1
|
Han Y, Dai C, Duan Y, Tu Y, Liu S, Zhang Y. Synthesis and Surface Properties of Photoresponsive Gemini Surfactants: Implication for Remediating PAHs-Contaminated Groundwater. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10642-10650. [PMID: 36790397 DOI: 10.1021/acsami.2c20623] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The efficient utility of surfactants remains a daunting task for groundwater remediation. In this study, we have synthesized a conventional photoresponsive surfactant 4-[4-[(4-butylphenyl)azo]phenoxy]butyldimethylethylammonium bromide (AzoPB) and a gemini photoresponsive surfactant N1,N2-bis[4-[4-[(4-butylphenyl)azo]phenoxy]butyl]-N1,N2-tetramethylethane-1,2-diammonium bromide (AzoPBT) for solubilizing PAHs in groundwater. The two surfactants' photosensitivity, surface properties, and solubilization/release ability for phenanthrene (Phe) and acenaphthylene (Ace) were studied in detail. Under UV-light irradiation for 15-20 s, the two surfactants can be converted from trans to cis, while cis-to-trans isomerization can be achieved under visible-light irradiation for 1 min. Compared to AzoPB, AzoPBT exhibited strong surface properties such as lower critical micelle concentration (0.52 mM), surface tension (γ, 28.94 mN·m-1), minimum area (Amin, 1.72 × 10-8 nm2), and higher maximum adsorption (Γmax, 96.55 mol·m-2). The solubility of Phe and Ace in the AzoPBT aqueous solution (12.84 and 14.27 mg/L) was much higher than that in the AzoPB aqueous solution (7.51 and 8.77 mg/L) and gradually increased as the surfactant concentration increased in both aqueous solutions. Compared to AzoPB, gemini surfactant AzoPBT exhibited stronger solubilization ability. After four cycles of cis-trans isomerization conversion, AzoPBT could still reduce the hydrophobicity of Phe in natural groundwater, although the solubility of Phe decreased slightly. Additionally, the release capacity of AzoPBT was significantly higher than that of AzoPB during the cyclic solubilization-release process. The results indicated that gemini photoresponsive surfactants should be preferable to conventional photoresponsive surfactants for groundwater remediation due to their higher solubilization and release efficiency for Phe in the cyclic solubilization and release process, which can improve repair efficiency, minimize secondary pollution, and reduce remediation costs.
Collapse
Affiliation(s)
- Yueming Han
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China
| | - Chaomeng Dai
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China
| | - Yanping Duan
- School of Environmental and Geographical Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, P. R. China
- Institute of Urban Studies, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
- Yangtze River Delta Urban Wetland Ecosystem National Field Observation and Research Station, Shanghai 200234, P. R. China
| | - Yaojen Tu
- School of Environmental and Geographical Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, P. R. China
| | - Shuguang Liu
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
2
|
Cyclic solubilization and release of polycyclic aromatic hydrocarbons (PAHs) using gemini photosensitive surfactant combined with micro-nano bubbles: a promising enhancement technology for groundwater remediation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.123042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
3
|
Zhou Y, Jin Y, Shen Y, Shi L, Bai L, Zhou R. Adjustable surface activity and wetting ability of anionic hydrocarbon and nonionic short-chain fluorocarbon surfactant mixtures: Effects of Li+ and Mg2+. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
4
|
Xiang M, Lu Z, You Z, Wang X, Huang M, Xu W, Li H. Interaction quantitative modeling of mixed surfactants for synergistic solubilization by resonance light scattering. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:11874-11882. [PMID: 34558047 DOI: 10.1007/s11356-021-16391-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
In situ flushing through surfactant-enhanced aquifer remediation (SEAR) technology has long been recognized as a promising technique for NAPL removal from contaminated aquifers. However, there have been few studies on the choice of surfactants. In this work, the interaction quantitative model between resonance light scattering intensity and the concentration of binary surfactant mixtures NP-10+SDBS and NP-10+CTAB was established, and the mechanism of binary surfactant interaction was explored through the model by the resonance light scattering method. The relationship between the model constants and NAPL solubilization was also investigated to better address the application of surfactants in practical NAPL-contaminated site remediation. The critical micelle concentrations (CMCs) of nonylphenol ethoxylate (NP-10), dodecyl benzene sulfonate (SDBS), hexadecyl trimethyl ammonium bromide (CTAB), and the binary surfactant mixtures were measured by resonance light scattering (RLS), which were consistent with those obtained from surface tension measurements. In all cases, the RLS signals exhibited similar variations with surfactant concentration. A quantitative calculation model based on the RLS measurement data was established, and the binding constants KNP-10+SDBS and KNP-10+CTAB were calculated to be 0.66 and 1.51 L·mmol-1, respectively, according to the equilibrium equations. The results showed that the binding constants have a significant positive correlation with NAPL solubilization.
Collapse
Affiliation(s)
- Minghui Xiang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Zhen Lu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Ziyin You
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Xuechen Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Maofang Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Weixiong Xu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Hui Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
5
|
Chai L, Li J, Zhang Y, Liu Y, Wu Z. Growth and antioxidant response in Spirodela polyrrhiza under linear alkylbenzene sulfonate, naphthalene and their joint stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:61115-61127. [PMID: 34169418 DOI: 10.1007/s11356-021-14452-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/13/2021] [Indexed: 06/13/2023]
Abstract
The synthetic organic surfactants linear alkylbenzene sulfonate (LAS) and polycyclic aromatic hydrocarbon naphthalene (NAP), two common organic pollutants, are frequently detected in freshwater environments. However, the combined ecotoxicological risks associated with these pollutants have not been fully elucidated. The present study investigated the effects of individual and combined treatments of LAS and NAP on the growth and physiological responses of Spirodela polyrrhiza. The results showed that LAS was the main compound toxic to S. polyrrhiza in a dose-dependent manner. The peroxidase (POD) enzyme and catalase (CAT) enzyme are the main antioxidant enzymes protecting S. polyrrhiza from LAS stress. When exposed to NAP stress alone, only slightly reversible damage was observed as the exposure time was extended (14 days). The antioxidant enzyme systems (including superoxide dismutase (SOD), CAT and POD) showed positive responses. Synergistic effects were induced with LAS-NAP mixtures (≥ 5 + 5 mg L-1), and LAS played a major toxic role. The POD enzyme was a sensitive protective enzyme in duckweed during the joint exposure to LAS + NAP. The results indicate that LAS or NAP may cause serious damage to S. polyrrhiza and aggravate ecotoxicity in aquatic ecosystems.
Collapse
Affiliation(s)
- Lulu Chai
- Water Pollution Ecology Laboratory, College of Life Science, Wuhan University, Wuhan, 430072, Hubei, China
| | - Jing Li
- Water Pollution Ecology Laboratory, College of Life Science, Wuhan University, Wuhan, 430072, Hubei, China
| | - Yizhe Zhang
- Changjiang Water Resources Protection Institute, Wuhan, 430051, Hubei, China
| | - Yilin Liu
- Changjiang Water Resources Protection Institute, Wuhan, 430051, Hubei, China
| | - Zhonghua Wu
- Water Pollution Ecology Laboratory, College of Life Science, Wuhan University, Wuhan, 430072, Hubei, China.
| |
Collapse
|
6
|
Zhou Y, Jin Y, Shen Y, Zhou R, Shi L, Yao Z. A simple strategy to improve surface activity and wettability of anionic hydrocarbon and tri-block nonionic short-chain fluorocarbon surfactant mixtures. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Strobel AB, Egert T, Langguth P. Predicting Leachables Solubilization in Polysorbate 80 Solutions by a Linear Solvation Energy Relationship (LSER). Pharm Res 2021; 38:1549-1561. [PMID: 34580792 DOI: 10.1007/s11095-021-03096-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/20/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE A linear solvation energy relationship (LSER) was developed to predict the partitioning of neutral chemicals from polysorbate 80 (PS 80) micelles to water. Predicted partition coefficients were converted to a concentration dependent solubilization strength of aqueous PS 80 solutions. This solubilization strength represents a key parameter to project equilibrium levels of leaching from pharmaceutical plastic materials. METHODS To construct the LSER model equation, partition coefficients between PS 80 micelles and water were measured via a reference phase method or collected from the literature. Multiple linear regression of partition coefficients against five publicly available solute parameters was used to obtain the LSER system parameters. RESULTS 112 chemically diverse compounds were incorporated for LSER model regression. The model equation shows a very good fit (R2 = 0.969, SD = 0.219) for the entire dataset. The accuracy of the multi-parameter LSER model was proven to be substantially better in comparison to a single-parameter log-linear model based on the octanol-water partition coefficient. CONCLUSION PS 80 solubilization strength in water can expediently and accurately be calculated for neutral organic compounds with the proposed LSER model. LSER system parameters provide insightful chemical information with respect to solubilization in aqueous solutions of PS 80.
Collapse
Affiliation(s)
- Adrian Benedict Strobel
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.,Boehringer Ingelheim Pharma GmbH & Co. KG, Binger Straße 173, 55216, Ingelheim am Rhein, Germany
| | - Thomas Egert
- Boehringer Ingelheim Pharma GmbH & Co. KG, Binger Straße 173, 55216, Ingelheim am Rhein, Germany.
| | - Peter Langguth
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
8
|
Zhou Y, Jin Y, Shen Y, Shi L, Lai S, Tang Y. Strong synergistic effect of cationic hydrocarbon surfactant and novel nonionic tri-block short-chain fluorocarbon surfactant mixtures on surface activity, wettability and solubilization. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2021. [DOI: 10.1186/s42825-021-00064-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Mixing hydrocarbon surfactants with fluorocarbon surfactants is still an important strategy to improve the economic benefits and performances of fluorocarbon surfactants and expand their range of application. Herein, we prepared a novel kind of hydrocarbon-fluorocarbon surfactant mixtures via mixing a cationic surfactant, cetyltrimethylammonium bromide (CTAB), with a tri-block nonionic short-chain fluorocarbon surfactant (F9EG13F9) in aqueous solution. The results showed that adding a small CTAB amount to F9EG13F9 (the molar fraction of CTAB in the mixture (x1) was 0.2) could greatly reduce its critical micelle concentrations (cmc) from 0.408 mmol/L to 0.191 mmol/L. At this x1, the contact angle of the mixture was the minimum (57.7 °) at 100 s on polytetrafluoroethylene film, which was even lower than that of F9EG13F9. Besides, CTAB/F9EG13F9 mixtures possessed better colloidal stability and solubilization ability toward hydrophobic dye (Sudan І) than F9EG13F9. The outstanding performances of binary surfactant mixtures benefited from the non-ideal mixing and strong synergistic effect evidence that CTAB/F9EG13F9 surfactant mixtures could be used in practical applications instead of individual F9EG13F9, thereby reducing the used cost of F9EG13F9.
Graphical abstract
Collapse
|
9
|
Sun Y, Zou M, Li C, Li X, Mao T, Zheng C. The solubilization of naphthalene using tea saponin as a biosurfactant: Effect of temperature. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Chen T, Hu X, Chen Z, Cui X. The Total Solubility of the Co-Solubilized PAHs with Similar Structures Indicated by NMR Chemical Shift. Molecules 2021; 26:molecules26092793. [PMID: 34068475 PMCID: PMC8125976 DOI: 10.3390/molecules26092793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022] Open
Abstract
The synergism/inhibition level, solubilization sites and the total solubility (St) of co-solubilization systems of phenanthrene, anthracene and pyrene in Tween 80 and sodium dodecyl sulfate (SDS) are studied by 1H-NMR, 2D nuclear overhauser effect spectroscopy (NOESY) and rotating frame overhauser effect spectroscopy (ROESY). In Tween 80, inhibition for phenanthrene, anthracene and pyrene is observed in most binary and ternary systems. However, in SDS, synergism is predominant. After analysis, we find that the different synergism or inhibition situation between Tween 80 and SDS is related to the different types of surfactants used and the resulting different co-solubilization mechanisms. In addition, we also find that three polycyclic aromatic hydrocarbons (PAHs) have similar solubilization sites in both Tween 80 and SDS, which are almost unchanged in co-solubilization systems. Due to the similar solubilization sites, the chemical shift changes of surfactant and PAH protons follow the same pattern in all solubilization systems, and the order of chemical shift changes is consistent with the order of changes in the St of PAHs. In this case, it is feasible to evaluate St of PAHs by chemical shift. In both Tween 80 and SDS solutions, the ternary solubilization system has relatively high St rankings. Therefore, in practical applications, a good overall solubilization effect can be expected.
Collapse
|
11
|
Effect of non-ionic surfactants on the adsorption of polycyclic aromatic compounds at water/oil interface: A molecular simulation study. J Colloid Interface Sci 2021; 586:766-777. [DOI: 10.1016/j.jcis.2020.10.146] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/13/2020] [Accepted: 10/31/2020] [Indexed: 11/23/2022]
|
12
|
Li Y, Hu J, Liu H, Zhou C, Tian S. Electrochemically reversible foam enhanced flushing for PAHs-contaminated soil: Stability of surfactant foam, effects of soil factors, and surfactant reversible recovery. CHEMOSPHERE 2020; 260:127645. [PMID: 32693262 DOI: 10.1016/j.chemosphere.2020.127645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/23/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
Although surfactant foams enhanced-remediation for PAHs-contaminated soil has been proved to be an effective method, lack of simple/economic surfactant recovery methods from the eluent solutions limit its further remediation application for organic contaminated soil. Here, we prepared a electrochemically reversible ferrocene surfactant FcCH2N+(CH3)C12H25 (Fc12), then investigated the foaming ability and foam stability of Fc12 under its reduced (active state) and oxidation (inactive state) states and explored the flushing efficiency of reduced Fc12 foam for PAHs-contaminated soil and the recovery efficiency of collected eluent solution. The results showed that the foaming ability and foam stability of reduced Fc12 are greatly higher than those of oxidized Fc12, which is indicative of a well reversibly switchable characteristic of Fc12. The contaminated soil flushing efficiencies of reduced Fc12 for phenanthrene and pyrene were 65.28% and 46.45%. The respective desorption efficiency of phenanthrene and pyrene from collected eluent solutions were calculated to be 74.94% and 72.75% by electrochemical oxidation control, which indicates that Fc12 can be well recovered by simple electrochemical control. This study provides a feasible method for the recovery of surfactants from surfactant-enhanced remediation processes by simply electrochemical control.
Collapse
Affiliation(s)
- Yingjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Jing Hu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Huaying Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Chunjian Zhou
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| |
Collapse
|
13
|
Effect of Triton X-100 surfactant on the interfacial activity of ionic surfactants SDS, CTAB and SDBS at the air/water interface: A study using molecular dynamic simulations. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Shih YJ, Wu PC, Chen CW, Chen CF, Dong CD. Nonionic and anionic surfactant-washing of polycyclic aromatic hydrocarbons in estuarine sediments around an industrial harbor in southern Taiwan. CHEMOSPHERE 2020; 256:127044. [PMID: 32428741 DOI: 10.1016/j.chemosphere.2020.127044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/04/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Various surfactants, such as nonionic Triton X-100 and Simple Green™ (SG), and anionic sodium dodecylsulfate (SDS) and sodium dodecylbenzene sulfonate (SDBS) were utilized to remove polycyclic aromatic hydrocarbons (PAHs) from heavily contaminated harbor sediments dredged from Kaohsiung Harbor in Taiwan. Desorption/re-sorption equilibrium, kinetics, and washability of PAHs using the selected surfactant were evaluated under different critical micelle concentrations (CMC). Experimental results revealed that the desorption rate of high molecular weight PAHs was greater than those of low molecular weight PAHs, and the anionic SDS was relatively effective in the removal of total PAHs (>50%) compared to the other surfactants. The correlation between the effectiveness of the surfactant washing processes and the physicochemical properties of individual PAH was statistically analyzed. The resulting data suggested that hydrophobic factors (Kow, Koc and Sw) affected PAH treatability more than the reactivity of PAH (electron affinity and ionization potential). Since the adsorption of anionic surfactant altered the hydrophobicity of organic matter in the sediment, PAHs preferred transferring from the sediment to the hydrophobic core of micelles in aqueous solution. Nevertheless, the nonionic surfactant enhanced the PAH partition in the aqueous phase, thus increasing the micellar solubilization of PAH.
Collapse
Affiliation(s)
- Yu-Jen Shih
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Po-Chang Wu
- Graduate Institute of Environmental Engineering, National Taiwan University, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 811, Taiwan
| | - Chih-Feng Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 811, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 811, Taiwan.
| |
Collapse
|
15
|
Liu J, Wang Y, Li H. Synergistic Solubilization of Phenanthrene by Mixed Micelles Composed of Biosurfactants and a Conventional Non-Ionic Surfactant. Molecules 2020; 25:molecules25184327. [PMID: 32967248 PMCID: PMC7570535 DOI: 10.3390/molecules25184327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 01/06/2023] Open
Abstract
This study investigated the solubilization capabilities of rhamnolipids biosurfactant and synthetic surfactant mixtures for the application of a mixed surfactant in surfactant-enhanced remediation. The mass ratios between Triton X-100 and rhamnolipids were set at 1:0, 9:1, 3:1, 1:1, 1:3, and 0:1. The ideal critical micelle concentration values of the Triton X-100/rhamnolipids mixture system were higher than that of the theoretical predicted value suggesting the existence of interactions between the two surfactants. Solubilization capabilities were quantified in term of weight solubilization ratio and micellar-water partition coefficient. The highest value of the weight solubilization ratio was detected in the treatment where only Triton X-100 was used. This ratio decreased with the increase in the mass of rhamnolipids in the mixed surfactant systems. The parameters of the interaction between surfactants and the micellar mole fraction in the mixed system have been determined. The factors that influence phenanthrene solubilization, such as pH, ionic strength, and acetic acid concentration have been discussed in the paper. The aqueous solubility of phenanthrene increased linearly with the total surfactant concentration in all treatments. The mixed rhamnolipids and synthetic surfactants showed synergistic behavior and enhanced the solubilization capabilities of the mixture, which would extend the rhamnolipids application.
Collapse
|
16
|
Ashraf U, Lone MS, Masrat R, Shah RA, Afzal S, Chat OA, Dar AA. Co-solubilization of polycyclic aromatic hydrocarbon mixtures in aqueous micellar systems and its correlation with FRET for enhanced remediation processes. CHEMOSPHERE 2020; 242:125160. [PMID: 31669988 DOI: 10.1016/j.chemosphere.2019.125160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 06/10/2023]
Abstract
Surfactant enhanced remediation (SER) is an effective approach for decontaminating the PAH polluted soils. Solubilization and Cosolubilization of Phenanthrene (Ph), Pyrene (Py) and Perylene (Pe) as single, binary and ternary mixtures have been studied employing cationic (CTAB), anionic (SDS), non-ionic surfactant (Brij 30) and block copolymer (P123) micelles. In the single solute solubilization studies, solubility of Pe follows the order Brij 30 > CTAB > SDS whereas Ph or Py followed the order of CTAB > Brij 30 > SDS. In the cosolubilization studies, an increase, decrease or no change in the mutual solubility of PAHs was observed. Synergism in solubilization was observed most in P123 in both binary and ternary PAH mixture where more PAHs could get solubilized in the dense micellar shell region, thereby enhancing the micellar core volume leading to enhanced solubilization of PAHs. The solubilizates as pairs (Ph-Pe and Py-Pe) were further tested for any possible energy transfer in presence of surfactant based restricted host environments using spectrofluorometry and spectrophotometry. Based on the solubilization and cosolubilization an efficient non-radiative energy transfer (FRET) was observed between Ph/Py (donor) and Pe (acceptor) in the non-ionic surfactant system as well as in CTAB-Brij 58 mixed system. The results of this work may improve the effective utilization of surfactants in their correct evaluation for the removal of PAHs from contaminated soils or aquifers treated with SER technology.
Collapse
Affiliation(s)
- Uzma Ashraf
- Department of Chemistry, Amar Singh College, Gogji Bagh, Srinagar, 190008, JK, India
| | - Mohd Sajid Lone
- Physical Chemistry Division, Department of Chemistry, University of Kashmir, Srinagar, 190006, JK, India
| | - Rohi Masrat
- Physical Chemistry Division, Department of Chemistry, University of Kashmir, Srinagar, 190006, JK, India
| | - Rais Ahmad Shah
- Physical Chemistry Division, Department of Chemistry, University of Kashmir, Srinagar, 190006, JK, India
| | - Saima Afzal
- Physical Chemistry Division, Department of Chemistry, University of Kashmir, Srinagar, 190006, JK, India
| | - Oyais Ahmad Chat
- Department of Chemistry, Government Degree College Pulwama, 192301, JK, India
| | - Aijaz Ahmad Dar
- Physical Chemistry Division, Department of Chemistry, University of Kashmir, Srinagar, 190006, JK, India.
| |
Collapse
|
17
|
Liang Y, Zhang S, Li H, Mao X, Li Y, Xie X, Ren J, Li G, Lian R. Solubilization of polycyclic aromatic hydrocarbons by novel ester-bonded Gemini prolinol-based surfactant and its binary mixtures with conventional surfactants. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2019.1566924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yaqin Liang
- Department of Chemistry, Changzhi College, Changzhi, Shanxi, P. R. China
| | - Shuping Zhang
- Department of Chemistry, Changzhi College, Changzhi, Shanxi, P. R. China
| | - Hui Li
- Department of Chemistry, Changzhi College, Changzhi, Shanxi, P. R. China
| | - Xiaoming Mao
- Department of Chemistry, Changzhi College, Changzhi, Shanxi, P. R. China
| | - Yan Li
- Department of Chemistry, Changzhi College, Changzhi, Shanxi, P. R. China
| | - Xuanjie Xie
- Department of Chemistry, Changzhi College, Changzhi, Shanxi, P. R. China
| | - Jiaqi Ren
- Department of Chemistry, Changzhi College, Changzhi, Shanxi, P. R. China
| | - Gang Li
- Department of Chemistry, Changzhi College, Changzhi, Shanxi, P. R. China
| | - Rui Lian
- Department of Chemistry, Changzhi College, Changzhi, Shanxi, P. R. China
| |
Collapse
|
18
|
Sayed S, Elsayed I, Ismail MM. Optimization of β-cyclodextrin consolidated micellar dispersion for promoting the transcorneal permeation of a practically insoluble drug. Int J Pharm 2018; 549:249-260. [PMID: 30077759 DOI: 10.1016/j.ijpharm.2018.08.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 11/25/2022]
Abstract
Development of efficient ocular drug delivery system for antifungal drugs becomes a must nowadays to face and eradicate the widely spread ophthalmic fungal infections. Itraconazole, a triazole antifungal, is struggling to penetrate the cornea and subsequently, its efficacy is limited. The aim of this study was to enhance itraconazole corneal penetration through utilizing the minimum surfactant amount in presence of β-cyclodextrin which acted as a dissolution and permeation enhancer. β-Cyclodextrin consolidated micellar dispersions (CCMD) were prepared after an initial screening to select the composition of surfactant(s). The preparation was done according to a modified melt dispersion technique. The prepared CCMD were characterized through the analysis of their particle size, zeta potential and solubilization efficiency. The optimum formula was chosen based on a factorial response surface analysis and it was composed of 17:1 w/w surfactant/drug, 30:1 w/w cyclodextrin/drug ratios and 0.02% polyethylene oxide. This formula was subjected to in vitro characterization including release, imaging by transmission electron microscope, mucoadhesion, stability, in addition to the determination of the minimum inhibitory concentration. Moreover, the ex vivo/in vivo permeation, safety and efficacy profiles were determined. The optimized CCMD formula was found to be significantly safe, stable, mucoadhesive and efficient to permeate the drug through rabbits' corneas. Consequently, the optimized CCMD formulation can be a promising, safe and efficient platform for the transcorneal delivery of lipophilic drugs including most antifungals.
Collapse
Affiliation(s)
- Sinar Sayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ibrahim Elsayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, United Arab Emirates.
| | - Maha M Ismail
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
19
|
Liang X, Guo C, Liu S, Dang Z, Wei Y, Yi X, Abel S. Cosolubilization of phenanthrene and pyrene in surfactant micelles: Experimental and atomistic simulations studies. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.04.123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
20
|
Zhou Z, Zhu S, Gong J, Zhu M, Luo W. Experimental study on methane solubilization by organic surfactant aggregates. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-017-0369-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Cabana Saavedra LC, Pachón Gómez EM, Oliveira RG, Fernández MA. Aggregation behaviour and solubilization capability of mixed micellar systems formed by a gemini lipoamino acid and a non-ionic surfactant. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Lamichhane S, Bal Krishna KC, Sarukkalige R. Surfactant-enhanced remediation of polycyclic aromatic hydrocarbons: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 199:46-61. [PMID: 28527375 DOI: 10.1016/j.jenvman.2017.05.037] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/04/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are toxic, mutagenic and carcinogenic organic compounds that are widely present in the environment. The bioremediation of PAHs is an economical and environmentally friendly remediation technique, but it is limited because PAHs have low water solubility and fewer bioavailable properties. The solubility and bioavailability of PAHs can be increased by using surfactants to reduce surface tension and interfacial tension; this method is called surfactant-enhanced remediation (SER). The SER of PAHs is influenced by many factors such as the type and concentration of surfactants, PAH hydrophobicity, temperature, pH, salinity, dissolved organic matter and microbial community. Furthermore, as mixed micelles have a synergistic effect on PAH solubilisation, selecting the optimum ratio of mixed surfactants leads to effective PAH remediation. Although the use of surfactants inhibits microbial activities in some cases, this could be avoided by choosing an optimum combination of surfactants and a proper microbial community for the targeted PAH(s), resulting in up to 99.99% PAH removal. This article reviews the literature on SER of PAHs, including surfactant types, the synergistic effect of mixed micelles on PAH removal, the impact of surfactants on the PAH biodegradation process, factors affecting the SER process, and the mechanisms of surfactant-enhanced solubilisation of PAHs.
Collapse
Affiliation(s)
- Shanti Lamichhane
- Department of Civil Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - K C Bal Krishna
- School of Computing Engineering and Mathematics, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Ranjan Sarukkalige
- Department of Civil Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| |
Collapse
|
23
|
Self-assembled structures and excellent surface properties of a novel anionic phosphate diester surfactant derived from natural rosin acids. J Colloid Interface Sci 2017; 486:67-74. [DOI: 10.1016/j.jcis.2016.09.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 11/22/2022]
|