1
|
Ye J, Xu H, Kong X, Zhang Y, Chen Y, Zhou B, Zhu Y, Cai D, Wang D. Simultaneous removal of tetracycline hydrochloride and hexavalent chromium by heterogeneous Fenton in a photocatalytic fuel cell system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121608. [PMID: 38943751 DOI: 10.1016/j.jenvman.2024.121608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/03/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
In this work, a novel double-chamber system (PFC-Fenton), combined photocatalytic fuel cell (PFC) with Fenton, was constructed for tetracycline hydrochloride (TCH) and hexavalent chromium (Cr(VI)) removal and electricity production. Therein, Zn5(OH)6(CO3)2/Fe2O3/BiVO4/fluorine-doped SnO2 (ZIO/BiVO4/FTO) and carboxylated carbon nanotubes/polypyrrole/graphite felt (CCNTs/Ppy/GF) were served as photoanode and cathode, respectively. Under light irradiation, the removal efficiencies of TCH and Cr(VI) with the addition of H2O2 (2 mL) could reach 93.1% and 80.4%, respectively. Moreover, the first-order kinetic constants (7.37 × 10-3 min-1 of TCH and 3.94 × 10-3 min-1 of Cr(VI)) were 5.26 and 5.57 times as much as the absence of H2O2. Simultaneously, the maximum power density could be obtained 0.022 mW/cm2 at a current density of 0.353 mA/cm2. Therein, the main contribution of TCH degradation was ·OH and holes in anode chamber. The synergistic effect of photoelectrons, generated ·O2-, and H2O2 played a crucial role in the reduction of Cr(VI) in cathode chamber. The high-performance liquid chromatography-mass spectrometry indicated that TCH could be partially mineralized into CO2 and H2O. X-ray photoelectron spectroscope and X-ray absorption near-edge structure spectra showed that Cr(VI) could be reduced to Cr(III). After 5 times of cycling, the removal efficiencies of TCH and Cr(VI) were still greater than 70%, indicating the remarkable stability of the PFC-Fenton system. Overall, this system could remove TCH/Cr(VI) and generate power simultaneously without iron sludge formation, demonstrating a promising method to further develop PFC-Fenton technology.
Collapse
Affiliation(s)
- Jinghong Ye
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - He Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| | - Xianghai Kong
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Yong Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Yuhan Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Benji Zhou
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Yanping Zhu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| | - Dongqing Cai
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| | - Dongfang Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
2
|
Liu X, Wang J. Decolorization and degradation of crystal violet dye by electron beam radiation: Performance, degradation pathways, and synergetic effect with peroxymonosulfate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:124037. [PMID: 38677457 DOI: 10.1016/j.envpol.2024.124037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Ionizing radiation (mainly including gamma ray and electron beam) technology provides a more efficient and ecological option for dye-containing wastewater treatment, which is supported by its successful achievements in industrial-scale applications. However, the degradation pathway of triphenylmethane dyes by radiation technology is still unclear. In this study, crystal violet (CV) was selected as representative cationic triphenylmethane dye, the decolorization and degradation performance by electron beam radiation technology was systematically evaluated. The results showed that CV can be efficiently decolorized and mineralized by radiation, and its degradation kinetics followed the first-order kinetic model. The effect of inorganic anions and chelating agents commonly existed in dye-containing wastewater on CV decolorization and total organic carbon (TOC) removal was explored. Quenching experiments, density functional theory (DFT) calculation and high performance liquid chromatography mass spectrometry (HPLC-MS) analysis were employed to reveal CV decolorization and degradation mechanism and pathway, which mainly included N-demethylation, triphenylmethane chromophore cleavage, ring-opening of aromatic products and further oxidation to carboxylic acid, and mineralization to CO2 and H2O. Additionally, electron beam radiation/PMS process was explored to decrease the absorbed dose required for decolorization and degradation, and the synergetic effect of radiation with PMS was elucidated. More importantly, the findings of this study would provide the support for treating actual dyeing wastewater by electron beam radiation technology.
Collapse
Affiliation(s)
- Xinyu Liu
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
3
|
Zhao X, Zhang C, Ren Z, Wang B, Yang Q, An L, Liu J. Application of electrochemistry technology to effectively inhibit dye pollution and unfixed dye transfer in a washing microenvironment. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02597-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
4
|
Faizal ANM, Putra NR, Zaini MAA. Insight into the adsorptive mechanisms of methyl violet and reactive orange from water—a short review. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2022.2140462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Azrul Nurfaiz Mohd Faizal
- Centre of Lipids Engineering and Applied Research (CLEAR), Ibnu–Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Bahru, Malaysia
- Faculty of Engineering, School of Chemical & Energy Engineering, Universiti Teknologi Malaysia, Bahru, Malaysia
| | - Nicky Rahmana Putra
- Centre of Lipids Engineering and Applied Research (CLEAR), Ibnu–Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Bahru, Malaysia
- Faculty of Engineering, School of Chemical & Energy Engineering, Universiti Teknologi Malaysia, Bahru, Malaysia
| | - Muhammad Abbas Ahmad Zaini
- Centre of Lipids Engineering and Applied Research (CLEAR), Ibnu–Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Bahru, Malaysia
- Faculty of Engineering, School of Chemical & Energy Engineering, Universiti Teknologi Malaysia, Bahru, Malaysia
| |
Collapse
|
5
|
Engineered biochar prepared using a self-template coupled with physicochemical activation for highly efficient adsorption of crystal violet. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Abidi J, Clematis D, Samet Y, Delucchi M, Cademartori D, Panizza M. Influence of anode material and chlorides in the new-gen solid polymer electrolyte cell for electrochemical oxidation – Optimization of Chloroxylenol degradation with response surface methodology. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
Xie J, Zhang C, Waite TD. Hydroxyl radicals in anodic oxidation systems: generation, identification and quantification. WATER RESEARCH 2022; 217:118425. [PMID: 35429884 DOI: 10.1016/j.watres.2022.118425] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/17/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Anodic oxidation has emerged as a promising treatment technology for the removal of a broad range of organic pollutants from wastewaters. Hydroxyl radicals are the primary species generated in anodic oxidation systems to oxidize organics. In this review, the methods of identifying hydroxyl radicals and the existing debates and misunderstandings regarding the validity of experimental results are discussed. Consideration is given to the methods of quantification of hydroxyl radicals in anodic oxidation systems with particular attention to approaches used to compare the electrochemical performance of different anodes. In addition, we describe recent progress in understanding the mechanisms of hydroxyl radical generation at the surface of most commonly used anodes and the utilization of hydroxyl radical in typical electrochemical reactors. This review shows that the key challenges facing anodic oxidation technology are related to i) the elimination of mistakes in identifying hydroxyl radicals, ii) the establishment of an effective hydroxyl radical quantification method, iii) the development of cost effective anode materials with high corrosion resistance and high electrochemical activity and iv) the optimization of electrochemical reactor design to maximise the utilization efficiency of hydroxyl radicals.
Collapse
Affiliation(s)
- Jiangzhou Xie
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Changyong Zhang
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia; CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia; UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province, 214206, P.R. China.
| |
Collapse
|
8
|
Tasca AL, Clematis D, Panizza M, Vitolo S, Puccini M. Chlorpyrifos removal: Nb/boron-doped diamond anode coupled with solid polymer electrolyte and ultrasound irradiation. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:1391-1399. [PMID: 33312650 PMCID: PMC7721771 DOI: 10.1007/s40201-020-00555-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/29/2020] [Indexed: 05/09/2023]
Abstract
Chlorpyrifos is an organophosphorus insecticide, acaricide and miticide used worldwide for the control of soil-borne insect pests. It must be considered as a substance of growing concern, given its use, toxicity, environmental occurrence, and potential for regional to long-range atmospheric transport. Considering the incomplete removal attained by conventional water treatment processes, we investigated the efficiency of electrolytic radicals production and sonoelectrolysis on the degradation of the pesticide. The treatment has been conducted in a novel electrochemical reactor, equipped with a boron-doped diamond anode and a solid polymer electrolyte (SPE). Different current intensity and times have been tested and coupled with sonication at 40 kHz. Up to 69% of chlorpyrifos was completely removed in 10 min by electrolysis operated at 0.1 mA, while 12.5% and 5.4% was converted into the treatment intermediates 3,5,6-trichloro-2-pyridinol (TCP) and diethyl (3,5,6-trichloropyridin-2-yl) phosphate, respectively. Ultrasound irradiation did not enhance the removal efficiency, likely due to mass transport limitations, while the energy consumption increased from 8.68∙10- 6 to 9.34∙10- 4 kWh µg- 1 removed. Further research is encouraged, given the promising processing by the SPE technology of low conductivity solutions, as pharmaceuticals streams, as well as the potential for water and in-situ groundwater remediation from different emerging pollutants as phytosanitary and personal care products.
Collapse
Affiliation(s)
- Andrea Luca Tasca
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, Pisa, 56122 Italy
| | - Davide Clematis
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, Via Opera Pia 15, Genoa, 16145 Italy
| | - Marco Panizza
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, Via Opera Pia 15, Genoa, 16145 Italy
| | - Sandra Vitolo
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, Pisa, 56122 Italy
| | - Monica Puccini
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, Pisa, 56122 Italy
| |
Collapse
|
9
|
da Costa Soares IC, da Silva ÁRL, de Moura Santos ECM, dos Santos EV, da Silva DR, Martínez-Huitle CA. Understanding the electrochemical oxidation of dyes on platinum and boron–doped diamond electrode surfaces: experimental and computational study. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04813-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Khan SU, Khan H, Anwar S, Khan S, Boldrin Zanoni MV, Hussain S. Computational and statistical modeling for parameters optimization of electrochemical decontamination of synozol red dye wastewater. CHEMOSPHERE 2020; 253:126673. [PMID: 32302900 DOI: 10.1016/j.chemosphere.2020.126673] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
In this study, computational and statistical models were applied to optimize the inherent parameters of an electrochemical decontamination of synozol red. The effect of various experimental variables such as current density, initial pH and concentration of electrolyte on degradation were assessed at Ti/RuO0·3TiO0·7O2 anode. Response surface methodology (RSM) based central composite design was applied to investigate interdependency of studied variables and train an artificial neural network (ANN) to envisage the experimental training data. The presence of fifteen neurons proved to have optimum performance based on maximum R2, mean absolute error, absolute average deviation and minimum mean square error. In comparison to RSM and empirical kinetics models, better prediction and interpretation of the experimental results were observed by ANN model. The sensitive analysis revealed the comparative significance of experimental variables are pH = 61.03%>current density = 17.29%>molar concentration of NaCl = 12.7%>time = 8.98%. The optimized process parameters obtained from genetic algorithm showed 98.6% discolorization of dye at pH 2.95, current density = 5.95 mA cm-2, NaCl of 0.075 M in 29.83 min of electrolysis. The obtained results revealed that the use of statistical and computational modeling is an adequate approach to optimize the process variables of electrochemical treatment.
Collapse
Affiliation(s)
- Saad Ullah Khan
- Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, 23460, Pakistan; Institute of Chemistry Araraquara, São Paulo State University (UNESP), Av. Prof. Francisco Degni 55, Araraquara, SP, 14800-060, Brazil
| | - Hammad Khan
- Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, 23460, Pakistan
| | - Sajid Anwar
- Faculty of Computer Sciences and Engineering, GIK Institute of Engineering Sciences and Technology, Topi, 23460, Pakistan
| | - Sabir Khan
- Institute of Chemistry Araraquara, São Paulo State University (UNESP), Av. Prof. Francisco Degni 55, Araraquara, SP, 14800-060, Brazil
| | - Maria V Boldrin Zanoni
- Institute of Chemistry Araraquara, São Paulo State University (UNESP), Av. Prof. Francisco Degni 55, Araraquara, SP, 14800-060, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactivies (INCT-DATREM), São Paulo State University (UNESP), Institute of Chemistry, Araraquara, SP, 14800-060, Brazil
| | - Sajjad Hussain
- Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, 23460, Pakistan; Faculdade de Engenharias, Arquitetura e Urbanismo e Geografia, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, CEP 79070-900, Campo Grande, MS, Brazil.
| |
Collapse
|
11
|
Putri KNA, Keereerak A, Chinpa W. Novel cellulose-based biosorbent from lemongrass leaf combined with cellulose acetate for adsorption of crystal violet. Int J Biol Macromol 2020; 156:762-772. [DOI: 10.1016/j.ijbiomac.2020.04.100] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/05/2020] [Accepted: 04/13/2020] [Indexed: 12/20/2022]
|
12
|
Escalona-Durán F, Ribeiro da Silva D, Martínez-Huitle CA, Villegas-Guzman P. The synergic persulfate-sodium dodecyl sulfate effect during the electro-oxidation of caffeine using active and non-active anodes. CHEMOSPHERE 2020; 253:126599. [PMID: 32278188 DOI: 10.1016/j.chemosphere.2020.126599] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/12/2020] [Accepted: 03/21/2020] [Indexed: 06/11/2023]
Abstract
It has previously been established during the elimination of organic matter that the addition of sodium dodecyl sulfate in solution is an important condition in the electrochemical oxidation approach that allows to increase the production of persulfate, enhancing the efficacy of the treatment. This outcome was observed when using the anodic oxidation with boron doped diamond (BDD), the extra production of persulfate was achieved after the SDS-sulfate released in solution and it reacts with hydroxyl radicals electrogenerated at BDD surface. However, this effect was not already tested by using active anodes. For this reason, the effect of sodium dodecyl sulfate (SDS) during the electrochemical treatment of caffeine was investigated by comparing non-active and active anodes performances. A significant decrease on the oxidation efficiency of caffeine was observed by using Ti/IrO2-Ta2O5 anode at high current density when SDS was added to the solution. Conversely, at BDD anode, the presence of SDS enhanced the degradation efficiency, depending on the applied current density. This behavior is mainly due to the degradation of SDS molecules, which allows to increase the amount of sulfate in solution, promoting the production of persulfate via the mechanism involving hydroxyl radicals when BDD is used. Meanwhile, no oxidation improvements were observed when Ti/IrO2-Ta2O5 anode was employed, limiting the caffeine oxidation. Results clearly showed that the surfactant concentration had little influence on the degradation efficiency, but this result is satisfactory for the BDD system, since it demonstrates that effluents with complex matrices containing surfactants could be effectively degraded using the electrooxidation technique. Degradation mechanisms were explained by electrochemical measurements (polarization curves) as well as the kinetic analysis. Costs and energy consumption were also evaluated.
Collapse
Affiliation(s)
- Florymar Escalona-Durán
- Institute of Chemistry, Environmental and Applied Electrochemistry Laboratory, Federal University of Rio Grande do Norte, Lagoa Nova, CEP, 59078-970, Natal, RN, Brazil
| | - Djalma Ribeiro da Silva
- Institute of Chemistry, Environmental and Applied Electrochemistry Laboratory, Federal University of Rio Grande do Norte, Lagoa Nova, CEP, 59078-970, Natal, RN, Brazil
| | - Carlos A Martínez-Huitle
- Institute of Chemistry, Environmental and Applied Electrochemistry Laboratory, Federal University of Rio Grande do Norte, Lagoa Nova, CEP, 59078-970, Natal, RN, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Unesp, P.O. Box 355, 14800-900, Araraquara, SP, Brazil.
| | - Paola Villegas-Guzman
- Institute of Chemistry, Environmental and Applied Electrochemistry Laboratory, Federal University of Rio Grande do Norte, Lagoa Nova, CEP, 59078-970, Natal, RN, Brazil; Centro de Investigaciones UNINAVARRA - CINA, Fundación Universitaria Navarra - UNINAVARRA, Calle 10 No. 6 - 41. Primer Piso, Neiva, Huila, Colombia.
| |
Collapse
|
13
|
Chen H, Motuzas J, Martens W, Diniz da Costa JC. Improved dark ambient degradation of organic pollutants by cerium strontium cobalt perovskite. J Environ Sci (China) 2020; 90:110-118. [PMID: 32081308 DOI: 10.1016/j.jes.2019.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
This work investigates the effect of cerium substation into strontium cobalt perovskites (CeSrCoO) for the oxidative degradation of Orange II (OII) in dark ambient conditions without the aid of any external stimulants such as light, heating or chemical additives. The OII degradation rate by CeSrCoO reached 65% in the first hour, whilst for the blank sample without cerium (SrCoO) took over 2 hr to reach the same level of OII degradation. Hence, the cerium substitution improved the catalytic activity of the perovskite material, mainly associated with the Ce0.1Sr0.9CoO3 perovskite phase. Upon contacting CeSrCoO, the -NN- azo bonds of the OII molecules broke down resulting in electron donation and the formation of by-products. The electrons are injected into the CeSrCoO and resulted in a redox pair of Co3+/Co2+, establishing a bridge for the electron transfer between OII and the catalysts. Concomitantly, the electrons also formed reactive species (·OH) responsible for OII degradation as evidenced by radical trapping experiment. Reactive species were formed via the reaction between O2 and donated electrons from OII with the aid of cobalt redox pair. As the prepared materials dispensed with the need for light irradiation and additional oxidants, it opens a window of environmental applications for treating contaminated wastewaters.
Collapse
Affiliation(s)
- Huihuang Chen
- The University of Queensland, FIM(2)Lab - Functional Interfacial Materials and Membranes Laboratory, School of Chemical Engineering, Brisbane, Qld 4072, Australia; Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui 230026, China
| | - Julius Motuzas
- The University of Queensland, FIM(2)Lab - Functional Interfacial Materials and Membranes Laboratory, School of Chemical Engineering, Brisbane, Qld 4072, Australia.
| | - Wayde Martens
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, Qld 4000, Australia
| | - João C Diniz da Costa
- The University of Queensland, FIM(2)Lab - Functional Interfacial Materials and Membranes Laboratory, School of Chemical Engineering, Brisbane, Qld 4072, Australia; LAQV-REQUIMTE, (Bio)Chemical Process Engineering, Department of Chemistry, Faculty of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal
| |
Collapse
|
14
|
Abidi J, Samet Y, Panizza M, Martinez‐Huitle CA, Carpanese MP, Clematis D. A Boron‐Doped Diamond Anode for the Electrochemical Removal of Parabens in Low‐Conductive Solution: From a Conventional Flow Cell to a Solid Polymer Electrolyte System. ChemElectroChem 2020. [DOI: 10.1002/celc.201901909] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jihen Abidi
- Laboratory Research of Toxicology-Microbiology Environmental and Health (LR17ES06) Science Faculty of SFAXUniversity of SFAX Road of Soukra km 4 3038 Sfax Tunisia
| | - Youssef Samet
- Laboratory Research of Toxicology-Microbiology Environmental and Health (LR17ES06) Science Faculty of SFAXUniversity of SFAX Road of Soukra km 4 3038 Sfax Tunisia
| | - Marco Panizza
- Department of Civil, Chemical and Environmental EngineeringUniversity of Genoa Via all'Opera Pia 15 16145 Genova Italy
| | - Carlos A. Martinez‐Huitle
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM)Institute of Chemistry, P.O. Box 355 14800-900 Araraquara, SP Brazil
| | - M. Paola Carpanese
- Department of Civil, Chemical and Environmental EngineeringUniversity of Genoa Via all'Opera Pia 15 16145 Genova Italy
| | - Davide Clematis
- Department of Civil, Chemical and Environmental EngineeringUniversity of Genoa Via all'Opera Pia 15 16145 Genova Italy
| |
Collapse
|
15
|
dos Santos AJ, da Costa Cunha G, Cruz DRS, Romão LPC, Martínez-Huitle CA. Iron mining wastes collected from Mariana disaster: Reuse and application as catalyst in a heterogeneous electro-Fenton process. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113330] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
Tasca AL, Puccini M, Clematis D, Panizza M. Electrochemical removal of Terbuthylazine:Boron-Doped Diamond anode coupled with solid polymer electrolyte. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:285-291. [PMID: 31082613 DOI: 10.1016/j.envpol.2019.04.134] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/01/2019] [Accepted: 04/29/2019] [Indexed: 05/24/2023]
Abstract
Terbuthylazine (TBA) has replaced atrazine in many EU countries, becoming one of the most frequently detected pesticides in natural waters. TBA is a compound of emerging concern, due to its persistence, toxicity and proven endocrine disruption activity to wildlife and humans. Techniques applied in water treatment plants remove only partially this herbicide and poor attention is given to the generation and fate of by-products, although some of them have demonstrated an estrogenic activity comparable to atrazine. This paper summarizes the environmental occurrence of TBA and its main metabolite desethylterbuthylazine and reports the performance of an innovative electrochemical cell equipped with a solid polymer electrolyte (SPE) sandwiched between a Ti/RuO2 cathode and a Boron-Doped Diamond anode, operating at constant current, in the treatment of an aqueous solution of TBA. The herbicide removal in the first 30 min of treatment increases from 42% to 92% as the applied current is increased from 100 to 500 mA. The rate of degradation at 500 mA decreases between 30 and 60 min, with a final abatement of 97%. An 89% removal was reached at 100 mA when the initial TBA concentration was raised from 0.1 to 4 mg L-1 and less than 1% of the herbicide was converted in desethylterbuthylazine and minor metabolites. No chemicals are needed, no sludge is produced. Further research is encouraged, as this technology may be promising for the achievement of a zero-discharge removal of different emerging pollutants as pesticides, pharmaceuticals and personal care products.
Collapse
Affiliation(s)
- Andrea Luca Tasca
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy.
| | - Monica Puccini
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy.
| | - Davide Clematis
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, Via Opera Pia 15, 16145 Genoa, Italy
| | - Marco Panizza
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, Via Opera Pia 15, 16145 Genoa, Italy
| |
Collapse
|
17
|
Zhang M, Shi Q, Song X, Wang H, Bian Z. Recent electrochemical methods in electrochemical degradation of halogenated organics: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:10457-10486. [PMID: 30798495 DOI: 10.1007/s11356-019-04533-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
Halogenated organics are widely used in modern industry, agriculture, and medicine, and their large-scale emissions have led to soil and water pollution. Electrochemical methods are attractive and promising techniques for wastewater treatment and have been developed for degradation of halogenated organic pollutants under mild conditions. Electrochemical techniques are classified according to main reaction pathways: (i) electrochemical reduction, in which cleavage of C-X (X = F, Cl, Br, I) bonds to release halide ions and produce non-halogenated and non-toxic organics and (ii) electrochemical oxidation, in which halogenated organics are degraded by electrogenerated oxidants. The electrode material is crucial to the degradation efficiency of an electrochemical process. Much research has therefore been devoted to developing appropriate electrode materials for practical applications. This paper reviews recent developments in electrode materials for electrochemical degradation of halogenated organics. And at the end of this paper, the characteristics of new combination methods, such as photocatalysis, nanofiltration, and the use of biochemical method, are discussed.
Collapse
Affiliation(s)
- Meng Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Qin Shi
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, People's Republic of China
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530008, People's Republic of China
| | - Xiaozhe Song
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Hui Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| | - Zhaoyong Bian
- College of Water Sciences, Beijing Normal University, Beijing, 100875, Beijing, People's Republic of China.
| |
Collapse
|
18
|
Oriol R, Clematis D, Brillas E, Cortina JL, Panizza M, Sirés I. Groundwater Treatment using a Solid Polymer Electrolyte Cell with Mesh Electrodes. ChemElectroChem 2019. [DOI: 10.1002/celc.201801906] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Roger Oriol
- Departament de Química FísicaFacultat de QuímicaUniversitat de Barcelona Martí i Franquès 1–11 08028 Barcelona Spain
| | - Davide Clematis
- Dipartimento di Ingegneria civile, chimica e ambientaleUniversità degli Studi di Genova Fiera del Mare Piazzale Kennedy 1, Pad. D-16129 Genova Italy
| | - Enric Brillas
- Departament de Química FísicaFacultat de QuímicaUniversitat de Barcelona Martí i Franquès 1–11 08028 Barcelona Spain
| | - José L. Cortina
- Chemical Engineering DepartmentEscola d'Enginyeria de Barcelona Est (EEBE)Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH Eduard Maristany 10–14, Campus Diagonal-Besòs 08930 Barcelona Spain
- Barcelona Research Center for Multiscale Science and Engineering Campus Diagonal-Besòs 08930 Barcelona Spain
| | - Marco Panizza
- Dipartimento di Ingegneria civile, chimica e ambientaleUniversità degli Studi di Genova Fiera del Mare Piazzale Kennedy 1, Pad. D-16129 Genova Italy
| | - Ignasi Sirés
- Departament de Química FísicaFacultat de QuímicaUniversitat de Barcelona Martí i Franquès 1–11 08028 Barcelona Spain
| |
Collapse
|
19
|
Clematis D, Abidi J, Cerisola G, Panizza M. Coupling a Boron Doped Diamond Anode with a Solid Polymer Electrolyte to Avoid the Addition of Supporting Electrolyte in Electrochemical Advanced Oxidation Processes. ChemElectroChem 2019. [DOI: 10.1002/celc.201801700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Davide Clematis
- Department of Civil, Chemical and Environmental EngineeringUniversity of Genoa Via Opera Pia 15 16145 Genoa I
| | - Jihen Abidi
- Unité de recherche Toxicologie Microbiologie Environnementale et Santé Department Institution Faculté des SciencesUniversité de Sfax B.P. 1173 3038 Sfax Tunisie
| | - Giacomo Cerisola
- Department of Civil, Chemical and Environmental EngineeringUniversity of Genoa Via Opera Pia 15 16145 Genoa I
| | - Marco Panizza
- Department of Civil, Chemical and Environmental EngineeringUniversity of Genoa Via Opera Pia 15 16145 Genoa I
| |
Collapse
|