1
|
Nakazawa D. Targeting complement in kidney transplantation: Therapeutic approaches based on preclinical and experimental evidence. Transplant Rev (Orlando) 2024; 39:100887. [PMID: 39612603 DOI: 10.1016/j.trre.2024.100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/14/2024] [Accepted: 11/12/2024] [Indexed: 12/01/2024]
Abstract
The complement system is implicated in various facets of kidney transplantation, including ischemia-reperfusion injury (IRI), delayed graft function, allograft rejection, and chronic allograft injury. IRI, prevalent in cadaveric renal transplantation, leads to acute tubular necrosis and engages innate immunity, including neutrophils and the complement system, fostering a cycle of inflammation and necrosis. Experimental and preclinical evidence suggest that targeting the complement system could offer therapeutic benefits in IRI during kidney transplantation. This article explores potential therapeutic approaches targeting complement pathways in kidney transplantation, drawing from experimental and preclinical research findings.
Collapse
Affiliation(s)
- Daigo Nakazawa
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
2
|
Nan QY, Piao SG, Jin JZ, Chung BH, Yang CW, Li C. Pathogenesis and management of renal fibrosis induced by unilateral ureteral obstruction. Kidney Res Clin Pract 2024; 43:586-599. [PMID: 38325866 PMCID: PMC11467363 DOI: 10.23876/j.krcp.23.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 02/09/2024] Open
Abstract
Regardless of the underlying etiology, renal fibrosis is the final histological outcome of progressive kidney disease. Unilateral ureteral obstruction (UUO) is an ideal and reproducible experimental rodent model of renal fibrosis, which is characterized by tubulointerstitial inflammatory responses, accumulation of extracellular matrix, tubular dilatation and atrophy, and fibrosis. The magnitude of UUO-induced renal fibrosis is experimentally manipulated by the species chosen, animal age, and the severity and duration of the obstruction, while relief of the obstruction allows the animal to recover from fibrosis. The pathogenesis of renal fibrosis is complex and multifactorial and is orchestrated by activation of renin-angiotensin system (RAS), oxidative stress, inflammatory response, transforming growth factor beta 1-Smad pathway, activated myofibroblasts, cell death (apoptosis, autophagy, ferroptosis, and necroptosis), destruction of intracellular organelles, and signaling pathway. The current therapeutic approaches have limited efficacy. Inhibition of RAS and use of antioxidants and antidiabetic drugs, such as inhibitors of sodium-glucose cotransporter 2 and dipeptidyl peptidase-4, have recently gained attention as therapeutic strategies to prevent renal scarring. This literature review highlights the state of the art regarding the molecular mechanisms relevant to the management of renal fibrosis caused by UUO.
Collapse
Affiliation(s)
- Qi Yan Nan
- Department of Nephrology, Yanbian University Hospital, Yanji, China
- Department of Intensive Care Unit, Yanbian University Hospital, Yanji, China
| | - Shang Guo Piao
- Department of Nephrology, Yanbian University Hospital, Yanji, China
| | - Ji Zhe Jin
- Department of Nephrology, Yanbian University Hospital, Yanji, China
| | - Byung Ha Chung
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chul Woo Yang
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Can Li
- Department of Nephrology, Yanbian University Hospital, Yanji, China
| |
Collapse
|
3
|
Tutunea-Fatan E, Arumugarajah S, Suri RS, Edgar CR, Hon I, Dikeakos JD, Gunaratnam L. Sensing Dying Cells in Health and Disease: The Importance of Kidney Injury Molecule-1. J Am Soc Nephrol 2024; 35:795-808. [PMID: 38353655 PMCID: PMC11164124 DOI: 10.1681/asn.0000000000000334] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
Kidney injury molecule-1 (KIM-1), also known as T-cell Ig and mucin domain-1 (TIM-1), is a widely recognized biomarker for AKI, but its biological function is less appreciated. KIM-1/TIM-1 belongs to the T-cell Ig and mucin domain family of conserved transmembrane proteins, which bear the characteristic six-cysteine Ig-like variable domain. The latter enables binding of KIM-1/TIM-1 to its natural ligand, phosphatidylserine, expressed on the surface of apoptotic cells and necrotic cells. KIM-1/TIM-1 is expressed in a variety of tissues and plays fundamental roles in regulating sterile inflammation and adaptive immune responses. In the kidney, KIM-1 is upregulated on injured renal proximal tubule cells, which transforms them into phagocytes for clearance of dying cells and helps to dampen sterile inflammation. TIM-1, expressed in T cells, B cells, and natural killer T cells, is essential for cell activation and immune regulatory functions in the host. Functional polymorphisms in the gene for KIM-1/TIM-1, HAVCR1 , have been associated with susceptibility to immunoinflammatory conditions and hepatitis A virus-induced liver failure, which is thought to be due to a differential ability of KIM-1/TIM-1 variants to bind phosphatidylserine. This review will summarize the role of KIM-1/TIM-1 in health and disease and its potential clinical applications as a biomarker and therapeutic target in humans.
Collapse
Affiliation(s)
- Elena Tutunea-Fatan
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada
| | - Shabitha Arumugarajah
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Rita S. Suri
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Division of Nephrology, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Cassandra R. Edgar
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ingrid Hon
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jimmy D. Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Lakshman Gunaratnam
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Division of Nephrology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
4
|
Duo L, Chen L, Zuo Y, Guo J, He M, Zhao H, Kang Y, Tang W. Machine learning model to estimate probability of remission in patients with idiopathic membranous nephropathy. Int Immunopharmacol 2023; 125:111126. [PMID: 37913570 DOI: 10.1016/j.intimp.2023.111126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/21/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Idiopathic membranous nephropathy (IMN) is a type of nephrotic syndrome and the leading cause of chronic kidney disease. As far as we know, no predictive model for assessing the prognosis of IMN is currently available. This study aims to establish a nomogram to predict remission probability in patients with IMN and assists clinicians to make treatment decisions. METHODS A total of 266 patients with histopathology-proven IMN were included in this study. Least absolute shrinkage and selection operator regression was utilized to identify the most important variables. Subsequently, multivariate Cox regression analysis was conducted to construct a nomogram, and bootstrap resampling was employed for internal validation. Receiver operating characteristic and calibration curves and decision curve analysis (DCA) were utilized to assess the performance and clinical utility of the developed model. RESULTS A prognostic nomogram was established, which incorporated creatinine, glomerular_basement_membrane_thickening, gender, IgG_deposition, low-density lipoprotein cholesterol, and fibrinogen. The areas under the curves of the 3-, 12-, 24-month were 0.751, 0.725, and 0.830 in the training set, and 0.729, 0.730, and 0.948 in the validation set respectively. These results and calibration curves demonstrated the good discrimination and calibration of the nomogram in the training and validation sets. Additionally, DCA indicated that the nomogram was useful for remission prediction in clinical settings. CONCLUSION The nomogram was useful for clinicians to evaluate the prognosis of patients with IMN in early stage.
Collapse
Affiliation(s)
- Lijin Duo
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lei Chen
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yongdi Zuo
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiulin Guo
- Information Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Manrong He
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hongsen Zhao
- Information Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yingxi Kang
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wanxin Tang
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
5
|
García-Giménez J, Córdoba-David G, Rayego-Mateos S, Cannata-Ortiz P, Carrasco S, Ruiz-Ortega M, Fernandez-Fernandez B, Ortiz A, Ramos AM. STING1 deficiency ameliorates immune-mediated crescentic glomerulonephritis in mice. J Pathol 2023; 261:309-322. [PMID: 37650295 DOI: 10.1002/path.6177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/10/2023] [Accepted: 07/20/2023] [Indexed: 09/01/2023]
Abstract
Rapidly progressive/crescentic glomerulonephritis (RPGN/CGN) involves the formation of glomerular crescents by maladaptive differentiation of parietal epithelial cells that leads to rapid loss of renal function. The molecular mechanisms of crescent formation are poorly understood. Therefore, new insights into molecular mechanisms could identify alternative therapeutic targets for RPGN/CGN. Analysis of kidney biopsies from patients with RPGN revealed increased interstitial, glomerular, and tubular expression of STING1, an accessory protein of the c-GAS-dependent DNA-sensing pathway, which was also observed in murine nephrotoxic nephritis induced by an anti-GBM antibody. STING1 was expressed by key cell types involved in RPGN and crescent formation such as glomerular parietal epithelial cells, and tubular cells as well as by inflammation accessory cells. In functional in vivo studies, Sting1-/- mice with nephrotoxic nephritis had lower kidney cytokine expression, milder kidney infiltration by innate and adaptive immune cells, and decreased disease severity. Pharmacological STING1 inhibition mirrored these findings. Direct STING1 agonism in parietal and tubular cells activated the NF-κB-dependent cytokine response and the interferon-induced genes (ISGs) program. These responses were also triggered in a STING1-dependent manner by the pro-inflammatory cytokine TWEAK. These results identify STING1 activation as a pathological mechanism in RPGN/CGN and TWEAK as an activator of STING1. Pharmacological strategies targeting STING1, or upstream regulators may therefore be potential alternatives to treat RPGN. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jorge García-Giménez
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid, Madrid, Spain
| | - Gina Córdoba-David
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid, Madrid, Spain
| | - Sandra Rayego-Mateos
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid, Madrid, Spain
| | - Pablo Cannata-Ortiz
- Department of Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid, Madrid, Spain
| | - Susana Carrasco
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid, Madrid, Spain
- RICORS2040, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Beatriz Fernandez-Fernandez
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid, Madrid, Spain
- RICORS2040, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medicine, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid, Madrid, Spain
- RICORS2040, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Pharmacology, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Adrián M Ramos
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid, Madrid, Spain
- RICORS2040, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
6
|
Chronic kidney disease and NLRP3 inflammasome: Pathogenesis, development and targeted therapeutic strategies. Biochem Biophys Rep 2022; 33:101417. [PMID: 36620089 PMCID: PMC9813680 DOI: 10.1016/j.bbrep.2022.101417] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022] Open
Abstract
Chronic kidney disease (CKD) is a global health concern and public health priority. The condition often involves inflammation due to the accumulation of toxins and the reduced clearance of inflammatory cytokines, leading to gradual loss of kidney function. Because of the tremendous burden of CKD, finding effective treatment strategies against inflammation is crucial. Substantial evidence suggests an association between kidney disease and the inflammasome. As a well-known multiprotein signaling complex, the NLR family pyrin domain containing 3 (NLRP3) inflammasome plays an important role in inducing renal inflammation and fibrosis. Small molecule inhibitors targeting the NLRP3 inflammasome are potential agents for the treatment of CKD.The NLRP3 inflammasome activation amplifies the inflammation response, promoting pyroptotic cell death. Thus, it may contribute to the onset and progression of CKD, but the mechanism behind inflammasome activation in CKD remains obscure.In this review, we summarized recent findings on the role of the NLRP3 inflammasome in CKD and new strategies targeting the NLRP3 inflammasome.
Collapse
Key Words
- ,IL-18, Interleukin-18
- ASC, apoptosis-associated speck-like protein
- Ang II, Angiotensin II
- CKD, Chronic kidney disease
- Chronic kidney disease
- DAMPs, damage-associated molecular patterns
- ESRD, End-stage renal disease
- GFR, glomerular filtration rate
- HK-2, renal tubular epithelial cells
- IL-1β, Interleukin-1β
- Inflammasome
- Kidney function
- LRR, leucine-rich repeat
- NEK7, NIMA-related kinase 7
- NF-kB, nuclear factor kappa-B
- NLRP3, NLR family pyrin domain containing 3
- NOD-like receptor
- PAMPs, Pathogen-associated molecular patterns
- ROS, reactive oxygen species
- TXNIP, thioredoxin-interacting protein
Collapse
|
7
|
Sharma P, Karnam K, Mahale A, Sedmaki K, Krishna Venuganti V, Kulkarni OP. HDAC5 RNA interference ameliorates acute renal injury by upregulating KLF2 and inhibiting NALP3 expression in a mouse model of oxalate nephropathy. Int Immunopharmacol 2022; 112:109264. [DOI: 10.1016/j.intimp.2022.109264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 11/30/2022]
|
8
|
Iglesias M, Brennan DC, Larsen CP, Raimondi G. Targeting inflammation and immune activation to improve CTLA4-Ig-based modulation of transplant rejection. Front Immunol 2022; 13:926648. [PMID: 36119093 PMCID: PMC9478663 DOI: 10.3389/fimmu.2022.926648] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
For the last few decades, Calcineurin inhibitors (CNI)-based therapy has been the pillar of immunosuppression for prevention of organ transplant rejection. However, despite exerting effective control of acute rejection in the first year post-transplant, prolonged CNI use is associated with significant side effects and is not well suited for long term allograft survival. The implementation of Costimulation Blockade (CoB) therapies, based on the interruption of T cell costimulatory signals as strategy to control allo-responses, has proven potential for better management of transplant recipients compared to CNI-based therapies. The use of the biologic cytotoxic T-lymphocyte associated protein 4 (CTLA4)-Ig is the most successful approach to date in this arena. Following evaluation of the BENEFIT trials, Belatacept, a high-affinity version of CTLA4-Ig, has been FDA approved for use in kidney transplant recipients. Despite its benefits, the use of CTLA4-Ig as a monotherapy has proved to be insufficient to induce long-term allograft acceptance in several settings. Multiple studies have demonstrated that events that induce an acute inflammatory response with the consequent release of proinflammatory cytokines, and an abundance of allograft-reactive memory cells in the recipient, can prevent the induction of or break established immunomodulation induced with CoB regimens. This review highlights advances in our understanding of the factors and mechanisms that limit CoB regimens efficacy. We also discuss recent successes in experimentally designing complementary therapies that favor CTLA4-Ig effect, affording a better control of transplant rejection and supporting their clinical applicability.
Collapse
Affiliation(s)
- Marcos Iglesias
- Vascularized and Composite Allotransplantation (VCA) Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Giorgio Raimondi, ; Marcos Iglesias,
| | - Daniel C. Brennan
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Christian P. Larsen
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Giorgio Raimondi
- Vascularized and Composite Allotransplantation (VCA) Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Giorgio Raimondi, ; Marcos Iglesias,
| |
Collapse
|
9
|
DeWolf SE, Kasimsetty SG, Hawkes AA, Stocks LM, Kurian SM, McKay DB. DAMPs Released From Injured Renal Tubular Epithelial Cells Activate Innate Immune Signals in Healthy Renal Tubular Epithelial Cells. Transplantation 2022; 106:1589-1599. [PMID: 34954736 PMCID: PMC9218002 DOI: 10.1097/tp.0000000000004038] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Renal ischemia-reperfusion injury (IRI) predictably causes acute kidney injury after shock and major cardiovascular procedures in all kidneys procured for transplantation. The earliest events of IRI are triggered by molecules released from injured cells, damage-associated molecular patterns (DAMPs), that bind pattern recognition receptors (PRRs) constitutively expressed on many cells within the kidney. Activation of PRR signaling leads to production of proinflammatory molecules, which incite a cascade of inflammatory events leading to acute kidney injury. Renal tubular epithelial cells (RTECs) are particularly susceptible to ischemic injury, and proximal RTEC injury is pathognomonic of renal IRI. To better understand how injured RTECs contribute to the cycle of deleterious inflammation in the setting of renal IRI, this study asked whether DAMPs released from injured RTECs induced PRR signals in healthy RTECs. METHODS Human RTECs were necrosed ex vivo to release intracellular DAMPs and resulting necrotic supernatant used to stimulate healthy RTECs, T lymphocytes, and monocytes. RESULTS DAMPs released from necrosed RTECs upregulated PRRs known to be associated with renal IRI and activated mitogen-activated protein kinase signaling pathways. Proinflammatory cytokines were upregulated in response to necrotic supernatant, and this upregulation was abrogated by MEK-1 inhibition. The RTEC-derived DAMPs were also potent inducers of T-cell activation/proliferation and monocyte migration. CONCLUSIONS This is the first study to our knowledge to show that endogenous DAMPs released from injured RTECs directly activate PRR signaling in healthy RTECs. These findings provide new insights directed to therapeutics for renal IRI.
Collapse
Affiliation(s)
- Sean E DeWolf
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
- Department of Pulmonary and Critical Care Medicine, University of California San Diego, San Diego, CA
| | - Sashi G Kasimsetty
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Alana A Hawkes
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Lisa M Stocks
- LifeSharing Organ Procurement Organization, San Diego, CA
| | - Sunil M Kurian
- Division of Cell and Organ Transplantion, Scripps Clinic and Green Hospital, La Jolla, CA
| | - Dianne B McKay
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
- Division of Cell and Organ Transplantion, Scripps Clinic and Green Hospital, La Jolla, CA
| |
Collapse
|
10
|
Gao Z, Zhang Z, Gu D, Li Y, Zhang K, Dong X, Liu L, Zhang J, Chen J, Wu D, Zeng M. Hemin mitigates contrast‐induced nephropathy by inhibiting ferroptosis via HO‐1/Nrf2/GPX4 pathway. Clin Exp Pharmacol Physiol 2022; 49:858-870. [PMID: 35598290 DOI: 10.1111/1440-1681.13673] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Zhao Gao
- Medical and Healthcare Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Ziyue Zhang
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Daqian Gu
- Department of Cardiology, 900 Hospital of The Joint Logistics Team, Fuzhou, Fujian, China
| | - Yunqian Li
- Medical and Healthcare Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Kun Zhang
- Medical and Healthcare Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Xiaoli Dong
- Department of Cardiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Lingli Liu
- Department of Clinical Laboratory, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Jiye Zhang
- Medical Laboratory, Liang Ping People's Hospital of Chongqing, Chongqing, China
| | - Jimin Chen
- Department of Pathology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Duozhi Wu
- Medical and Healthcare Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Min Zeng
- Medical and Healthcare Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
11
|
Choi HS, Mathew AP, Uthaman S, Vasukutty A, Kim IJ, Suh SH, Kim CS, Ma SK, Graham SA, Kim SW, Park IK, Bae EH. Inflammation-sensing catalase-mimicking nanozymes alleviate acute kidney injury via reversing local oxidative stress. J Nanobiotechnology 2022; 20:205. [PMID: 35477452 PMCID: PMC9044883 DOI: 10.1186/s12951-022-01410-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/03/2022] [Indexed: 11/10/2022] Open
Abstract
Background The reactive oxygen species (ROS) and inflammation, a critical contributor to tissue damage, is well-known to be associated with various disease. The kidney is susceptible to hypoxia and vulnerable to ROS. Thus, the vicious cycle between oxidative stress and renal hypoxia critically contributes to the progression of chronic kidney disease and finally, end-stage renal disease. Thus, delivering therapeutic agents to the ROS-rich inflammation site and releasing the therapeutic agents is a feasible solution. Results We developed a longer-circulating, inflammation-sensing, ROS-scavenging versatile nanoplatform by stably loading catalase-mimicking 1-dodecanethiol stabilized Mn3O4 (dMn3O4) nanoparticles inside ROS-sensitive nanomicelles (PTC), resulting in an ROS-sensitive nanozyme (PTC-M). Hydrophobic dMn3O4 nanoparticles were loaded inside PTC micelles to prevent premature release during circulation and act as a therapeutic agent by ROS-responsive release of loaded dMn3O4 once it reached the inflammation site. Conclusions The findings of our study demonstrated the successful attenuation of inflammation and apoptosis in the IRI mice kidneys, suggesting that PTC-M nanozyme could possess promising potential in AKI therapy. This study paves the way for high-performance ROS depletion in treating various inflammation-related diseases. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01410-z.
Collapse
Affiliation(s)
- Hong Sang Choi
- Departments of Internal Medicine, Chonnam National University Medical School, 160, Baekseo‑ro, Dong‑gu, Gwangju, 61469, Republic of Korea.,Departments of Internal Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Ansuja Pulickal Mathew
- Department of Biomedical Sciences, BK21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School, 160, Baekseo‑ro, Dong‑gu, Gwangju, 61469, Republic of Korea.,BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun-gun, Jeollanam-do, Republic of Korea
| | - Saji Uthaman
- Department of Biomedical Sciences, BK21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School, 160, Baekseo‑ro, Dong‑gu, Gwangju, 61469, Republic of Korea.,BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun-gun, Jeollanam-do, Republic of Korea
| | - Arathy Vasukutty
- Department of Biomedical Sciences, BK21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School, 160, Baekseo‑ro, Dong‑gu, Gwangju, 61469, Republic of Korea.,BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun-gun, Jeollanam-do, Republic of Korea
| | - In Jin Kim
- Departments of Internal Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Sang Heon Suh
- Departments of Internal Medicine, Chonnam National University Medical School, 160, Baekseo‑ro, Dong‑gu, Gwangju, 61469, Republic of Korea.,Departments of Internal Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Chang Seong Kim
- Departments of Internal Medicine, Chonnam National University Medical School, 160, Baekseo‑ro, Dong‑gu, Gwangju, 61469, Republic of Korea.,Departments of Internal Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Seong Kwon Ma
- Departments of Internal Medicine, Chonnam National University Medical School, 160, Baekseo‑ro, Dong‑gu, Gwangju, 61469, Republic of Korea.,Departments of Internal Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Sontyana Adonijah Graham
- Department of Biomedical Sciences, BK21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School, 160, Baekseo‑ro, Dong‑gu, Gwangju, 61469, Republic of Korea.,BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun-gun, Jeollanam-do, Republic of Korea
| | - Soo Wan Kim
- Departments of Internal Medicine, Chonnam National University Medical School, 160, Baekseo‑ro, Dong‑gu, Gwangju, 61469, Republic of Korea.,Departments of Internal Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences, BK21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School, 160, Baekseo‑ro, Dong‑gu, Gwangju, 61469, Republic of Korea. .,BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun-gun, Jeollanam-do, Republic of Korea.
| | - Eun Hui Bae
- Departments of Internal Medicine, Chonnam National University Medical School, 160, Baekseo‑ro, Dong‑gu, Gwangju, 61469, Republic of Korea. .,Departments of Internal Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea.
| |
Collapse
|
12
|
Abstract
Elderly individuals with chronic disorders tend to develop inflammaging, a condition associated with elevated levels of blood inflammatory markers, and increased susceptibility to chronic disease progression. Native and adaptive immunity are both involved in immune system senescence, kidney fibrosis and aging. The innate immune system is characterized by a limited number of receptors, constantly challenged by self and non-self stimuli. Circulating and kidney resident myeloid and lymphoid cells are all equipped with pattern recognition receptors (PRRs). Recent reports on PRRs show kidney overexpression of toll-like receptors (TLRs) in inflammaging autoimmune renal diseases, vasculitis, acute kidney injury and kidney transplant rejection. TLR upregulation leads to proinflammatory cytokine induction, fibrosis, and chronic kidney disease progression. TLR2 blockade in a murine model of renal ischemia reperfusion injury prevented the escape of natural killer cells and neutrophils by inflammaging kidney injury. Tumor necrosis factor-α blockade in endothelial cells with senescence-associated secretory phenotype significantly reduced interleukin-6 release. These findings should encourage experimental and translational clinical trials aimed at modulating renal inflammaging by native immunity blockade.
Collapse
|
13
|
Abstract
Ferroptosis is an iron-dependent cell death pathway and participates in various diseases. Current evidence suggests that ferroptosis can obviously affect the function of blood cells. This paper aims to elaborate the role of ferroptosis in blood cells and related diseases. First, abnormal ferroptosis damages the developing red blood cells by breaking systemic iron homeostasis, leading to erythropoiesis suppression and anaemia. Ferroptosis mediates neutrophils recruitment and neutrophil extracellular trap formation (NETosis). In T-cells, ferroptosis induces a novel point of synergy between immunotherapy and radiotherapy. Additionally, ferroptosis may mediate B cells differentiation, antibody responses and lymphoma. Nevertheless, increased ferroptosis can ameliorate acute myeloid leukaemia and T-cell leukaemia/lymphoma by inducing iron-dependent cancer cells death. Besides, ferroptosis activates platelets by increasing P-selectin, thus causing thromboembolism. Ferroptosis mediates virus infection and parasite infection by driving T-cell death and preventing T-cell immunity. Interestingly, ferroptosis is also considered as a critical player in COVID-19 infections, while targetting ferroptosis may also improve thromboembolism and prognosis in patients with COVID-19 infection. Overall, the crucial role of ferroptosis in blood cells will show a new therapeutic potential in blood cell-related diseases.HighlightsFerroptosis shows a new therapeutic potential for blood cell-related diseases.Ferroptosis damages erythropoiesis and thus induces anaemia.Ferroptosis induces platelet activation and leads to thromboembolism.Ferroptosis regulates T-cell and B-cell immunity, which participant in infectious diseases.Inversely, ferroptosis ameliorates acute myeloid leukaemia and T-cell leukaemia.
Collapse
Affiliation(s)
- Zhe Chen
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, China
| | - Jinyong Jiang
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, China
| | - Nian Fu
- Department of Gastroenterology, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
14
|
Marquez-Exposito L, Tejedor-Santamaria L, Santos-Sanchez L, Valentijn FA, Cantero-Navarro E, Rayego-Mateos S, Rodrigues-Diez RR, Tejera-Muñoz A, Marchant V, Sanz AB, Ortiz A, Goldschmeding R, Ruiz-Ortega M. Acute Kidney Injury is Aggravated in Aged Mice by the Exacerbation of Proinflammatory Processes. Front Pharmacol 2021; 12:662020. [PMID: 34239439 PMCID: PMC8258347 DOI: 10.3389/fphar.2021.662020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
Acute kidney injury (AKI) is more frequent in elderly patients. Mechanisms contributing to AKI (tubular cell death, inflammatory cell infiltration, impaired mitochondrial function, and prolonged cell-cycle arrest) have been linked to cellular senescence, a process implicated in regeneration failure and progression to fibrosis. However, the molecular and pathological basis of the age-related increase in AKI incidence is not completely understood. To explore these mechanisms, experimental AKI was induced by folic acid (FA) administration in young (3-months-old) and old (1-year-old) mice, and kidneys were evaluated in the early phase of AKI, at 48 h. Tubular damage score, KIM-1 expression, the recruitment of infiltrating immune cells (mainly neutrophils and macrophages) and proinflammatory gene expression were higher in AKI kidneys of old than of young mice. Tubular cell death in FA-AKI involves several pathways, such as regulated necrosis and apoptosis. Ferroptosis and necroptosis cell-death pathways were upregulated in old AKI kidneys. In contrast, caspase-3 activation was only found in young but not in old mice. Moreover, the antiapoptotic factor BCL-xL was significantly overexpressed in old, injured kidneys, suggesting an age-related apoptosis suppression. AKI kidneys displayed evidence of cellular senescence, such as increased levels of cyclin dependent kinase inhibitors p16ink4a and p21cip1, and of the DNA damage response marker γH2AX. Furthermore, p21cip1 mRNA expression and nuclear staining for p21cip1 and γH2AX were higher in old than in young FA-AKI mice, as well as the expression of senescence-associated secretory phenotype (SASP) components (Il-6, Tgfb1, Ctgf, and Serpine1). Interestingly, some infiltrating immune cells were p21 or γH2AX positive, suggesting that molecular senescence in the immune cells (“immunosenescence”) are involved in the increased severity of AKI in old mice. In contrast, expression of renal protective factors was dramatically downregulated in old AKI mice, including the antiaging factor Klotho and the mitochondrial biogenesis driver PGC-1α. In conclusion, aging resulted in more severe AKI after the exposure to toxic compounds. This increased toxicity may be related to magnification of proinflammatory-related pathways in older mice, including a switch to a proinflammatory cell death (necroptosis) instead of apoptosis, and overactivation of cellular senescence of resident renal cells and infiltrating inflammatory cells.
Collapse
Affiliation(s)
- Laura Marquez-Exposito
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Lucia Tejedor-Santamaria
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Laura Santos-Sanchez
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Floris A Valentijn
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Elena Cantero-Navarro
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Sandra Rayego-Mateos
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Raul R Rodrigues-Diez
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Antonio Tejera-Muñoz
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Vanessa Marchant
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Ana B Sanz
- Red de Investigación Renal (REDinREN), Madrid, Spain.,Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Alberto Ortiz
- Red de Investigación Renal (REDinREN), Madrid, Spain.,Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| |
Collapse
|
15
|
Nash WT, Okusa MD. Chess Not Checkers: Complexities Within the Myeloid Response to the Acute Kidney Injury Syndrome. Front Med (Lausanne) 2021; 8:676688. [PMID: 34124107 PMCID: PMC8187556 DOI: 10.3389/fmed.2021.676688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/26/2021] [Indexed: 12/23/2022] Open
Abstract
Immune dysregulation in acute kidney injury (AKI) is an area of intense interest which promises to enhance our understanding of the disease and how to manage it. Macrophages are a heterogeneous and dynamic population of immune cells that carry out multiple functions in tissue, ranging from maintenance to inflammation. As key sentinels of their environment and the major immune population in the uninjured kidney, macrophages are poised to play an important role in the establishment and pathogenesis of AKI. These cells have a profound capacity to orchestrate downstream immune responses and likely participate in skewing the kidney environment toward either pathogenic inflammation or injury resolution. A clear understanding of macrophage and myeloid cell dynamics in the development of AKI will provide valuable insight into disease pathogenesis and options for intervention. This review considers evidence in the literature that speaks to the role and regulation of macrophages and myeloid cells in AKI. We also highlight barriers or knowledge gaps that need to be addressed as the field advances.
Collapse
Affiliation(s)
- William T Nash
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States
| | - Mark D Okusa
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
16
|
Prajapati S, Tomar B, Srivastava A, Narkhede YB, Gaikwad AN, Lahiri A, Mulay SR. 6,7-Dihydroxycoumarin ameliorates crystal-induced necroptosis during crystal nephropathies by inhibiting MLKL phosphorylation. Life Sci 2021; 271:119193. [PMID: 33577856 DOI: 10.1016/j.lfs.2021.119193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 01/09/2023]
Abstract
AIMS Mineralization of crystalline particles and the formation of renal calculi contribute to the pathogenesis of crystal nephropathies. Several recent studies on the biology of crystal handling implicated intrarenal crystal deposition-induced necroinflammation in their pathogenesis. We hypothesized that 6,7-dihydroxycoumarin (DHC) inhibit intrarenal crystal cytotoxicity and necroinflammation, and ameliorate crystal-induced chronic kidney disease (CKD). MAIN METHODS An unbiased high content screening coupled with fluorescence microscopy was used to identify compounds that inhibit CaOx crystal cytotoxicity. The ligand-protein interactions were identified using computational models e.g. molecular docking and molecular dynamics simulations. Furthermore, mice and rat models of oxalate-induced CKD were used for in-vivo studies. Renal injury, crystal deposition, and fibrosis were assessed by histology analysis. Western blots were used to quantify the protein expression. Data were expressed as boxplots and analyzed using one way ANOVA. KEY FINDINGS An unbiased high-content screening in-vitro identified 6,7-DHC as a promising candidate. Further, 6,7-DHC protected human and mouse cells from calcium oxalate (CaOx) crystal-induced necroptosis in-vitro as well as mice and rats from oxalate-induced CKD in either preventive or therapeutic manner. Computational modeling demonstrated that 6,7-DHC interact with MLKL, the key protein in the necroptosis machinery, and inhibit its phosphorylation by ATP, which was evident in both in-vitro and in-vivo analyses. SIGNIFICANCE Together, our results indicate that 6,7-DHC possesses a novel pharmacological property as a MLKL inhibitor and could serve as a lead molecule for further development of coumarin-based novel MLKL inhibitors. Furthermore, our data identify 6,7-DHC as a novel therapeutic strategy to combat crystal nephropathies.
Collapse
Affiliation(s)
- Smita Prajapati
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Bhawna Tomar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anjali Srivastava
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Yogesh B Narkhede
- Department of Bioengineering, Bourn's College of Engineering, University of California, CA 92521, USA
| | - Anil N Gaikwad
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Amit Lahiri
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Shrikant R Mulay
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
17
|
Desmoid-type fibromatosis of the lower extremity: A unique case of complete lesion resolution following core needle biopsy. Clin Imaging 2020; 69:213-218. [PMID: 32920469 DOI: 10.1016/j.clinimag.2020.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/19/2020] [Accepted: 08/28/2020] [Indexed: 11/22/2022]
Abstract
Desmoid-type fibromatosis (DF) is a rare neoplasm characterized by fibroblastic and myofibroblastic proliferation. While characterized as a benign lesion that does not metastasize, desmoid-type fibromatosis exhibits a wide range of behavior from aggressive local tissue invasion and post-surgical recurrence to spontaneous regression. Tumor regression can occur following systemic medical therapy or rarely may occur in the absence of therapy. We present a case of a 50-year-old female with a left thigh vastus medialis intramuscular mass which underwent imaging work-up and subsequent core needle ultrasound-guided biopsy showing results of desmoid-type fibromatosis. Following biopsy, the tumor showed prompt, complete regression with complete MRI resolution 2 months following biopsy. The patient showed no evidence of disease recurrence out to one year on MRI surveillance. This case report will discuss desmoid-type fibromatosis imaging features, treatment strategies, spectrum of disease behavior, and atypical behavior such as the spontaneous tumor regression as seen in this case report. To our knowledge there have been no reported cases of DF spontaneous regression 2 months following a core needle biopsy. Understanding the variable behavior of desmoid-type fibromatosis can assist the radiologist in guiding management of these lesions with the goal of optimizing clinical outcomes and preventing unnecessary aggressive treatments for stable or regressing disease.
Collapse
|
18
|
Hui D, Rui-Zhi T, Jian-Chun L, Xia Z, Dan W, Jun-Ming F, Li W. Astragalus propinquus Schischkin and Panax notoginseng (A&P) compound relieved cisplatin-induced acute kidney injury through inhibiting the mincle maintained macrophage inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2020; 252:112637. [PMID: 32004631 DOI: 10.1016/j.jep.2020.112637] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/18/2020] [Accepted: 01/26/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acute kidney injury (AKI) is a common disease in hospitalized patients, especially in critically ill patients. It is characterised with high morbidity and mortality, and is also an important cause of chronic kidney disease and chronic renal failure. Astragalus propinquus Schischkin and Panax notoginseng (A&P) compound, a famous traditional Chinese medicine, consists of Astragalus propinquus Schischkin, Panax notoginseng, Angelica sinensis, Achyranthes bidentata, and Ecklonia kurome, has been widely used for the treatment of various kidney diseases in the southwest of China. However, the effects of A&P on treatment of AKI and its underlying mechanism are needed to be uncovered. AIM OF THE STUDY Recent researches reported that Mincle (Macrophage-inducible C-type lectin) plays a key role in renal injury of AKI by regulating the expression and secretion of inflammatory cytokines on macrophage through modulating NF-κB signaling pathway. Here, we aimed to investigate the renoprotective effect of A&P on AKI and whether by inhibiting Mincle. MATERIALS AND METHODS We established a lipopolysaccharide (LPS)-induced Bone Marrow-Derived Macrophage (BMDM) inflammatory cell model and a cisplatin-induced mouse AKI model in vitro and in vivo. Renal histopathology staining was performed to observe kidney morphology. The expression and secretion of inflammatory cytokines were detected by real-time PCR and Enzyme-linked immunosorbent assay. Western blotting was used to detect the protein levels and Flow cytometry performed to detect polarization of macrophage. RESULTS The results showed that A&P significantly reduced the mRNA expression of IL-1β, IL-6, TNFα and MCP-1 in LPS-stimulated BMDM cells, and secretion of IL-1β and IL-6 in supernatant. The same results were found in Cisplatin-induced AKI kidney and serum after treatment with A&P. The data also showed that A&P strongly reduced the mRNA and protein levels of Mincle in vitro and vivo, and also inhibited the activation of Syk and NF-κB. Notably, A&P down-regulated the M1 macrophage marker iNOS, which may relate to the inhibition of Mincle. Interestingly, both overexpression of Mincle by transfection of pcDNA3.1-Mincle plasmid and administration of TDB (a ligand of Mincle) can significantly abolished the A&P-inhibited inflammation in BMDM, suggesting Mincle pathway play a key role in macrophage inflammation in AKI. CONCLUSION Our findings indicated that A&P protected kidney from inhibiting inflammation through down-regulating of Mincle pathway in macrophage in AKI. It provides a potential medicine compound for the treatment of AKI.
Collapse
Affiliation(s)
- Diao Hui
- Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China; Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Tan Rui-Zhi
- Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Li Jian-Chun
- Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zhong Xia
- Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Wen Dan
- Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China; Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Fan Jun-Ming
- Chengdu Medical College, Chengdu, 610000, Sichuan, China; Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Wang Li
- Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
19
|
Caravaca-Fontán F, Fernández-Juárez G, Praga M. Acute kidney injury in interstitial nephritis. Curr Opin Crit Care 2020; 25:558-564. [PMID: 31503026 DOI: 10.1097/mcc.0000000000000654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to describe the most common causes of acute interstitial nephritis (AIN), the diagnostic work-up and the therapeutic management. RECENT FINDINGS Several case series and registries have found an increasing incidence of AIN, especially among older patients. Drug-induced AIN still represents the most common cause. Early withdrawal of the culprit drug together with corticosteroid therapy remain the mainstay of treatment, although recent studies have shown that prolonged treatment beyond 8 weeks does not further improve kidney function recovery. SUMMARY AIN is a common cause of acute kidney injury, and therefore, physicians should suspect this entity especially in patients exposed to multiple medications. While immune-allergic reaction to numerous drugs is the most common cause of AIN, other underlying systemic diseases may also be involved, and therefore, every patient should undergo a complete diagnostic evaluation. Kidney biopsy provides the definitive diagnosis of AIN, and certain histologic features may help to identify the underlying condition. In drug-induced AIN, an early discontinuation of the culprit drug is the mainstay of therapy, and unless a rapid recovery of kidney function is observed, a course of glucocorticoid therapy should be initiated.
Collapse
Affiliation(s)
- Fernando Caravaca-Fontán
- Department of Nephrology, Instituto de Investigación Hospital Universitario 12 de Octubre (i+12).,Department of Medicine, Universidad Complutense de Madrid, Madrid
| | - Gema Fernández-Juárez
- Department of Nephrology, Hospital Universitario Fundación Alcorcón, Alcorcón, Spain
| | - Manuel Praga
- Department of Nephrology, Instituto de Investigación Hospital Universitario 12 de Octubre (i+12).,Department of Medicine, Universidad Complutense de Madrid, Madrid
| |
Collapse
|
20
|
Zuk A, Bonventre JV. Recent advances in acute kidney injury and its consequences and impact on chronic kidney disease. Curr Opin Nephrol Hypertens 2020; 28:397-405. [PMID: 30925515 DOI: 10.1097/mnh.0000000000000504] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Acute kidney injury (AKI) remains a major unmet medical need and associates with high morbidity, mortality, and healthcare costs. Among survivors, long-term outcomes of AKI can include development of chronic kidney disease (CKD) or progression of preexisting CKD. In this review, we focus on ongoing efforts by the AKI community to understand the human AKI to CKD continuum, with an emphasis on the cellular stress responses that underlie AKI and the maladaptive responses that persist in the acute-to-chronic phase. The emphasis is on work that has been published in the past year in this rapidly expanding field. RECENT FINDINGS Recent studies in preclinical models highlight the importance of mitochondrial dysfunction, cell death, and inflammation on the underlying pathogenesis of AKI. These pathogenic mechanisms can resolve with adaptive kidney repair but persist in maladaptive repair that leads to progressive chronic disease. The complexity and interconnections of these pathways involve cross-talk between the tubular epithelium, endothelium, and interstitial compartments. SUMMARY Approaches which lessen or counteract these cellular responses represent novel strategies to prevent AKI and stop or slow down the progression to CKD.
Collapse
Affiliation(s)
- Anna Zuk
- Research and Development, Akebia Therapeutics, Inc, Cambridge
| | - Joseph V Bonventre
- Department of Medicine, Harvard Medical School.,Renal Division, Brigham and Women's Hospital, Boston.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
21
|
Drug-induced tubulointerstitial nephritis: hypersensitivity and necroinflammatory pathways. Pediatr Nephrol 2020; 35:547-554. [PMID: 30820701 DOI: 10.1007/s00467-019-04207-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/11/2019] [Accepted: 01/25/2019] [Indexed: 02/08/2023]
Abstract
More than 250 drugs carry a small but important dose-independent risk of initiating a delayed-type hypersensitivity reaction that leads to acute tubulointerstitial nephritis (TIN). Clinical manifestations are often non-specific, making epidemiological studies challenging. In severe cases, if cessation of the offending drug is not followed by a prompt improvement in renal function, corticosteroid therapy appears to enhance renal recovery rates. Other drugs, classified as potential nephrotoxins, may induce dose-dependent acute tubular necrosis. Studies over the past decade have identified a unique form of tubular cell death called "necroptosis" that is accompanied by a specific and significant interstitial inflammatory response to certain insults, including some nephrotoxins. Insights into the molecular basis of this necroinflammatory pathway have emerged. There is still a paucity of pediatric data on these two distinct types of drug-induced TIN. Early recognition is essential to minimize the risk of chronic kidney damage.
Collapse
|
22
|
Landau SI, Guo X, Velazquez H, Torres R, Olson E, Garcia-Milian R, Moeckel GW, Desir GV, Safirstein R. Regulated necrosis and failed repair in cisplatin-induced chronic kidney disease. Kidney Int 2020; 95:797-814. [PMID: 30904067 DOI: 10.1016/j.kint.2018.11.042] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 11/10/2018] [Accepted: 11/21/2018] [Indexed: 12/21/2022]
Abstract
Cisplatin is an effective chemotherapeutic agent, but significant nephrotoxicity limits its clinical use. Despite extensive investigation of the acute cellular and molecular responses to cisplatin, the mechanisms of progression from acute to chronic kidney injury have not been explored. We used functional and morphological metrics to establish a time-point when the transition from acute and reversible kidney injury to chronic and irreparable kidney disease is clearly established. In mice administered 1 or 2 doses of intraperitoneal cisplatin separated by 2 weeks, kidney function returned toward baseline two weeks after the first dose, but failed to return to normal two weeks following a second dose. Multiphoton microscopy revealed increased glomerular epithelial and proximal tubular damage in kidneys exposed to two doses of cisplatin compared with those exposed to a single dose. In contrast, there was no evidence of fibrosis, macrophage invasion, or decrease in endothelial cell mass in chronically diseased kidneys. Pathway analysis of microarray data revealed regulated necrosis as a key determinant in the development of chronic kidney disease after cisplatin administration. Western blot analysis demonstrated activation of proteins involved in necroptosis and increased expression of kidney injury markers, cellular stress response regulators, and upstream activators of regulated necrosis, including Toll-like receptors 2 and 4. These data suggest that unresolved injury and sustained activation of regulated necrosis pathways, rather than fibrosis, promote the progression of cisplatin-induced acute kidney injury to chronic kidney disease.
Collapse
Affiliation(s)
- Sarah I Landau
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Medicine, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Xiaojia Guo
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Heino Velazquez
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Medicine, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Richard Torres
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Eben Olson
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Rolando Garcia-Milian
- Curriculum and Research Support Department, Cushing/Whitney Medical Library, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Gilbert W Moeckel
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Gary V Desir
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Medicine, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Robert Safirstein
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Medicine, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA.
| |
Collapse
|
23
|
Fontecha-Barriuso M, Martin-Sanchez D, Ruiz-Andres O, Poveda J, Sanchez-Niño MD, Valiño-Rivas L, Ruiz-Ortega M, Ortiz A, Sanz AB. Targeting epigenetic DNA and histone modifications to treat kidney disease. Nephrol Dial Transplant 2019. [PMID: 29534238 DOI: 10.1093/ndt/gfy009] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Epigenetics refers to heritable changes in gene expression patterns not caused by an altered nucleotide sequence, and includes non-coding RNAs and covalent modifications of DNA and histones. This review focuses on functional evidence for the involvement of DNA and histone epigenetic modifications in the pathogenesis of kidney disease and the potential therapeutic implications. There is evidence of activation of epigenetic regulatory mechanisms in acute kidney injury (AKI), chronic kidney disease (CKD) and the AKI-to-CKD transition of diverse aetiologies, including ischaemia-reperfusion injury, nephrotoxicity, ureteral obstruction, diabetes, glomerulonephritis and polycystic kidney disease. A beneficial in vivo effect over preclinical kidney injury has been reported for drugs that decrease DNA methylation by either inhibiting DNA methylation (e.g. 5-azacytidine and decitabine) or activating DNA demethylation (e.g. hydralazine), decrease histone methylation by inhibiting histone methyltransferases, increase histone acetylation by inhibiting histone deacetylases (HDACs, e.g. valproic acid, vorinostat, entinostat), increase histone crotonylation (crotonate) or interfere with histone modification readers [e.g. inhibits of bromodomain and extra-terminal proteins (BET)]. Most preclinical studies addressed CKD or the AKI-to-CKD transition. Crotonate administration protected from nephrotoxic AKI, but evidence is conflicting on DNA methylation inhibitors for preclinical AKI. Several drugs targeting epigenetic regulators are in clinical development or use, most of them for malignancy. The BET inhibitor apabetalone is in Phase 3 trials for atherosclerosis, kidney function being a secondary endpoint, but nephrotoxicity was reported for DNA and HDAC inhibitors. While research into epigenetic modulators may provide novel therapies for kidney disease, caution should be exercised based on the clinical nephrotoxicity of some drugs.
Collapse
Affiliation(s)
- Miguel Fontecha-Barriuso
- Research Institute IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Diego Martin-Sanchez
- Research Institute IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Olga Ruiz-Andres
- Research Institute IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Jonay Poveda
- Research Institute IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- Research Institute IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Lara Valiño-Rivas
- Research Institute IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Marta Ruiz-Ortega
- Research Institute IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Alberto Ortiz
- Research Institute IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Ana Belén Sanz
- Research Institute IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| |
Collapse
|
24
|
RIPK1 inhibitor Cpd-71 attenuates renal dysfunction in cisplatin-treated mice via attenuating necroptosis, inflammation and oxidative stress. Clin Sci (Lond) 2019; 133:1609-1627. [DOI: 10.1042/cs20190599] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022]
Abstract
Abstract
Acute kidney injury (AKI) is a destructive clinical condition induced by multiple insults including ischemic reperfusion, nephrotoxic drugs and sepsis. It is characterized by a sudden decline in renal function, in addition to excessive inflammation, oxidative stress and programmed cell death of renal tubular epithelial cells. RIPK1-mediated necroptosis plays an important role in AKI. In the present study, we evaluated the treatment effects of Compound-71 (Cpd-71), a novel RIPK1 inhibitor, by comparing with Necrostatin-1 (Nec-1), a classic RIPK1 inhibitor, which has several drawbacks like the narrow structure–activity relationship (SAR) profile, moderate potency and non-ideal pharmacokinetic properties, in vivo and in vitro. Our results showed that pretreatment of Cpd-71 attenuated cisplatin-induced renal injury, restored renal function and suppressed renal inflammation, oxidative stress and cell necroptosis. In addition, Cpd-71 inhibited renal damage while reducing the up-regulated serum creatinine (Cr) and blood urea nitrogen (BUN) levels in established AKI mice model. Consistently, we confirmed that Cpd-71 exhibited more effectively suppressive effect on cisplatin-induced renal tubular cell necroptosis than Nec-1, by physically binding to the allosteric type III ligand binding site of RIPK1, thereby reduced RIPK1 kinase activity, RIPK1/RIPK3 complex formation and phosphor-MLKL membrane translocation by molecular docking, Western blot, co-immunoprecipitation and cellular thermal shift assay (CETSA). Taken together, we currently showed that targeting RIPK1 with Cpd-71 may serve as a promising clinical candidate for AKI treatment.
Collapse
|
25
|
The Anti-Inflammatory, Anti-Oxidative, and Anti-Apoptotic Benefits of Stem Cells in Acute Ischemic Kidney Injury. Int J Mol Sci 2019; 20:ijms20143529. [PMID: 31330934 PMCID: PMC6678402 DOI: 10.3390/ijms20143529] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 12/11/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) plays a significant role in the pathogenesis of acute kidney injury (AKI). The complicated interaction between injured tubular cells, activated endothelial cells, and the immune system leads to oxidative stress and systemic inflammation, thereby exacerbating the apoptosis of renal tubular cells and impeding the process of tissue repair. Stem cell therapy is an innovative approach to ameliorate IRI due to its antioxidative, immunomodulatory, and anti-apoptotic properties. Therefore, it is crucial to understand the biological effects and mechanisms of action of stem cell therapy in the context of acute ischemic AKI to improve its therapeutic benefits. The recent finding that treatment with conditioned medium (CM) derived from stem cells is likely an effective alternative to conventional stem cell transplantation increases the potential for future therapeutic uses of stem cell therapy. In this review, we discuss the recent findings regarding stem cell-mediated cytoprotection, with a focus on the anti-inflammatory effects via suppression of oxidative stress and uncompromised immune responses following AKI. Stem cell-derived CM represents a favorable approach to stem cell-based therapy and may serve as a potential therapeutic strategy against acute ischemic AKI.
Collapse
|
26
|
Extracellular DNA traps in inflammation, injury and healing. Nat Rev Nephrol 2019; 15:559-575. [PMID: 31213698 DOI: 10.1038/s41581-019-0163-2] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2019] [Indexed: 12/14/2022]
Abstract
Following strong activation signals, several types of immune cells reportedly release chromatin and granular proteins into the extracellular space, forming DNA traps. This process is especially prominent in neutrophils but also occurs in other innate immune cells such as macrophages, eosinophils, basophils and mast cells. Initial reports demonstrated that extracellular traps belong to the bactericidal and anti-fungal armamentarium of leukocytes, but subsequent studies also linked trap formation to a variety of human diseases. These pathological roles of extracellular DNA traps are now the focus of intensive biomedical research. The type of pathology associated with the release of extracellular DNA traps is mainly determined by the site of trap formation and the way in which these traps are further processed. Targeting the formation of aberrant extracellular DNA traps or promoting their efficient clearance are attractive goals for future therapeutic interventions, but the manifold actions of extracellular DNA traps complicate these approaches.
Collapse
|
27
|
FTY720 Effects on Inflammation and Liver Damage in a Rat Model of Renal Ischemia-Reperfusion Injury. Mediators Inflamm 2019; 2019:3496836. [PMID: 31015795 PMCID: PMC6446098 DOI: 10.1155/2019/3496836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/01/2018] [Accepted: 11/06/2018] [Indexed: 02/06/2023] Open
Abstract
Objective Ischemia-reperfusion injury (IRI) produces systemic inflammation with the potential for causing organ failure in tissues peripheral to the initial site of injury. We speculate that treatment strategies that dampen inflammation may be therapeutically beneficial to either the initial site of injury or peripheral organs. To test this, we evaluated the impact of FTY720-induced sequestration of circulating mature lymphocytes on renal IRI and secondary organ injury. Methods A microvascular clamp was surgically placed around the left renal pedicle of anesthetized male Sprague-Dawley rats with either vehicle or FTY720 treatment (0.3 mg/kg) intravenously injected after 15 min of ischemia. Blood flow was restored after 60 min. Cohorts of anesthetized rats were euthanized at 6, 24, or 72 hrs with tissue samples collected for analysis. Results FTY720 treatment resulted in profound T lymphocyte reduction in peripheral blood. Histopathologic examination, clinical chemistries, and gene transcript expression measurements revealed that FTY720 treatment reduced hepatocellular degeneration, reduced serum markers of liver injury (ALT/AST), and reduced the expression of gene targets associated with IRI. Conclusion These findings support an anti-inflammatory effect of FTY720 in the liver where the expression of genes associated with apoptosis, chemotaxis, and the AP-1 transcription factor was reduced. Findings presented here provide the basis for future studies evaluating FTY720 as a potential therapeutic agent to treat complications resulting from renal IRI.
Collapse
|
28
|
Mulay SR. Multifactorial functions of the inflammasome component NLRP3 in pathogenesis of chronic kidney diseases. Kidney Int 2019; 96:58-66. [PMID: 30922667 DOI: 10.1016/j.kint.2019.01.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/01/2019] [Accepted: 01/04/2019] [Indexed: 12/26/2022]
Abstract
The NLRP3 inflammasome is a cytosolic multiprotein caspase-activating complex platform involved in innate immunity required for the maturation and release of interleukin (IL)-1β and IL-18. Both cytokines activate their respective receptors present on cells inside and outside kidneys, resulting in the release of other proinflammatory cytokines to set up an inflammatory milieu both within the kidney and systemically. The canonical NLRP3-ASC-caspase-1-IL-1β-IL-18 axis has been shown to contribute to the pathophysiology of several kidney diseases by regulating renal necroinflammation. However, many recent studies have emphasized the inflammasome-independent functions of NLRP3 in chronic kidney disease (CKD) pathogenesis. This review highlights the contribution of the inflammasome-independent functions of NLPR3, for example, in fibrotic tissue remodeling, in tubular epithelial cell apoptosis, and in metabolic pathways, during the development and progression of CKD in various experimental models and humans. Interestingly, therapies targeting the inflammasome effectors (e.g., IL-1 receptor antagonists and IL-1β) have been approved for therapeutic use for NLRP3-dependent diseases; however, no NLRP3 antagonists have been approved for therapeutic use until now. This review highlights the double-edged sword-like functions of NLRP3 in the regulation of renal necroinflammation and fibrosis and therefore emphasizes the urgent need for specific NLRP3 inhibitors because of the broad therapeutic potential they offer for the treatment of CKD.
Collapse
Affiliation(s)
- Shrikant R Mulay
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India.
| |
Collapse
|
29
|
Tenascin-C protects against acute kidney injury by recruiting Wnt ligands. Kidney Int 2018; 95:62-74. [PMID: 30409456 DOI: 10.1016/j.kint.2018.08.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/09/2018] [Accepted: 08/16/2018] [Indexed: 12/15/2022]
Abstract
The development of acute kidney injury (AKI) is a complex process involving tubular, inflammatory, and vascular components, but less is known about the role of the interstitial microenvironment. We have previously shown that the extracellular matrix glycoprotein tenascin-C (TNC) is induced in fibrotic kidneys. In mouse models of AKI induced by ischemia-reperfusion injury (IRI) or cisplatin, TNC was induced de novo in the injured sites and localized to the renal interstitium. The circulating level of TNC protein was also elevated in AKI patients after cardiac surgery. Knockdown of TNC by shRNA in vivo aggravated AKI after ischemic or toxic injury. This effect was associated with reduced renal β-catenin expression, suggesting an impact on Wnt signaling. In vitro, TNC protected tubular epithelial cells against apoptosis and augmented Wnt1-mediated β-catenin activation. Co-immunoprecipitation revealed that TNC physically interacts with Wnt ligands. Furthermore, a TNC-enriched kidney tissue scaffold prepared from IRI mice was able to recruit and concentrate Wnt ligands from the surrounding milieu ex vivo. The ability to recruit Wnt ligands in this ex vivo model diminished after TNC depletion. These studies indicate that TNC is specifically induced at sites of injury and recruits Wnt ligands, thereby creating a favorable microenvironment for tubular repair and regeneration after AKI.
Collapse
|
30
|
Kundert F, Platen L, Iwakura T, Zhao Z, Marschner JA, Anders HJ. Immune mechanisms in the different phases of acute tubular necrosis. Kidney Res Clin Pract 2018; 37:185-196. [PMID: 30254843 PMCID: PMC6147180 DOI: 10.23876/j.krcp.2018.37.3.185] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/25/2018] [Indexed: 12/18/2022] Open
Abstract
Acute kidney injury is a clinical syndrome that can be caused by numerous diseases including acute tubular necrosis (ATN). ATN evolves in several phases, all of which are accompanied by different immune mechanisms as an integral component of the disease process. In the early injury phase, regulated necrosis, damage-associated molecular patterns, danger sensing, and neutrophil-driven sterile inflammation enhance each other and contribute to the crescendo of necroinflammation and tissue injury. In the late injury phase, renal dysfunction becomes clinically apparent, and M1 macrophage-driven sterile inflammation contributes to ongoing necroinflammation and renal dysfunction. In the recovery phase, M2-macrophages and anti-inflammatory mediators counteract the inflammatory process, and compensatory remnant nephron and cell hypertrophy promote an early functional recovery of renal function, while some tubules are still badly injured and necrotic material is removed by phagocytes. The resolution of inflammation is required to promote the intrinsic regenerative capacity of tubules to replace at least some of the necrotic cells. Several immune mechanisms support this wound-healing-like re-epithelialization process. Similar to wound healing, this response is associated with mesenchymal healing, with a profound immune cell contribution in terms of collagen production and secretion of profibrotic mediators. These and numerous other factors determine whether, in the chronic phase, persistent loss of nephrons and hyperfunction of remnant nephrons will result in stable renal function or progress to decline of renal function such as progressive chronic kidney disease.
Collapse
Affiliation(s)
- Fedor Kundert
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Louise Platen
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Takamasa Iwakura
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Zhibo Zhao
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Julian A Marschner
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Hans-Joachim Anders
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| |
Collapse
|
31
|
Mulay SR, Shi C, Ma X, Anders HJ. Novel Insights into Crystal-Induced Kidney Injury. KIDNEY DISEASES 2018; 4:49-57. [PMID: 29998119 DOI: 10.1159/000487671] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/14/2018] [Indexed: 01/04/2023]
Abstract
Background The entity of crystal nephropathies encompasses a spectrum of different kidney injuries induced by crystal-formed intrinsic minerals, metabolites, and proteins or extrinsic dietary components and drug metabolites. Depending on the localization and dynamics of crystal deposition, the clinical presentation can be acute kidney injury, progressive chronic kidney disease, or renal colic. Summary The molecular mechanisms involving crystal-induced injury are diverse and remain poorly understood. Type 1 crystal nephropathies arise from crystals in the vascular lumen (cholesterol embolism) or the vascular wall (atherosclerosis) and involve kidney infarcts or chronic ischemia, respectively. Type 2 crystal nephropathies arise from intratubular crystal deposition causing obstruction, interstitial inflammation, and tubular cell injury. NLRP3 inflammasome and necroptosis drive renal necroinflammation in acute settings. Type 3 is represented by crystal and stone formation in the draining urinary tract, i.e., urolithiasis, causing renal colic and chronic obstruction. Key Messages Dissecting the types of injury is the first step towards a better understanding of the pathophysiology of crystal nephropathies. Crystal-induced acti-vation of the inflammasome and necroptosis, crystal adhesion, crystallization inhibitors, extratubulation, and granulo-ma formation are only a few of certainly many involved pathomechanisms that deserve further studies to eventually form the basis for innovative cures for these diseases.
Collapse
Affiliation(s)
- Shrikant R Mulay
- Division of Nephrology, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU Munich, Munich, Germany
| | - Chongxu Shi
- Division of Nephrology, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU Munich, Munich, Germany
| | - Xiaoyuan Ma
- Division of Nephrology, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU Munich, Munich, Germany
| | - Hans Joachim Anders
- Division of Nephrology, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU Munich, Munich, Germany
| |
Collapse
|
32
|
Sessile Innate Immune Cells. DAMAGE-ASSOCIATED MOLECULAR PATTERNS IN HUMAN DISEASES 2018. [PMCID: PMC7123606 DOI: 10.1007/978-3-319-78655-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this chapter, sessile cells of the innate immune system are briefly introduced. Defined as cells equipped with diverse pattern recognition molecules capable of detecting MAMPs and DAMPs, they encompass cells such as epithelial cells, fibroblasts, vascular cells, chondrocytes, osteoblasts, and adipocytes. Located at the body surfaces, epithelial cells represent the first line of innate immune defense against invading microbial pathogens. They are significant contributors to innate mucosal immunity and generate various antimicrobial defense mechanisms. Also, epithelial cells critically contribute to tissue repair via the phenomenon of re-epithelialization. Fibroblasts operate as classical sentinel cells of the innate immune system dedicated to responding to MAMPs and DAMPs emitted upon any tissue injury. Typically, fibroblasts synthesize most of the extracellular matrix of connective tissues, thereby playing a crucial role in tissue repair processes. Vascular cells of the innate immune system represent an evolutionarily developed first-line defense against any inciting insult hitting the vessel walls from the luminal side including bacteria, viruses, microbial toxins, and chemical noxa such as nicotine. Upon such insults and following recognition of MAMPs and DAMPs, vascular cells react with an innate immune response to create an acute inflammatory milieu in the vessel wall aimed at curing the vascular injury concerned. Chondrocytes, osteoblasts, and osteoclasts represent other vital cells of the skeletal system acting as cells of the innate immune system in its wider sense. These cells mediate injury-promoted DAMP-induced inflammatory and regenerative processes specific for the skeletal systems. Finally, adipocytes are regarded as highly active cells of the innate immune system. As white, brown, and beige adipocytes, they operate as a dynamic metabolic organ that can secrete certain bioactive molecules which have endocrine, paracrine, and autocrine actions.
Collapse
|
33
|
Extracellular vesicles from human-induced pluripotent stem cell-derived mesenchymal stromal cells (hiPSC-MSCs) protect against renal ischemia/reperfusion injury via delivering specificity protein (SP1) and transcriptional activating of sphingosine kinase 1 and inhibiting necroptosis. Cell Death Dis 2017; 8:3200. [PMID: 29233979 PMCID: PMC5870585 DOI: 10.1038/s41419-017-0041-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 02/07/2023]
Abstract
Renal ischemia-reperfusion is a main cause of acute kidney injury (AKI), which is associated with high mortality. Here we show that extracellular vesicles (EVs) secreted from hiPSC-MSCs play a critical role in protection against renal I/R injury. hiPSC-MSCs-EVs can fuse with renal cells and deliver SP1 into target cells, subsequently active SK1 expression and increase S1P formation. Chromatin immunoprecipitation (ChIP) analyses and luciferase assay were used to confirm SP1 binds directly to the SK1 promoter region and promote promoter activity. Moreover, SP1 inhibition (MIT) or SK1 inhibition (SKI-II) completely abolished the renal protective effect of hiPSC-MSCs-EVs in rat I/R injury mode. However, pre-treatment of necroptosis inhibitor Nec-1 showed no difference with the administration of hiPSC-MSCs-EVs only. We then generated an SP1 knockout hiPSC-MSC cell line by CRISPR/Cas9 system and found that SP1 knockout failed to show the protective effect of hiPSC-MSCs-EVs unless restoring the level of SP1 by Ad-SP1 in vitro and in vivo. In conclusion, this study describes an anti-necroptosis effect of hiPSC-MSCs-EVs against renal I/R injury via delivering SP1 into target renal cells and intracellular activating the expression of SK1 and the generation of S1P. These findings suggest a novel mechanism for renal protection against I/R injury, and indicate a potential therapeutic approach for a variety of renal diseases and renal transplantation.
Collapse
|
34
|
Zhang J, Chen C, Zhou Q, Zheng S, Lv Y, Zhang J, You X, Li Z, Zhou Z, Pan M. Elevated serum fibrinogen level is an independent risk factor for IgA nephropathy. Oncotarget 2017; 8:99125-99135. [PMID: 29228758 PMCID: PMC5716798 DOI: 10.18632/oncotarget.21702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 09/22/2017] [Indexed: 01/04/2023] Open
Abstract
Background IgA nephropathy is a primary cause of renal failure, and inflammation and renal fibrosis are the main mechanisms leading to kidney damage. The serum fibrinogen level is closely related to inflammatory states, but its relationship to the prognosis of IgA nephropathy (IgAN) is unclear. Materials and Methods 1053 patients diagnosed with IgAN after renal biopsy were enrolled from two Nephrology Departments. Demographic and clinical data and histopathological features were collected. The patients were divided into four groups (Q1–Q4) according to the serum fibrinogen levels at the time of renal biopsy, and the relationships of serum fibrinogen levels with other risk factors and the prognosis of IgAN were investigated. Results 672 patients with proven primary IgAN were included in this study, which included a median follow-up of 36 months. Patients with higher serum fibrinogen levels had elevated serum creatinine levels, 24-hour urinary protein, and blood pressure compared with patients with the lowest levels of serum fibrinogen as well as severe renal damage at the time of renal biopsy. Univariate and multivariate Cox regression analyses confirmed that the serum fibrinogen level at the time of renal biopsy was significantly related to the prognosis of patients with IgAN. Conclusions In patients with IgAN, an elevated serum fibrinogen level at the time of renal biopsy is associated with poor renal outcomes, which suggests the need for more aggressive early interventions. Greater benefits of aggressive treatments were observed in patients with higher serum fibrinogen levels.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Chaosheng Chen
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Qiongxiu Zhou
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Shubei Zheng
- Department of Nephrology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Yinqiu Lv
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Jianna Zhang
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Xiaohan You
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Zhanyuan Li
- Department of Nephrology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Zhihong Zhou
- Department of Nephrology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Min Pan
- Department of Nephrology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| |
Collapse
|
35
|
Martin-Sanchez D, Poveda J, Fontecha-Barriuso M, Ruiz-Andres O, Sanchez-Niño MD, Ruiz-Ortega M, Ortiz A, Sanz AB. Targeting of regulated necrosis in kidney disease. Nefrologia 2017. [PMID: 28647049 DOI: 10.1016/j.nefro.2017.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The term acute tubular necrosis was thought to represent a misnomer derived from morphological studies of human necropsies and necrosis was thought to represent an unregulated passive form of cell death which was not amenable to therapeutic manipulation. Recent advances have improved our understanding of cell death in acute kidney injury. First, apoptosis results in cell loss, but does not trigger an inflammatory response. However, clumsy attempts at interfering with apoptosis (e.g. certain caspase inhibitors) may trigger necrosis and, thus, inflammation-mediated kidney injury. Second, and most revolutionary, the concept of regulated necrosis emerged. Several modalities of regulated necrosis were described, such as necroptosis, ferroptosis, pyroptosis and mitochondria permeability transition regulated necrosis. Similar to apoptosis, regulated necrosis is modulated by specific molecules that behave as therapeutic targets. Contrary to apoptosis, regulated necrosis may be extremely pro-inflammatory and, importantly for kidney transplantation, immunogenic. Furthermore, regulated necrosis may trigger synchronized necrosis, in which all cells within a given tubule die in a synchronized manner. We now review the different modalities of regulated necrosis, the evidence for a role in diverse forms of kidney injury and the new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Diego Martin-Sanchez
- Research Institute-Fundación Jiménez Díaz, Autónoma University, Madrid, Spain; IRSIN, Madrid, Spain; REDINREN, Madrid, Spain
| | - Jonay Poveda
- Research Institute-Fundación Jiménez Díaz, Autónoma University, Madrid, Spain; IRSIN, Madrid, Spain; REDINREN, Madrid, Spain
| | - Miguel Fontecha-Barriuso
- Research Institute-Fundación Jiménez Díaz, Autónoma University, Madrid, Spain; IRSIN, Madrid, Spain; REDINREN, Madrid, Spain
| | - Olga Ruiz-Andres
- Research Institute-Fundación Jiménez Díaz, Autónoma University, Madrid, Spain; IRSIN, Madrid, Spain; REDINREN, Madrid, Spain
| | - María Dolores Sanchez-Niño
- Research Institute-Fundación Jiménez Díaz, Autónoma University, Madrid, Spain; IRSIN, Madrid, Spain; REDINREN, Madrid, Spain
| | - Marta Ruiz-Ortega
- Research Institute-Fundación Jiménez Díaz, Autónoma University, Madrid, Spain; IRSIN, Madrid, Spain; REDINREN, Madrid, Spain
| | - Alberto Ortiz
- Research Institute-Fundación Jiménez Díaz, Autónoma University, Madrid, Spain; IRSIN, Madrid, Spain; REDINREN, Madrid, Spain
| | - Ana Belén Sanz
- Research Institute-Fundación Jiménez Díaz, Autónoma University, Madrid, Spain; IRSIN, Madrid, Spain; REDINREN, Madrid, Spain.
| |
Collapse
|
36
|
Presence of Cytotoxic Extracellular Histones in Machine Perfusate of Donation After Circulatory Death Kidneys. Transplantation 2017; 101:e93-e101. [PMID: 27906828 DOI: 10.1097/tp.0000000000001590] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Extracellular histones are cytotoxic molecules that are related to cell stress and death. They have been shown to play a crucial role in multiple pathophysiologic processes like sepsis, inflammation, vascular dysfunction, and thrombosis. Their role in organ donation and graft function and survival is still unknown. The aim of this study was to assess whether an association exists between the presence of extracellular histones in machine perfusates and deceased donor kidney viability. METHODS Machine perfusates of 390 donations after circulatory death kidneys were analyzed for histone concentration, and corresponding graft function and survival were assessed. RESULTS Extracellular histone concentrations were significantly higher in perfusates of kidneys with posttransplant graft dysfunction (primary nonfunction and delayed graft function) and were an independent risk factor for delayed graft function (odds ratio, 2.152; 95% confidence interval [95% CI], 1.199-3.863) and 1 year graft failure (hazard ratio, 1.386; 95% CI, 1.037-1.853), but not for primary nonfunction (odds ratio, 1.342; 95% CI, 0.900-2.002). One year graft survival was 12% higher in the group with low histone concentrations (P = 0.008) as compared with the group that contained higher histone concentrations. CONCLUSIONS This study warrants future studies to probe for a possible role of cytotoxic extracellular histones in organ viability and suggests that quantitation of extracellular histones might contribute to assessment of posttransplant graft function and survival.
Collapse
|
37
|
Yuan W, Zhang YY, Zhang ZG, Zou Y, Lu HZ, Qian ZP. Risk Factors and Outcomes of Acute Kidney Injury in Patients With Hepatitis B Virus-Related Acute-on-Chronic Liver Failure. Am J Med Sci 2017; 353:452-458. [PMID: 28502331 DOI: 10.1016/j.amjms.2017.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/26/2017] [Accepted: 03/02/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Acute kidney injury (AKI) is common in patients with hepatitis B virus (HBV)-related acute-on-chronic liver failure (ACLF); however, few studies concerning the risk factors and recovery patterns of renal function have been published. MATERIALS AND METHODS A retrospective analysis of 150 patients with HBV-ACLF was performed. The occurrence, risk factors and functional recovery of AKI among patients with HBV-ACLF were investigated. RESULTS A total of 90 patients (60%) with HBV-ACLF developed AKI. Patients with AKI had higher creatine kinase (P = 0.004), total bilirubin (P = 0.039), HBV viral load (P = 0.044), serum creatine (P < 0.001) and model for end-stage liver disease (MELD) score (P < 0.001) values and a higher proportion of hepatic encephalopathy (P = 0.032) and spontaneous bacterial peritonitis (SBP) (P = 0.042) than patients without AKI. Logistic regression analysis illustrated that SBP (odds ratio = 6.214, P = 0.012) and MELD score (odds ratio = 1.097, P = 0.006) were risk factors for the development of AKI. A subgroup analysis of recovery patterns in renal function showed that patients with a severe AKI stage had worse outcomes (P = 0.007). The proportion of patients who experienced a complete recovery was higher in survivors than in the overall AKI populations (P = 0.004). Follow-up studies showed that the no-AKI group had a higher transplant-free survival rate than the AKI group at day 90 (80.0% versus 26.7%, respectively, P < 0.001). The survival rate among patients with AKI Stage 1 was higher than that of patients with AKI Stage 2 and patients with AKI Stage 3 (P < 0.001). CONCLUSIONS AKI is common in patients with HBV-ACLF. The SBP and MELD score have some prognosis value for patients with AKI. AKI and its stages affect the 90-day transplant-free mortality rate. It is important to focus on exploring the early recognition of AKI and early intervention of those risk factors in individuals with HBV-ACLF.
Collapse
Affiliation(s)
- Wei Yuan
- Department of Liver Intensive Care Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, P.R. China
| | - Yu-Yi Zhang
- Department of Liver Intensive Care Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, P.R. China
| | - Zheng-Guo Zhang
- Department of Liver Intensive Care Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, P.R. China
| | - Ying Zou
- Department of Liver Intensive Care Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, P.R. China
| | - Hong-Zhou Lu
- Department of Infectious Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, P.R. China.
| | - Zhi-Ping Qian
- Department of Liver Intensive Care Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, P.R. China.
| |
Collapse
|
38
|
Mulay SR, Anders HJ. Crystal nephropathies: mechanisms of crystal-induced kidney injury. Nat Rev Nephrol 2017; 13:226-240. [DOI: 10.1038/nrneph.2017.10] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
39
|
Devarapu SK, Lorenz G, Kulkarni OP, Anders HJ, Mulay SR. Cellular and Molecular Mechanisms of Autoimmunity and Lupus Nephritis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 332:43-154. [PMID: 28526137 DOI: 10.1016/bs.ircmb.2016.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autoimmunity involves immune responses directed against self, which are a result of defective self/foreign distinction of the immune system, leading to proliferation of self-reactive lymphocytes, and is characterized by systemic, as well as tissue-specific, inflammation. Numerous mechanisms operate to ensure the immune tolerance to self-antigens. However, monogenetic defects or genetic variants that weaken immune tolerance render susceptibility to the loss of immune tolerance, which is further triggered by environmental factors. In this review, we discuss the phenomenon of immune tolerance, genetic and environmental factors that influence the immune tolerance, factors that induce autoimmunity such as epigenetic and transcription factors, neutrophil extracellular trap formation, extracellular vesicles, ion channels, and lipid mediators, as well as costimulatory or coinhibitory molecules that contribute to an autoimmune response. Further, we discuss the cellular and molecular mechanisms of autoimmune tissue injury and inflammation during systemic lupus erythematosus and lupus nephritis.
Collapse
Affiliation(s)
- S K Devarapu
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - G Lorenz
- Klinikum rechts der Isar, Abteilung für Nephrologie, Technische Universität München, Munich, Germany
| | | | - H-J Anders
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - S R Mulay
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany.
| |
Collapse
|
40
|
Honarpisheh M, Desai J, Marschner JA, Weidenbusch M, Lech M, Vielhauer V, Anders HJ, Mulay SR. Regulated necrosis-related molecule mRNA expression in humans and mice and in murine acute tissue injury and systemic autoimmunity leading to progressive organ damage, and progressive fibrosis. Biosci Rep 2016; 36:e00425. [PMID: 27811014 PMCID: PMC5146826 DOI: 10.1042/bsr20160336] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/20/2016] [Accepted: 11/02/2016] [Indexed: 12/30/2022] Open
Abstract
The species-specific, as well as organ-specific expression of regulated necrosis (RN)-related molecules, is not known. We determined the expression levels of tumour necrosis factor receptor-1 (TNFR1), receptor activated protein kinase (RIPK)1, RIPK3, mixed lineage kinase domain-like (MLKL), CASP8, Fas-associated protein with death domain (FADD), cellular inhibitor of apoptosis protein (CIAP)1, CIAP2, glutathione peroxidase-4 (GPX4), cyclophilin D (CYPD), CASP1, NLRP3 and poly(ADP-ribose) polymerase-1 (PARP1) in human and mouse solid organs. We observed significant differences in expression of these molecules between human and mice. In addition, we characterized their expression profiles in acute as well as persistent tissue injury and chronic tissue remodelling using acute and chronic kidney injury models. We observed that the degree and pattern of induction of RN-related molecules were highly dependent on the trigger and disease pathogenesis. Furthermore, we studied their expression patterns in mice with lupus-like systemic autoimmunity, which revealed that the expression of MLKL, GPX4 and PARP1 significantly increased in the spleen along disease progression and CASP1, RIPK1, RIPK3 and CYPD were higher at the earlier stages but were significantly decreased in the later stages. In contrast, in the kidney, the expression of genes involved in pyroptosis, e.g. NLRP3 and CASP1 were significantly increased and TNFR1, RIPK1, RIPK3, CIAP1/2 and GPX4 were significantly decreased along the progression of lupus nephritis (LN). Thus, the organ- and species-specific expression of RN-related molecules should be considered during designing experiments, interpreting the results as well as extrapolating the conclusions from one species or organ to another species or organ respectively.
Collapse
Affiliation(s)
- Mohsen Honarpisheh
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig Maximilians University of Munich, Munich, 80336 Germany
| | - Jyaysi Desai
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig Maximilians University of Munich, Munich, 80336 Germany
| | - Julian A Marschner
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig Maximilians University of Munich, Munich, 80336 Germany
| | - Marc Weidenbusch
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig Maximilians University of Munich, Munich, 80336 Germany
| | - Maciej Lech
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig Maximilians University of Munich, Munich, 80336 Germany
| | - Volker Vielhauer
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig Maximilians University of Munich, Munich, 80336 Germany
| | - Hans-Joachim Anders
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig Maximilians University of Munich, Munich, 80336 Germany
| | - Shrikant R Mulay
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig Maximilians University of Munich, Munich, 80336 Germany
| |
Collapse
|