1
|
Ahammad NA, Ahmad MA, Hameed BH, Mohd Din AT. A mini review of recent progress in the removal of emerging contaminants from pharmaceutical waste using various adsorbents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124459-124473. [PMID: 35314938 DOI: 10.1007/s11356-022-19829-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
The presence of emerging contaminants (ECs) originating from pharmaceutical waste in water, wastewater, and marine ecosystems at various geographical locations has been clearly publicised. This review paper presents an overview of current monitoring data on the occurrences and distributions of ECs in coastal ecosystem, tap water, surface water, ground water, treated sewage effluents, and other sources. Technological advancements for EC removal are also presented, which include physical, chemical, biological, and hybrid treatments. Adsorption remains the most effective method to remove ECs from water bodies. Various types of adsorbents, such as activated carbons, biochars, nanoadsorbents (carbon nanotubes and graphene), ordered mesoporous carbons, molecular imprinting polymers, clays, zeolites, and metal-organic frameworks have been extensively used for removing ECs from water sources and wastewater. Extensive findings on adsorptive performances, process efficiency, reusability properties, and other related information are thoroughly discussed in this mini review.
Collapse
Affiliation(s)
- Nur Azian Ahammad
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Mohd Azmier Ahmad
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Bassim H Hameed
- Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Azam Taufik Mohd Din
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia.
| |
Collapse
|
2
|
Mapukata S, Ntsendwana B, Mokhena T, Sikhwivhilu L. Advances on sonophotocatalysis as a water and wastewater treatment technique: efficiency, challenges and process optimisation. Front Chem 2023; 11:1252191. [PMID: 37681207 PMCID: PMC10482105 DOI: 10.3389/fchem.2023.1252191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023] Open
Abstract
Due to water shortage and increased water pollution, various methods are being explored to improve water quality by treating contaminants. Sonophotocatalysis is a combination of two individual water treatment processes i.e., photocatalysis and sonocatalysis. With advantages including shorter reaction times and enhanced activity, this technique shows possible futuristic applications as an efficient water treatment technology. Herein, background insight on sonophotocalysis as a water and wastewater treatment technique as well as the general mechanism of activity is explained. The commonly used catalysts for sonophotocatalytic applications as well as their synthesis pathways are also briefly discussed. Additionally, the utilisation of sonophotocatalysis for the disinfection of various microbial species as well as treatment of wastewater pollutants including organic (dyes, pharmaceuticals and pesticides) and inorganic species (heavy metals) is deliberated. This review also gives a critical analysis of the efficiency, enhancement strategies as well as challenges and outlooks in this field. It is thus intended to give insight to researchers in the context of facilitating future developments in the field of water treatment, and advancing sonophotocatalysis towards large-scale implementation and commercialization.
Collapse
Affiliation(s)
- Sivuyisiwe Mapukata
- Nanotechnology Innovation Centre (NIC), Advanced Materials Division, Mintek, Johannesburg, South Africa
| | - Bulelwa Ntsendwana
- Nanotechnology Innovation Centre (NIC), Advanced Materials Division, Mintek, Johannesburg, South Africa
| | - Teboho Mokhena
- Nanotechnology Innovation Centre (NIC), Advanced Materials Division, Mintek, Johannesburg, South Africa
| | - Lucky Sikhwivhilu
- Nanotechnology Innovation Centre (NIC), Advanced Materials Division, Mintek, Johannesburg, South Africa
- Department of Chemistry, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
| |
Collapse
|
3
|
Laghaei M, Ghasemian M, Ferdowsi MRG, Schütz JA, Kong L. Enhanced pollutant photodegradation over nanoporous titanium-vanadium oxides with improved interfacial interactions. J Colloid Interface Sci 2023; 646:11-24. [PMID: 37178611 DOI: 10.1016/j.jcis.2023.04.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
This study addressed the separation problem of colloidal catalytic powder from its solution and pore blockage of traditional metallic oxides by fabricating nanoporous composites of titanium (Ti)-vanadium (V) oxide via magnetron sputtering, electrochemical anodization, and annealing processes. The effect of V-deposited loading on the composite semiconductors was investigated by varying V sputtering power (20-250 W) to correlate their physicochemical properties to the photodegradation performance of methylene blue. The obtained semiconductors revealed circular and elliptical pores (14-23 nm) and formed different metallic and metallic oxide crystalline phases. Within the nanoporous composite layer, V ions substituted Ti4+, leading to Ti3+ formation accompanied by decreased band gap values and higher visible-light absorption. Thus, the band gap of TiO2 was 3.15 eV, while that of Ti-V oxide with the maximum V content (at 250 W) was 2.47 eV. The interfacial separators between clusters in the mentioned composite created traps disrupting the charge carrier movements between crystallites, thereby decreasing the photoactivity. In contrast, the composite prepared with the minimum V content showed approximately 90% degradation efficiency under solar-simulated irradiation resulting from the homogeneous V dispersion and the lower recombination possibility, owing to its p-n heterojunction constituent. The nanoporous photocatalyst layers with their novel synthesis approach and outstanding performance can be applied in other environmental remediation applications.
Collapse
Affiliation(s)
- Milad Laghaei
- School of Engineering, Deakin University, Waurn Ponds, VIC 3216, Australia; Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC 3216, Australia.
| | - Mohsen Ghasemian
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | | | - Jürg A Schütz
- Commonwealth Scientific and Industrial Research Organization (CSIRO), 75 Pigdons Road, Waurn Ponds, Vic 3216, Australia
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC 3216, Australia.
| |
Collapse
|
4
|
Moradi S, Rodriguez-Seco C, Hayati F, Ma D. Sonophotocatalysis with Photoactive Nanomaterials for Wastewater Treatment and Bacteria Disinfection. ACS NANOSCIENCE AU 2023; 3:103-129. [PMID: 37096232 PMCID: PMC10119989 DOI: 10.1021/acsnanoscienceau.2c00058] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 04/26/2023]
Abstract
Sonophotocatalysis is described as a combination of two individual processes of photocatalysis and sonocatalysis. It has proven to be highly promising in degrading dissolved contaminants in wastewaters as well as bacteria disinfection applications. It eliminates some of the main disadvantages observed in each individual technique such as high costs, sluggish activity, and prolonged reaction times. The review has accomplished a critical analysis of sonophotocatalytic reaction mechanisms and the effect of the nanostructured catalyst and process modification techniques on the sonophotocatalytic performance. The synergistic effect between the mentioned processes, reactor design, and the electrical energy consumption has been discussed due to their importance when implementing this novel technology in practical applications, such as real industrial or municipal wastewater treatment plants. The utilization of sonophotocatalysis in disinfection and inactivation of bacteria has also been reviewed. In addition, we further suggest improvements to promote this technology from the lab-scale to large-scale applications. We hope this up-to-date review will advance future research in this field and push this technology toward widespread adoption and commercialization.
Collapse
Affiliation(s)
- Sina Moradi
- Institut
National de la Recherche Scientifique (INRS)-Centre Énergie
Materiaux et Telécommunications, 1650 Boulevard Lionel-Boulet, VarennesJ3X 1P7, Québec, Canada
| | - Cristina Rodriguez-Seco
- Institut
National de la Recherche Scientifique (INRS)-Centre Énergie
Materiaux et Telécommunications, 1650 Boulevard Lionel-Boulet, VarennesJ3X 1P7, Québec, Canada
| | - Farzan Hayati
- Department
of Chemical and Biological Engineering, University of Saskatchewan, SaskatoonS7N 5A9, SK, Canada
| | - Dongling Ma
- Institut
National de la Recherche Scientifique (INRS)-Centre Énergie
Materiaux et Telécommunications, 1650 Boulevard Lionel-Boulet, VarennesJ3X 1P7, Québec, Canada
| |
Collapse
|
5
|
Slimani Y, Almessiere MA, Mohamed MJS, Hannachi E, Caliskan S, Akhtar S, Baykal A, Gondal MA. Synthesis of Ce and Sm Co-Doped TiO2 Nanoparticles with Enhanced Photocatalytic Activity for Rhodamine B Dye Degradation. Catalysts 2023. [DOI: 10.3390/catal13040668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
One of the major concerns that receive global attention is the presence of organic pollutants (dyes, pharmaceuticals, pesticides, phenolic compounds, heavy metals, and so on), originating from various industries, in wastewater and water resources. Rhodamine B is widely used in the dyeing of paints, plastics, textiles, and other fabrics, as well as biological products. It is highly persistent, toxic, and carcinogenic to organisms and humans when directly released into the water supply. To avoid this hazard, several studies have been conducted in an attempt to remove Rhodamine B from wastewater. Metal oxide semiconducting materials have gained great interest because of their ability to decompose organic pollutants from wastewater. TiO2 is one of the most effective photocatalysts with a broad range of applications. Several attempts have been made to improve its photocatalytic activity. Accordingly, we have prepared in this work a series of cerium (Ce) and samarium (Sm) co-doped TiO2 nanoparticles (x = 0.00, 0.25, 0.50, 1.00, and 2.00%) using a sol–gel auto-combustion approach. The influence of Ce–Sm concentrations on the structural, morphology, electronic, and optical properties, as well as the photocatalytic activity, was investigated. Structure and elemental mapping analyses proved the presence of Ce and Sm in the compositions as well as the development of the TiO2 anatase phase with a tetragonal structure and crystallite size of 15.1–17.8 nm. Morphological observations confirmed the creation of spherical nanoparticles (NPs). The examination of the electronic structure properties using density functional theory (DFT) calculations and of the optical properties using a UV/Vis diffuse spectrophotometer showed a reduction in the bandgap energy upon Ce–Sm co-doping. The photocatalytic activity of the synthesized products was assessed on the degradation of Rhodamine B dye, and it was found that all Ce–Sm co-doped TiO2 nanoparticles have better photocatalytic activities than pristine TiO2 nanoparticles. Among all of the prepared nanoparticles, the sample with x = 0.50% demonstrated the best photocatalytic activity, with a degradation efficiency of 98% within 30 min and a reaction rate constant of about 0.0616 min−1. h+ and •O2− were determined to be the most important active species in the photocatalytic degradation process. Besides the high photocatalytic degradation efficiency, these photocatalysts are highly stable and could be easily recovered and reused, which indicates their potential for practical applications in the future.
Collapse
|
6
|
Highly efficient visible-light photocatalytic performance of MOFs-derived TiO2 via heterojunction construction and oxygen vacancy engineering. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
7
|
Chen M, Zhuang K, Sui J, Sun C, Song Y, Jin N. Hydrodynamic cavitation-enhanced photocatalytic activity of P-doped TiO 2 for degradation of ciprofloxacin: Synergetic effect and mechanism. ULTRASONICS SONOCHEMISTRY 2023; 92:106265. [PMID: 36527763 PMCID: PMC9760655 DOI: 10.1016/j.ultsonch.2022.106265] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/26/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Hybrid methods with an enhanced oxidation capacity have been proposed for the removal of organic contaminants based on combining hydrodynamic cavitation (HC) with advanced oxidation processes (AOPs). In this study, we utilize the synergetic effect between photocatalytic processes and HC to strengthen ciprofloxacin (CIP) degradation by P-doped TiO2 catalysts. In comparison to a degradation ratio of 20.37 % in HC and 55.7 % in P-TiO2-based photocatalytic processes alone, the CIP degradation ratio reached as high as 90.63 % in HC-assisted photocatalytic processes with the optimal experimental parameters. The mechanic microjets treatment originated from HC make P-TiO2 nano photocatalysts with significantly increased surface area, smaller particle sizes, cleaner surface and improved dispersion, which were found using SEM, TEM, and BET analysis. Possible degradation mechanisms and reaction pathways of CIP during hybrid HC + photocatalytic processes were explored by coupling free radical capture experiments and liquid chromatography-mass spectrometry . This hybrid HC + photocatalytic technique has a potential application in the treatment of antibiotic sewage at the industrial level.
Collapse
Affiliation(s)
- Mengfan Chen
- College of Environment, Liaoning University, Shenyang 110036, PR China
| | - Kai Zhuang
- College of Environment, Liaoning University, Shenyang 110036, PR China
| | - Jiayi Sui
- College of Environment, Liaoning University, Shenyang 110036, PR China
| | - Congting Sun
- College of Environment, Liaoning University, Shenyang 110036, PR China.
| | - Youtao Song
- College of Environment, Liaoning University, Shenyang 110036, PR China.
| | - Nanxun Jin
- College of Environment, Liaoning University, Shenyang 110036, PR China
| |
Collapse
|
8
|
Preeti, Mishra S, Chakinala N, Chakinala AG, Surolia PK. Bimetallic Bi/Zn decorated hydrothermally synthesized TiO2 for efficient photocatalytic degradation of nitrobenzene. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
9
|
Khan A, Bhoi RG, Saharan VK, George S. Green calcium-based photocatalyst derived from waste marble powder for environmental sustainability: A review on synthesis and application in photocatalysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:86439-86467. [PMID: 35688984 DOI: 10.1007/s11356-022-20941-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Calcium, with its excellent adsorptive property and higher permissible limits in the environment, emerges as an effective wastewater treatment earth metal. Most of the catalysts, photocatalysts, and adsorbents reported in the literature have heavy metal complex, which creates a leaching problem. Majorly, precursors used for the synthesis of heterogeneous catalysts for wastewater treatment are costly. Therefore, the use of such precursors would be not suitable and feasible approach from an economic point of view. This review work is focused on giving an overview of the utilisation of calcium-based catalysts (adsorbents and photocatalyst) for the removal/degradation of various types of dye water pollutants and summarises the reported effects of calcium as a base on the removal efficiency of dopants. In this article, an extensive literature survey is presented on the various photocatalysts developed and the different syntheses involved in their preparation. As the utilisation of marble powder is a green sustainable approach, the scope of various calcium-based photocatalysts and their application is presented. This article also aims for the elementary and inclusive determination of the effect of introducing calcium as a base for different catalysts and adsorbents.
Collapse
Affiliation(s)
- Arshia Khan
- Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur, 302017, India
| | - Rohidas Gangaram Bhoi
- Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur, 302017, India
| | - Virendra Kumar Saharan
- Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur, 302017, India
| | - Suja George
- Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur, 302017, India.
| |
Collapse
|
10
|
Sun X, Liu S, Zhang X, Tao Y, Boczkaj G, Yoon JY, Xuan X. Recent advances in hydrodynamic cavitation-based pretreatments of lignocellulosic biomass for valorization. BIORESOURCE TECHNOLOGY 2022; 345:126251. [PMID: 34728352 DOI: 10.1016/j.biortech.2021.126251] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Recently, the hydrodynamic cavitation (HC)-based pretreatment has shown high effectiveness in laboratories and even in industrial productions for conversion of lignocellulosic biomass (LCB) into value-added products. The pretreatment capability derives from the extraordinary conditions of pressures at ∼500 bar, local hotspots with ∼5000 K, and oxidation (hydroxyl radicals) created by HC at room conditions. To promote this emerging technology, the present review summarizes the recent advances in the HC-based pretreatment of LCB. The principle of HC including the sonochemical effect and hydrodynamic cavitation reactor is introduced. The effectiveness of HC on the delignification of LCB as well as subsequent fermentation, paper production, and other applications is evaluated. Several key operational factors (i.e., reaction environment, duration, and feedstock characteristics) in HC pretreatments are discussed. The enhancement mechanism of HC including physical and chemical effects is analyzed. Finally, the perspectives on future research on the HC-based pretreatment technology are highlighted.
Collapse
Affiliation(s)
- Xun Sun
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China.
| | - Shuai Liu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Xinyan Zhang
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, School of Energy and Power Engineering, Shandong University, Jinan 250061, PR China
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Grzegorz Boczkaj
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk 80-233, Poland
| | - Joon Yong Yoon
- Department of Mechanical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Xiaoxu Xuan
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| |
Collapse
|
11
|
Bimestre TA, Júnior JAM, Canettieri EV, Tuna CE. Hydrodynamic cavitation for lignocellulosic biomass pretreatment: a review of recent developments and future perspectives. BIORESOUR BIOPROCESS 2022; 9:7. [PMID: 38647820 PMCID: PMC10991952 DOI: 10.1186/s40643-022-00499-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/18/2022] [Indexed: 02/02/2023] Open
Abstract
The hydrodynamic cavitation comes out as a promising route to lignocellulosic biomass pretreatment releasing huge amounts of energy and inducing physical and chemical transformations, which favor lignin-carbohydrate matrix disruption. The hydrodynamic cavitation process combined with other pretreatment processes has shown an attractive alternative with high pretreatment efficiency, low energy consumption, and easy setup for large-scale applications compared to conventional pretreatment methods. This present review includes an overview of this promising technology and a detailed discussion on the process of parameters that affect the phenomena and future perspectives of development of this area.
Collapse
Affiliation(s)
- Thiago Averaldo Bimestre
- Chemistry and Energy Department, School of Engineering, São Paulo State University UNESP, Guaratinguetá, SP, 12516-410, Brazil.
| | - José Antonio Mantovani Júnior
- Center for Weather Forecasting and Climate Studies, National Institute for Space Research CPTEC/INPE, Cachoeira Paulista, SP, 12630-000, Brazil
| | - Eliana Vieira Canettieri
- Chemistry and Energy Department, School of Engineering, São Paulo State University UNESP, Guaratinguetá, SP, 12516-410, Brazil
| | - Celso Eduardo Tuna
- Chemistry and Energy Department, School of Engineering, São Paulo State University UNESP, Guaratinguetá, SP, 12516-410, Brazil
| |
Collapse
|
12
|
Filipić A, Lukežič T, Bačnik K, Ravnikar M, Ješelnik M, Košir T, Petkovšek M, Zupanc M, Dular M, Aguirre IG. Hydrodynamic cavitation efficiently inactivates potato virus Y in water. ULTRASONICS SONOCHEMISTRY 2022; 82:105898. [PMID: 34973580 PMCID: PMC8799611 DOI: 10.1016/j.ultsonch.2021.105898] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/17/2021] [Accepted: 12/26/2021] [Indexed: 05/24/2023]
Abstract
Waterborne plant viruses can destroy entire crops, leading not only to high financial losses but also to food shortages. Potato virus Y (PVY) is the most important potato viral pathogen that can also affect other valuable crops. Recently, it has been confirmed that this virus is capable of infecting host plants via water, emphasizing the relevance of using proper strategies to treat recycled water in order to prevent the spread of the infectious agents. Emerging environmentally friendly methods such as hydrodynamic cavitation (HC) provide a great alternative for treating recycled water used for irrigation. In the experiments conducted in this study, laboratory HC based on Venturi constriction with a sample volume of 1 L was used to treat water samples spiked with purified PVY virions. The ability of the virus to infect plants was abolished after 500 HC passes, corresponding to 50 min of treatment under pressure difference of 7 bar. In some cases, shorter treatments of 125 or 250 passes were also sufficient for virus inactivation. The HC treatment disrupted the integrity of viral particles, which also led to a minor damage of viral RNA. Reactive species, including singlet oxygen, hydroxyl radicals, and hydrogen peroxide, were not primarily responsible for PVY inactivation during HC treatment, suggesting that mechanical effects are likely the driving force of virus inactivation. This pioneering study, the first to investigate eukaryotic virus inactivation by HC, will inspire additional research in this field enabling further improvement of HC as a water decontamination technology.
Collapse
Affiliation(s)
- Arijana Filipić
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
| | - Tadeja Lukežič
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Katarina Bačnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Maja Ravnikar
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Meta Ješelnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Tamara Košir
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Martin Petkovšek
- University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, 1000 Ljubljana, Slovenia
| | - Mojca Zupanc
- University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, 1000 Ljubljana, Slovenia
| | - Matevž Dular
- University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, 1000 Ljubljana, Slovenia
| | - Ion Gutierrez Aguirre
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| |
Collapse
|
13
|
Sun X, Yang Z, Wei X, Tao Y, Boczkaj G, Yoon JY, Xuan X, Chen S. Multi-objective optimization of the cavitation generation unit structure of an advanced rotational hydrodynamic cavitation reactor. ULTRASONICS SONOCHEMISTRY 2021; 80:105771. [PMID: 34689065 PMCID: PMC8551246 DOI: 10.1016/j.ultsonch.2021.105771] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/10/2021] [Accepted: 09/24/2021] [Indexed: 05/12/2023]
Abstract
Hydrodynamic cavitation (HC) has been widely considered a promising technique for industrial-scale process intensifications. The effectiveness of HC is determined by the performance of hydrodynamic cavitation reactors (HCRs). The advanced rotational HCRs (ARHCRs) proposed recently have shown superior performance in various applications, while the research on the structural optimization is still absent. The present study, for the first time, identifies optimal structures of the cavitation generation units of a representative ARHCR by combining genetic algorithm (GA) and computational fluid dynamics, with the objectives of maximizing the total vapor volume, Vvapor , and minimizing the total torque of the rotor wall, M→z . Four important geometrical factors, namely, diameter (D), interaction distance (s), height (h), and inclination angle (θ), were specified as the design variables. Two high-performance fitness functions for Vvapor and M→z were established from a central composite design with 25 cases. After performing 10,001 simulations of GA, a Pareto front with 1630 non-dominated points was obtained. The results reveal that the values of s and θ of the Pareto front concentrated on their lower (i.e., 1.5 mm) and upper limits (i.e., 18.75°), respectively, while the values of D and h were scattered in their variation regions. In comparison to the original model, a representative global optimal point increased the Vvapor by 156% and decreased the M→z by 14%. The corresponding improved mechanism was revealed by analyzing the flow field. The findings of this work can strongly support the fundamental understanding, design, and application of ARHCRs for process intensifications.
Collapse
Affiliation(s)
- Xun Sun
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| | - Ze Yang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| | - Xuesong Wei
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Grzegorz Boczkaj
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk 80-233, Poland.
| | - Joon Yong Yoon
- Department of Mechanical Engineering, Hanyang University, Ansan 15588, Republic of Korea.
| | - Xiaoxu Xuan
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| | - Songying Chen
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| |
Collapse
|
14
|
Yadav G, Mishra A, Ghosh P, Sindhu R, Vinayak V, Pugazhendhi A. Technical, economic and environmental feasibility of resource recovery technologies from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:149022. [PMID: 34280638 DOI: 10.1016/j.scitotenv.2021.149022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
An enormous amount of wastewater is generated across the world from different industrial or municipal sectors. Traditional wastewater treatment plants (WWTP) have primarily focused on the treatment of wastewater rather than the recovery of valuable resources. A shift from a linear to a circular economy may offer a unique platform for recovering valuable resources including energy, nutrients, and high-value goods from wastewater. However, transitioning from conventional frameworks to sustainable WWT systems remains a significant challenge. Thus, this review paper focuses on the avenues of resource recovery from WWTPs, by evaluating the potential for nutrients, water, and energy recovery from different types of wastewaters and sewage sludge. It discusses in detail a variety of available and advanced technologies for resource recovery. Further, the feasibility of these technologies from a sustainable standpoint is discussed, covering the technical, economic, and environmental facets.
Collapse
Affiliation(s)
- Geetanjali Yadav
- Department of Chemical Engineering, École Polytechnique de Montreal, H3C 3A7, Canada.
| | - Arpit Mishra
- Cryogenic Engineering Centre, Indian Institute of Technology, Kharagpur, West Bengal 721302, India.
| | - Parthasarathi Ghosh
- Cryogenic Engineering Centre, Indian Institute of Technology, Kharagpur, West Bengal 721302, India.
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Lab (DNM), School of Applied Sciences, Dr. Harisingh Gour Central University, Sagar, MP 470003, India
| | - Arivalagan Pugazhendhi
- School of Renewable Energy, Maejo University, Chiang Mai 50290, Thailand; College of Medical and Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
15
|
Facile Synthesis of Carbon- and Nitrogen-Doped Iron Borate as a Highly Efficient Single-Component Heterogeneous Photo-Fenton Catalyst under Simulated Solar Irradiation. NANOMATERIALS 2021; 11:nano11112853. [PMID: 34835618 PMCID: PMC8620105 DOI: 10.3390/nano11112853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022]
Abstract
The development of a heterogeneous catalyst for use in environmental remediation remains a challenging and attractive research endeavor. Specifically, for Fenton reactions, most research approaches have focused on the preparation of iron-containing heterostructures as photo-Fenton catalysts that utilize visible light for enhancing the degradation efficiency. Herein, the synthesis and novel application of C,N-doped iron borates are demonstrated as single-component heterogeneous photo-Fenton catalysts with high Fenton activity under visible light. Under the optimal conditions, 10 mg of the catalyst is shown to achieve effective degradation of 10 ppm methylene blue (MB) dye, Rhodamine B (RhB) dye, and tetracycline (TC) under simulated solar irradiation with a first-order rate constant of k = 0.218 min-1, 0.177 min-1, and 0.116 min-1, respectively. Using MB as a model system, the C,N-doped iron borate exhibits 10- and 26-fold increases in catalytic activity relative to that of the 50 nm hematite nanoparticles and that of the non-doped iron borate, respectively, in the presence of H2O2 under the simulated solar irradiation. Furthermore, the optimum reaction conditions used only 320 equivalents of H2O2 with respect to the concentration of dye, rather than the several thousand equivalents of H2O2 used in conventional heterogeneous Fenton catalysts. In addition, the as-prepared C,N-doped iron borate achieves 75% MB degradation after 20 min in the dark, thus enabling the continuous degradation of pollutants at night and in areas with poor light exposure. The stability and recyclability of C,N-doped iron borate for the oxidation of MB was demonstrated over three cycles with insignificant loss in photo-Fenton activity. The high Fenton activity of the C,N-doped iron borate is considered to be due to the synergistic action between the negatively-charged borate ligands and the metal center in promoting the Fenton reaction. Moreover, carbon and nitrogen doping are shown to be critical in modifying the electronic structure and increasing the conductivity of the catalyst. In view of its synthetic simplicity, high efficiency, low cost of reagents, and minimal cost of operation (driven by natural sunlight), the as-prepared heterogeneous single-component metal borate catalyst has potential application in the industrial treatment of wastewater.
Collapse
|
16
|
Biotemplated copper oxide catalysts over graphene oxide for acetaminophen removal: Reaction kinetics analysis and cost estimation. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
17
|
Chakinala N, Gogate PR, Chakinala AG. Highly efficient bi-metallic bismuth-silver doped TiO2 photocatalyst for dye degradation. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0890-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Giannakoudakis DA, Qayyum A, Nair V, Khan A, Pradhan SR, Prekodravac J, Rekos K, LaGrow AP, Bondarchuk O, Łomot D, Triantafyllidis KS, Colmenares JC. Ultrasound-assisted decoration of CuOx nanoclusters on TiO2 nanoparticles for additives free photocatalytic hydrogen production and biomass valorization by selective oxidation. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
19
|
Balakrishnan A, Gopalram K, Appunni S. Photocatalytic degradation of 2,4-dicholorophenoxyacetic acid by TiO 2 modified catalyst: kinetics and operating cost analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-12928-4. [PMID: 33641092 DOI: 10.1007/s11356-021-12928-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Effective pesticide remediation technology demands amendments in the advanced oxidation process for its continuous treatment and catalyst recovery. The evidence of 2,4-dichlorophenoxyacetic acid (2,4-D), an herbicide in water bodies, poses a major environmental threat to both humans and aquatic organisms. In the present study, a recirculation type photocatalytic reactor was developed to treat 2,4-dichlorophenoxyacetic acid using chitosan-TiO2 beads prepared via impregnation method under UV light. At optimized conditions, chitosan-TiO2 beads showed a maximum photocatalytic degradation of 86% than commercial TiO2 (65%) and followed pseudo first-order reaction. The 2,4-D degradation follows pseudo first-order kinetics under UV irradiation with a rate constant of 0.12 h-1, and the intermediates were identified using LCMS analysis. The total operational cost of the chitosan-TiO2 catalyst was found to be profitable (Rs. 1323 for 2 L) than that of TiO2 (Rs. 1679) at optimized conditions. The beads were reusable up to 4 consecutive cycles without loss in efficiency. This study briefs photocatalytic removal of 2,4-dichlorophenoxyacetic acid in a recirculation-type reactor for its reliability, low cost, efficiency, reusability, and commercialization.
Collapse
Affiliation(s)
- Akash Balakrishnan
- Department of Chemical Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603 203, Kanchipuram, Chennai, Tamil Nadu, India
| | - Keerthiga Gopalram
- Department of Chemical Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603 203, Kanchipuram, Chennai, Tamil Nadu, India.
| | - Sowmya Appunni
- Department of Chemical Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603 203, Kanchipuram, Chennai, Tamil Nadu, India
| |
Collapse
|
20
|
Sun X, Xuan X, Song Y, Jia X, Ji L, Zhao S, Yong Yoon J, Chen S, Liu J, Wang G. Experimental and numerical studies on the cavitation in an advanced rotational hydrodynamic cavitation reactor for water treatment. ULTRASONICS SONOCHEMISTRY 2021; 70:105311. [PMID: 32871384 PMCID: PMC7786598 DOI: 10.1016/j.ultsonch.2020.105311] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/06/2020] [Accepted: 08/17/2020] [Indexed: 05/07/2023]
Abstract
Hydrodynamic cavitation (HC) has emerged as one of the most potential technologies for industrial-scale water treatment. The advanced rotational hydrodynamic cavitation reactors (ARHCRs) that appeared recently have shown their high effectiveness and economical efficiency compared with conventional devices. For the interaction-type ARHCRs where cavitation is generated from the interaction between the cavitation generation units (CGUs) located on the rotor and the stator, their flow field, cavitation generation mechanism, and interaction process are still not well defined. The present study experimentally and numerically investigated the cavitation flow characteristics in a representative interaction-type ARHCR which has been proposed in the past. The cavitation generation mechanism and development process, which was categorized into "coinciding", "leaving", and "approaching" stages, were analyzed explicitly with experimental flow visualization and computational fluid dynamics (CFD) simulations. The changes in the cavitation pattern, area ratio, and sheet cavitation length showed high periodicity with a period of 0.5 ms/cycle at a rotational speed of 3,600 rpm in the flow visualization. The experimental and CFD results indicated that sheet cavitation can be generated on the downstream sides of both the moving and the static CGUs. The sheet cavitation was induced and continuously enlarged in the "leaving" and "approaching" stages and was crushed after the moving CGUs coincided with the static CGUs. In addition, vortex cavitation was formed in the vortex center of each CGU due to high-speed rotating fluid motion. The shape and size of the vortex cavitation were determined by the compression effect produced by the interaction. The findings of this work are important for the fundamental understanding, design, and application of the ARHCRs in water treatment.
Collapse
Affiliation(s)
- Xun Sun
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| | - Xiaoxu Xuan
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| | - Yongxing Song
- School of Thermal Engineering, Shandong Jianzhu University, Jinan 250061, China.
| | - Xiaoqi Jia
- National-Provincial Joint Engineering Laboratory for Fluid Transmission System Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Li Ji
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| | - Shan Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Joon Yong Yoon
- Department of Mechanical Engineering, Hanyang University, Ansan 15588, Republic of Korea.
| | - Songying Chen
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| | - Jingting Liu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| | - Guichao Wang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| |
Collapse
|
21
|
|
22
|
Dinesh GK, Pramod M, Chakma S. Sonochemical synthesis of amphoteric Cu 0-Nanoparticles using Hibiscus rosa-sinensis extract and their applications for degradation of 5-fluorouracil and lovastatin drugs. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123035. [PMID: 32512280 DOI: 10.1016/j.jhazmat.2020.123035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/28/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Recent studies reported the detection of numerous emerging and active pharmaceutical constituents in the ground and surface water. To address these issues, the present study reported the ultrasound-assisted synthesis of zero-valent copper (Cu0) nanoparticles using Hibiscus rosa-sinensis extract as reducing and stabilizing agent. The catalyst was characterized using XRD, SEM, EDX, PSA, BET, etc., and the results revealed that sonochemical synthesis technique influenced the crystallinity with controlled growth of Cu0. While the hard ligand hydroxyl group (-OH) reduces the Cu2+ to Cu0 and soft ligand carbonyl group (CO) present in the oxidized polyphenols helps in capping and stabilizing the Cu0-nanoparticles. During the ultrasound application, continuous release of Cu+ from Cu0 promoted the degradation by producing OH and O2•- radicals. Approx. 91.3 % and 93.2 % degradation efficiencies were achieved for 5-fluorouracil and lovastatin. The results showed that Cu0 nanoparticles were amphoteric in nature and the synergy calculation revealed that ultrasound has a direct influence on degradation of drugs which are difficult to degrade/mineralize using conventional techniques. Based on the results, a possible degradation mechanism of drug molecules in the presence of oxidants, zero-valent copper and ultrasound has been proposed.
Collapse
Affiliation(s)
- G Kumaravel Dinesh
- Department of Chemical Engineering, Indian Institute of Science Education and Research, Bhopal, 462 066 Madhya Pradesh, India
| | - Malavika Pramod
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, 462 066 Madhya Pradesh, India
| | - Sankar Chakma
- Department of Chemical Engineering, Indian Institute of Science Education and Research, Bhopal, 462 066 Madhya Pradesh, India.
| |
Collapse
|
23
|
Sun X, Liu J, Ji L, Wang G, Zhao S, Yoon JY, Chen S. A review on hydrodynamic cavitation disinfection: The current state of knowledge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:139606. [PMID: 32783818 DOI: 10.1016/j.scitotenv.2020.139606] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 05/07/2023]
Abstract
Disinfection, which aims to eliminate pathogenic microorganisms, is an essential step of water treatment. Hydrodynamic cavitation (HC) has emerged as a promising technology for large-scale disinfection without introducing new chemicals. HC, which can effectively induce sonochemistry by mechanical means, creates extraordinary conditions of pressures of ~1000 bar, local hotspots with ~5000 K, and high oxidation (hydroxyl radicals) in room environment. These conditions can produce highly destructive effects on microorganisms in water. In addition, the enhancements of chemical reactions and mass transfers by HC produce the synergism between HC and disinfectants or other physical treatment methods. HC is generated by hydrodynamic cavitation reactors (HCRs), therefore, their performance basically determines the effectiveness, economical efficiency, and applicability of HC disinfection. Therefore, developing high-performance HCRs and revealing the corresponding disinfection mechanisms are the most crucial issues today. In this review, we summarize the fundamental principles of HC and HCRs and recent development in HC disinfection. The energy release from cavitation phenomenon and corresponding mechanisms are elaborated. The performance (effectiveness, treatment ratio, and cost) of various HCRs, effects of treatment conditions on performance, and applicability of HC disinfection are evaluated and discussed. Finally, recommendations are provided for the future progress based on the analysis of previous studies.
Collapse
Affiliation(s)
- Xun Sun
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education at Shandong University, School of Mechanical Engineering, Shandong University, 17923, Jingshi Road, Jinan, Shandong Province 250061, People's Republic of China.
| | - Jingting Liu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education at Shandong University, School of Mechanical Engineering, Shandong University, 17923, Jingshi Road, Jinan, Shandong Province 250061, People's Republic of China.
| | - Li Ji
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education at Shandong University, School of Mechanical Engineering, Shandong University, 17923, Jingshi Road, Jinan, Shandong Province 250061, People's Republic of China.
| | - Guichao Wang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education at Shandong University, School of Mechanical Engineering, Shandong University, 17923, Jingshi Road, Jinan, Shandong Province 250061, People's Republic of China.
| | - Shan Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University,72 Jimobinhai Road, Qingdao, Shandong Province 266237, People's Republic of China.
| | - Joon Yong Yoon
- Department of Mechanical Engineering, Hanyang University, 55, Hanyangdaehak-ro, Ansan, Gyeonggi-do 15588, Republic of Korea.
| | - Songying Chen
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education at Shandong University, School of Mechanical Engineering, Shandong University, 17923, Jingshi Road, Jinan, Shandong Province 250061, People's Republic of China.
| |
Collapse
|
24
|
Khan MS, Shah JA, Arshad M, Halim SA, Khan A, Shaikh AJ, Riaz N, Khan AJ, Arfan M, Shahid M, Pervez A, Al-Harrasi A, Bilal M. Photocatalytic Decolorization and Biocidal Applications of Nonmetal Doped TiO 2: Isotherm, Kinetic Modeling and In Silico Molecular Docking Studies. Molecules 2020; 25:molecules25194468. [PMID: 33003312 PMCID: PMC7583793 DOI: 10.3390/molecules25194468] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/29/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022] Open
Abstract
Textile dyes and microbial contamination of surface water bodies have been recognized as emerging quality concerns around the globe. The simultaneous resolve of such impurities can pave the route for an amicable technological solution. This study reports the photocatalytic performance and the biocidal potential of nitrogen-doped TiO2 against reactive black 5 (RB5), a double azo dye and E. coli. Molecular docking was performed to identify and quantify the interactions of the TiO2 with β-lactamase enzyme and to predict the biocidal mechanism. The sol-gel technique was employed for the synthesis of different mol% nitrogen-doped TiO2. The synthesized photocatalysts were characterized using thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Brunauer–Emmett–Teller (BET) and diffuse reflectance spectroscopy (DRS). The effects of different synthesis and reaction parameters were studied. RB5 dye degradation was monitored by tracking shifts in the absorption spectrum and percent chemical oxygen demand (COD) removal. The best nanomaterial depicted 5.57 nm crystallite size, 49.54 m2 g−1 specific surface area, 11–40 nm particle size with spherical morphologies, and uniform distribution. The RB5 decolorization data fits well with the pseudo-first-order kinetic model, and the maximum monolayer coverage capacity for the Langmuir adsorption model was found to be 40 mg g−1 with Kads of 0.113 mg−1. The LH model yielded a higher coefficient KC (1.15 mg L−1 h−1) compared to the adsorption constant KLH (0.3084 L mg−1). 90% COD removal was achieved in 60 min of irradiation, confirmed by the disappearance of spectral peaks. The best-optimized photocatalysts showed a noticeable biocidal potential against human pathogenic strain E. coli in 150 min. The biocidal mechanism of best-optimized photocatalyst was predicted by molecular docking simulation against E. coli β-lactamase enzyme. The docking score (−7.6 kcal mol−1) and the binding interaction with the active site residues (Lys315, Thr316, and Glu272) of β-lactamase further confirmed that inhibition of β-lactamase could be a most probable mechanism of biocidal activity.
Collapse
Affiliation(s)
- Muhammad Saqib Khan
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (M.S.K.); (J.A.S.); (N.R.); (A.J.K.); (A.P.)
| | - Jehanzeb Ali Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (M.S.K.); (J.A.S.); (N.R.); (A.J.K.); (A.P.)
| | - Muhammad Arshad
- Institute of Environmental Sciences and Engineering (IESE), SCEE, National University of Sciences and Technology, Islamabad 44000, Pakistan;
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman; (S.A.H.); (A.K.)
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman; (S.A.H.); (A.K.)
| | - Ahson Jabbar Shaikh
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan;
| | - Nadia Riaz
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (M.S.K.); (J.A.S.); (N.R.); (A.J.K.); (A.P.)
| | - Asim Jahangir Khan
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (M.S.K.); (J.A.S.); (N.R.); (A.J.K.); (A.P.)
| | - Muhammad Arfan
- Department of Chemistry, SNS, National University of Sciences and Technology, Islamabad 44000, Pakistan;
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan;
| | - Arshid Pervez
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (M.S.K.); (J.A.S.); (N.R.); (A.J.K.); (A.P.)
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman; (S.A.H.); (A.K.)
- Correspondence: (A.A.-H.); (M.B.); Tel.: +968-25446328 (A.A.-H.); +92-992-383591 (M.B.)
| | - Muhammad Bilal
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (M.S.K.); (J.A.S.); (N.R.); (A.J.K.); (A.P.)
- Correspondence: (A.A.-H.); (M.B.); Tel.: +968-25446328 (A.A.-H.); +92-992-383591 (M.B.)
| |
Collapse
|
25
|
Recent Developments of TiO 2-Based Photocatalysis in the Hydrogen Evolution and Photodegradation: A Review. NANOMATERIALS 2020; 10:nano10091790. [PMID: 32916899 PMCID: PMC7558756 DOI: 10.3390/nano10091790] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 01/01/2023]
Abstract
The growth of industrialization, which is forced to use non-renewable energy sources, leads to an increase in environmental pollution. Therefore, it is necessary not only to reduce the use of fossil fuels to meet energy needs but also to replace it with cleaner fuels. Production of hydrogen by splitting water is considered one of the most promising ways to use solar energy. TiO2 is an amphoteric oxide that occurs naturally in several modifications. This review summarizes recent advances of doped TiO2-based photocatalysts used in hydrogen production and the degradation of organic pollutants in water. An intense scientific and practical interest in these processes is aroused by the fact that they aim to solve global problems of energy conservation and ecology.
Collapse
|
26
|
Preparation of nitrogen-doped aluminium titanate (Al2TiO5) nanostructures: Application to removal of organic pollutants from aqueous media. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Innocenzi V, Prisciandaro M, Vegliò F. Study of the effect of operative conditions on the decolourization of azo dye solutions by using hydrodynamic cavitation at the lab scale. CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Valentina Innocenzi
- Department of Industrial and Information Engineering and of EconomicsUniversity of L'Aquila L'Aquila Italy
| | - Marina Prisciandaro
- Department of Industrial and Information Engineering and of EconomicsUniversity of L'Aquila L'Aquila Italy
| | - Francesco Vegliò
- Department of Industrial and Information Engineering and of EconomicsUniversity of L'Aquila L'Aquila Italy
| |
Collapse
|
28
|
Zhao Z, Omer AA, Qin Z, Osman S, Xia L, Singh RP. Cu/N-codoped TiO 2 prepared by the sol-gel method for phenanthrene removal under visible light irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:17530-17540. [PMID: 31317433 DOI: 10.1007/s11356-019-05787-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/18/2019] [Indexed: 06/10/2023]
Abstract
Cu/N-codoped TiO2 nanoparticles were prepared by the modified sol-gel method, to study its efficiency for the removing of polyaromatic hydrocarbon (phenanthrene) from an aqueous solution. Urea and copper sulfate pentahydrate were used as sources of doping element for Cu/N-codoped TiO2, respectively. The characterizations of the nanoparticles were done by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-vis diffuse reflectance spectra. XRD revealed that all the nanoparticles were indexed to the anatase phase structure, with crystallite size range from 11 to 30 nm, which decreased with the doping of copper and nitrogen. The photocatalytic activities of Cu/N-codoped TiO2 showed the highest activities than other TiO2 nanoparticles (TiO2 and N-doped TiO2). The photodegradation efficiency of Cu/N-codoped TiO2 on phenanthrene under visible light irradiation was slightly higher (96%) comparing to UV light irradiation (94%). Cu/N-codoped TiO2 was found to be very efficient and economical for phenanthrene removal, because the smallest amount of Cu/N-codoped TiO2 exhibited the best removal efficiency on phenanthrene.
Collapse
Affiliation(s)
- Zhenhua Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Abduelrahman Adam Omer
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
- Department of Civil Engineering, College of Engineering Science, Nyala University, Nyala, Sudan.
| | - Zhirui Qin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Salaheldein Osman
- Department of Civil Engineering, College of Engineering Science, Nyala University, Nyala, Sudan
- Water Harvesting center, Nyala University, Nyala, Sudan
| | - Liling Xia
- Nanjing Institute of Industry Technology, People's Republic of, Nanjing, 210016, China
| | | |
Collapse
|
29
|
Sun X, Chen S, Liu J, Zhao S, Yoon JY. Hydrodynamic Cavitation: A Promising Technology for Industrial-Scale Synthesis of Nanomaterials. Front Chem 2020; 8:259. [PMID: 32351937 PMCID: PMC7174716 DOI: 10.3389/fchem.2020.00259] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 03/17/2020] [Indexed: 01/10/2023] Open
Abstract
One of the most challenging issues for the large-scale application of nanomaterials, especially nanocarbons, is the lack of industrial synthetic methods. Sonochemistry, which creates an extreme condition of high pressure and temperature, has been thereby applied for synthesizing a wide variety of unusual nanostructured materials. Hydrodynamic cavitation (HC), characterized by high effectiveness, good scalability, and synergistic effect with other physical and chemical methods, has emerged as the promising sonochemistry technology for industrial-scale applications. Recently, it was reported that HC can not only significantly enhance the performance of biochar, but also preserve or improve the respective chemical composition. Moreover, the economic efficiency was found to be at least one order of magnitude higher than that of conventional methods. Due to the great potential of HC in the industrial-scale synthesis of nanomaterials, the present perspective focuses on the mechanism of sonochemistry, advances in HC applications, and development of hydrodynamic cavitation reactors, which is supposed to contribute to the fundamental understanding of this novel technology.
Collapse
Affiliation(s)
- Xun Sun
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education at Shandong University, School of Mechanical Engineering, Shandong University, Jinan, China
| | - Songying Chen
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education at Shandong University, School of Mechanical Engineering, Shandong University, Jinan, China
| | - Jingting Liu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education at Shandong University, School of Mechanical Engineering, Shandong University, Jinan, China
| | - Shan Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Joon Yong Yoon
- Department of Mechanical Engineering, Hanyang University, Ansan, South Korea
| |
Collapse
|
30
|
Controlled Hydrodynamic Cavitation: A Review of Recent Advances and Perspectives for Greener Processing. Processes (Basel) 2020. [DOI: 10.3390/pr8020220] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The 20th century has witnessed a remarkable enhancement in the demand for varieties of consumer products, ranging from food, pharmaceutical, cosmetics, to other industries. To enhance the quality of the product and to reduce the production cost, industries are gradually inclined towards greener processing technologies. Cavitation-based technologies are gaining interest among processing technologies due to their cost effectiveness in operation, minimization of toxic solvent usage, and ability to obtain superior processed products compared to conventional methods. Also, following the recent advancements, cavitation technology with large-scale processing applicability is only denoted to the hydrodynamic cavitation (HC)-based method. This review includes a general overview of hydrodynamic cavitation-based processing technologies and a detailed discussion regarding the process effectiveness. HC has demonstrated its usefulness in food processing, extraction of valuable products, biofuel synthesis, emulsification, and waste remediation, including broad-spectrum contaminants such as pharmaceuticals, bacteria, dyes, and organic pollutants of concern. Following the requirement of a specific process, HC has been implemented either alone or in combination with other process-intensifying steps, for example, catalyst, surfactant, ultraviolet (UV), hydrogen peroxide (H2O2), and ozone (O3), for better performance. The reactor set-up of HC includes orifice, slit venturi, rotor-stator, and sonolator type constrictions that initiate and control the formation of bubbles. Moreover, the future directions have also been pointed out with careful consideration of specific drawbacks.
Collapse
|
31
|
Cobalt-based metal-organic frameworks promoting magnesium sulfite oxidation with ultrahigh catalytic activity and stability. J Colloid Interface Sci 2020; 559:88-95. [DOI: 10.1016/j.jcis.2019.10.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/13/2019] [Accepted: 10/02/2019] [Indexed: 01/03/2023]
|
32
|
Zhu L, Kong X, Yang C, Ren B, Tang Q. Fabrication and characterization of the magnetic separation photocatalyst C-TiO 2@Fe 3O 4/AC with enhanced photocatalytic performance under visible light irradiation. JOURNAL OF HAZARDOUS MATERIALS 2020; 381:120910. [PMID: 31352151 DOI: 10.1016/j.jhazmat.2019.120910] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/15/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
Congo red (CR) is a kind of refractory contaminant. Conventional biological treatment processes are ineffective for the CR degradation. However, photocatalysis technology could be an alternative for the decomposition of CR because of its high efficiency. In this study, we prepared three kinds of photocatalysts, all of which have advanced visible light excitation characteristics. The magnetic catalyst C-TiO2@Fe3O4/AC was produced by loading C-TiO2 and nano-Fe3O4 onto granular activated carbon (AC). C-TiO2@Fe3O4/AC has a band gap of 2.535 eV, stable magnetic characteristics, and stability toward CR removal. C-TiO2@Fe3O4/AC showed the best performance for CR removal under both simulated sunlight (200-800 nm) and visible light (400-800 nm) irradiation compared to the other catalysts. The CR removal rate reached 92.9% after 30 min of simulated sunlight irradiation, and the reaction rate constant was 0.1776 min-1. Under visible light, the CR removal rate reached 65%. The hydroxyl radical (OH) was detected, and its concentration was determined. Furthermore, the spectral analysis results indicated that the azo bonds and aromatic rings in CR were destroyed. The C-TiO2@Fe3O4/AC has a self-cleaning ability to prevent organic contamination. This study provides a new way of thinking and a simple preparation technique for magnetic visible light catalyst synthesis.
Collapse
Affiliation(s)
- Lin Zhu
- Key Laboratory of Environmental Materials and Pollution Control, The Education Department of Jilin Province, Jilin Normal University, Siping, China; College of Environmental Science and Engineering, Jilin Normal University, Siping, Jilin, China.
| | - Xiangquan Kong
- Key Laboratory of Environmental Materials and Pollution Control, The Education Department of Jilin Province, Jilin Normal University, Siping, China; College of Environmental Science and Engineering, Jilin Normal University, Siping, Jilin, China.
| | - Chunwei Yang
- Key Laboratory of Environmental Materials and Pollution Control, The Education Department of Jilin Province, Jilin Normal University, Siping, China; College of Environmental Science and Engineering, Jilin Normal University, Siping, Jilin, China.
| | - Baixiang Ren
- Key Laboratory of Environmental Materials and Pollution Control, The Education Department of Jilin Province, Jilin Normal University, Siping, China; College of Environmental Science and Engineering, Jilin Normal University, Siping, Jilin, China.
| | - Qian Tang
- Key Laboratory of Environmental Materials and Pollution Control, The Education Department of Jilin Province, Jilin Normal University, Siping, China; College of Environmental Science and Engineering, Jilin Normal University, Siping, Jilin, China.
| |
Collapse
|
33
|
Li G, Yi L, Wang J, Song Y. Hydrodynamic cavitation degradation of Rhodamine B assisted by Fe 3+-doped TiO 2: Mechanisms, geometric and operation parameters. ULTRASONICS SONOCHEMISTRY 2020; 60:104806. [PMID: 31563794 DOI: 10.1016/j.ultsonch.2019.104806] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/18/2019] [Accepted: 09/24/2019] [Indexed: 05/07/2023]
Abstract
In this paper, a novel method, hydrodynamic cavitation (HC) combined with Fe3+-doped TiO2, for the degradation of organic pollutants in aqueous solution is reported. The venturi tubes with different geometric parameters (size, shape and half divergent angle) are designed to obtain a strong HC effect. The structure, morphology and chemical composition of prepared Fe3+-doped TiO2 as catalyst are characterized via using XRD, SEM, TEM, XPS, UV-vis DRS and PL methods. The effects of added TiO2 (heat-treated at different temperatures for different times) and Fe3+-doped TiO2 (with different mole ratios of Fe and Ti) on the HC catalytic degradation of RhB are discussed. The influences of operation parameters including inlet pressure, initial RhB concentration and operating temperature on the HC catalytic degradation of RhB are studied by Box-Behnken design (BBD) and response surface methodology (RSM). Under 3.0 bar inlet pressure for 10 mg/L initial concentration of RhB solution at 40 °C operating temperature in the presence of Fe3+-doped TiO2 with 0.05:1.00 M ratio of Fe and Ti, the best HC degradation ratio can be obtained (91.11%). Furthermore, a possible mechanism of HC degradation of organic pollutants in the presence of Fe3+-doped TiO2 is proposed. Perhaps, this study may provide a feasible method for a large-scale treatment of dye wastewater.
Collapse
Affiliation(s)
- Guanshu Li
- College of Environment, Liaoning University, Shenyang 110036, PR China
| | - Ludong Yi
- College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Jun Wang
- College of Environment, Liaoning University, Shenyang 110036, PR China; College of Chemistry, Liaoning University, Shenyang 110036, PR China.
| | - Youtao Song
- College of Environment, Liaoning University, Shenyang 110036, PR China.
| |
Collapse
|
34
|
Huertas RM, Fraga MC, Crespo JG, Pereira VJ. Solvent-Free Process for the Development of Photocatalytic Membranes. Molecules 2019; 24:molecules24244481. [PMID: 31817756 PMCID: PMC6943574 DOI: 10.3390/molecules24244481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/14/2019] [Accepted: 11/25/2019] [Indexed: 11/16/2022] Open
Abstract
This work described a new sustainable method for the fabrication of ceramic membranes with high photocatalytic activity, through a simple sol-gel route. The photocatalytic surfaces, prepared at low temperature and under solvent-free conditions, exhibited a narrow pore size distribution and homogeneity without cracks. These surfaces have shown a highly efficient and reproducible behavior for the degradation of methylene blue. Given their characterization results, the microfiltration photocatalytic membranes produced in this study using solvent-free conditions are expected to effectively retain microorganisms, such as bacteria and fungi that could then be inactivated by photocatalysis.
Collapse
Affiliation(s)
- Rosa M. Huertas
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; (R.M.H.); (M.C.F.)
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (UNL), 2829-516 Caparica, Portugal;
| | - Maria C. Fraga
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; (R.M.H.); (M.C.F.)
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (UNL), 2829-516 Caparica, Portugal;
| | - João G. Crespo
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (UNL), 2829-516 Caparica, Portugal;
| | - Vanessa J. Pereira
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; (R.M.H.); (M.C.F.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2784 Oeiras, Portugal
- Correspondence: ; Tel.: +351-214-469-554
| |
Collapse
|
35
|
Azizi-Toupkanloo H, Karimi-Nazarabad M, Shakeri M, Eftekhari M. Photocatalytic mineralization of hard-degradable morphine by visible light-driven Ag@g-C 3N 4 nanostructures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:30941-30953. [PMID: 31452123 DOI: 10.1007/s11356-019-06274-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/16/2019] [Indexed: 05/17/2023]
Abstract
The entrance of some hard-degradable pharmaceutical contaminants can cause irreparable damage to humans and other organisms; therefore, removing these pollutants from water is one of the most important activities in water purification field. In this work, the mineralization of morphine was performed using photocatalytic degradation method. Graphitic carbon nitride (g-C3N4) nanosheets, due to their promising tunable characteristics, were chosen as visible-light-driven nanostructured heterogeneous photocatalyst. To enhance the photocatalytic activity, g-C3N4 was doped with Ag noble metal due to its surface plasmon resonance effect and acting as an electron sink. The photodegradation of morphine was evaluated under different pH values, the dosage of the photocatalyst, initial concentration of morphine, and Ag% loading under sunlight as green energy. The maximum efficiency was obtained in the very low concentration of Ag@g-C3N4 photocatalyst with the superior low value of 0.17 g L-1. Near complete mineralization of morphine was achieved by Ag@g-C3N4 with metal content percentage equal to 5 in 180 min and pH = 2. Also, using various active species scavengers, superoxide anion radical was identified as the main responsible species in the photocatalysis reaction of morphine degradation.
Collapse
Affiliation(s)
| | - Mahdi Karimi-Nazarabad
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
- Department of Chemistry, Faculty of Samen Hojaj, Mashhad Branch, Technical and Vocational University, Tehran, Iran.
| | - Mahbubeh Shakeri
- Department of Chemistry, University of Neyshabur, Neyshabur, 9319774446, Iran
| | - Mohammad Eftekhari
- Department of Chemistry, University of Neyshabur, Neyshabur, 9319774446, Iran
| |
Collapse
|
36
|
Sun J, Wang C, Shen T, Song H, Li D, Zhao R, Wang X. Engineering the Dimensional Interface of BiVO 4-2D Reduced Graphene Oxide (RGO) Nanocomposite for Enhanced Visible Light Photocatalytic Performance. NANOMATERIALS 2019; 9:nano9060907. [PMID: 31234460 PMCID: PMC6630799 DOI: 10.3390/nano9060907] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/04/2019] [Accepted: 06/07/2019] [Indexed: 11/29/2022]
Abstract
Graphene as a two-dimensional (2D) nanoplatform is beneficial for assembling a 2D heterojunction photocatalytic system to promote electron transfer in semiconductor composites. Here a BiVO4 nanosheets/reduced graphene oxide (RGO) based 2D-2D heterojunction photocatalytic system as well as 0D-2D BiVO4 nanoparticles/RGO and 1D-2D BiVO4 nanotubes/RGO nanocomposites are fabricated by a feasible solvothermal process. During the synthesis; the growth of BiVO4 and the intimate interfacial contact between BiVO4 and RGO occur simultaneously. Compared to 0D-2D and 1D-2D heterojunctions, the resulting 2D-2D BiVO4 nanosheets/RGO composites yield superior chemical coupling; leading to exhibit higher photocatalytic activity toward the degradation of acetaminophen under visible light irradiation. Photoluminescence (PL) and photocurrent experiments revealed that the apparent electron transfer rate in 2D-2D BiVO4 nanosheets/RGO composites is faster than that in 0D-2D BiVO4 nanoparticles/RGO composites. The experimental findings presented here clearly demonstrate that the 2D-2D heterojunction interface can highlight the optoelectronic coupling between nanomaterials and promote the electron–hole separation. This study will motivate new developments in dimensionality factors on designing the heterojunction photocatalysts and promote their photodegradation photocatalytic application in environmental issues.
Collapse
Affiliation(s)
- Jing Sun
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250353, China.
| | - Chunxiao Wang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250353, China.
| | - Tingting Shen
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250353, China.
| | - Hongchen Song
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250353, China.
| | - Danqi Li
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250353, China.
| | - Rusong Zhao
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250014, China.
| | - Xikui Wang
- College of Environmental Science and Engineering, Shandong Agriculture and Engineering University, Ji'nan, 251100, China.
| |
Collapse
|
37
|
N–TiO2 Photocatalysts: A Review of Their Characteristics and Capacity for Emerging Contaminants Removal. WATER 2019. [DOI: 10.3390/w11020373] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Titanium dioxide is the most used photocatalyst in wastewater treatment; its semiconductor capacity allows the indirect production of reactive oxidative species. The main drawback of the application of TiO2 is related to its high band-gap energy. The nonmetal that is most often used as the doping element is nitrogen, which is due to its capacity to reduce the band-gap energy at low preparation costs. There are multiple and assorted methods of preparation. The main advantages and disadvantages of a wide range of preparation methods were discussed in this paper. Different sources of N were also analyzed, and their individual impact on the characteristics of N–TiO2 was assessed. The core of this paper was focused on the large spectrum of analytical techniques to detect modifications in the TiO2 structure from the incorporation of N. The effect of N–TiO2 co-doping was also analyzed, as well as the main characteristics that are relevant to the performance of the catalyst, such as its particle size, surface area, quantum size effect, crystalline phases, and the hydrophilicity of the catalyst surface. Powder is the most used form of N–TiO2, but the economic benefits and applications involving continuous reactors were also analyzed with supported N–TiO2. Moreover, the degradation of contaminants emerging from water and wastewater using N–TiO2 and co-doped TiO2 was also discussed.
Collapse
|
38
|
Advanced Design and Synthesis of Composite Photocatalysts for the Remediation of Wastewater: A Review. Catalysts 2019. [DOI: 10.3390/catal9020122] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Serious water pollution and the exhausting of fossil resources have become worldwide urgent issues yet to be solved. Solar energy driving photocatalysis processes based on semiconductor catalysts is considered to be the most promising technique for the remediation of wastewater. However, the relatively low photocatalytic efficiency remains a critical limitation for the practical use of the photocatalysts. To solve this problem, numerous strategies have been developed for the preparation of advanced photocatalysts. Particularly, incorporating a semiconductor with various functional components from atoms to individual semiconductors or metals to form a composite catalyst have become a facile approach for the design of high-efficiency catalysts. Herein, the recent progress in the development of novel photocatalysts for wastewater treatment via various methods in the sight of composite techniques are systematically discussed. Moreover, a brief summary of the current challenges and an outlook for the development of composite photocatalysts in the area of wastewater treatment are provided.
Collapse
|
39
|
Application of Hydrodynamic Cavitation Reactors for Treatment of Wastewater Containing Organic Pollutants: Intensification Using Hybrid Approaches. FLUIDS 2018. [DOI: 10.3390/fluids3040098] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The concentration of hazardous pollutants in the wastewater streams has to keep below a certain level in order to comply with the stringent environmental laws. The conventional technologies for wastewater treatment have drawbacks in terms of limited applicability and efficiency. Utilization of hydrodynamic cavitation (HC) reactors for the degradation of pollutants at large scale has shown considerable promise over last few years, due to higher energy efficiencies and low cost operation based on lower consumption of chemicals for the treatment. The present work overviews the degradation of different pollutants, such as pharmaceuticals, pesticide, phenolic derivatives and dyes, as well as the treatment of real industrial effluents using hybrid methods based on HC viz. HC/H2O2, HC/Ozone, HC/Fenton, HC/Ultraviolet irradiations (UV), and HC coupled with biological oxidation. Furthermore, based on the literature reports, recommendations for the selection of optimum operating parameters, such as inlet pressure, solution temperature, initial pH and initial pollutant concentration have been discussed in order to maximize the process intensification benefits. Moreover, hybrid methods based on HC has been demonstrated to show good synergism as compared to individual treatment approach. Overall, high energy efficient wastewater treatment can be achieved using a combined treatment approach based on HC under optimized conditions.
Collapse
|