1
|
Wang Z, Tang T, Chen L, Wu S, Li X, Liu Y. Electrokinetic remediation of cadmium-contaminated soil using polarity reversal method: Optimization analysis and mechanism exploration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122732. [PMID: 39369536 DOI: 10.1016/j.jenvman.2024.122732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
Electrokinetic remediation (EKR) has been applied for in-situ removal of Cd from contaminated soil, and the EKR enhanced with polarity reversal has achieved a higher Cd removal efficiency. However, the migration and accumulation mechanisms of Cd in the EKR process have not been investigated. In this paper, the cross-impacts of the voltage gradient, citric acid concentration in the electrolyte, and polarity reversal frequency on the removal efficiency by EKR of Cd and the optimization conditions were investigated. The migration and accumulation mechanisms of Cd were explored by analyzing the changes in electrokinetic process parameters, experimental phenomena, and X-ray diffraction (XRD) analysis. The results showed that the maximum removal efficiency of Cd reached 82.26%. The optimal conditions were determined by fitting the RSM model using the BBD design. In the EKR experiment with polarity reversal, Cd accumulated mainly in the middle part of the soil, attributed to the formation of chemical precipitation focusing area caused by soil pH transition, ion-induced potential gradient well trapping effect (IIPGWTE), or soil compaction induced by water loss. In conclusion, the various parameters have cross-impacts on the EKR of Cd-contaminated soil, and efficient in-situ removal of Cd from the contaminated soil can be achieved by adjusting the parameter conditions.
Collapse
Affiliation(s)
- Zheng Wang
- College of Environmental Sciences and Engineering, Peking University, Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing, 100871, China.
| | - Tian Tang
- College of Environmental Sciences and Engineering, Peking University, Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing, 100871, China.
| | - Liuzhou Chen
- College of Environmental Sciences and Engineering, Peking University, Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing, 100871, China.
| | - Shu Wu
- College of Environmental Sciences and Engineering, Peking University, Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing, 100871, China.
| | - Xin Li
- Ecological Environment Consulting Department, Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing, 100015, China.
| | - Yangsheng Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing, 100871, China.
| |
Collapse
|
2
|
Xie N, Wang H, You C. On the electrokinetic remediation of Pb-contaminated soil: A coupled electro-transport-reaction modelling study based on chemical reaction kinetics. CHEMOSPHERE 2024; 355:141661. [PMID: 38521103 DOI: 10.1016/j.chemosphere.2024.141661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/14/2024] [Accepted: 03/05/2024] [Indexed: 03/25/2024]
Abstract
The accumulation of lead (Pb) in soil resulted from industrialization and urbanization poses a threat to human health and the ecosystem. This study proposes a mathematical model for Pb migration and transformation in soil porous media, aiming to guide the design of electrokinetic remediation schemes for Pb-contaminated soils. To improve the validity of the model, the chemical reactions considered in the model are all based on chemical reaction kinetics, which were usually overlooked for model simplification. The model quantitatively describes various physical and chemical processes of Pb at the soil-pore fluid interface and in the pore fluid, including diffusion, electromigration, electroosmosis, electrolytic water reaction, precipitation, adsorption/desorption, protonation/deprotonation reaction, and water self-ionization reaction. The numerical results show that the pH value is a key factor affecting the distribution of Pb in the soil and determining the removal efficiency of Pb. The effects of different enhancement methods on Pb concentration distribution and removal efficiency were evaluated with this model. It was found that placing a cation exchange membrane at the cathode boundary while using 0.01 M nitric acid as anode electrolyte can effectively improve Pb removal efficiency from 3.9% to 93.6%. The developed model can be used to guide the design of the enhanced electrokinetic remediation schemes.
Collapse
Affiliation(s)
- Ning Xie
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, PR China; Shanxi Research Institute for Clean Energy, Tsinghua University, Taiyuan, PR China
| | - Haiming Wang
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, PR China; Shanxi Research Institute for Clean Energy, Tsinghua University, Taiyuan, PR China.
| | - Changfu You
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, PR China; Shanxi Research Institute for Clean Energy, Tsinghua University, Taiyuan, PR China
| |
Collapse
|
3
|
Cabrera V, López-Vizcaíno R, Yustres Á, Navarro V. Reactive transport model for bentonites in COMSOL multiphysics: Benchmark and validation exercise. CHEMOSPHERE 2024; 350:141050. [PMID: 38154672 DOI: 10.1016/j.chemosphere.2023.141050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 12/30/2023]
Abstract
At present, the deep geological repository concept for spent nuclear fuel is considered the most reliable and safe technique for the permanent disposal of this type of waste. One of the many safety elements used is an engineered barrier made of compacted bentonite. This material allows the encapsulated waste to be isolated from the host rock. Therefore, there is great interest in a detailed study of the behavior of bentonites to different changes in the composition of the surrounding groundwater. In this context, this work presents a new reactive transport model for bentonites implemented in the COMSOL Multiphysics platform. The model contemplates a non-simplistic geochemical system composed of 42 species and 4 minerals. Reactive transport involves the diffusive-dispersive-advective processes defined by the Nernst Planck equations for two overlapping modeling levels (macro- and microstructural) to simulate the behavior of double-porosity media. The uniqueness of this model is that the system of equations used to calculate the chemical speciation problem and the advective-diffusive-dispersive transport can be integrally solved in COMSOL. The model has been satisfactorily verified and validated using the benchmark exercise consisting of the simulation of the multicomponent advective-diffusive column experiment conducted on a compacted bentonite core extracted from a field experiment (LOT project) in the Äspö Hardrock laboratory (Sweden).
Collapse
Affiliation(s)
- Virginia Cabrera
- Geoenvironmental Group, Department of Civil Engineering and Construction, Civil Engineering School, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Rubén López-Vizcaíno
- Geoenvironmental Group, Department of Civil Engineering and Construction, Civil Engineering School, University of Castilla-La Mancha, Ciudad Real, Spain.
| | - Ángel Yustres
- Geoenvironmental Group, Department of Civil Engineering and Construction, Civil Engineering School, University of Castilla-La Mancha, Ciudad Real, Spain.
| | - Vicente Navarro
- Geoenvironmental Group, Department of Civil Engineering and Construction, Civil Engineering School, University of Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
4
|
Sun Z, Zhao M, Chen L, Gong Z, Hu J, Ma D. Electrokinetic remediation for the removal of heavy metals in soil: Limitations, solutions and prospection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:165970. [PMID: 37572906 DOI: 10.1016/j.scitotenv.2023.165970] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/10/2023] [Accepted: 07/30/2023] [Indexed: 08/14/2023]
Abstract
Electrokinetic remediation (EKR) technology is a promising method to remove heavy metals from low permeability soil, because it is environmentally friendly, efficient and economical, and can realize in-situ remediation. In this paper, the basic principles and related physical and chemical phenomena of EKR are systematically summarized, and three limiting problems of EKR technology are put forward: the weak ability of dissolving metals, focusing effect, and energy consumption. There are many methods to solve these technical problems, but there is a lack of systematic summary of the causes of problems and solutions. Based on various enhanced EKR technologies, this paper summarizes the main ideas to solve the limiting problems. The advantages and disadvantages of each technology are compared, which has guiding significance for the development of new technology in the future. This paper also discusses the dissolution of residual heavy metals, which is rare in other articles. The energy consumption of EKR and the remediation effect are equally important, and both can be used as indicators for evaluating the feasibility of new technologies. This paper reviews the influence of various electric field conditions on power consumption, such as renewable energy supply, new electrode materials and electrode configurations, suitable voltage values and functional electrolytes. In addition, a variety of energy consumption calculation methods are also introduced, which are suitable for ohmic heat loss, energy distribution when there is non-target ion competition, and power consumption of specific ions in various metal ions. Researchers can make selective reference according to their actual situations. This paper also systematically introduces the engineering design and cost calculation of EKR, lists the research progress of some engineering cases and pilot-scale tests, analyzes the reasons why it is difficult to apply EKR technology in large-scale engineering at present, and puts forward the future research direction.
Collapse
Affiliation(s)
- Zeying Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Miaomiao Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Li Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhiyang Gong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Junjie Hu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Degang Ma
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
5
|
Wang Z, He X, Li X, Chen L, Tang T, Cui G, Zhang Q, Liu Y. Long-term stability and toxicity effects of three-dimensional electrokinetic remediation on chromium-contaminated soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122461. [PMID: 37689131 DOI: 10.1016/j.envpol.2023.122461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/11/2023]
Abstract
The three-dimensional electrokinetic remediation (3D EKR) achieved efficient removal of chromium (Cr) from the soil through mechanisms including electromigration, electroosmosis, and redox reactions. In this study, the long-term stability, leaching toxicity, bioavailability, and phytotoxicity of Cr in remediated soils were systematically analyzed to comprehensively evaluate the effectiveness of the 3D EKR method. The results showed that the concentration of hexavalent chromium (Cr (VI)) in the leachate of the 3D EKR system with sulfidated nano-scale zerovalent iron (S-nZVI) was more than 40% lower than those of the other 3D electrode groups, and the time required to reach the level III standard of groundwater quality criterion in China (0.05 mg/L, GB/T 14848-2017) was significantly shortened. The stabilization of Cr(VI) in contaminated soil after 3D EKR was maintained for 300 pore volumes (PVs), indicating that the treated Cr(VI) had good long-term stability. The leaching toxicity and bioaccessibility of Cr were assessed by the synthetic precipitation leaching procedure (SPLP), the toxicity characteristic leaching procedure (TCLP), and the physiologically based extraction test (PBET). The concentration of Cr(VI) in the SPLP, TCLP, and PBET leachates of the S-nZVI group decreased by more than 25% compared to the other 3D electrode groups, corresponding to the decrease in leaching toxicity and bioavailability of the treated Cr during the 15-day remediation period. In addition, the germination rate of wheat seeds and the average biomass of wheat seedlings in the S-nZVI group under alkaline conditions (EE) were higher than those in the non-polluting group (Blank-OH), indicating that the remediated soil had no obvious toxicity to wheat. In summary, 3D EKR achieved a satisfactory and stable remediation effect on Cr-contaminated soil, especially when using S-nZVI as the 3D electrode.
Collapse
Affiliation(s)
- Zheng Wang
- College of Environmental Sciences and Engineering, Peking University; Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing 100871, China.
| | - Xiao He
- China MCC5 Group Corp. Ltd., Chengdu, 610063, China
| | - Xin Li
- Ecological Environment Consulting Department, Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing 100015, China
| | - Liuzhou Chen
- College of Environmental Sciences and Engineering, Peking University; Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing 100871, China
| | - Tian Tang
- College of Environmental Sciences and Engineering, Peking University; Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing 100871, China
| | - Guodong Cui
- College of Environmental Sciences and Engineering, Peking University; Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing 100871, China
| | - Qiming Zhang
- College of Environmental Sciences and Engineering, Peking University; Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing 100871, China
| | - Yangsheng Liu
- College of Environmental Sciences and Engineering, Peking University; Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing 100871, China.
| |
Collapse
|
6
|
Kanbar HJ, Zein-Eddin A, Ammami MT, Benamar A. Electrokinetic remediation of estuarine sediments using a large reactor: spatial variation of physicochemical, mineral, and chemical properties. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117688-117705. [PMID: 37867172 DOI: 10.1007/s11356-023-30271-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/01/2023] [Indexed: 10/24/2023]
Abstract
The treatment and beneficial use of polluted or contaminated environmental matrices have become major issues, especially as the world strives toward a zero-waste policy. In this regard, dredged sediments need to be treated before they can be used in an environmentally safe and sustainable manner. Therefore, this work aims to treat estuarine sediments and, more importantly, use physicochemical, mineral, organic, and chemical information to understand the reactions that occur upon treatment. Dredged estuarine sediments were collected from Tancarville (Seine River estuary, France) and subjected to electrokinetic (EK) remediation using a 128-L laboratory-scale reactor. The sediments were treated 8 h per day for 21 days. The electric (voltage and current) and physicochemical (pH and electric conductivity) parameters were monitored during treatment. Sediments were collected from various sections in the reactor at the end of the experiment (lengthwise, widthwise, and depthwise). The spatial variation was investigated in terms of organic, mineral, and metal contents. Statistical analyses proved that the variation occurred only in the lengthwise direction. Furthermore, three main phases described the treatment, which were mainly linked to carbonate dissolution and pH variation. The results also showed that the trace elements Ni and Zn were reduced by 21% and 19%, respectively, without a direct link to pH, while Ca and Mg were only redistributed. The buffering capacity of the anodic sediment was reduced due to carbonate dissolution. The treated sediments showed reduced contents in trace metals without affecting major elements that can be useful in agriculture (i.e., Ca and Mg).
Collapse
Affiliation(s)
- Hussein J Kanbar
- Laboratoire Ondes et Milieux Complexes (LOMC), UMR 6294 CNRS, University of Le Havre Normandy (ULHN), 76600, Le Havre, France.
| | - Ahmad Zein-Eddin
- Laboratoire Ondes et Milieux Complexes (LOMC), UMR 6294 CNRS, University of Le Havre Normandy (ULHN), 76600, Le Havre, France
| | - Mohamed-Tahar Ammami
- Laboratoire Ondes et Milieux Complexes (LOMC), UMR 6294 CNRS, University of Le Havre Normandy (ULHN), 76600, Le Havre, France
| | - Ahmed Benamar
- Laboratoire Ondes et Milieux Complexes (LOMC), UMR 6294 CNRS, University of Le Havre Normandy (ULHN), 76600, Le Havre, France
| |
Collapse
|
7
|
Vidal J, Báez ME. Behavior of Chlorpyrifos and 3,5,6-trichloro-2-pyridinol (TCP) in a Sodium-Dodecyl Sulphate-Electrokinetic soil washing system. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
8
|
Application of a Zero-Valent Iron/Cork as Permeable Reactive Barrier for In Situ Remediation of Phenanthrene in Soil. Catalysts 2022. [DOI: 10.3390/catal12121591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This paper proposes an eco-efficient treatment technology for removing phenanthrene (PHE) from kaolinite soil, incorporating a permeable reactive barrier (PRB) in an electrokinetic (EK) remediation system, which was made by modifying the granulated cork (GC) with Fe@Fe2O3, identified as EK/Fe@Fe2O3/GC. The novel product Fe@Fe2O3/GC was characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, and element mapping. EK tests were conducted to investigate the performance of the EK/Fe@Fe2O3/GC for removal of PHE from soil. The results showed that PHE was driven by the electro-osmotic flow toward the cathode and reacted with the EK/Fe@Fe2O3/GC. Further, the removal efficiency of PHE in the soil was higher in the presence of H2O2 due to the additional reactions achieved. The results were discussed in light of the existing literature.
Collapse
|
9
|
Vidal J, Báez ME, Calzadilla W, Aranda M, Salazar R. Removal of chloridazon and its metabolites from soil and soil washing water by electrochemical processes. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
López-Vizcaíno R, Cabrera V, Sprocati R, Muniruzzaman M, Rolle M, Navarro V, Yustres Á. A modeling approach for electrokinetic transport in double-porosity media. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Henrique JMM, Isidro J, Saez C, Lopez-Vizcaíno R, Yustres A, Navarro V, Dos Santos EV, Rodrigo MA. Combining Soil Vapor Extraction and Electrokinetics for the Removal of Hexachlorocyclohexanes from Soil. Chemistry 2022; 12:e202200022. [PMID: 35876395 PMCID: PMC10152886 DOI: 10.1002/open.202200022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/30/2022] [Indexed: 11/10/2022]
Abstract
This paper focuses on the evaluation of the mobility of four hexachlorocyclohexane (HCH) isomers by soil vapor extraction (SVE) coupled with direct electrokinetic (EK) treatment without adding flushing fluids. SVE was found to be very efficient and remove nearly 70 % of the four HCH in the 15-days of the tests. The application of electrokinetics produced the transport of HCH to the cathode by different electrochemical processes, which were satisfactorily modelled with a 1-D transport equation. The increase in the electric field led to an increase in the transport of pollutants, although 15 days was found to be a very short time for an efficient transportation of the pollutants to the nearness of the cathode. Loss of water content in the vicinity of the cathode warns about the necessity of using electrokinetic flushing technologies instead of simple direct electrokinetics. Thus, results point out that direct electrokinetic treatment without adding flushing fluids produced low current intensities and ohmic heating that contributes negatively to the performance of the SVE process. No relevant differences were found among the removal of the four isomers, neither in SVE nor in EK processes.
Collapse
Affiliation(s)
- João M M Henrique
- Postgraduate Program in Chemical Engineering, School of Science and Technology, Universidade Federal do Rio Grande do Norte Campus Universitário, Lagoa Nova, 59078-970, Natal/RN, Brazil.,Faculty of Chemical Sciences & Technologies, Department of Chemical Engineering, Universidad de Castilla La Mancha, Campus Universitario, s/n, 13071, Ciudad Real, Spain
| | - Julia Isidro
- Faculty of Chemical Sciences & Technologies, Department of Chemical Engineering, Universidad de Castilla La Mancha, Campus Universitario, s/n, 13071, Ciudad Real, Spain
| | - Cristina Saez
- Faculty of Chemical Sciences & Technologies, Department of Chemical Engineering, Universidad de Castilla La Mancha, Campus Universitario, s/n, 13071, Ciudad Real, Spain
| | - Rúben Lopez-Vizcaíno
- Geoenvironmental Group, Civil Engineering School, Universidad de Castilla La Mancha, Avda. Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - Angel Yustres
- Geoenvironmental Group, Civil Engineering School, Universidad de Castilla La Mancha, Avda. Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - Vicente Navarro
- Geoenvironmental Group, Civil Engineering School, Universidad de Castilla La Mancha, Avda. Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - Elisama V Dos Santos
- Postgraduate Program in Chemical Engineering, School of Science and Technology, Universidade Federal do Rio Grande do Norte Campus Universitário, Lagoa Nova, 59078-970, Natal/RN, Brazil
| | - Manuel A Rodrigo
- Faculty of Chemical Sciences & Technologies, Department of Chemical Engineering, Universidad de Castilla La Mancha, Campus Universitario, s/n, 13071, Ciudad Real, Spain
| |
Collapse
|
12
|
Zhao B, Sun Z, Liu Y. An overview of in-situ remediation for nitrate in groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:149981. [PMID: 34517309 DOI: 10.1016/j.scitotenv.2021.149981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Faced with the increasing nitrate pollution in groundwater, in-situ remediation has been widely studied and applied on field-scale as an efficient, economical and less disturbing remediation technology. In this review, we discussed various in-situ remediation for nitrate in groundwater and elaborate on biostimulation, phytoremediation, electrokinetic remediation, permeable reactive barrier and combined remediation. This review described principles of each in-situ remediation, application, the latest progress, problems and challenges on field-scale. Factors affecting the efficiency of in-situ remediation for nitrate in groundwater are also summarized. Finally, this review presented the prospect of in-situ remediation for nitrate pollution in groundwater. The objective of this review is to examine the state of knowledge on in-situ remediation for nitrate in groundwater and critically evaluate factors which affect the up-scaling of laboratory and bench-scale research to field-scale application. This helps to better understand the control mechanisms of various in-situ remediation for nitrate pollution in groundwater and the design options available for application to the field-scale.
Collapse
Affiliation(s)
- Bei Zhao
- China University of Geosciences (Beijing), Beijing 100083, China
| | - Zhanxue Sun
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China.
| | - Yajie Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
| |
Collapse
|
13
|
Vidal J, Báez ME, Salazar R. Electro-kinetic washing of a soil contaminated with quinclorac and subsequent electro-oxidation of wash water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143204. [PMID: 33162125 DOI: 10.1016/j.scitotenv.2020.143204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/21/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
This work deals with the remediation of a soil that has been enriched with Quinclorac (QNC), one of the herbicides most used in Chile for weed control in rice fields. Quinclorac damages the microflora and macrofauna of soils and is toxic to some susceptible crops, which results in economic loses during crop rotation. Furthermore, Quinclorac a potential contaminant of water resources and soils, given its high mobility and persistence. This has created the need to lower its concentrations in soils intensively cultivated. In this study, an electro-kinetic soil washing system (EKSW) for mobilizing this pesticide in the soil was explored. The performance of this technology was compared by assessing the effect of direct (DP) and reverse (RP) polarity during 15 days under potentiostatic conditions and applying an electric field of 1 V cm-1 between electrodes. Among the main results, the highest removal of QNC was obtained through the EKSW-RP process, which also contributed to the prevention of acidity and alkaline fronts in the soil, compared to the EKSW-DP system. In both cases, the highest accumulation of QNC occurred in the cathodic well by mobilizing the non-ionized contaminant through the electroosmotic flow (EOF) from anode to cathode. After the treatment with EKSW, the wash water accumulated in the anodic and cathodic wells, which contained an important concentration of pesticide, was subjected to electro-oxidation (EO) by applying different current densities (j). The high generation of •OH on the surface of a boron-doped diamond electrode (BDD) allowed for the complete degradation and mineralization of QNC and its major intermediate compounds to CO2. The results of this study show that the application of both coupled stages in this type of remediation technologies would enable the removal of QNC from the soil without altering its chemical and physical properties, constituting an environmentally friendly process.
Collapse
Affiliation(s)
- J Vidal
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Chile.
| | - María E Báez
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Chile
| | - R Salazar
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
| |
Collapse
|
14
|
Popov N, Rončević S, Duduković N, Krčmar D, Mihaljev Ž, Živkov Baloš M, Đorđievski S. Ex situ remediation of sediment from Serbia using a combination of electrokinetic and stabilization/solidification with accelerated carbonation treatments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:14969-14982. [PMID: 33222071 DOI: 10.1007/s11356-020-11621-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
The application of three simple and cost-effective technologies for ex situ remediation of the sediment of Begej River in Serbia is presented in this paper. In the first step, conventional electrokinetic treatment (EK) was carried out to reduce the amount of contaminated sediment and enhance the accumulation of metals. Subsequently, stabilization/solidification (S/S) treatment was applied to the remaining portion of polluted sediment to immobilize the accumulated metals. At the same time, the influence of accelerated carbonation on the effectiveness of the treatment was evaluated. The immobilizing agents used in this study included bio ash produced by combustion of wheat and soy straw mixture and bio ash derived from molasses incineration. After the treatments, the risk assessment was performed by using the sequential extraction procedure (SEP) and TCLP and DIN 3841-4 S4 leaching tests. The results obtained after the EK treatment revealed a reduction in the amount of polluted sediment to a half. Leaching tests and SEP performed on S/S mixtures after a 28-day maturation period indicated that accelerated carbonation decreased the mobility of critical metals, especially in wheat and soy straw mixtures. Moreover, based on the leaching tests, all prepared mixtures were categorized as non-hazardous and safe for disposal according to the relevant Serbian regulations. The newly developed method that combines EK and S/S treatments with the addition of accelerated carbonation produced reduced volumes of stabilized sediment which is safe for disposal.
Collapse
Affiliation(s)
- Nenad Popov
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Trg Dositeja Obradovića 3, Novi Sad, 21000, Serbia
- Scientific Veterinary Institute "Novi Sad", Rumenački put 20, Novi Sad, 21000, Serbia
| | - Srđan Rončević
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Trg Dositeja Obradovića 3, Novi Sad, 21000, Serbia
| | - Nataša Duduković
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Trg Dositeja Obradovića 3, Novi Sad, 21000, Serbia.
| | - Dejan Krčmar
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Trg Dositeja Obradovića 3, Novi Sad, 21000, Serbia
| | - Željko Mihaljev
- Scientific Veterinary Institute "Novi Sad", Rumenački put 20, Novi Sad, 21000, Serbia
| | - Milica Živkov Baloš
- Scientific Veterinary Institute "Novi Sad", Rumenački put 20, Novi Sad, 21000, Serbia
| | - Stefan Đorđievski
- Mining and Metallurgy Institute Bor, Zeleni Bulevar 35, Bor, 19210, Serbia
| |
Collapse
|
15
|
López-Vizcaíno R, Yustres Á, Cabrera V, Navarro V. A worksheet-based tool to implement reactive transport models in COMSOL Multiphysics. CHEMOSPHERE 2021; 266:129176. [PMID: 33316469 DOI: 10.1016/j.chemosphere.2020.129176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/11/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
The increasing needs for modelling of reactive transport phenomena in different areas of environmental modelling have led to the development of many numerical codes. However, many of them suffer from a lack of flexibility, which hinders the adaptation of the codes to new problems. Moreover, in many cases, changes can be done by a very reduced group of people, and often by a single person, the main developer. Implementation platforms based on multiphysics modelling removes these barriers, although until now within that programming environments has been only possible the coupling of geochemical codes to transport equations using operator splitting techniques. This paper presents the EE4MGM tool, a MS Excel worksheet, provided in supplementary material, for the edition and complete implementation of reactive transport models in COMSOL. The tool automatically generates the code needed to solve the desired reactive transport problem by selecting only which species make up the geochemical system. This way, the numerical model will be completely adapted to the idealisation to be applied, being able to choose easily and effortlessly from a wide range of different levels of conceptual complexity. The organization of data input and the equation libraries obtained for the implementation in the multiphysics COMSOL environment are first described. Afterwards, two examples, in one and two-dimensional domains, to check the utility of the tool are presented.
Collapse
Affiliation(s)
- Rubén López-Vizcaíno
- Geoenvironmental Group, Civil Engineering School, University of Castilla-La Mancha, Avda. Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - Ángel Yustres
- Geoenvironmental Group, Civil Engineering School, University of Castilla-La Mancha, Avda. Camilo José Cela s/n, 13071, Ciudad Real, Spain.
| | - Virginia Cabrera
- Geoenvironmental Group, Civil Engineering School, University of Castilla-La Mancha, Avda. Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - Vicente Navarro
- Geoenvironmental Group, Civil Engineering School, University of Castilla-La Mancha, Avda. Camilo José Cela s/n, 13071, Ciudad Real, Spain
| |
Collapse
|
16
|
Wen D, Fu R, Li Q. Removal of inorganic contaminants in soil by electrokinetic remediation technologies: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123345. [PMID: 32763678 DOI: 10.1016/j.jhazmat.2020.123345] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/22/2020] [Accepted: 06/27/2020] [Indexed: 05/09/2023]
Abstract
The soil contaminated by inorganic contaminants including heavy metals, radioactive elements and salts has been posing risks for human health and ecological environment, which has been widely paid attention in recent years. The electrokinetic remediation (EKR) technology is recognized as the most potential separation technology, which is commonly used to clean sites that are contaminated with organic and inorganic contaminants. It is the most suitable remediation technology for low permeability porous matrices. The main transport mechanism of pollutants in EKR include electromigration, electroosmosis and electrophoresis, coupled with electrolysis and geochemical reactions. Although arduous endeavors have been carried out to build optimal operating conditions and reveal the mechanism of EKR process, a systematic theoretical foundation hasn't been sorted yet. A comprehensive review on electrokinetic remediation of inorganic contaminants in soil is given in this study, and a more systematic theoretical foundation is sorted out according to the latest theoretical achievements. This theoretical system mainly focuses on the scientific and practical aspects of the application of EKR technology in soil remediation, by which we try to dig into the core of this technology. It contains key motive power of electric phenomena, side effects, energy consumption and supply, and removal of heavy metals, radioactive elements and salts in soil during EKR. In addition, correlations between dehydration, crystallization effect, focusing effect and thermal effect are disclosed; optimal operating conditions for the removal of heavy metals by EKR and EKR coupled with PRB are discussed and sorted out. Also discussed herein is the relationship between energy allocation and energy saving. According to the related findings, some potential improvements are also proposed.
Collapse
Affiliation(s)
- Dongdong Wen
- Centre for Environmental Risk Management & Remediation of Soil & Groundwater, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Rongbing Fu
- Centre for Environmental Risk Management & Remediation of Soil & Groundwater, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Qian Li
- Centre for Environmental Risk Management & Remediation of Soil & Groundwater, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
17
|
Li X, Yang Z, He X, Liu Y. Optimization analysis and mechanism exploration on the removal of cadmium from contaminated soil by electrokinetic remediation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Millán M, Bucio-Rodríguez PY, Lobato J, Fernández-Marchante CM, Roa-Morales G, Barrera-Díaz C, Rodrigo MA. Strategies for powering electrokinetic soil remediation: A way to optimize performance of the environmental technology. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 267:110665. [PMID: 32421682 DOI: 10.1016/j.jenvman.2020.110665] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/26/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
The electro-kinetic remediation of soils using different powering strategies has been studied, in order to clarify which is the best strategy to couple solar powering with this remediation technology, in a context of developing more sustainable electrochemical remediation technologies. Direct powering from photovoltaic panels (Case a), application of constant electric fields with the same average value of Case a (Case b) and application of constant specific power with the same average value of Case a (Case c) have been compared. Results show an outstanding influence of the powering strategy on the removal efficiency of clopyralid (model of herbicide used in this work). The direct use of solar power profiles obtained the lowest removal efficiencies, which contrasts with the higher expected sustainability of this powering strategy. Reversion of pollutant transport overnight and extreme electric field values at noon help to explain the lower efficiency of this strategy. Evaporation mechanisms are promoted by operating at extreme large electric fields. In addition, harsher conditions lead to a higher negative soil affectation in terms of regions affected by extreme pHs, water contents and/or conductivities and to lower specific pollutant removals. Therefore, maximum efficiencies were found for Case b (constant electric potential gradient) with a total removal over 110 g kWh-1 and only a slight affectation into the final soil properties.
Collapse
Affiliation(s)
- M Millán
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, University of Castilla-La Mancha, Av. Camilo Jose Cela n 12, 13071, Ciudad Real, Spain
| | - P Y Bucio-Rodríguez
- Autonomous University of the State of Mexico, Joint Center for Research in Sustainable Chemistry (CCIQS UAEM-UNAM), Carretera Toluca-Atlacomulco km 14.5, Campus UAEMéx "El Rosedal", Toluca, State of Mexico, 50200, Mexico
| | - J Lobato
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, University of Castilla-La Mancha, Av. Camilo Jose Cela n 12, 13071, Ciudad Real, Spain
| | - C M Fernández-Marchante
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, University of Castilla-La Mancha, Av. Camilo Jose Cela n 12, 13071, Ciudad Real, Spain
| | - G Roa-Morales
- Autonomous University of the State of Mexico, Joint Center for Research in Sustainable Chemistry (CCIQS UAEM-UNAM), Carretera Toluca-Atlacomulco km 14.5, Campus UAEMéx "El Rosedal", Toluca, State of Mexico, 50200, Mexico
| | - C Barrera-Díaz
- Autonomous University of the State of Mexico, Joint Center for Research in Sustainable Chemistry (CCIQS UAEM-UNAM), Carretera Toluca-Atlacomulco km 14.5, Campus UAEMéx "El Rosedal", Toluca, State of Mexico, 50200, Mexico
| | - M A Rodrigo
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, University of Castilla-La Mancha, Av. Camilo Jose Cela n 12, 13071, Ciudad Real, Spain.
| |
Collapse
|
19
|
Heavy metal removal from sewage sludge under citric acid and electroosmotic leaching processes. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116822] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Paixão IC, López-Vizcaíno R, Solano AMS, Martínez-Huitle CA, Navarro V, Rodrigo MA, Dos Santos EV. Electrokinetic-Fenton for the remediation low hydraulic conductivity soil contaminated with petroleum. CHEMOSPHERE 2020; 248:126029. [PMID: 32035385 DOI: 10.1016/j.chemosphere.2020.126029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/19/2020] [Accepted: 01/23/2020] [Indexed: 05/25/2023]
Abstract
The use of electrokinetic Fenton (EK Fenton) process, as promising soil remediation approach, was investigated by using an iron electrode with different supporting electrolytes (tap water, H2O2, and citric acid) to depollute soil spiked with petroleum where kaolin was selected as low hydraulic conductivity. The results clearly confirm that, the combination of electrokinetic remediation (EK) and Fenton technologies, is an efficient oxidizing approach for removing hydrocarbons from this kind of soil. In fact, the electrokinetic Fenton reactions and the control of the soil pH conditions by adding citric acid enhanced the oxidation process because the addition of the H2O2 with iron electrode resulted in higher removal efficiencies (89%) for total petroleum hydrocarbons (TPHs). These figures allowed to confirm that EK Fenton process with pH control contributed for the transport of H2O2 and Fe2+ ions in the soil by electromigration and eletro-osmotic phenomena. Conversely, no control of pH conditions when only EK was applied, achieved lower hydrocarbons removal (27%) after 15 d of treatment due to the precipitation of iron ions. Finally, the efficiency of the EK Fenton remediation prevented the generation of secondary effluent with higher organic content, avoiding its treatment by other advanced oxidation process.
Collapse
Affiliation(s)
- I C Paixão
- School of Science and Technology, Federal University of Rio Grande do Norte, Campus Universitario, 59078-970, Natal, Brazil
| | - R López-Vizcaíno
- School of Science and Technology, Federal University of Rio Grande do Norte, Campus Universitario, 59078-970, Natal, Brazil; Institute of Chemistry, Federal University of Rio Grande do Norte, Campus Universitario, 59078-970, Natal, Brazil; Geoenvironmental Group, Civil Engineering School, University of Castilla-La Mancha, Avda. Camilo José Cela S/n, 13071, Ciudad Real, Spain
| | - A M S Solano
- Institute of Chemistry, Federal University of Rio Grande do Norte, Campus Universitario, 59078-970, Natal, Brazil
| | - C A Martínez-Huitle
- Institute of Chemistry, Federal University of Rio Grande do Norte, Campus Universitario, 59078-970, Natal, Brazil
| | - V Navarro
- Geoenvironmental Group, Civil Engineering School, University of Castilla-La Mancha, Avda. Camilo José Cela S/n, 13071, Ciudad Real, Spain
| | - M A Rodrigo
- Chemical Engineering Department, University of Castilla-La Mancha, E. Costa Novella Buiding, Campus Universitario S/n, 13071, Ciudad Real, Spain
| | - E V Dos Santos
- School of Science and Technology, Federal University of Rio Grande do Norte, Campus Universitario, 59078-970, Natal, Brazil.
| |
Collapse
|