulating uric acid, a product of hepatic glycolysis and purine metabolism, often accompanies metabolic syndrome. However, whether hyperuricaemia contributes to the development of metabolic syndrome or is merely a by-product of other processes that cause this disorder has not been resolved. In addition, how uric acid is cleared from the circulation is incompletely understood. Here we present a genetic model of spontaneous, early-onset metabolic syndrome in mice lacking the enterocyte urate transporter Glut9 (encoded by the SLC2A9 gene). Glut9-deficient mice develop impaired enterocyte uric acid transport kinetics, hyperuricaemia, hyperuricosuria, spontaneous hypertension, dyslipidaemia and elevated body fat. Allopurinol, a xanthine oxidase inhibitor, can reverse the hypertension and hypercholesterolaemia. These data provide evidence that hyperuricaemia per se could have deleterious metabolic sequelae. Moreover, these findings suggest that enterocytes may regulate whole-body metabolism, and that enterocyte urate metabolism could potentially be targeted to modulate or prevent metabolic syndrome.
Collapse
Affiliation(s)
- Brian J DeBosch
- BJC Institute of Health, Washington University School of Medicine, 10th Floor 425 S., Euclid Avenue Campus, Box 8064, St Louis, MO 63110, USA
| | - Oliver Kluth
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal 14558, Germany
| | - Hideji Fujiwara
- BJC Institute of Health, Washington University School of Medicine, 10th Floor 425 S., Euclid Avenue Campus, Box 8064, St Louis, MO 63110, USA
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal 14558, Germany
| | - Kelle Moley
- BJC Institute of Health, Washington University School of Medicine, 10th Floor 425 S., Euclid Avenue Campus, Box 8064, St Louis, MO 63110, USA
| |
Collapse
|
23
|
del Rosario RCH, Rayan NA, Prabhakar S. Noncoding origins of anthropoid traits and a new null model of transposon functionalization. Genome Res 2014; 24:1469-84. [PMID: 25043600 PMCID: PMC4158753 DOI: 10.1101/gr.168963.113] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Little is known about novel genetic elements that drove the emergence of anthropoid primates. We exploited the sequencing of the marmoset genome to identify 23,849 anthropoid-specific constrained (ASC) regions and confirmed their robust functional signatures. Of the ASC base pairs, 99.7% were noncoding, suggesting that novel anthropoid functional elements were overwhelmingly cis-regulatory. ASCs were highly enriched in loci associated with fetal brain development, motor coordination, neurotransmission, and vision, thus providing a large set of candidate elements for exploring the molecular basis of hallmark primate traits. We validated ASC192 as a primate-specific enhancer in proliferative zones of the developing brain. Unexpectedly, transposable elements (TEs) contributed to >56% of ASCs, and almost all TE families showed functional potential similar to that of nonrepetitive DNA. Three L1PA repeat-derived ASCs displayed coherent eye-enhancer function, thus demonstrating that the "gene-battery" model of TE functionalization applies to enhancers in vivo. Our study provides fundamental insights into genome evolution and the origins of anthropoid phenotypes and supports an elegantly simple new null model of TE exaptation.
Collapse
Affiliation(s)
- Ricardo C H del Rosario
- Computational and Systems Biology, Genome Institute of Singapore, #02-01 Genome, Singapore 138672
| | - Nirmala Arul Rayan
- Computational and Systems Biology, Genome Institute of Singapore, #02-01 Genome, Singapore 138672
| | - Shyam Prabhakar
- Computational and Systems Biology, Genome Institute of Singapore, #02-01 Genome, Singapore 138672
| |
Collapse
|
24
|
|
25
|
Ouchi M, Oba K, Ishii K, Onishi T, Saigusa T, Aoyama J, Matsumura N, Igari Y, Suzuki T, Nakano H. Relationship between Serum 1,5-anhydroglucitol, as an Indicator of Postprandial Glycemic Control, and Serum Uric Acid, Considering the Renal Threshold for Glucosuria in the Elderly. J NIPPON MED SCH 2014. [DOI: 10.1272/jnms.81.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Motoshi Ouchi
- Division of Geriatric Medicine, Department of Internal Medicine, Nippon Medical School
| | - Kenzo Oba
- Division of Geriatric Medicine, Department of Internal Medicine, Nippon Medical School
- Department of Internal Medicine, Oarai Seashore Core Clinic
| | - Kazuhito Ishii
- Division of Geriatric Medicine, Department of Internal Medicine, Nippon Medical School
| | - Tetsuro Onishi
- Division of Geriatric Medicine, Department of Internal Medicine, Nippon Medical School
- Department of Internal Medicine, Shioda Hospital
| | - Taro Saigusa
- Division of Geriatric Medicine, Department of Internal Medicine, Nippon Medical School
| | - Junya Aoyama
- Division of Geriatric Medicine, Department of Internal Medicine, Nippon Medical School
| | - Noriaki Matsumura
- Division of Geriatric Medicine, Department of Internal Medicine, Nippon Medical School
| | - Yoshimasa Igari
- Division of Geriatric Medicine, Department of Internal Medicine, Nippon Medical School
| | - Tatsuya Suzuki
- Division of Geriatric Medicine, Department of Internal Medicine, Nippon Medical School
| | - Hiroshi Nakano
- Division of Geriatric Medicine, Department of Internal Medicine, Nippon Medical School
| |
Collapse
|
26
|
Kaito H, Ishimori S, Nozu K, Shima Y, Nakanishi K, Yoshikawa N, Iijima K. Molecular background of urate transporter genes in patients with exercise-induced acute kidney injury. Am J Nephrol 2013; 38:316-20. [PMID: 24107611 DOI: 10.1159/000355430] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/30/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND/AIMS Exercise-induced acute renal failure [exercise-induced acute kidney injury (EI-AKI)] is defined as AKI due to heavy anaerobic exercise. Although hypouricemia is known to be a risk factor for the onset of EI-AKI, a direct causal link between EI-AKI and serum uric acid has not been established. This study aimed to analyze urate transporter genes in patients with EI-AKI and its molecular mechanism. METHODS Genomic DNA and total RNA were isolated from peripheral blood leukocytes of patients with a history of EI-AKI. Mutations were analyzed by PCR and a direct sequencing method. We first analyzed the SLC22A12 gene, and then the SLC2A9 gene if no mutations were found in SLC22A12. RESULTS Seventeen patients were enrolled in this study and 16 had mutations: 15 in SLC22A12 and 1 in SLC2A9. Fourteen (82.4%) patients showed hypouricemia, and all of the patients with hypouricemia had either homozygous or compound heterozygous mutations in SLC22A12 or SLC2A9, which confirmed that all of them had renal hypouricemia. Two patients had heterozygous mutations of SLC22A12, and they were not accompanied by hypouricemia. One patient was found to have no mutations in SLC22A12 or SLC2A9. CONCLUSION We were able to determine the genetic background of urate transporter genes in patients with EI-AKI. Decreased function of urate transporters, rather than decreased serum uric acid levels, may be of great importance for the onset of EI-AKI.
Collapse
Affiliation(s)
- Hiroshi Kaito
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Hughes K, Flynn T, de Zoysa J, Dalbeth N, Merriman TR. Mendelian randomization analysis associates increased serum urate, due to genetic variation in uric acid transporters, with improved renal function. Kidney Int 2013; 85:344-51. [PMID: 24048376 DOI: 10.1038/ki.2013.353] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 07/01/2013] [Accepted: 07/25/2013] [Indexed: 01/07/2023]
Abstract
Increased serum urate predicts chronic kidney disease independent of other risk factors. The use of xanthine oxidase inhibitors coincides with improved renal function. Whether this is due to reduced serum urate or reduced production of oxidants by xanthine oxidase or another physiological mechanism remains unresolved. Here we applied Mendelian randomization, a statistical genetics approach allowing disentangling of cause and effect in the presence of potential confounding, to determine whether lowering of serum urate by genetic modulation of renal excretion benefits renal function using data from 7979 patients of the Atherosclerosis Risk in Communities and Framingham Heart studies. Mendelian randomization by the two-stage least squares method was done with serum urate as the exposure, a uric acid transporter genetic risk score as instrumental variable, and estimated glomerular filtration rate and serum creatinine as the outcomes. Increased genetic risk score was associated with significantly improved renal function in men but not in women. Analysis of individual genetic variants showed the effect size associated with serum urate did not correlate with that associated with renal function in the Mendelian randomization model. This is consistent with the possibility that the physiological action of these genetic variants in raising serum urate correlates directly with improved renal function. Further studies are required to understand the mechanism of the potential renal function protection mediated by xanthine oxidase inhibitors.
Collapse
Affiliation(s)
- Kim Hughes
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Tanya Flynn
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Janak de Zoysa
- Renal Services, Waitemata District Health Board, Auckland, New Zealand
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
28
|
Nakamura T, Nishi R, Tanaka T, Takagi K, Sakai K, Takai M, Morishima S, Yamauchi T, Ueda T. Variation of urate transport in the nephrons in subtypes of hyperuricemia. NEPHRON EXTRA 2013; 3:73-85. [PMID: 24052801 PMCID: PMC3776396 DOI: 10.1159/000354029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hyperuricemia cases (HU) can be classified into four subgroups by combining the two main causes of hyperuricemia, i.e. urate underexcretion and overproduction. These subgroups are as follows: underexcretion-type cases (UE); overproduction-type cases (OP); combined-type cases, and normal-type cases. Since urinary urate excretion (Uua) and urate clearance differ significantly between UE and OP, urate transport in the nephrons and the intratubular urate contents might also differ. Such differences might help clarify the pathophysiology of urate underexcretion in subgroups of hyperuricemia, and thus reveal its underlying mechanisms. METHODS Urate transport coefficients in each subtype of HU were determined employing the previously reported benzbromarone-loading urate clearance tests. The subtype cases of HU were plotted on a graph of urate transport coefficients versus Uua as coordinates. The characteristic features in the distribution of subtype cases on graphs were analyzed in relation to Uua. RESULTS The mean (±standard error) tubular secretion rate (TSR) in the UE (48.7 ± 1.7 ml/min) was significantly lower and the postsecretory urate reabsorption rate (R2) in the UE (0.904 ± 0.004) was significantly higher than those in the normal controls (78.0 ± 2.1 ml/min and 0.877 ± 0.003) or the OP (61.1 ± 3.2 ml/min and 0.861 ± 0.009). Decrements of TSR and increments of R2 in the UE were largest in the subtypes of the HU, in terms of case numbers and the deviation rate of the group. Conversely, decrements of TSR and increments of R2 were smallest in the OP. A significant correlation was identified between TSR and Uua (r = 0.345, p < 0.0001), and a significant negative correlation was also found between R2 and Uua (r = -0.393, p < 0.0001). CONCLUSION IN THE UE, HYPERURICEMIA IS INDUCED MAINLY BY URATE UNDEREXCRETION, WHICH RESULTS FROM THE COMBINATION OF TWO MAIN CAUSES IN URATE TRANSPORTERS OF THE NEPHRON: significantly lower TSR and significantly higher R2. Neither of these was observed in OP. Differences in urate transporters in subtypes of the HU might be important not only for understanding the pathophysiology and mechanisms of urate underexcretion and hyperuricemia, but also for providing a strategic therapy for hyperuricemia.
Collapse
Affiliation(s)
- Toru Nakamura
- First Department of Internal Medicine, Faculty of Medical Sciences, Fukui University, Matsuoka, Japan
- Hayashi General Hospital, Echizen, Japan
| | - Rie Nishi
- First Department of Internal Medicine, Faculty of Medical Sciences, Fukui University, Matsuoka, Japan
| | - Tuneo Tanaka
- First Department of Internal Medicine, Faculty of Medical Sciences, Fukui University, Matsuoka, Japan
| | - Kazutaka Takagi
- First Department of Internal Medicine, Faculty of Medical Sciences, Fukui University, Matsuoka, Japan
| | | | - Mihoko Takai
- First Department of Internal Medicine, Faculty of Medical Sciences, Fukui University, Matsuoka, Japan
- Hayashi General Hospital, Echizen, Japan
| | | | - Takahiro Yamauchi
- First Department of Internal Medicine, Faculty of Medical Sciences, Fukui University, Matsuoka, Japan
| | - Takanori Ueda
- First Department of Internal Medicine, Faculty of Medical Sciences, Fukui University, Matsuoka, Japan
| |
Collapse
|
29
|
Spironolactone increases serum uric acid levels in patients with chronic kidney disease. J Hum Hypertens 2013; 28:210-1. [PMID: 23863804 DOI: 10.1038/jhh.2013.66] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Al-Shehri S, Henman M, Charles BG, Cowley D, Shaw PN, Liley H, Tomarchio A, Punyadeera C, Duley JA. Collection and determination of nucleotide metabolites in neonatal and adult saliva by high performance liquid chromatography with tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 931:140-7. [PMID: 23792366 DOI: 10.1016/j.jchromb.2013.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/17/2013] [Accepted: 05/01/2013] [Indexed: 01/26/2023]
Abstract
Saliva contains a number of biochemical components which may be useful for diagnosis/monitoring of metabolic disorders, and as markers of cancer or heart disease. Saliva collection is attractive as a non-invasive sampling method for infants and elderly patients. We present a method suitable for saliva collection from neonates. We have applied this technique for the determination of salivary nucleotide metabolites. Saliva was collected from 10 healthy neonates using washed cotton swabs, and directly from 10 adults. Two methods for saliva extraction from oral swabs were evaluated. The analytes were then separated using high performance liquid chromatography (HPLC) with tandem mass spectrometry (MS/MS). The limits of detection for 14 purine/pyrimidine metabolites were variable, ranging from 0.01 to 1.0μM. Recovery of hydrophobic purine/pyrimidine metabolites from cotton tips was consistently high using water/acetonitrile extraction (92.7-111%) compared with water extraction alone. The concentrations of these metabolites were significantly higher in neonatal saliva than in adults. Preliminary ranges for nucleotide metabolites in neonatal and adult saliva are reported. Hypoxanthine and xanthine were grossly raised in neonates (49.3±25.4; 30.9±19.5μM respectively) compared to adults (4.3±3.3; 4.6±4.5μM); nucleosides were also markedly raised in neonates. This study focuses on three essential details: contamination of oral swabs during manufacturing and how to overcome this; weighing swabs to accurately measure small saliva volumes; and methods for extracting saliva metabolites of interest from cotton swabs. A method is described for determining nucleotide metabolites using HPLC with photodiode array or MS/MS. The advantages of utilising saliva are highlighted. Nucleotide metabolites were not simply in equilibrium with plasma, but may be actively secreted into saliva, and this process is more active in neonates than adults.
Collapse
Affiliation(s)
- S Al-Shehri
- School of Pharmacy, The University of Queensland, St Lucia, 4072, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bobulescu IA, Moe OW. Renal transport of uric acid: evolving concepts and uncertainties. Adv Chronic Kidney Dis 2012; 19:358-71. [PMID: 23089270 PMCID: PMC3619397 DOI: 10.1053/j.ackd.2012.07.009] [Citation(s) in RCA: 240] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/17/2012] [Indexed: 02/07/2023]
Abstract
In addition to its role as a metabolic waste product, uric acid has been proposed to be an important molecule with multiple functions in human physiologic and pathophysiologic processes and may be linked to human diseases beyond nephrolithiasis and gout. Uric acid homeostasis is determined by the balance between production, intestinal secretion, and renal excretion. The kidney is an important regulator of circulating uric acid levels by reabsorbing about 90% of filtered urate and being responsible for 60% to 70% of total body uric acid excretion. Defective renal handling of urate is a frequent pathophysiologic factor underpinning hyperuricemia and gout. Despite tremendous advances over the past decade, the molecular mechanisms of renal urate transport are still incompletely understood. Many transport proteins are candidate participants in urate handling, with URAT1 and GLUT9 being the best characterized to date. Understanding these transporters is increasingly important for the practicing clinician as new research unveils their physiologic characteristics, importance in drug action, and genetic association with uric acid levels in human populations. The future may see the introduction of new drugs that act specifically on individual renal urate transporters for the treatment of hyperuricemia and gout.
Collapse
Affiliation(s)
- Ion Alexandru Bobulescu
- Departments of Internal Medicine and Physiology and the Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-8856, USA.
| | | |
Collapse
|
32
|
Current world literature. Curr Opin Nephrol Hypertens 2012; 21:557-66. [PMID: 22874470 DOI: 10.1097/mnh.0b013e3283574c3b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Hua J, Huang P, Zhu CM, Yuan X, Yu CH. Anti-hyperuricemic and nephroprotective effects of Modified Simiao Decoction in hyperuricemic mice. JOURNAL OF ETHNOPHARMACOLOGY 2012; 142:248-252. [PMID: 22575704 DOI: 10.1016/j.jep.2012.04.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 03/02/2012] [Accepted: 04/28/2012] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Modified Simiao Decoction (MSD), based on clinical experience, has been used for decades and famous for its efficiency in treating hyperuricemic and gouty diseases. AIM OF THE STUDY To investigate the effects of MSD on anti-hyperuricemic and nephroprotective effects are involved in potassium oxonate-induced hyperuricemic mice. MATERIALS AND METHODS The effects of MSD were investigated in hyperuricemic mice induced by potassium oxonate. MSD were fed to hyperuricemic mice daily at a dose of 0.45, 0.90, 1.80 g/kg for 10 days, and allopurinol (5mg/kg) was given as a positive control. Serum and urine levels of uric acid and creatinine, and fractional excretion of uric acid (FEUA) were determined by colorimetric method. Its nephroprotective effects were evaluated by determining a panel of oxidative stress markers after the intervention in hyperuricemic mice. Simultaneously, protein levels of urate transporter 1 (URAT1) and organic anion transporter 1 (OAT1) in the kidney were analyzed by Western blotting. RESULTS MSD could inhibit XOD activities in serum and liver, decrease levels of serum uric acid, serum creatinine and BUN, and increased levels of urine uric acid, urine creatinine, FEUA dose-dependently through down-regulation of URAT1 and up-regulation of OAT1 protein expressions in the renal tissue of hyperuricemic mice. It also effectively reversed oxonate-induced alterations on renal MDA levels and SOD activities in this model. CONCLUSION MSD processes uricosuric and nephroprotective actions by regulating renal urate transporters and enhancing antioxidant enzymes activities to improve renal dysfunction in hyperuricemic mice.
Collapse
Affiliation(s)
- Jian Hua
- The Second People Hospital of Xihu District, Hangzhou 310024, China
| | | | | | | | | |
Collapse
|