1
|
Kaae AC, Kreissl MC, Krüger M, Infanger M, Grimm D, Wehland M. Kinase-Inhibitors in Iodine-Refractory Differentiated Thyroid Cancer-Focus on Occurrence, Mechanisms, and Management of Treatment-Related Hypertension. Int J Mol Sci 2021; 22:12217. [PMID: 34830100 PMCID: PMC8623313 DOI: 10.3390/ijms222212217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/26/2022] Open
Abstract
Differentiated thyroid cancer (DTC) usually has a good prognosis when treated conventionally with thyroidectomy, radioactive iodine (RAI) and thyroid-stimulating hormone suppression, but some tumors develop a resistance to RAI therapy, requiring alternative treatments. Sorafenib, lenvatinib and cabozantinib are multikinase inhibitors (MKIs) approved for the treatment of RAI-refractory DTC. The drugs have been shown to improve progression-free survival (PFS) and overall survival (OS) via the inhibition of different receptor tyrosine kinases (RTKs) that are involved in tumorigenesis and angiogenesis. Both sorafenib and lenvatinib have been approved irrespective of the line of therapy for the treatment of RAI-refractory DTC, whereas cabozantinib has only been approved as a second-line treatment. Adverse effects (AEs) such as hypertension are often seen with MKI treatment, but are generally well manageable. In this review, current clinical studies will be discussed, and the toxicity and safety of sorafenib, lenvatinib and cabozantinib treatment will be evaluated, with a focus on AE hypertension and its treatment options. In short, treatment-emergent hypertension (TE-HTN) occurs with all three drugs, but is usually well manageable and leads only to a few dose modifications or even discontinuations. This is emphasized by the fact that lenvatinib is widely considered the first-line drug of choice, despite its higher rate of TE-HTN.
Collapse
Affiliation(s)
- Anne Christine Kaae
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus, Denmark; (A.C.K.); (D.G.)
| | - Michael C. Kreissl
- Division of Nuclear Medicine, Department of Radiology and Nuclear Medicine, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany;
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (M.K.); (M.I.)
| | - Manfred Infanger
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (M.K.); (M.I.)
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Daniela Grimm
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus, Denmark; (A.C.K.); (D.G.)
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (M.K.); (M.I.)
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (M.K.); (M.I.)
| |
Collapse
|
2
|
Radix Puerariae rebalances vasomotor factors and improves left ventricular diastolic dysfunction in patients with essential hypertension. Exp Ther Med 2020; 20:705-713. [PMID: 32742316 PMCID: PMC7388304 DOI: 10.3892/etm.2020.8746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/30/2020] [Indexed: 12/18/2022] Open
Abstract
The aim of the present study was to validate the beneficial role of Radix Puerariae in rebalancing the plasma levels of endothelin, angiotensin II (AngII) and calcitonin gene-related peptide (CGRP) in patients with essential hypertension (EHT). A total of 150 patients with EHT were enrolled consecutively and randomized to receive antihypertensive drugs according to guideline-directed medical therapy (GDMT group) and GDMT plus Radix Puerariae (GDMT + RP group). The blood pressure was recorded biweekly. At baseline and at the end of the follow-up (12 weeks), the plasma levels of endothelin, AngII and CGRP were detected, whilst the left ventricular (LV) diastolic function was evaluated by echocardiography. At baseline, the two groups did not differ in terms of demographic characteristics and LV diastolic dysfunction. At the end of the follow-up, lower blood pressure was observed in the GDMT + RP compared with that in the GDMT group. The plasma levels of AngII and endothelin were also significantly lower in the GDMT + RP group. The plasma levels of CGRP increased significantly in the GDMT + RP compared with those in the GDMT group. The addition of Radix Puerariae improved LV diastolic function, with the percentage of dysfunction decreasing to only 9%, while this percentage remained significantly elevated (21%) in the GDMT group. The results of the present study demonstrated that Radix Puerariae is able to regulate blood pressure and the plasma levels of endothelin, AngII and CGRP in patients with EHT. LV diastolic dysfunction was also improved, as detected by echocardiography.
Collapse
|
3
|
Wu X, Yuan X, Wang W, Liu K, Qin Y, Sun X, Ma W, Zou Y, Zhang H, Zhou X, Wu H, Jiang X, Cai J, Chang W, Zhou S, Song L. Value of a Machine Learning Approach for Predicting Clinical Outcomes in Young Patients With Hypertension. Hypertension 2020; 75:1271-1278. [DOI: 10.1161/hypertensionaha.119.13404] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Risk stratification of young patients with hypertension remains challenging. Generally, machine learning (ML) is considered a promising alternative to traditional methods for clinical predictions because it is capable of processing large amounts of complex data. We, therefore, explored the feasibility of an ML approach for predicting outcomes in young patients with hypertension and compared its performance with that of approaches now commonly used in clinical practice. Baseline clinical data and a composite end point—comprising all-cause death, acute myocardial infarction, coronary artery revascularization, new-onset heart failure, new-onset atrial fibrillation/atrial flutter, sustained ventricular tachycardia/ventricular fibrillation, peripheral artery revascularization, new-onset stroke, end-stage renal disease—were evaluated in 508 young patients with hypertension (30.83±6.17 years) who had been treated at a tertiary hospital. Construction of the ML model, which consisted of recursive feature elimination, extreme gradient boosting, and 10-fold cross-validation, was performed at the 33-month follow-up evaluation, and the model’s performance was compared with that of the Cox regression and recalibrated Framingham Risk Score models. An 11-variable combination was considered most valuable for predicting outcomes using the ML approach. The C statistic for identifying patients with composite end points was 0.757 (95% CI, 0.660–0.854) for the ML model, whereas for Cox regression model and the recalibrated Framingham Risk Score model it was 0.723 (95% CI, 0.636–0.810) and 0.529 (95% CI, 0.403–0.655). The ML approach was comparable with Cox regression for determining the clinical prognosis of young patients with hypertension and was better than that of the recalibrated Framingham Risk Score model.
Collapse
Affiliation(s)
- Xueyi Wu
- From the Hypertension Center (X.W., W.W., K.L., Y.Q., X.S., W.M., Y.Z., H.Z., X.Z., H.W., X.J., J.C., L.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xinglong Yuan
- School of Reliability and Systems Engineering, Beihang University, Beijing, People’s Republic of China (X.Y., W.C., S.Z.)
| | - Wei Wang
- From the Hypertension Center (X.W., W.W., K.L., Y.Q., X.S., W.M., Y.Z., H.Z., X.Z., H.W., X.J., J.C., L.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Kai Liu
- From the Hypertension Center (X.W., W.W., K.L., Y.Q., X.S., W.M., Y.Z., H.Z., X.Z., H.W., X.J., J.C., L.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Ying Qin
- From the Hypertension Center (X.W., W.W., K.L., Y.Q., X.S., W.M., Y.Z., H.Z., X.Z., H.W., X.J., J.C., L.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiaolu Sun
- From the Hypertension Center (X.W., W.W., K.L., Y.Q., X.S., W.M., Y.Z., H.Z., X.Z., H.W., X.J., J.C., L.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Wenjun Ma
- From the Hypertension Center (X.W., W.W., K.L., Y.Q., X.S., W.M., Y.Z., H.Z., X.Z., H.W., X.J., J.C., L.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yubao Zou
- From the Hypertension Center (X.W., W.W., K.L., Y.Q., X.S., W.M., Y.Z., H.Z., X.Z., H.W., X.J., J.C., L.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Huimin Zhang
- From the Hypertension Center (X.W., W.W., K.L., Y.Q., X.S., W.M., Y.Z., H.Z., X.Z., H.W., X.J., J.C., L.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xianliang Zhou
- From the Hypertension Center (X.W., W.W., K.L., Y.Q., X.S., W.M., Y.Z., H.Z., X.Z., H.W., X.J., J.C., L.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Haiying Wu
- From the Hypertension Center (X.W., W.W., K.L., Y.Q., X.S., W.M., Y.Z., H.Z., X.Z., H.W., X.J., J.C., L.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiongjing Jiang
- From the Hypertension Center (X.W., W.W., K.L., Y.Q., X.S., W.M., Y.Z., H.Z., X.Z., H.W., X.J., J.C., L.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Jun Cai
- From the Hypertension Center (X.W., W.W., K.L., Y.Q., X.S., W.M., Y.Z., H.Z., X.Z., H.W., X.J., J.C., L.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Wenbing Chang
- School of Reliability and Systems Engineering, Beihang University, Beijing, People’s Republic of China (X.Y., W.C., S.Z.)
| | - Shenghan Zhou
- School of Reliability and Systems Engineering, Beihang University, Beijing, People’s Republic of China (X.Y., W.C., S.Z.)
| | - Lei Song
- From the Hypertension Center (X.W., W.W., K.L., Y.Q., X.S., W.M., Y.Z., H.Z., X.Z., H.W., X.J., J.C., L.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Cardiovascular Disease (L.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- National Clinical Research Center of Cardiovascular Diseases (L.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Palacios-Ramírez R, Hernanz R, Martín A, Pérez-Girón JV, Barrús MT, González-Carnicero Z, Aguado A, Jaisser F, Briones AM, Salaices M, Alonso MJ. Pioglitazone Modulates the Vascular Contractility in Hypertension by Interference with ET-1 Pathway. Sci Rep 2019; 9:16461. [PMID: 31712626 PMCID: PMC6848177 DOI: 10.1038/s41598-019-52839-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023] Open
Abstract
Endothelin-1 (ET-1) is an important modulator of the vascular tone and a proinflammatory molecule that contributes to the vascular damage observed in hypertension. Peroxisome-proliferator activated receptors-γ (PPARγ) agonists show cardioprotective properties by decreasing inflammatory molecules such as COX-2 and reactive oxygen species (ROS), among others. We investigated the possible modulatory effect of PPARγ activation on the vascular effects of ET-1 in hypertension. In spontaneously hypertensive rats (SHR), but not in normotensive rats, ET-1 enhanced phenylephrine-induced contraction through ETA by a mechanism dependent on activation of TP receptors by COX-2-derived prostacyclin and reduction in NO bioavailability due to enhanced ROS production. In SHR, the PPARγ agonist pioglitazone (2.5 mg/Kg·day, 28 days) reduced the increased ETA levels and increased those of ETB. After pioglitazone treatment of SHR, ET-1 through ETB decreased ROS levels that resulted in increased NO bioavailability and diminished phenylephrine contraction. In vascular smooth muscle cells from SHR, ET-1 increased ROS production through AP-1 and NFκB activation, leading to enhanced COX-2 expression. These effects were blocked by pioglitazone. In summary, in hypertension, pioglitazone shifts the vascular ETA/ETB ratio, reduces ROS/COX-2 activation and increases NO availability; these changes explain the effect of ET-1 decreasing phenylephrine-induced contraction.
Collapse
Affiliation(s)
- Roberto Palacios-Ramírez
- Depto. de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain.,Institut National de la Santé et de la Recherche Médicale Inserm U1138, Cordeliers Institute, Paris VI-University, Paris, France
| | - Raquel Hernanz
- Depto. de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Angela Martín
- Depto. de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - José V Pérez-Girón
- Depto. de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - María T Barrús
- Depto. de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Zoe González-Carnicero
- Depto. de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Andrea Aguado
- Depto. de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital La Paz (IdiPaz), Madrid, Spain
| | - Frederic Jaisser
- Institut National de la Santé et de la Recherche Médicale Inserm U1138, Cordeliers Institute, Paris VI-University, Paris, France
| | - Ana M Briones
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain.,Depto. de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital La Paz (IdiPaz), Madrid, Spain
| | - Mercedes Salaices
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain.,Depto. de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital La Paz (IdiPaz), Madrid, Spain
| | - María J Alonso
- Depto. de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain. .,CIBER de Enfermedades Cardiovasculares, Madrid, Spain.
| |
Collapse
|
5
|
Pazopanib, Cabozantinib, and Vandetanib in the Treatment of Progressive Medullary Thyroid Cancer with a Special Focus on the Adverse Effects on Hypertension. Int J Mol Sci 2018; 19:ijms19103258. [PMID: 30347815 PMCID: PMC6214082 DOI: 10.3390/ijms19103258] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/19/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
Medullary thyroid cancer (MTC) is a rare malignancy with a poor prognosis. First line therapy is surgery, which is the only curative method of the disease. However, in non-operable cases or with tumor progression and metastases, a systemic treatment is necessary. This form of cancer is often insensitive to conventional chemotherapy, but the use of tyrosine kinase inhibitors (TKIs), such as pazopanib, cabozantinib, and vandetanib, has shown promising results with an increase in progression-free survival and prolonged lifetime. Therefore, we focused on the pharmacological characteristics of TKIs, their mechanism of action, their application as a secondary treatment option for MTC, their efficacy as a cancer drug treatment, and reviewed the ongoing clinical trials. TKIs also act systemically causing various adverse events (AEs). One common AE of this treatment is hypertension, known to be associated with cardiovascular disease and can therefore potentially worsen the well-being of the treated patients. The available treatment strategies of drug-induced hypertension were discussed. The mechanism behind the development of hypertension is still unclear. Therefore, the treatment of this AE remains symptomatic. Thus, future studies are necessary to investigate the link between tumor growth inhibition and hypertension. In addition, optimized, individual treatment strategies should be implemented.
Collapse
|
6
|
Stanhewicz AE, Jandu S, Santhanam L, Alexander LM. Alterations in endothelin type B receptor contribute to microvascular dysfunction in women who have had preeclampsia. Clin Sci (Lond) 2017; 131:2777-2789. [PMID: 29042489 PMCID: PMC5922254 DOI: 10.1042/cs20171292] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/26/2017] [Accepted: 10/16/2017] [Indexed: 12/21/2022]
Abstract
Microvascular dysfunction originating during a preeclamptic pregnancy persists postpartum and probably contributes to increased CVD risk in these women. One putative mechanism contributing to this dysfunction is increased vasoconstrictor sensitivity to endothelin-1 (ET-1), mediated by alterations in ET-1 receptor type-B (ETBR). We evaluated ET-1 sensitivity, ETAR, and ETBR contributions to ET-1-mediated constriction, and the mechanistic role of ETBR in endothelium-dependent dilation in vivo in the microvasculature of postpartum women who had preeclampsia (PrEC, n=12) and control women who had a healthy pregnancy (HC, n=12). We hypothesized that (1) PrEC would have a greater vasoconstrictor response to ET-1, and (2) reduced ETBR-mediated dilation. We further hypothesized that ETBR-blockade would attenuate endothelium-dependent vasodilation in HC, but not PrEC. Microvascular reactivity was assessed by measurement of cutaneous vascular conductance responses to graded infusion of ET-1 (10-20-10-8 mol/l), ET-1 + 500 nmol/l BQ-123 (ETAR-blockade), and ET-1 + 300 nmol/l BQ-788 (ETBR-blockade), and during graded infusion of acetylcholine (ACh, 10-7-102 mmol/l) and a standardized local heating protocol with and without ETBR-inhibition. PrEC had an increased vasoconstriction response to ET-1 (P=0.02). PrEC demonstrated reduced dilation responses to selective ETBR stimulation with ET-1 (P=0.01). ETBR-inhibition augmented ET-1-mediated constriction in HC (P=0.01) but attenuated ET-1-mediated constriction in PrEC (P=0.003). ETBR-inhibition attenuated endothelium-dependent vasodilation responses to 100mmol/l ACh (P=0.04) and local heat (P=0.003) in HC but increased vasodilation (ACh: P=0.01; local heat: P=0.03) in PrEC. Women who have had preeclampsia demonstrate augmented vasoconstrictor sensitivity to ET-1, mediated by altered ETBR signaling. Furthermore, altered ETBR function contributes to diminished endothelium-dependent dilation in previously preeclamptic women.
Collapse
Affiliation(s)
- Anna E Stanhewicz
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, U.S.A.
| | - Sandeep Jandu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, U.S.A
| | - Lakshmi Santhanam
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, U.S.A
| | - Lacy M Alexander
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, U.S.A
| |
Collapse
|
7
|
Kansanen E, Kuosmanen SM, Ruotsalainen AK, Hynynen H, Levonen AL. Nitro-Oleic Acid Regulates Endothelin Signaling in Human Endothelial Cells. Mol Pharmacol 2017; 92:481-490. [DOI: 10.1124/mol.117.109751] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/02/2017] [Indexed: 11/22/2022] Open
|
8
|
Ancker OV, Wehland M, Bauer J, Infanger M, Grimm D. The Adverse Effect of Hypertension in the Treatment of Thyroid Cancer with Multi-Kinase Inhibitors. Int J Mol Sci 2017; 18:E625. [PMID: 28335429 PMCID: PMC5372639 DOI: 10.3390/ijms18030625] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 02/04/2023] Open
Abstract
The treatment of thyroid cancer has promising prospects, mostly through the use of surgical or radioactive iodine therapy. However, some thyroid cancers, such as progressive radioactive iodine-refractory differentiated thyroid carcinoma, are not remediable with conventional types of treatment. In these cases, a treatment regimen with multi-kinase inhibitors is advisable. Unfortunately, clinical trials have shown a large number of patients, treated with multi-kinase inhibitors, being adversely affected by hypertension. This means that treatment of thyroid cancer with multi-kinase inhibitors prolongs progression-free and overall survival of patients, but a large number of patients experience hypertension as an adverse effect of the treatment. Whether the prolonged lifetime is sufficient to develop sequelae from hypertension is unclear, but late-stage cancer patients often have additional diseases, which can be complicated by the presence of hypertension. Since the exact mechanisms of the rise of hypertension in these patients are still unknown, the only available strategy is treating the symptoms. More studies determining the pathogenesis of hypertension as a side effect to cancer treatment as well as outcomes of dose management of cancer drugs are necessary to improve future therapy options for hypertension as an adverse effect to cancer therapy with multi-kinase inhibitors.
Collapse
Affiliation(s)
- Ole Vincent Ancker
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, 8000 Aarhus C, Denmark.
| | - Markus Wehland
- Clinic and Policlinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Johann Bauer
- Max-Planck-Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Manfred Infanger
- Clinic and Policlinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Daniela Grimm
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, 8000 Aarhus C, Denmark.
- Clinic and Policlinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany.
| |
Collapse
|
9
|
Vanhoutte PM, Shimokawa H, Feletou M, Tang EHC. Endothelial dysfunction and vascular disease - a 30th anniversary update. Acta Physiol (Oxf) 2017; 219:22-96. [PMID: 26706498 DOI: 10.1111/apha.12646] [Citation(s) in RCA: 597] [Impact Index Per Article: 74.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/27/2015] [Accepted: 12/17/2015] [Indexed: 02/06/2023]
Abstract
The endothelium can evoke relaxations of the underlying vascular smooth muscle, by releasing vasodilator substances. The best-characterized endothelium-derived relaxing factor (EDRF) is nitric oxide (NO) which activates soluble guanylyl cyclase in the vascular smooth muscle cells, with the production of cyclic guanosine monophosphate (cGMP) initiating relaxation. The endothelial cells also evoke hyperpolarization of the cell membrane of vascular smooth muscle (endothelium-dependent hyperpolarizations, EDH-mediated responses). As regards the latter, hydrogen peroxide (H2 O2 ) now appears to play a dominant role. Endothelium-dependent relaxations involve both pertussis toxin-sensitive Gi (e.g. responses to α2 -adrenergic agonists, serotonin, and thrombin) and pertussis toxin-insensitive Gq (e.g. adenosine diphosphate and bradykinin) coupling proteins. New stimulators (e.g. insulin, adiponectin) of the release of EDRFs have emerged. In recent years, evidence has also accumulated, confirming that the release of NO by the endothelial cell can chronically be upregulated (e.g. by oestrogens, exercise and dietary factors) and downregulated (e.g. oxidative stress, smoking, pollution and oxidized low-density lipoproteins) and that it is reduced with ageing and in the course of vascular disease (e.g. diabetes and hypertension). Arteries covered with regenerated endothelium (e.g. following angioplasty) selectively lose the pertussis toxin-sensitive pathway for NO release which favours vasospasm, thrombosis, penetration of macrophages, cellular growth and the inflammatory reaction leading to atherosclerosis. In addition to the release of NO (and EDH, in particular those due to H2 O2 ), endothelial cells also can evoke contraction of the underlying vascular smooth muscle cells by releasing endothelium-derived contracting factors. Recent evidence confirms that most endothelium-dependent acute increases in contractile force are due to the formation of vasoconstrictor prostanoids (endoperoxides and prostacyclin) which activate TP receptors of the vascular smooth muscle cells and that prostacyclin plays a key role in such responses. Endothelium-dependent contractions are exacerbated when the production of nitric oxide is impaired (e.g. by oxidative stress, ageing, spontaneous hypertension and diabetes). They contribute to the blunting of endothelium-dependent vasodilatations in aged subjects and essential hypertensive and diabetic patients. In addition, recent data confirm that the release of endothelin-1 can contribute to endothelial dysfunction and that the peptide appears to be an important contributor to vascular dysfunction. Finally, it has become clear that nitric oxide itself, under certain conditions (e.g. hypoxia), can cause biased activation of soluble guanylyl cyclase leading to the production of cyclic inosine monophosphate (cIMP) rather than cGMP and hence causes contraction rather than relaxation of the underlying vascular smooth muscle.
Collapse
Affiliation(s)
- P. M. Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
| | - H. Shimokawa
- Department of Cardiovascular Medicine; Tohoku University; Sendai Japan
| | - M. Feletou
- Department of Cardiovascular Research; Institut de Recherches Servier; Suresnes France
| | - E. H. C. Tang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
- School of Biomedical Sciences; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
| |
Collapse
|
10
|
Davenport AP, Hyndman KA, Dhaun N, Southan C, Kohan DE, Pollock JS, Pollock DM, Webb DJ, Maguire JJ. Endothelin. Pharmacol Rev 2016; 68:357-418. [PMID: 26956245 PMCID: PMC4815360 DOI: 10.1124/pr.115.011833] [Citation(s) in RCA: 523] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The endothelins comprise three structurally similar 21-amino acid peptides. Endothelin-1 and -2 activate two G-protein coupled receptors, ETA and ETB, with equal affinity, whereas endothelin-3 has a lower affinity for the ETA subtype. Genes encoding the peptides are present only among vertebrates. The ligand-receptor signaling pathway is a vertebrate innovation and may reflect the evolution of endothelin-1 as the most potent vasoconstrictor in the human cardiovascular system with remarkably long lasting action. Highly selective peptide ETA and ETB antagonists and ETB agonists together with radiolabeled analogs have accurately delineated endothelin pharmacology in humans and animal models, although surprisingly no ETA agonist has been discovered. ET antagonists (bosentan, ambrisentan) have revolutionized the treatment of pulmonary arterial hypertension, with the next generation of antagonists exhibiting improved efficacy (macitentan). Clinical trials continue to explore new applications, particularly in renal failure and for reducing proteinuria in diabetic nephropathy. Translational studies suggest a potential benefit of ETB agonists in chemotherapy and neuroprotection. However, demonstrating clinical efficacy of combined inhibitors of the endothelin converting enzyme and neutral endopeptidase has proved elusive. Over 28 genetic modifications have been made to the ET system in mice through global or cell-specific knockouts, knock ins, or alterations in gene expression of endothelin ligands or their target receptors. These studies have identified key roles for the endothelin isoforms and new therapeutic targets in development, fluid-electrolyte homeostasis, and cardiovascular and neuronal function. For the future, novel pharmacological strategies are emerging via small molecule epigenetic modulators, biologicals such as ETB monoclonal antibodies and the potential of signaling pathway biased agonists and antagonists.
Collapse
Affiliation(s)
- Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Kelly A Hyndman
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Neeraj Dhaun
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Christopher Southan
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Donald E Kohan
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Jennifer S Pollock
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - David M Pollock
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - David J Webb
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Janet J Maguire
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| |
Collapse
|
11
|
Role of the endothelin system in sexual dimorphism in cardiovascular and renal diseases. Life Sci 2016; 159:20-29. [PMID: 26939577 DOI: 10.1016/j.lfs.2016.02.093] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 02/05/2016] [Accepted: 02/26/2016] [Indexed: 02/08/2023]
Abstract
Epidemiological studies of blood pressure in men and women and in experimental animal models point to substantial sex differences in the occurrence of arterial hypertension as well as in the various manifestations of arterial hypertension, including myocardial infarction, stroke, retinopathy, chronic kidney failure, as well as hypertension-associated diseases (e.g. diabetes mellitus). Increasing evidence demonstrates that the endothelin (ET) system is a major player in the genesis of sex differences in cardiovascular and renal physiology and diseases. Sex differences in the ET system have been described in the vasculature, heart and kidney of humans and experimental animals. In the current review, we briefly describe the role of the ET system in the cardiovascular and renal systems. We also update information on sex differences at different levels of the ET system including synthesis, circulating and tissue levels, receptors, signaling pathways, ET actions, and responses to antagonists in different organs that contribute to blood pressure regulation. Knowledge of the mechanisms underlying sex differences in arterial hypertension can impact therapeutic strategies. Sex-targeted and/or sex-tailored approaches may improve treatment of cardiovascular and renal diseases.
Collapse
|
12
|
Gillis EE, Sasser JM, Sullivan JC. Endothelin, sex, and pregnancy: unique considerations for blood pressure control in females. Am J Physiol Regul Integr Comp Physiol 2016; 310:R691-6. [PMID: 26936781 DOI: 10.1152/ajpregu.00427.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/24/2016] [Indexed: 12/31/2022]
Abstract
Endothelin-1 (ET-1) is a potent vasoconstrictor, and dysregulation of the endothelin (ET) system has been implicated in the development of hypertension. Sex differences in the ET system have been identified in ET receptor expression and activation, levels of ET-1, and downstream mediators of the ET system. More specifically, males have greater ET-1/ETA receptor activation, whereas females exhibit greater ETB receptor activation. These differences have been suggested to contribute to the sex differences observed in blood pressure control, with greater ETB receptor activation in females potentially acting as an important pathway contributing to the lower prevalence of hypertension in young females compared with age-matched males. This hypothesis is further supported by studies in pregnancy; the role of the ET system is enhanced during pregnancy, with dysregulation of the ET system resulting in preeclampsia. Further research is necessary to elucidate the relative roles of the ET system in blood pressure control in both sexes and to further explore the potential benefits of pharmacological ET blockade in women.
Collapse
Affiliation(s)
- Ellen E Gillis
- Department of Physiology, Georgia Regents University, Augusta, Georgia; and
| | - Jennifer M Sasser
- Department of Pharmacology, University of Mississippi Medical Center, Jackson, Mississippi
| | | |
Collapse
|