1
|
Qu Z, Tan C, Wang X, Zhao N, Li J. Deciphering performance and microbial characterization of marine anammox bacteria-based consortia treating nitrogen-laden hypersaline wastewater: Inhibiting threshold of salinity. BIORESOURCE TECHNOLOGY 2024; 393:130170. [PMID: 38072078 DOI: 10.1016/j.biortech.2023.130170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/18/2024]
Abstract
Hypersaline wastewater posed a challenge to microbial nitrogen removal processes. Herein, halophilic marine anammox bacteria (MAB) were applied to treat nitrogen-rich wastewater with 35-90 g/L salts for the first time. It was found that MAB, with low relative abundance (2.3-6.9 %), still exhibited good nitrogen removal efficiency (>90 %) under 35-70 g/L salts. The specific anammox activity peaked at 180.16 mg N/(g·VSS·d) at 65 g/L salts. MAB secreted more extracellular polymeric substances to resist the adverse effects of hypersaline stress. Nevertheless, the nitrogen removal deteriorated at 75 g/L salts, and further collapsed as the salinity increased. At 90 g/L salts, total nitrogen removal rate decreased by 74 % compared with that of 35 g/L salts. Besides, SBR1031 increased from 12.0 % (35 g/L salts) to 17.4 % (90 g/L salts) and became the dominant bacterial genus in the reactor. This work shed light on the treatment of hypersaline wastewater through MAB.
Collapse
Affiliation(s)
- Zhaopeng Qu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Chen Tan
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xiaocui Wang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Na Zhao
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jin Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
2
|
Jiang C, Zhang L, Chi Y, Xu S, Xie Y, Yang D, Qian Y, Chen F, Zhang W, Wang D, Tian Z, Zhang S, Li YY, Zhuang X. Rapid start-up of an innovative pilot-scale staged PN/A continuous process for enhanced nitrogen removal from mature landfill leachate via robust NOB elimination and efficient biomass retention. WATER RESEARCH 2024; 249:120949. [PMID: 38070348 DOI: 10.1016/j.watres.2023.120949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
The start-up and stable operation of partial nitritation-anammox (PN/A) treatment of mature landfill leachate (MLL) still face challenges. This study developed an innovative staged pilot-scale PN/A system to enhance nitrogen removal from MLL. The staged process included a PN unit, an anammox upflow enhanced internal circulation biofilm (UEICB) reactor, and a post-biofilm unit. Rapid start-up of the continuous flow PN process (full-concentration MLL) was achieved within 35 days by controlling dissolved oxygen and leveraging free ammonia and free nitrous acid to selectively suppress nitrite-oxidizing bacteria (NOB). The UEICB was equipped with an annular flow agitator combined with the enhanced internal circulation device of the guide tube, which achieved an efficient enrichment of Candidatus Kuenenia in the biofilm (relative abundance of 33.4 %). The nitrogen removal alliance formed by the salt-tolerant anammox bacterium (Candidatus Kuenenia) and denitrifying bacteria (unclassified SBR1031 and Denitratisoma) achieved efficient nitrogen removal of UEICB (total nitrogen removal percentage: 90.8 %) and at the same time effective treatment of the refractory organic matter (ROM). The dual membrane process of UEICB fixed biofilm combined with post-biofilm is effective in sludge retention, and can stably control the effluent suspended solids (SS) at a level of less than 5 mg/L. The post-biofilm unit ensured that effluent total nitrogen (TN) remained below the 40 mg/L discharge standard (98.5 % removal efficiency). Compared with conventional nitrification-denitrification systems, the staged PN/A process substantially reduced oxygen consumption, sludge production, CO2 emissions and carbon consumption by 22.8 %, 67.1 %, 87.1 % and 87.1 %, respectively. The 195-day stable operation marks the effective implementation of the innovative pilot-scale PN/A process in treating actual MLL. This study provides insights into strategies for rapid start-up, robust NOB suppression, and anammox biomass retention to advance the application of PN/A in high-ammonia low-carbon wastewater.
Collapse
Affiliation(s)
- Cancan Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Yangtze River Delta Research Center for Eco-Environmental Sciences, China Key Laboratory of Environmental Biotechnology, Yiwu 322000, China
| | - Liang Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongzhi Chi
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Shengjun Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Yangtze River Delta Research Center for Eco-Environmental Sciences, China Key Laboratory of Environmental Biotechnology, Yiwu 322000, China.
| | - Yawen Xie
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dongmin Yang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunzhi Qian
- School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou 221116, China
| | - Fuqiang Chen
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Weijun Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dongsheng Wang
- Yangtze River Delta Research Center for Eco-Environmental Sciences, China Key Laboratory of Environmental Biotechnology, Yiwu 322000, China
| | - Zhe Tian
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shujun Zhang
- Research and Development Center of Beijing Drainage Group Technology, Beijing 100022, China
| | - Yu-You Li
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Xuliang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Yangtze River Delta Research Center for Eco-Environmental Sciences, China Key Laboratory of Environmental Biotechnology, Yiwu 322000, China; Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
3
|
Liu J, Ran X, Li J, Wang H, Xue G, Wang Y. Novel insights into carbon nanomaterials enhancing anammox for nitrogen removal: Effects and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167146. [PMID: 37726079 DOI: 10.1016/j.scitotenv.2023.167146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/21/2023]
Abstract
Carbon nanomaterials (CNMs) possess the properties including large specific surface area, high porosity, and stable chemical structures, presenting significant application advantages in wastewater treatment. Indeed, CNMs are considered to be added to anammox systems to strengthen anammox function, especially to resolve the challenge of anammox technology, i.e., the slow growth rate of anammox bacteria, as well as its high environmental sensitivity. This paper systematically reviews the promotion effects and mechanisms of CNMs on the nitrogen removal performance of anammox system. Among the zero-, one-, and two-dimensional CNMs, two-dimensional CNMs have best promoting effect on the nitrogen removal performance of anammox system due to its excellent conductivity and abundant functional groups. Then, the promotion effects of CNMs on anammox process are summarized from the perspective of anammox activity and bacteria abundance. Furthermore, CNMs not only enhance the anammox process, but also stimulate the coupling of denitrification pathways with anammox, as well as the improvement of system operational stability (alleviating the inhibitions of low temperature and pH fluctuation), thus contributing to the promoted nitrogen removal performance. Essentially, CNMs are capable of facilitating microbial immobilization and electron transfer, which favor to improve the efficiency and stability of anammox process. Finally, this review highlights the gap in knowledge and future work, aiming to provide a deeper understanding of how CNMs can strengthen the anammox system and provide a novel perspective for the engineering of the anammox process.
Collapse
Affiliation(s)
- Jiawei Liu
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Xiaochuan Ran
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Jia Li
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
| | - Gang Xue
- Shanghai Institute of Pollution Control and Ecological Security, Donghua University, Shanghai 201620, China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| |
Collapse
|
4
|
Tan C, Zhang W, Wei Y, Zhao N, Li J. Insights into nitrogen removal and microbial response of marine anammox bacteria-based consortia treating saline wastewater: From high to moderate and low salinities. BIORESOURCE TECHNOLOGY 2023; 382:129220. [PMID: 37217147 DOI: 10.1016/j.biortech.2023.129220] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Marine anammox bacteria (MAB) have promising nitrogen removal performance in high saline wastewater treatment. Nevertheless, the impact resulting from moderate and low salinities on MAB is still unclear. Herein, MAB were applied to treat saline wastewater from high to moderate and low salinities for the first time. Independent of salinities (35-3.5 g/L), MAB consistently exhibited good nitrogen removal performance, and maximum total nitrogen removal rate (0.97 kg/(m3·d)) occurred at 10.5 g/L salts. More extracellular polymeric substances (EPSs) were secreted by MAB-based consortia to resist hypotonic surroundings. However, a sharp EPS decrease was accompanied by the collapse of MAB-driven anammox process, and MAB granules disintegrated due to long-term exposure to salt-free environment. The relative abundance of MAB varied from 10.7% to 15.9% and 3.8% as salinity decreased from 35 to 10.5 and 0 g/L salts. These findings will provide practical implementation of MAB-driven anammox process treating wastewater with different salinities.
Collapse
Affiliation(s)
- Chen Tan
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Weidong Zhang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yunna Wei
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Na Zhao
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jin Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
5
|
Cheng H, Qin H, Liang L, Li YY, Liu J. Towards advanced simultaneous nitrogen removal and phosphorus recovery from digestion effluent based on anammox-hydroxyapatite (HAP) process: Focusing on a solution perspective. BIORESOURCE TECHNOLOGY 2023; 381:129117. [PMID: 37141995 DOI: 10.1016/j.biortech.2023.129117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
In this paper, the state-of-the-art information on the anammox-HAP process is summarized. The mechanism of this process is systematically expounded, the enhancement of anammox retention by HAP precipitation and the upgrade of phosphorus recovery by anammox process are clarified. However, this process still faces several challenges, especially how to deal with the ∼ 11% nitrogen residues and to purify the recovered HAP. For the first time, an anaerobic fermentation (AF) combined with partial denitrification (PD) and anammox-HAP (AF-PD-Anammox-HAP) process is proposed to overcome the challenges. By AF of the organic impurities of the anammox-HAP granular sludge, organic acid is produced to be used as carbon source for PD to remove the nitrogen residues. Simultaneously, pH of the solution drops, which promotes the dissolution of some inorganic purities such as CaCO3. In this way, not only the inorganic impurities are removed, but the inorganic carbon is supplied for anammox bacteria.
Collapse
Affiliation(s)
- Hui Cheng
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Haojie Qin
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Lei Liang
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
| |
Collapse
|
6
|
Jeong S, Kim J, Direstiyani LC, Kim Y, Yu J, Lee T. Long-term adaptation of two anammox granules with different ratios of Candidatus Brocadia and Candidatus Jettenia under increasing salinity and their application to treat saline wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160494. [PMID: 36442633 DOI: 10.1016/j.scitotenv.2022.160494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen removal in saline wastewater is a challenge of the anaerobic ammonium oxidation (anammox) process, which is dominated by freshwater anammox bacteria (FAB). Candidatus Brocadia and Candidatus Jettenia, the most widely used FABs, have been separately applied and evaluated for their ability to treat saline wastewater. To understand the effect of salinity on nitrogen removal capability when they present together in an anammox granule, we compared two anammox granules: GRN1 was evenly dominated by Ca. Brocadia (42 %) and Ca. Jettenia (43 %), while GRN2 was dominated with mostly Ca. Brocadia (90 %) and a small amount of Ca. Jettenia (1 %). Each granule was inoculated into a continuous column reactor to treat artificial wastewater containing 150 mg NH4+-N/L and 150 mg NO2--N/L under increasing saline conditions for 250 days. GRN1 showed superior and more stable nitrogen removal than GRN2 under saline conditions of up to 15 g NaCl/L. Under high-saline conditions, both the granules' sizes decreased (larger GRN1 than GRN2 in initial). The mass percent of Na salt increased (more in GRN2) and mineral contents decreased more in GRN1. High-throughput sequencing for microbial community analysis showed that Planctomycetes in GRN1 (85 %) and GRN2 (92 %) decreased to 14 % and 12 %, respectively. The ratio of Ca. Brocadia and Ca. Jettenia in GRN1 changed to 37 % and 63 %, respectively, whereas the ratio in GRN2 (99 % and 1 %, respectively) did not change. Both salt-adapted granules were applied to the two-stage partial nitritation and anammox (PN/A) process to treat high strength ammonium (400 mg/L) wastewater under high saline condition (15 g NaCl/L). The PN/A process containing GRN1 showed more stable nitrogen removal performance during approximately 100 days of operation. These results suggest that the anammox granules evenly dominated by two FABs, Ca. Brocadia and Ca. Jettenia, would be advantageous to treat high-strength NH4+ wastewater under high-saline conditions.
Collapse
Affiliation(s)
- Soyeon Jeong
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jeongmi Kim
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea; Nakdong River Environment Research Center, National Institute of Environmental Research, Daegu 43008, Republic of Korea
| | - Lucky Caesar Direstiyani
- Department of Civil Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia
| | - Yeonju Kim
- Disaster Scientific Investigation Division, National Disaster Management Research Institute, Ulsan 44538, Republic of Korea
| | - Jaecheul Yu
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea; Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea
| | - Taeho Lee
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
7
|
Kadam R, Khanthong K, Park B, Jun H, Park J. Realizable wastewater treatment process for carbon neutrality and energy sustainability: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116927. [PMID: 36473349 DOI: 10.1016/j.jenvman.2022.116927] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/29/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Despite a quick shift of global goals toward carbon-neutral infrastructure, activated sludge based conventional systems inhibit the Green New Deal. Here, a municipal wastewater treatment plant (MWWTP) for carbon neutrality and energy sustainability is suggested and discussed based on realizable technical aspects. Organics have been recovered using variously enhanced primary treatment techniques, thereby reducing oxygen demand for the oxidation of organics and maximizing biogas production in biological processes. Meanwhile, ammonium in organic-separated wastewater is bio-electrochemically oxidized to N2 and reduced to H2 under completely anaerobic conditions, resulting in the minimization of energy requirements and waste sludge production, which are the main problems in activated sludge based conventional processes. The anaerobic digestion process converts concentrated primary sludge to biomethane, and H2 gas recovered from nitrogen upgrades the biomethane quality by reducing carbon dioxide in biogas. Based on these results, MWWTPs can be simplified and improved with high process and energy efficiencies.
Collapse
Affiliation(s)
- Rahul Kadam
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Kamonwan Khanthong
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Byeongchang Park
- Department of Environmental Engineering, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Hangbae Jun
- Department of Environmental Engineering, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Jungyu Park
- Department of Advanced Energy Engineering, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
8
|
Kim J, Direstiyani LC, Jeong S, Kim Y, Park S, Yu J, Lee T. Feeding strategy for single-stage deammonification to treat moderate-strength ammonium under low free ammonia conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159661. [PMID: 36302418 DOI: 10.1016/j.scitotenv.2022.159661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/26/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Single-stage deammonification (SSD) processes have been successfully operated using the step-feeding strategy to treat high-strength NH4+ (>300 mg/L), but often failed to treat moderate-strength NH4+ (100-300 mg/L). Because it is hard to maintain the free ammonia (FA) above 1 mg/L, which is a concentration in which the activity of NO2- oxidizing bacteria (NOB) can be selectively suppressed. In this study, to evaluate the effectiveness of the step-feeding strategy on the long-term stability of treating moderate-strength NH4+, two SSD sequential-batch reactors (SBRs) were operated under one-step feeding and multi-step feeding strategies. The one-step feeding SBR achieved a higher nitrogen removal efficiency (86 %), nitrogen removal rate (0.61 kg/m3/d), and COD removal efficiency (95 %) than the multi-step feeding SBR (73 %, 0.39 kg/m3/d, and 95 %, respectively). This means the appropriate FA to selectively suppress NOB activity was successfully maintained in the one-step feeding SBR (FA > 1 mg/L). Therefore, it the necessary to apply a step feed strategy that can be maintained above FA (1 mg/L) from the start-up of operation to treat moderate-strength NH4+.
Collapse
Affiliation(s)
- Jeongmi Kim
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Lucky Caesar Direstiyani
- Department of Civil and Environmental Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia
| | - Soyeon Jeong
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Yeonju Kim
- Disaster Scientific Investigation Division, National Disaster Management Research Institute, Ulsan 44538, Republic of Korea
| | - Seongjae Park
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jaecheul Yu
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea; Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea
| | - Taeho Lee
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
9
|
Dsane VF, An S, Choi Y. Distinctive differences in the granulation of saline and non-saline enriched anaerobic ammonia oxidizing (AMX) bacteria. J Environ Sci (China) 2022; 122:162-173. [PMID: 35717082 DOI: 10.1016/j.jes.2021.08.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 06/15/2023]
Abstract
The growing interest in the anaerobic ammonium oxidizing (AMX) process in treating high nitrogen containing wastewaters and a comprehensive study into the granulation mechanism of these bacteria under diverse environmental conditions over the years have been unequal. To this effect, the distinctive differences in saline adapted AMX (S_AMX) and non-saline adapted AMX (NS_AMX) granules are presented in this study. It was observed that substrate utilisation profiles, granule formation mechanism, and pace towards granulation differed marginally for the two adaptation conditions. The different microbial dominant aggregation types aided in splitting the 471 days operated lab-scale SBRs into three distinct phases. In both reactors, phase III (granules dominant phase) showed the highest average nitrogen removal efficiency of 87.9% ± 4.8% and 85.6% ± 3.6% for the S_AMX and NS_AMX processes, respectively. The extracellular polymeric substances (EPS) quantity and major composition determined its role either as a binding agent in granulation or a survival mechanism in saline adaptation. It was also observed that granules of the S_AMX reactor were mostly loosely and less condensed aggregates of smaller sub-units and flocs while those of the NS_AMX reactor were compact agglomerates. The ionic gradient in saline enrichment led to an increased activity of the Na+/K+ - ATPase, hence enriched granules produced higher cellular adenosine triphosphate molecules which finally improved the granules active biomass ratio by 32.96%. Microbial community showed that about three to four major known AMX species made up the granules consortia in both reactors. Proteins and expression of functional genes differed for these different species.
Collapse
Affiliation(s)
- Victory Fiifi Dsane
- Department of Environmental Engineering, Chungnam National University, Daejeon 305-764, Korea; Department of Food Process Engineering, University of Ghana, Legon, Ghana
| | - Sumin An
- Department of Environmental & IT Convergence Engineering, Chungnam National University, Daejeon 305-764, Korea
| | - Younggyun Choi
- Department of Environmental & IT Convergence Engineering, Chungnam National University, Daejeon 305-764, Korea.
| |
Collapse
|
10
|
Ismail IN, Taufik M, Umor NA, Norulhuda MR, Zulkarnaini Z, Ismail S. Anammox process for aquaculture wastewater treatment: operational condition, mechanism, and future prospective. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:3093-3112. [PMID: 36579872 DOI: 10.2166/wst.2022.403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Treatment of ammonia- and nitrate-rich wastewater, such as that generated in the aquaculture industry, is important to prevent environmental pollution. The anaerobic ammonium oxidation (anammox) process has been reported as a great alternative in reducing ammoniacal nitrogen concentration in aquaculture wastewater treatment compared to conventional treatment systems. This paper will highlight the impact of the anammox process on aquaculture wastewater, particularly in the regulation of ammonia and nitrogen compounds. The state of the art for anammox treatment systems is discussed in comparison to other available treatment methods. While the anammox process is viable for the treatment of aquaculture wastewater, the efficiency of nitrogen removal could be further improved through the proper use of anammox bacteria, operating conditions, and microbial diversity. In conclusion, a new model of the anammox process is proposed in this review.
Collapse
Affiliation(s)
- Ismafatin Nabilah Ismail
- Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia E-mail:
| | - Muhammad Taufik
- Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia E-mail:
| | - N A Umor
- School of Biological Sciences, Faculty of Applied Sciences, Universiti Teknologi MARA, Negeri Sembilan, Malaysia
| | - Mohamed Ramli Norulhuda
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Zulkarnaini Zulkarnaini
- Department of Environmental Engineering, Faculty of Engineering, Universitas Andalas, Indonesia
| | - Shahrul Ismail
- Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia E-mail:
| |
Collapse
|
11
|
Zhou JJ, Zhang X, Zhuang JL, Xu TX, Liu YD, Li W. Saline short-term shock and rapid recovery on anammox performance. CHEMOSPHERE 2022; 307:135687. [PMID: 35842050 DOI: 10.1016/j.chemosphere.2022.135687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/21/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic ammonia oxidation (anammox) is an environmental-friendly biological nitrogen removal process, which has been developed as a promising technology in industrial wastewater treatment. However, anammox nitrogen removal under high saline conditions still faces many challenges. This study investigated the performance of anammox sludge under saline short-term shock and the strategy of rapid recovery. Salinity concentration, saline exposure time, and NaCl/Na2SO4 ratio were selected as three critical factors for short-term shock. The activity inhibition of anammox sludge were tested by using response surface methodology (RSM). Our results showed that, compared with the NaCl/Na2SO4 ratio, the salinity concentration and saline exposure time were the significant factor causing the anammox inhibition. The addition of glycine betaine (GB) in moderate amounts (0.1-5 mM) was found to help anammox to resist in relative low saline shock intensities (e.g., IC25 and IC50), with the activity retention rate of 94.7%. However, glycine betaine was not worked effectively under relatively high saline shock intensities (e.g., complete inhibition condition). Microbial community analysis revealed that Brocadiaceae accounted for only about 7.6%-13.2% at inhibited conditions. Interestingly, 16S rRNA analysis showed that the abundance of activated Brocadiaceae remarkably decreased with time after high-level saline shock. This tendency was consistent with the results of qPCR targeted hzsA gene. Finally, based on quorum sensing, the anammox activity was recovered to 93.5% of original sludge by adding 30% original sludge. The study realized the rapid recovery of anammox activity under complete inhibition, promoting the development and operation of salt-tolerant anammox process.
Collapse
Affiliation(s)
- Jia-Jia Zhou
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China
| | - Xu Zhang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China
| | - Jin-Long Zhuang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China
| | - Tian-Xiang Xu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China
| | - Yong-di Liu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Wei Li
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| |
Collapse
|
12
|
Choi Y, Dsane VF, Jeon H, Jeong S, Oh T, Choi Y. The role of magnetite (Fe 3O 4) particles for enhancing the performance and granulation of anammox. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157218. [PMID: 35810899 DOI: 10.1016/j.scitotenv.2022.157218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/06/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
In this study, two lab-scale sequencing batch reactors each with an effective volume of 2.3 L were operated as C-AMX (no carrier addition) and M-AMX (magnetite carrier added) for 147 days with synthetic wastewater at an NLR range of 0.19-0.47 kgN/m3/d. The long-term effect of magnetite on the granulation and performance of anammox bacteria in terms of nitrogen removal and other essential parameters were confirmed. In phase I (1-24 days), M-AMX took approximately 12 days to obtain a nitrogen removal rate (NRR) above 80 % of the initial input nitrogen. Although free nitrous acid inhibited the reactor at a high concentration at the onset of phase III, the NRR of M-AMX recovered about 3.7 times faster than that of C-AMX. In addition, it was confirmed that the M-AMX granules had a dense and compact structure compared to C-AMX, and the presence of the carrier promoted the development of these resilient granules. While the measured microbial stress gradually increased in C-AMX reactor, a vice versa was observed in the M-AMX reactor as granulation proceeded. Compared to other alternative iron-based carrier particles, the stable crystal structure of magnetite as a carrier created a mechanism where filamentous bacteria groups were repelled from the granulation hence the microbial stress in the M-AMX in the final phase was 61.54 % lower than that in the C-AMX. The iron rich environment created by the magnetite addition led to Ignavibacteria, (a Feammox bacteria) increasing significantly in the M-AMX bioreactor.
Collapse
Affiliation(s)
- Yuri Choi
- Department of Environmental & IT Convergence Engineering, Chungnam National University, Daejeon, Republic of Korea
| | - Victory Fiifi Dsane
- Department of Environmental & IT Convergence Engineering, Chungnam National University, Daejeon, Republic of Korea; Department of Food Process Engineering, University of Ghana, Legon, Ghana
| | - Haejun Jeon
- Department of Environmental & IT Convergence Engineering, Chungnam National University, Daejeon, Republic of Korea
| | - Sohee Jeong
- Department of Environmental & IT Convergence Engineering, Chungnam National University, Daejeon, Republic of Korea
| | - Taeseok Oh
- BKT Company Ltd., Korea Sinseong-dong, Daejeon, South Korea
| | - Younggyun Choi
- Department of Environmental & IT Convergence Engineering, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
13
|
Ji J, Luan Y, Zhu X, Sun P, Gao M, Zhao Y, Guo L, She Z, Jin C, Ding S, Zhang M. Insights into the response of anammox sludge to the combined stress of nickel and salinity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156670. [PMID: 35700780 DOI: 10.1016/j.scitotenv.2022.156670] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic ammonium oxidation (anammox) is a promising technology applied to treat industrial wastewater, while the commonly coexistent heavy metals and salinity usually become a challenging issue to be addressed. In this study, the responses of anammox sludge in terms of performance, activity, functional enzyme and extracellular polymeric substance (EPS) to the combined stress of Ni(II) and salinity (20 ‰) were investigated holistically. It turned out that low Ni(II) concentration (0.2 mg·L-1) together with salinity (20 ‰) showed an insignificant effect on the anammox performance, while a decreased nitrogen removal by 46.96 % was observed with the increased Ni(II) concentration to 1 mg·L-1. It should be pointed out that the anammox system exhibited good robustness evidenced by rapid recovery to achieve 89.13 % of nitrogen removal efficiency and 1.21 kg·m-3·d-1 of nitrogen removal rate after the elimination of stress factors within 40 days. Ni(II) concentration was revealed to play a more important role in the specific activity of anammox sludge. The functional enzymes related to nitrogen removal, e.g. nitrite reductase (NIR), hydrazine oxidase (HZO) and heme c were found to be inhibited by the combined stress of Ni(II) and salinity, with decreased activity by 49.54 %, 39.39 % and 45.88 %, respectively. However, the enzyme related to assimilation, e.g. alkaline phosphatase (AKP) and nitrate reductase (NAR) appeared to be enhanced. The EPS content was found to decrease by 55.19 % under the combined stress. Detailed analysis of 3D-EEM and FTIR spectra further revealed that the combined stress of Ni(II) and salinity could change both the quantity and composition of EPS in anammox sludge. These results are expected to offer insights into the combined effect of nickel and salinity on the anammox system, and benefit the application of anammox technology for industrial metal-rich saline wastewater treatment.
Collapse
Affiliation(s)
- Junyuan Ji
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environmental Geology Engineering, Ocean University of China, Qingdao 266100, China
| | - Yaping Luan
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environmental Geology Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaotong Zhu
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environmental Geology Engineering, Ocean University of China, Qingdao 266100, China
| | - Pan Sun
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environmental Geology Engineering, Ocean University of China, Qingdao 266100, China
| | - Yangguo Zhao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environmental Geology Engineering, Ocean University of China, Qingdao 266100, China
| | - Liang Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environmental Geology Engineering, Ocean University of China, Qingdao 266100, China
| | - Zonglian She
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environmental Geology Engineering, Ocean University of China, Qingdao 266100, China
| | - Chunji Jin
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environmental Geology Engineering, Ocean University of China, Qingdao 266100, China
| | - Shuang Ding
- China National Institute of Standardization, Beijing 100000, China
| | - Meng Zhang
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
14
|
Naufal M, Wu JH, Shao YH. Glutamate Enhances Osmoadaptation of Anammox Bacteria under High Salinity: Genomic Analysis and Experimental Evidence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11310-11322. [PMID: 35913201 DOI: 10.1021/acs.est.2c01104] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An osmoprotectant that alleviates the bacterial osmotic stress can improve the bioreactor treatment of saline wastewater. However, proposed candidates are expensive, and osmoprotectants of anammox bacteria and their ecophysiological roles are not fully understood. In this study, a comparative analysis of 34 high-quality public metagenome-assembled genomes from anammox bacteria revealed two distinct groups of osmoadaptation. Candidatus Scalindua and Kuenenia share a close phylogenomic relation and osmoadaptation gene profile and have pathways for glutamate transport and metabolisms for enhanced osmoadaptation. The batch assay results demonstrated that the reduced Ca. Kuenenia activity in saline conditions was substantially alleviated with the addition and subsequent synergistic effects of potassium and glutamate. The operational test of two reactors demonstrated that the reduced anammox performance under brine conditions rapidly recovered by 35.7-43.1% as a result of glutamate treatment. The Ca. Kuenenia 16S rRNA and hydrazine gene expressions were upregulated significantly (p < 0.05), and the abundance increased by approximately 19.9%, with a decrease in dominant heterotrophs. These data demonstrated the effectiveness of glutamate in alleviating the osmotic stress of Ca. Kuenenia. This study provides genomic insight into group-specific osmoadaptation of anammox bacteria and can facilitate the precision management of anammox reactors under high salinity.
Collapse
Affiliation(s)
- Muhammad Naufal
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, East District, Tainan City 70101, Taiwan
| | - Jer-Horng Wu
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, East District, Tainan City 70101, Taiwan
| | - Yung-Hsien Shao
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, East District, Tainan City 70101, Taiwan
| |
Collapse
|
15
|
Wang J, He M, Li Y, Ma F, Zheng P, Hu B. Rapid enrichment of denitrifying methanotrophs in a series hollow-fiber membrane biofilm reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155375. [PMID: 35460772 DOI: 10.1016/j.scitotenv.2022.155375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/24/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Denitrifying anaerobic methane oxidation (DAMO) process uses methane as electron donor to reduce nitrate/nitrite to dinitrogen, which is a potentially efficient, low-cost and clean biological nitrogen removal technology. However, slow microbial growth rate severely limits the application of this promising process. In this study, a series hollow-fiber membrane biofilm reactor (HfMBR) was operated for 90 days to achieve rapid enrichment of these denitrifying methanotrophs. Finally, the highest relative abundance of denitrifying methanotrophic archaea and bacteria (DAMO archaea and bacteria) reached 47.5% and 11.3%, respectively. And the average abundance of DAMO archaea and bacteria increased 92.9 and 136.6 times respectively during the 90-day enrichment. High growth rate of DAMO archaea with a doubling time of 11.6 days was achieved in the second HfMBR according to quantitative PCR results. The results implied that dissolved oxygen would inhibit the growth of DAMO archaea, but the series HfMBR could effectively counteract this unfavorable factor. This work provided theoretical guidance for the rapid enrichment of denitrifying methanotrophs and contributed to the application of methane-dependent denitrification process.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Mingyue He
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yufen Li
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ping Zheng
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China.
| |
Collapse
|
16
|
Jamal M, Awadasseid A, Su X. Exploring potential bacterial populations for enhanced anthraquinone dyes biodegradation: a critical review. Biotechnol Lett 2022; 44:1011-1025. [DOI: 10.1007/s10529-022-03279-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/04/2022] [Indexed: 11/02/2022]
|
17
|
Zhang X, Zhang H, Ma B, Song Y, Wang L, Wang Q, Ma Y. Can anammox process be adopted for treating wastewater with high salinity exposure risk? CHEMOSPHERE 2022; 293:133660. [PMID: 35063555 DOI: 10.1016/j.chemosphere.2022.133660] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/22/2021] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Anammox was a promising technology for nitrogen removal, and has been applied for treating many kinds of nitrogenous wastewaters. Considering the risk in high salinity of the municipal sewage in coastal city, the feasibility of Anammox process for treating low ammonia wastewater (around 50 mg L-1) with increasing salinity was investigated in this study. The results showed that the salinity in low concentrations (1-5 g L-1) had slight impact on the nitrogen removal and activity of Anammox bacteria but significantly improved its growth. The moderate salinity (10-40 g L-1) decreased the specific Anammox activity (SAA) to 8.11 from the initial 13.15 mg N g-1 SS h-1, but increased the abundance to 52.3% from 30.1% (Candidatus Kuenenia). High salinity (50-60 g L-1) performed severe inhibition on activity and abundance both, with the SAA decreased to 0 and abundance to 11.9%. The self-recovery performance was unsatisfactory when salinity was unavailable. A quadratic curve between the SAA and salinity concentration was fitted, and the IC50 was calculated as 42.1 g L-1 (NaCl). Anammox process could be directly adopted for treating low ammonia sewage with low salinity, whereas activity enhancement or adaption improvement should be pre-presented for treating sewage with moderate or high salinity.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China.
| | - Han Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Bingbing Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Yali Song
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Lan Wang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Qiong Wang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Yongpeng Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| |
Collapse
|
18
|
Xue H, Wang W, Xie H, Wang Y. Deciphering the floatation reversibility of anammox sludge: A balance between sludge rheological intensity and external hydraulic shearing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151325. [PMID: 34718000 DOI: 10.1016/j.scitotenv.2021.151325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Sludge floatation is inevitable in anammox granular reactors, which reduces the effective granules participating in anammox reaction and weakens the robust operation of anammox reactors. However, so far, the involved floatation mechanisms as well as the floatation mitigation measurements have not been well proposed. In this study, floating sludge (including irreversibly floating sludge (FSI) and reversibly floating sludge (FSR)) and settled granule sludge (SGS) were collected from an anammox expanded granular sludge bed (EGSB) reactor and compared in terms of morphological, physical, chemical and microbial properties. The particle size ranked FSI > SGS > FSR, and cavities were distinctly observed in FSI due to the gas pockets and cell lysis. Rheological measurements revealed that the storage modulus (represent intensity of sludge) of FSI and SGS were comparable, both of which were approximately1.4 times greater than that of FSR. High storage modulus indicated that the hydraulic shear force in the EGSB was not strong enough to destroy FSI and release the gases trapped in gas pocket, resulting in the irreversible floatation of FSI. Whereas, the dinitrogen gases adhered onto FSR were readily stripped from FSR under hydraulic shearing, which contributed to their reversible floatation property. It is concluded that sludge floatation is resulted from the gas accumulation or gas adhesion onto the sludges, while the sludge floatation reversibility depends on the sludge intensity and hydraulic shear force. Our findings elucidate the floatation properties of anammox sludge via rheological analysis, which will contribute to the proper sludge floatation control and facilitate the optimization of anammox granule fluidization in EGSB reactor.
Collapse
Affiliation(s)
- Hao Xue
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Weigang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Hongchao Xie
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
19
|
Nitrogen Removal from Mature Landfill Leachate via Anammox Based Processes: A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14020995] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mature landfill leachate is a complex and highly polluted effluent with a large amount of ammonia nitrogen, toxic components and low biodegradability. Its COD/N and BOD5/COD ratios are low, which is not suitable for traditional nitrification and denitrification processes. Anaerobic ammonia oxidation (anammox) is an innovative biological denitrification process, relying on anammox bacteria to form stable biofilms or granules. It has been extensively used in nitrogen removal of mature landfill leachate due to its high efficiency, low cost and sludge yield. This paper reviewed recent advances of anammox based processes for mature landfill leachate treatment. The state of the art anammox process for mature landfill leachate is systematically described, mainly including partial nitrification–anammox, partial nitrification–anammox coupled denitrification. At the same time, the microbiological analysis of the process operation was given. Anaerobic ammonium oxidation (anammox) has the merit of saving the carbon source and aeration energy, while its practical application is mainly limited by an unstable influent condition, operational control and seasonal temperature variation. To improve process efficiency, it is suggested to develop some novel denitrification processes coupled with anammox to reduce the inhibition of anammox bacteria by mature landfill leachate, and to find cheap new carbon sources (methane, waste fruits) to improve the biological denitrification efficiency of the anammox system.
Collapse
|
20
|
Differences in the Effects of Calcium and Magnesium Ions on the Anammox Granular Properties to Alleviate Salinity Stress. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app12010019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Divalent cations were known to alleviate salinity stress on anammox bacteria. Understanding the mechanism of reducing the salinity stress on anammox granules is essential for the application of the anammox process for saline wastewater treatment. In this study, the effect of Ca2+ and Mg2+ augmentation on the recovery of the activity of freshwater anammox granules affected by salinity stress was evaluated. At the condition of a salinity stress of 5 g NaCl/L, the specific anammox activity (SAA) of the granule decreased to 50% of that of the SAA without NaCl treatment. Augmentation of Ca2+ at the optimum concentration of 200 mg/L increased the SAA up to 78% of the original activity, while the augmentation of Mg2+ at the optimum concentration of 70 mg/L increased the SAA up to 71%. EPS production in the granules was increased by the augmentation of divalent cations compared with the granules affected by salinity stress. In the soluble EPS, the ratio of protein to polysaccharides was higher in the granules augmented by Ca2+ than with Mg2+, and the functional groups of the EPS differed from each other. The amount of Na+ sequestered in the soluble EPS was increased by the augmentation of divalent cations, which seems to contribute to the alleviation of salinity stress. Ca. Kuenenia-like anammox bacteria, which were known to be salinity stress-tolerant, were predominant in the granules and there was no significant difference in the microbial community of the granules by the salinity stress treatment. Our results suggest that the alleviation effect of the divalent cations on the salinity stress on the anammox granules might be associated with the increased production of different EPS rather than in changes to the anammox bacteria.
Collapse
|
21
|
Zou X, Chen C, Wang C, Zhang Q, Yu Z, Wu H, Zhuo C, Zhang TC. Combining electrochemical nitrate reduction and anammox for treatment of nitrate-rich wastewater: A short review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149645. [PMID: 34399327 DOI: 10.1016/j.scitotenv.2021.149645] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/14/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Treatment of nitrate-rich wastewater is important but challenging for the conventional biological denitrification process. Here, we propose combining the electrochemical reduction and anaerobic ammonium oxidation (anammox) processes together for treatment of nitrate-rich wastewater. This article reviews the mechanism and current research status of electrochemical reduction of nitrate to ammonium as well as the mechanism and applicability of the anammox process. This article discusses the principles, superiorities and challenges of this combined process. The feasibility of the combined process depends on the efficiency of electrochemical nitrate reduction to ammonium and the conditions in the anammox process to use the reduced ammonium as the substrate to achieve deep nitrogen removal. The article provides a feasible strategy for using the electrochemical reduction and anammox combined process to treat nitrate-rich wastewater.
Collapse
Affiliation(s)
- Xinyi Zou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Chongjun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; Tianping College of Suzhou University of Science and Technology, Suzhou 215009, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, PR China.
| | - Changhong Wang
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, PR China; School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, PR China
| | - Qun Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Zhuowei Yu
- Ecolord (Suzhou) Environment Protect Technology Co., Ltd, Suzhou 215011, PR China
| | - Haiping Wu
- Ecolord (Suzhou) Environment Protect Technology Co., Ltd, Suzhou 215011, PR China
| | - Chao Zhuo
- Ecolord (Suzhou) Environment Protect Technology Co., Ltd, Suzhou 215011, PR China
| | - Tian C Zhang
- Civil & Environmental Engineering Dept., University of Nebraska-Lincoln, Omaha, NE 68182-0178, USA
| |
Collapse
|
22
|
Pan C, Xu D, Dong Z, Li W, Kang D, Chen W, Li Y, Zhang M, Hu B, Zheng P. Effect of temperature decrease on anammox granular sludge: Shock and adaptation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149242. [PMID: 34375252 DOI: 10.1016/j.scitotenv.2021.149242] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Cryopreservation is one of the effective methods for the preservation of anammox granular sludge (AnGS). However, the effects of cooling pretreatment on AnGS are still unclear. In this study, the effects of temperature decrease on AnGS property were investigated by designing different cooling modes: constant at room temperature 20-25 °C (CK), sharp cooling to 4 °C (S4), -20 °C (S20) and stepwise cooling to 4 °C (A4), -20 °C (A20). The results showed that compared with CK, the cooling modes in S4, S20, A4 and A20 improved the physical preservability of AnGS, slowing down the changes of color, shape and structure; and elevated the preservation rate of functional bacteria Planctomycetes (phylum level) and Candidatus Brocadia (genus level). The preservation rate of live cells in different experimental groups was 48.4 ± 1.8%(CK), 61.1 ± 3.3%(S4), 37.8 ± 0.8%(S20), 81.7 ± 4.8%(A4), 61.9 ± 3.1%(A20), respectively. The Anaerobic Ammonium Oxidation Bacteria (AnAOB) in the stepwise cooling mode (A4 and A20) were found to enter the dormant state and form "dormant zoogloea", while the AnAOB in the sharp cooling mode (S4 and S20) were observed to enter the shock state with a little change. The findings in this work (especially the dormant state of AnAOB) are helpful to understand the effect of temperature decrease on AnGS and to promote the development of AnGS preservation technology.
Collapse
Affiliation(s)
- Chao Pan
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Dongdong Xu
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Ziyang Dong
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Wenji Li
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Da Kang
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Wenda Chen
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Yiyu Li
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Meng Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore
| | - Baolan Hu
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Ping Zheng
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
23
|
Dsane VF, An S, Shahid MK, Choi Y. From freshwater anammox bacteria (FAB) to marine anammox bacteria (MAB): A stepwise salinity acclimation process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148753. [PMID: 34274668 DOI: 10.1016/j.scitotenv.2021.148753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
An investigation into the effect of stepwise saline introduction (3-20 g·L-1 NaCl) on the anaerobic ammonium oxidation (anammox) process in a lab-scale sequencing batch reactor was carried out for 252 days by evaluating the changes in influent and effluent nitrogen concentrations, conductivity, microbial extracellular polymeric substances' (EPS) ionic content, as well as stresses due to salinity, via microbial ATP analysis. It was observed that, effluent nitrogen concentrations remained stable at low saline levels of 3 g·L-1 to 10 g·L-1. Nonetheless, midway through 10 g·L-1 and the preliminary phase of 15 g·L-1 salinity presented a very unstable, highly fluctuating as well as deteriorating effluent nitrogen concentrations. A more satisfactory nitrogen removal efficiency of 83.7 ± 5.9% was obtained at higher saline concentrations implying that, the adaptation mechanism to tolerate increasing salinity was taking place. Saline induced stress, which measures the variation in viable anammox bacteria, was correlative to the formation of EPS and changes in its cationic contents along the increasing salinity. Although the specific anammox activity (SAA) dropped by approximately 15% from the beginning of the process to the midpoint, the drop in SAA after the midpoint was not as drastic as the initial phase. A change in microbial aggregation and dominance proved the existence of new saline-dependent species that can withstand high saline stresses. Recovery from abrupt high saline shocks in batch experiment was seen to be almost impossible.
Collapse
Affiliation(s)
- Victory Fiifi Dsane
- Department of Environmental Engineering, Chungnam National University, Daejeon, Republic of Korea; Department of Food Process Engineering, University of Ghana, Legon, Ghana
| | - Sumin An
- Department of Environmental & IT Convergence Engineering, Chungnam National University, Daejeon, Republic of Korea
| | - Muhammad Kashif Shahid
- Research Institute of Environment & Biosystem, Chungnam National University, Daejeon, Republic of Korea
| | - Younggyun Choi
- Department of Environmental & IT Convergence Engineering, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
24
|
Response of anammox bacteria to short-term exposure of 1,4-dioxane: Bacterial activity and community dynamics. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118539] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Wang Z, Gao P, Ji Y, Zhang H, Wu X, Ma J, Li S. Effects of salinity on the simultaneous anammox and denitrification process: performance, sludge morphology and shifts in microbial communities. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202099. [PMID: 34040787 PMCID: PMC8113906 DOI: 10.1098/rsos.202099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/14/2021] [Indexed: 05/07/2023]
Abstract
In this study, the long-term effects of different salinities on the performance, sludge morphology and shifts in microbial communities were studied in a simultaneous anammox and denitrification (SAD) process at a C/N ratio of 0.5. Stable nitrogen removal efficiencies of 86.96 and 84.58% and nitrogen removal rates of 0.95 and 0.93 kg (m3 d)-1 could be achieved under low (25 mmol l-1) and moderate (50 mmol l-1) salinity, respectively. However, the performance collapsed when the system was exposed to high salinity (100 mmol l-1). The content of extracellular polymeric substances increased as salinity increased, which resulted in larger sizes of granular sludge under low and moderate salinities. Nevertheless, high salinity shock disintegrated granular sludge, thereby decreasing the average granule size. The Illumina-Miseq sequencing results revealed that Candidatus Jettenia was the sole salinity-tolerant AnAOB genus during the entire operation, whereas the main denitrification bacterial genera shifted from Denitrisoma under low salinity to Denitrisoma, Thauera and Ignavibacterium under high salinity. The results of this study provide a comprehensive and practical evaluation of the SAD process for organic nitrogen-rich saline wastewater treatment.
Collapse
Affiliation(s)
- Zhaozhao Wang
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, People's Republic of China
- Hebei Technology Innovation Center for Water Pollution Control and Water Ecological Remediation, Hebei University of Engineering, Handan 056038, People's Republic of China
| | - Peng Gao
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, People's Republic of China
- Hebei Technology Innovation Center for Water Pollution Control and Water Ecological Remediation, Hebei University of Engineering, Handan 056038, People's Republic of China
| | - Ying Ji
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, People's Republic of China
- Hebei Technology Innovation Center for Water Pollution Control and Water Ecological Remediation, Hebei University of Engineering, Handan 056038, People's Republic of China
| | - Huan Zhang
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, People's Republic of China
- Hebei Technology Innovation Center for Water Pollution Control and Water Ecological Remediation, Hebei University of Engineering, Handan 056038, People's Republic of China
| | - Xinjuan Wu
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, People's Republic of China
- Hebei Technology Innovation Center for Water Pollution Control and Water Ecological Remediation, Hebei University of Engineering, Handan 056038, People's Republic of China
| | - Jun Ma
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, People's Republic of China
- Hebei Technology Innovation Center for Water Pollution Control and Water Ecological Remediation, Hebei University of Engineering, Handan 056038, People's Republic of China
| | - Simin Li
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, People's Republic of China
- Hebei Technology Innovation Center for Water Pollution Control and Water Ecological Remediation, Hebei University of Engineering, Handan 056038, People's Republic of China
| |
Collapse
|
26
|
Sun H, Liu H, Zhang M, Liu Y. A novel single-stage ceramic membrane moving bed biofilm reactor coupled with reverse osmosis for reclamation of municipal wastewater to NEWater-like product water. CHEMOSPHERE 2021; 268:128836. [PMID: 33168286 DOI: 10.1016/j.chemosphere.2020.128836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/21/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
In this study, a single-stage ceramic membrane moving bed biofilm reactor (CMMBBR) was developed for simultaneous COD and nitrogen removal, while its effluent was further reclaimed to ultra-clean water by a coupled reverse osmosis (RO) unit. Results showed that approximately 97% of COD and 93% of total nitrogen (TN) removal were obtained in CMMBBR, with the effluent COD and TN concentrations being 8.15 mg/L and 2.31 mg/L, respectively. The excellent performance of CMMBBR was achieved at a constant permeate flux of 30 L/m2/h (LMH), with the average dTMP/dt of 0.05 bar/d due to the low suspended sludge concentration (i.e. 75 mg VSS/L) and the effective membrane scouring by fluidized biocarriers. The excellent permeate quality of CMMBBR could lead to a very low RO fouling rate of 0.029 bar/d, with the product water quality meeting typical NEWater standards in major ions concerned. In addition, the energy and cost analyses further indicated that the proposed CMMBBR-RO process could reduce 43.8% of energy consumption and 23.5% of operating cost compared to the current NEWater production process. It is expected that the integrated CMMBBR-RO process could provide a promising alternative for municipal wastewater reclamation to high-grade product water towards minimized sludge production and energy-efficient operation.
Collapse
Affiliation(s)
- Huifang Sun
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore; Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan, 030006, China
| | - Hang Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Meng Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| |
Collapse
|
27
|
Si P, Li J, Xie W, Dong H, Qiang Z. Deciphering nitrogen removal mechanism through marine anammox bacteria treating nitrogen-laden saline wastewater under various phosphate doses: Microbial community shift and phosphate crystal. BIORESOURCE TECHNOLOGY 2021; 325:124707. [PMID: 33482477 DOI: 10.1016/j.biortech.2021.124707] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
The effect of phosphate on marine anammox bacteria (MAB)-dominated anammox process in nitrogen-laden saline wastewater was first investigated. The activity of MAB was enhanced by dosing low concentrations of phosphate (5-30 mg/L PO43--P), and the time of complete ammonium removal was shortened by 0.5 h. When PO43--P exceeded 160 mg/L, the calcium magnesium phosphate precipitation was formed in the reactor. The contact between substrates and biomass was hindered by the sediments, and the nitrogen removal performance of MAB was also worsened. At 400 mg/L PO43--P, the ammonium removal rate and nitrite removal rate decreased to 0.45 and 0.43 kg/(m3⋅d), respectively. During the 158-day operation, MAB was still the dominant strain, but its relative abundance decreased by 15.4% at 400 mg/L PO43--P. Besides, the presence of sediments stimulated the production of extracellular polymeric substances and the maximum yield reached 11.25 mg/g⋅wet weight at 200 mg/L PO43--P.
Collapse
Affiliation(s)
- Pinkun Si
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jin Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Wenxia Xie
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
28
|
Xu D, Ying S, Wang Y, Zheng H, Zhang M, Li W, Chen W, Pan C, Kang D, Zheng P. A novel SAD process: Match of anammox and denitrification. WATER RESEARCH 2021; 193:116874. [PMID: 33581402 DOI: 10.1016/j.watres.2021.116874] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/29/2020] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Anammox biotechnology has been widely applied for its attractive advantages, but its application has been seriously limited due to the instinctive drawback of nitrate production. In this work, a novel Sequential Anammox and Denitrification (SAD) system was developed for the advanced nitrogen removal by using solid carbon source (SCS) and coupling anammox with denitrification. The long-term operation results demonstrated that the SAD system could remove the total nitrogen (TN) efficiently, with the effluent TN concentration of 1.4 ± 0.5 mg N/L, the TN removal efficiency (NRE) of 99.3 ± 0.2%, and the TN removal rate (NRR) of 1.7 ± 0.1 kg/(m3·d). The determination results showed that SCS had a good property for sustained release of COD, with a dissolved organic yield (by COD) of 1.1 g-COD/g-rice. When the addition rate was set at 6 g-rice/7-days, the COD release rate of 0.9 kg-COD/(m3·d) from SCS matched the nitrate production rate of 1.2 × 10-1 kg-N/(m3·d) from anammox with consumption ratio of 7.5. The analysis on the microbial community revealed that Candidatus_Brocadia and Denitratisoma were the dominant functional bacteria for anammox and denitrification, which contributed to about 92.7% and 6.6% of the total nitrogen removal, respectively. This work is helpful for the innovation and application of anammox-based technology.
Collapse
Affiliation(s)
- Dongdong Xu
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Siying Ying
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Yihang Wang
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Haoyang Zheng
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Meng Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore
| | - Wenji Li
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Wenda Chen
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Chao Pan
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Da Kang
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Ping Zheng
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
29
|
Dsane VF, An S, Oh T, Hwang J, Choi Y, Choi Y. Saline conditions effect on the performance and stress index of anaerobic ammonium oxidizing (anammox) bacteria. CHEMOSPHERE 2021; 267:129227. [PMID: 33326902 DOI: 10.1016/j.chemosphere.2020.129227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
In this study, a lab-scale sequencing batch reactor dominated by freshwater anammox bacteria (FAB) was used to study the performance and stress index of the anammox bacteria at various saline conditions. The reactor with an effective volume of 1.8 L was operated for about 160 days. The nitrogen-loading rate was maintained at 0.364 kg-N m-3d-1 throughout the operational period. At the start-up phase, the seed biomass acclimation to the lab bioreactor showed an inconsistent performance. However, a stable performance was observed after day 38. The average substrate removal efficiency was 92% during most of the operational period. Anammox stress index; a ratio of dissolved Adenosine Triphosphate (dATPamx) to total Adenosine Triphosphate (tATPamx) showed an irrefutable correlation between NaCl concentration, anammox stress and microbial community. A drop in the biomass cellular ATP at 5 g L-1 salinity led to a significant decrease in the Specific Anammox activity. Candidatus Brocadia was identified as the main anammox species and its relative abundance reduced along the stepwise salinity increment.
Collapse
Affiliation(s)
- Victory Fiifi Dsane
- Department of Environmental Engineering, Chungnam National University, Daejeon, South Korea; Department of Food Process Engineering, University of Ghana, Legon, Ghana
| | - Sumin An
- Department of Environmental Engineering, Chungnam National University, Daejeon, South Korea
| | - Taeseok Oh
- Department of Environmental Engineering, Chungnam National University, Daejeon, South Korea; BKT Company Ltd., Korea, Sinseong-dong, Daejeon, South Korea
| | - Jiyun Hwang
- Department of Environmental Engineering, Chungnam National University, Daejeon, South Korea
| | - Yuri Choi
- Department of Environmental Engineering, Chungnam National University, Daejeon, South Korea
| | - Younggyun Choi
- Department of Environmental Engineering, Chungnam National University, Daejeon, South Korea.
| |
Collapse
|
30
|
Xu D, Fan J, Li W, Chen W, Pan C, Kang D, Li Y, Shan S, Zheng P. Deciphering correlation between permeability and size of anammox granule: "pores as medium". WATER RESEARCH 2021; 191:116832. [PMID: 33485080 DOI: 10.1016/j.watres.2021.116832] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/30/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Anammox granular sludge bed technology has been widely applied for its attractive advantages. Efficient mass transfer is an important factor for the anammox granules to play their role. In this study, steady-state anammox granules were used to investigate the correlation between the permeability and granule size with the granule pore as pivot. The results of size distribution showed that the anammox granules could be divided into 6 groups: 200-500 µm (I), 500-1000 µm (II), 1000-1500 µm (III), 1500-2000 µm (IV), 2000-3000 µm (V) and ≥3000 µm (VI). The results of settling experiment demonstrated that the permeability of anammox granules was negatively correlated with the granule size. The fluid collection efficiency declined from 39.4% to 9.3% for granule group I to III, and further to 0 for granule group IV to VI (granule size was larger than 1.5 mm). The observation of micro-CT revealed that the pore structure of anammox granules varied significantly with the increase of granule size, forming a denser surface layer and sparser interior. The chemical analysis and microscopic observation indicated that the pore plugging of surface layer by cell proliferation and EPS secretion was the main cause for the permeability deterioration. The findings of this study will help to understand the mass transfer of anammox granules and promote the development of anammox processes.
Collapse
Affiliation(s)
- Dongdong Xu
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Jiahui Fan
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Wenji Li
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Wenda Chen
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Chao Pan
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Da Kang
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Yiyu Li
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Shengdao Shan
- School of Environmental and Natural Resources, Zhejiang University of Science & Technology, China
| | - Ping Zheng
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
31
|
Ya T, Du S, Li Z, Liu S, Zhu M, Liu X, Jing Z, Hai R, Wang X. Successional Dynamics of Molecular Ecological Network of Anammox Microbial Communities under Elevated Salinity. WATER RESEARCH 2021; 188:116540. [PMID: 33126006 DOI: 10.1016/j.watres.2020.116540] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Response of microbial interactions to environmental perturbations has been a central issue in wastewater treatment system. However, the interactions among anammox microbial community under salt perturbation is still unclear. Here, we used random matrix theory (RMT)-based network analysis to investigate the dynamics of networks under elevated salinity in an anammox system. Results showed that high salinity (20 and 30 g/L NaCl) inhibited anammox performance. Salinity led to closer and more complex networks for the overall network and subnetwork of Planctomycetes and Proteobacteria, especially under low salinity (5 g/L NaCl), which could serve as a strategy to survive under salt perturbation. Planctomycetes, most dominant phylum and playing crucial roles in anammox, possessed higher proportion of competitive relationships (64.3%) under 30 g/L NaCl. OTU 109 (closely related to Ignavibacterium), the only network hub detected in the anammox system, also had larger amount of competitive relationships (27.3%) than the control (0%) under 30 g/L NaCl. Similar result was found for the most abundant keystone bacteria Candidatus Kuenenia. These increasing competitions at different taxa level could be responsible for the deterioration of nitrogen removal. Besides, all the network topological features tended to reach the values of the original network, which showed the network of microbial community could gradually adapt to the elevated salinity. Microbial network analysis adds a different dimension for our understanding of the response in microbial community to elevated salinity.
Collapse
Affiliation(s)
- Tao Ya
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuai Du
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Guo Dian Fu Tong Science and Technology Development Co., Ltd., Beijing 100070
| | - Zhenyang Li
- Airport New City in Xixian New Area Management Commission of Shaanxi Province, Xi'an, 712034, China
| | - Shidi Liu
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Minghan Zhu
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaojing Liu
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zibo Jing
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Reti Hai
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
32
|
Huang X, Mi W, Ito H, Kawagoshi Y. Probing the dynamics of three freshwater Anammox genera at different salinity levels in a partial nitritation and Anammox sequencing batch reactor treating landfill leachate. BIORESOURCE TECHNOLOGY 2021; 319:124112. [PMID: 32942237 DOI: 10.1016/j.biortech.2020.124112] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Partial nitritation/Anammox was applied to treat NaCl-amended landfill leachate. The reactor established robust nitrogen removal of 85.7 ± 2.4% with incremental salinity from 0.61% to 3.10% and achieved 0.91-1.05 kg N/m3/d at salinity of 2.96%-3.10%. Microbial community analysis revealed Nitrosomonas, Nitrospira, and denitrifiers occupied 4.1%, <0.2% and 10.9%, respectively. Salinity variations impelled the dynamics of Anammox bacteria. Jettenia shifted to Brocadia and Kuenenia at salinity of 0.61%-0.81%. Kuenenia outcompeted Brocadia and occupied 51.5% and 50.9% at salinity of 1.48%-1.54% and 2.96%-3.10%, respectively. High nitrite affinity and fast growth rate were proposed as key factors fostering Brocadia overgrew Jettenia. Functionalities of sodium-motive-force facilitated energy generation and intracellular osmotic pressure equilibrium regulation crucially determined Kuenenia's dominance at elevated salinity. Co-occurrence network further manifested beneficial symbiotic relationships boosted Kuenenia's preponderance. Knowledge gleaned deepen understanding on survival niches of freshwater Anammox genera at saline environments and lead to immediate benefits to its applications treating relevant wastewaters.
Collapse
Affiliation(s)
- Xiaowu Huang
- Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region; Center for Water Cycle, Marine Environment, and Disaster Management, Kumamoto University, Kumamoto 860-8555, Japan.
| | - Wenkui Mi
- Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Hiroaki Ito
- Center for Water Cycle, Marine Environment, and Disaster Management, Kumamoto University, Kumamoto 860-8555, Japan
| | - Yasunori Kawagoshi
- Center for Water Cycle, Marine Environment, and Disaster Management, Kumamoto University, Kumamoto 860-8555, Japan
| |
Collapse
|
33
|
Cai J, Pan A, Li Y, Xiao Y, Zhou Y, Chen C, Sun F, Su X. A novel strategy for enhancing anaerobic biodegradation of an anthraquinone dye reactive blue 19 with resuscitation-promoting factors. CHEMOSPHERE 2021; 263:127922. [PMID: 32841875 DOI: 10.1016/j.chemosphere.2020.127922] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/17/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Anaerobic process has been widely applied as a cost-effective method for textile wastewater treatment. However, many bacteria exhibit low metabolic activity in unfavorable conditions due to the entry into a viable but non-culturable (VBNC) state. Thus, in this study, a novel method of using resuscitation-promoting factors (Rpfs), which has been proven to resuscitate and stimulate the growth of VBNC bacteria, is explored to enhance the degradation of the anthraquinone dye reactive blue 19 (RB19) in the anaerobic process. The results show that Rpfs could efficiently prompt RB19 decolorization. Compared to the conventional anaerobic condition, RB19 decolorization efficiency was increased by more than 20% with the Rpf addition. UV-visible spectral and gas chromatograph-mass spectrometry analysis indicate that the aromatic amines structures of RB19 was cleaved. More importantly, the Rpf addition appeared to stimulate and/or enrich some dye-degrading species of the family Peptostreptococcaceae, thus leading to a higher RB19 decolorization efficiency.
Collapse
Affiliation(s)
- Jiafang Cai
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Aodong Pan
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Yilin Li
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Yeyuan Xiao
- Department of Civil and Environmental Engineering, Shantou University, Shantou, 515063, China
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Chongjun Chen
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China.
| | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
34
|
Gao Y, Li J, Dong H, Qiang Z. Nitrogen removal mechanism of marine anammox bacteria treating nitrogen-laden saline wastewater in response to ultraviolet (UV) irradiation: High UV tolerance and microbial community shift. BIORESOURCE TECHNOLOGY 2021; 320:124325. [PMID: 33157444 DOI: 10.1016/j.biortech.2020.124325] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Salt stress can be naturally overcome by marine anammox bacteria (MAB), while their low growth rate and sensitivity to operational conditions are still challenges for the application of anammox. To enhance the enrichment of MAB and decipher the effects of ultraviolet (UV) irradiation on MAB, UV was introduced in the nitrogen removal of MAB treating nitrogen-laden saline wastewater for the first time. The results indicated that MAB were resistant to a fairly high UV-C dose, 12000 mJ/cm2. Their relative abundance was enhanced by 1.2 folds under 12000 mJ/cm2 UV-C. However, the relative abundance of Actinobacteria, Acidobacteria, Chloroflexi and Marinicella were greatly dropped with enhanced UV-C dose. The tolerance mechanism was diversified, e.g. excessive extracellular polymeric substances, special structure of MAB and interspecific competition/cooperation. Although further study was still needed, the findings shed a light on MAB enrichment and exploited great potentials of MAB in nitrogen-laden saline wastewater treatment.
Collapse
Affiliation(s)
- Yuanyuan Gao
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jin Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
35
|
Huang X, Mi W, Ito H, Kawagoshi Y. Unclassified Anammox bacterium responds to robust nitrogen removal in a sequencing batch reactor fed with landfill leachate. BIORESOURCE TECHNOLOGY 2020; 316:123959. [PMID: 32795870 DOI: 10.1016/j.biortech.2020.123959] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/30/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
Treatment of landfill leachate was conducted in a lab-scale sequencing batch reactor (SBR). The SBR was started through inoculating activated sludge with controlling dissolved oxygen of 0.5-1.0 mg/L. Anammox reaction took place within around three months. The SBR established robust nitrogen removal with incremental NLRs of 0.25-2.17 kg N/m3/d. At the final phase, it achieved elevated nitrogen removals of 1.68-1.91 kg N/m3/d. 16S rRNA gene amplicon sequencing analysis revealed Nitrosomonas, unclassified Anammox bacterium, and diverse denitrifying populations coexisted and accounted for 4.02%, 20.05% and 34.69%, respectively. Phylogenic analysis and average nucleotide identity comparison jointly suggested the unclassified Anammox bacterium potentially pertained to a novel Anammox lineage. The functional profiles' prediction suggested sulfate reduction, arsenate reduction and eliminations of antibiotics and drugs likely occurred in the SBR. The finding from this study suggests contribution of unclassified Anammox bacteria in influencing nitrogen budget in natural and engineering systems is currently being underestimated.
Collapse
Affiliation(s)
- Xiaowu Huang
- Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region, PR China; Center for Water Cycle, Marine Environment, and Disaster Management, Kumamoto University, Kumamoto 860-8555, Japan.
| | - Wenkui Mi
- Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region, PR China
| | - Hiroaki Ito
- Center for Water Cycle, Marine Environment, and Disaster Management, Kumamoto University, Kumamoto 860-8555, Japan
| | - Yasunori Kawagoshi
- Center for Water Cycle, Marine Environment, and Disaster Management, Kumamoto University, Kumamoto 860-8555, Japan
| |
Collapse
|
36
|
Guo D, Hu M, Chen Z, Cui B, Zhang Q, Liu Y, Luo S, Ruan R, Liu Y. Catalytic pyrolysis of rain tree biomass with nano nickel oxide synthetized from nickel plating slag: A green path for treating waste by waste. BIORESOURCE TECHNOLOGY 2020; 315:123831. [PMID: 32707502 DOI: 10.1016/j.biortech.2020.123831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Catalytic pyrolysis of rain tree biomass (RTB), a typical horticultural waste, was investigated with nano-NiO as catalyst produced from hazardous nickel plating slag (NPS). It appeared from the analyses by FTIR, TGA, XRD, BET, and FESEM/EDX that nano-NiO produced had a SBET and mean particle size of 53.4 m2/g and 112.3 nm. The catalytic pyrolysis kinetics of RTB with and without catalyst were studied by Friedman method. It was found that the activation energy (Ea) was in the range of 177 to 360 kJ/mol at a conversion rate of 0.1 - 0.75. The results further revealed that the H2 increase ratio in pyrolysis above 500 °C was more than 40% in the presence of catalyst. Consequently, this study showed the great potential of nano-NiO as a high-efficiency catalyst in recovering energy from biomass.
Collapse
Affiliation(s)
- Dabin Guo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Mian Hu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhihua Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Baihui Cui
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Qi Zhang
- Engineering Research Center for Biomass Conversion, MOE, Nanchang University, Nanchang, 330047, China
| | - Yuhuan Liu
- Engineering Research Center for Biomass Conversion, MOE, Nanchang University, Nanchang, 330047, China
| | - Shiyi Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Roger Ruan
- Center for Biorefining and Dept. of Bioproducts and Biosystems Engineering, University of Minnesota, Paul 55108, USA
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
37
|
Wang R, Yang C, Wang WY, Yu LP, Zheng P. An efficient way to achieve stable and high-rate ferrous ion-dependent nitrate removal (FeNiR): Batch sludge replacement. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139396. [PMID: 32580082 DOI: 10.1016/j.scitotenv.2020.139396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
Ferrous ion can be used as electron donor for denitrification in the ferrous ion-dependent nitrate removal (FeNiR). To prevent the FeNiR performance decrease caused by iron encrustation, a modified FeNiR process with batch sludge replacement was developed. Based on the decay kinetics of sludge mass and sludge activity, the sludge retention time (SRT) was determined as 40 days in the modified FeNiR process. To keep the FeNiR rate at 0.70 kg-N/(m3·d), the sludge replacement amount was 25% of total sludge every 10 days. The FeNiR efficiency stabilized around 70%. The batch sludge replacement could be an effective method to offset the active sludge decay caused by iron encrustation, and therefore led to the good FeNiR performance. The wasted FeNiR sludge was found to adsorb phosphate at a rate of 0.9 mg-P/(g VS min). The modified FeNiR process was proposed to be coupled with phosphate removal, achieving the co-removal of nitrate and phosphate. The coupled technology is promising due to the less consumption of resources and energy, as well as the less production of excessive sludge.
Collapse
Affiliation(s)
- Ru Wang
- Department of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| | - Cheng Yang
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48105, United States.
| | - Wen-Yan Wang
- Department of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Li-Ping Yu
- Department of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Ping Zheng
- Department of Environmental Engineering, College of Environmental & Resource Science, Zhejiang University, Yuhangtang road 866, Hangzhou 310058, PR China.
| |
Collapse
|
38
|
Pang H, Xin X, He J, Cui B, Guo D, Liu S, Yan Z, Liu C, Wang X, Nan J. Effect of NaCl Concentration on Microbiological Properties in NaCl Assistant Anaerobic Fermentation: Hydrolase Activity and Microbial Community Distribution. Front Microbiol 2020; 11:589222. [PMID: 33162967 PMCID: PMC7581909 DOI: 10.3389/fmicb.2020.589222] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/14/2020] [Indexed: 01/27/2023] Open
Abstract
Previous studies have demonstrated that sludge hydrolysis and short-chain fatty acids (SCFAs) production were improved through NaCl assistant anaerobic fermentation. However, the effect of NaCl concentrations on hydrolase activity and microbial community structure was rarely reported. In this study, it was found that α-glucosidase activity and some carbohydrate-degrading bacteria were inhibited in NaCl tests, owing to their vulnerability to high NaCl concentration. Correspondingly, the microbial community richness and diversity were reduced compared with the control test, while the evenness was not affected by NaCl concentration. By contrast, the protease activity was increased in the presence of NaCl and reached the highest activity at the NaCl concentration of 20 g/L. The protein-degrading and SCFAs-producing bacteria (e.g., Clostridium algidicarnis and Proteiniclasticum) were enriched in the presence of NaCl, which were salt-tolerant.
Collapse
Affiliation(s)
- Heliang Pang
- School of Environment, Harbin Institute of Technology, Harbin, China
| | - Xiaodong Xin
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen, China
| | - Junguo He
- School of Civil Engineering, Guangzhou University, Guangzhou, China
| | - Baihui Cui
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, Singapore
| | - Dabin Guo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China.,Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, Singapore
| | - Shiming Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, Singapore
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fuzhou, China
| | - Chong Liu
- Frog Biotechnology Co., LTD, Harbin, China
| | - Xinyu Wang
- School of Environment, Harbin Institute of Technology, Harbin, China
| | - Jun Nan
- School of Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
39
|
Naufal M, Wu JH. Stability of microbial functionality in anammox sludge adaptation to various salt concentrations and different salt-adding steps. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114713. [PMID: 32388308 DOI: 10.1016/j.envpol.2020.114713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/08/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
The stability of community functioning in anaerobic ammonia oxidation (anammox) sludge adaptation to various salinity changes are concerned but not fully explored. In this study, two anammox reactors were designed in response to different salt levels and salt-adding methods. The reactor PI, run with small stepwise salt increments (0.5%-1.0%), removed >90% of nitrite and ammonium in the influent over the range of 0%-4% salt. By contrast, the reactor SI, run with a sharp salt increment (>2.5%), exhibited a reduced performance (by up to 44%) over the same salt range with a new steady state. The observed resilience times after salt perturbations indicated that the PI reactor recovered substantially and rapidly at all imposed salt levels. Principal coordinates analysis of 16S rRNA gene amplicon sequences revealed that bacterial community structures of the anammox sludge altered conspicuously in response to the salinity changes. However, quantitative PCR analysis showed that the shift in copy number of studied nitrogen-converting genes encoding hydrazine synthase (hzsA), bacterial and archaeal ammonia monooxygenases (amoA), nitrite oxidoreductase (nxrB), nitrite reductase (nirK), and nitrous oxide reductase (nosZ) was not significant (p > 0.05) in anammox sludge across the salt levels of 0.5%-4%, which suggests the stability of microbial community functioning in the osmoadaptation processes. The freshwater anammox Ca. Kuenenia showed high osmoadaptation by potentially adopting both high-salt-in and low-salt-in strategies to dominate in both reactors. The quantitative transcript analysis showed that the active anammox bacteria represented by hzsA transcripts in the SI reactor were approximately two orders of magnitude lower than those in the PI reactor during the long-term exposure to 4% salinity, manifesting the influence by the salt-increasing methods. These results provided new insight into osmo-adaptation of the anammox microbiome and will be useful for managing salinity effects on nitrogen removal processes.
Collapse
Affiliation(s)
- Muhammad Naufal
- Department of Environmental Engineering, National Cheng Kung University, Taiwan
| | - Jer-Horng Wu
- Department of Environmental Engineering, National Cheng Kung University, Taiwan.
| |
Collapse
|
40
|
Ji B, Wang S, Guo D, Pang H. Comparative and comprehensive analysis on bacterial communities of two full-scale wastewater treatment plants by second and third-generation sequencing. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100450] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Ji B, Zhang M, Wang L, Wang S, Liu Y. Removal mechanisms of phosphorus in non-aerated microalgal-bacterial granular sludge process. BIORESOURCE TECHNOLOGY 2020; 312:123531. [PMID: 32446034 DOI: 10.1016/j.biortech.2020.123531] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Microalgal-bacterial granular sludge processes are attracting increasing research interest in fields of biological municipal wastewater treatment. However, these processes currently suffer from inefficient phosphorus removal and long hydraulic reaction time. As such, a self-sustaining synergetic microalgal-bacterial granular sludge process was explored for improving phosphorus removal. Results showed that about 86% of influent phosphorus could be removed within 6 h comprising 2-hr dark phase and 4-hr light phase. Slight phosphorus release was observed in dark phase, followed by a significant phosphorus uptake in light phase together with the accumulation of poly-phosphorus in microalgal cells. The analyses by PacBio's sequencing and fluorescence in situ hybridization revealed that microalgal genus of Pantanalinema were the major phosphorus-accumulating organisms. Based on these experimental observations, the removal mechanisms of phosphorus by microalgal-bacterial granular sludge process were identified. It is expected that this study may shed lights on the pathways of biological phosphorus removal in microalgal-bacterial granular sludge process.
Collapse
Affiliation(s)
- Bin Ji
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Meng Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Li Wang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Shulian Wang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; Hubei Key Laboratory of Ecological Remediation for Rivers-Lakes and Algal Utilization, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
42
|
Wang Y, Wang H, Wang X, Xiao Y, Zhou Y, Su X, Cai J, Sun F. Resuscitation, isolation and immobilization of bacterial species for efficient textile wastewater treatment: A critical review and update. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 730:139034. [PMID: 32416505 DOI: 10.1016/j.scitotenv.2020.139034] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/23/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Given highly complex and recalcitrant nature of synthetic dyes, textile wastewater poses a serious challenge on surrounding environments. Until now, biological treatment of textile wastewater using efficient bacterial species is still considered as an environmentally friendly and cost-effective approach. The advances in resuscitating viable but non-culturable (VBNC) bacteria via signaling compounds such as resuscitation-promoting factors (Rpfs) and quorum sensing (QS) autoinducers, provide a vast majority of potent microbial resources for biological wastewater treatment. So far, textile wastewater treatment from resuscitating and isolating VBNC state bacteria has not been critically reviewed. Thus, this review aims to provide a comprehensive picture of resuscitation, isolation and application of bacterial species with this new strategy, while the recent advances in synthetic dye decolorization were also elaborated together with the mechanisms involved. Discussion was further extended to immobilization methods to tackle its application. We concluded that the resuscitation of VBNC bacteria via signaling compounds, together with biochar-based immobilization technologies, may lead to an appealing biological treatment of textile wastewater. However, further development and optimization of the integrated process are still required for their wide applications.
Collapse
Affiliation(s)
- Yuyang Wang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Hangli Wang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaomin Wang
- Zhejiang Environmental Science Research Institute Co., Ltd., Hangzhou 310007, China
| | - Yeyuan Xiao
- Department of Civil and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Jiafang Cai
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
43
|
Ruan Y, Ma B, Cai C, Cai L, Gu J, Lu HF, Xu XY, Zhang M. Kinetic affinity index informs the divisions of nitrate flux in aerobic denitrification. BIORESOURCE TECHNOLOGY 2020; 309:123345. [PMID: 32305844 DOI: 10.1016/j.biortech.2020.123345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Aerobic denitrification is attracting increasing attention since its advantage of complete nitrogen removal in a single aerobic reactor with simplified configurations. This study investigated the nitrate kinetic affinity (half-saturation index, Km) by an isolated aerobic denitrifier named P. balearica strain RAD-17. It turned out that strain RAD-17 had a high Km of 162.5 mg-N/L and maximum nitrate reduction rate of 21.7 mg-N/(L•h), enabling it to treat high-strength nitrogen wastewater with high efficiency. Further analysis illustrated that Km was the critical value for the change of growth yield rate along initial nitrate concentrations. Nitrogen balance results elucidated an opposite nitrogen flux to cell synthesis and nitrogen loss during aerobic denitrification. Moreover, the expression of functional genes provided proofs for these phenotypic results at transcriptional level. Consequently, Km could be an indicator for nitrate flux division directing to respiration and assimilation in aerobic denitrifiers, shedding light on its regulation for wastewater treatment.
Collapse
Affiliation(s)
- Yunjie Ruan
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-Systems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China; The Rural Development Academy, Zhejiang University, Hangzhou 310058, PR China
| | - Bin Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chen Cai
- Advanced Water Management Centre, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lei Cai
- Laboratory of Microbial Resources, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, China
| | - Jun Gu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore, Singapore
| | - Hui-Feng Lu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xiang-Yang Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Meng Zhang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China; Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
44
|
Ali M, Shaw DR, Saikaly PE. Application of an enrichment culture of the marine anammox bacterium "Ca. Scalindua sp. AMX11" for nitrogen removal under moderate salinity and in the presence of organic carbon. WATER RESEARCH 2020; 170:115345. [PMID: 31805498 DOI: 10.1016/j.watres.2019.115345] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/20/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
Seawater can be directly used for toilet flushing in coastal areas to reduce our dependence on desalination and freshwater resources. The presence of high-salt content in the generated wastewater from seawater toilet flushing could limit the performance of conventional biological nitrogen removal processes. Anaerobic ammonium oxidation (anammox) process is regarded as one of the most energy-efficient process for nitrogen removal from N-rich waste streams. In this study, we demonstrated the application of a novel marine anammox bacterium (Candidatus Scalindua sp. AMX11) in a membrane bioreactor (MBR) to treat moderate-saline (∼1.2% salinity) and N-rich organic (2 mM acetate) solution, prepared using real seawater. The MBR showed stable performance with nitrogen removal rate of 0.3 kg-N m-3 d-1 at >90% N-removal efficiency. Furthermore, results of 15N stable isotope experiments revealed that anammox bacteria was mainly responsible for respiratory ammonification through NO3- reduction to NH4+ via NO2-, and the by-products of respiratory ammonification were used as substrates by anammox bacteria. The dominant role of anammox bacteria in nitrogen removal under saline and organic conditions was further confirmed by genome-centric combined metagenomics and meta-transcriptomic approach. Taken together, these results highlight the potential application of marine anammox bacteria for treating saline wastewater generated from seawater toilet flushing practices.
Collapse
Affiliation(s)
- Muhammad Ali
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Dario Rangel Shaw
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Pascal E Saikaly
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
45
|
Gu J, Zhang M, Liu Y. A review on mainstream deammonification of municipal wastewater: Novel dual step process. BIORESOURCE TECHNOLOGY 2020; 299:122674. [PMID: 31902640 DOI: 10.1016/j.biortech.2019.122674] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 05/06/2023]
Abstract
The conventional biological nitrogen removal process is receiving increasing pressure partially due to its energy-negative operation. To address this challenge, various mainstream deammonification processes have been explored for energy-neutral municipal wastewater treatment, whereas these processes appear challenging to be sustainably and stably achieved in conventional process configurations. Therefore, this review aimed to provide a comprehensive analysis of the state-of-the-art of mainstream deammonification, while highlighting the major technical challenges. It appeared that recently developed novel dual step process, i.e. A-B processes, could provide a feasible engineering option for mainstream deammonification, where A-stage is designed for COD capture with the aim to enhance energy recovery, and B-stage is tailored for nutrient removal/recovery. This indeed may lead to a promising integrated mainstream deammonification process towards energy-efficient and environmentally sustainable nitrogen removal. Meanwhile, this review also offered an opinion on future municipal wastewater treatment, aiming for concurrent water reclamation and energy recovery.
Collapse
Affiliation(s)
- Jun Gu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Meng Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
46
|
Cai J, Liu J, Pan A, Liu J, Wang Y, Liu J, Sun F, Lin H, Chen J, Su X. Effective decolorization of anthraquinone dye reactive blue 19 using immobilized Bacillus sp. JF4 isolated by resuscitation-promoting factor strategy. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:1159-1169. [PMID: 32597403 DOI: 10.2166/wst.2020.201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Given the highly complex recalcitrant nature of synthetic dyes, biological treatment of textile wastewater using efficient bacterial species is still considered as an environmentally friendly manner. In this study, a reactive blue 19 (RB19)-degrading strain, Bacillus sp. JF4, which was isolated by resuscitation-promoting factor (Rpf) strategy, was immobilized into polyvinyl alcohol-calcium alginate-activated carbon beads (JF4-immobilized beads) for RB19 decolorization. Results suggest that the JF4-immobilized beads, which were capable of simultaneous adsorption and biodegradation, showed a high decolorization activity, while they exhibited better tolerability towards high RB19 concentrations. The JF4-immobilized beads could almost completely decolorize 100 mg/L RB19 within 10 d, while only 92.1% was decolorized by free bacteria within 12 d. Further investigation on the equilibrium and kinetics of the adsorption process suggests that the pseudo-second-order model best fit the adsorption kinetics data, and the Freundlich isotherm was the most suitable for the description of the equilibrium data. Notably, the repeated batch cycles indicated that complete decolorization of 100 mg/L RB19 by JF4-immobilized beads can be maintained for at least three cycles without much reduction in efficiency. These findings suggest that immobilizing Rpf-resuscitated strain into beads was an effective strategy for textile wastewater treatment.
Collapse
Affiliation(s)
- Jiafang Cai
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China E-mail:
| | - Jiale Liu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China E-mail:
| | - Aodong Pan
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China E-mail:
| | - Jinfu Liu
- Juhua Group Corporation, Quzhou 32400, China
| | - Yuyang Wang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China E-mail:
| | - Jianbo Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China E-mail:
| | - Hongjun Lin
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China E-mail:
| | - Jianrong Chen
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China E-mail:
| | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China E-mail:
| |
Collapse
|
47
|
Ji B, Zhu L, Wang S, Qin H, Ma Y, Liu Y. A novel micro-ferrous dosing strategy for enhancing biological phosphorus removal from municipal wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135453. [PMID: 31810675 DOI: 10.1016/j.scitotenv.2019.135453] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
Ferrous salts have been widely used to enhance phosphorus removal in full-scale wastewater treatment plants, with an average dosage of 0.24-0.35 mM. However, such high dosage inevitably caused serious concerns on operation, potential biological toxicity and excessive sludge production. Thus, this study investigated the effect of micro-dosing of ferrous salt at the level of 0.02 mM on enhanced biological phosphorus removal (EBPR) in sequencing batch reactors. Results showed that micro-dosing of ferrous salt enhanced the overall performance, with average COD, TN and TP removal of more than 4.2%, 2.0% and 5.8%, respectively. In addition, the sequencing analysis further revealed that micro-ferrous dosing could significantly improve the diversity and richness of the microbial community (p < 0.05), whereas the regular dosing of ferrous salts (0.25 mM) negatively impacted on the EBPR performance. It was found that the abundances of phosphorus accumulating organisms (PAOs) in R2 (micro-dosing) were nearly 1.5-fold and 2-fold higher than those in R1 (control) and R3 (regular dosing). The contributions of biological and chemical pathways towards the observed phosphorus removal were also determined according to the phosphorus releasing rate. For micro-dosage and regular dosage of ferrous salts, phosphorus removal mainly relied on biological phosphorus removal and chemical phosphorus removal, respectively. It appears from this this study that the micro-ferrous dosing strategy is practically feasible and economically viable for enhanced phosphorus removal from municipal wastewater.
Collapse
Affiliation(s)
- Bin Ji
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore.
| | - Lin Zhu
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Siyu Wang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Hui Qin
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yingqun Ma
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
48
|
Meng F, Huang W, Liu D, Zhao Y, Huang W, Lei Z, Zhang Z. Application of aerobic granules-continuous flow reactor for saline wastewater treatment: Granular stability, lipid production and symbiotic relationship between bacteria and algae. BIORESOURCE TECHNOLOGY 2020; 295:122291. [PMID: 31670206 DOI: 10.1016/j.biortech.2019.122291] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
In this study a continuous flow reactor (CFR) was employed to compare the feasibility of bacterial aerobic granular sludge (AGS-CFR) and algal-bacterial granular sludge (ABGS-CFR) for treating 1-4% saline wastewater. High salinity was found to enhance algae growth in ABGS-CFR, which exhibited slightly higher total nitrogen and phosphorus removal efficiencies at 1-3% salinity. ABGS-CFR maintained good granular stability at 1-4% salinity, while AGS-CFR gradually disintegrated at 4% salinity with 39.3% less accumulation of alginate-like exopolysaccharides in the extracellular polymeric substances. Indole-3-acetic acid (IAA) and superoxide dismutase (SOD) analysis suggested that bacteria and algae (Nitzschia) in ABGS-CFR formed a good symbiotic relationship under high salinity conditions, achieving rapid algae growth and 2 times lipid production. High salinity was conducive to enriching Halomonas and Nitzschia but unfavorable for Nitrosomonas and Flavobacterium. Results from this study could provide useful information on interactions between bacteria and algae in ABGS-CFR for its future practical application.
Collapse
Affiliation(s)
- Fansheng Meng
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, No. 92, Weijin Road, Nankai District, Tianjin 300350, China
| | - Weiwei Huang
- College of Ecology and Environment, Hainan University, No. 58, Renmin Road, Meilan District, Haikou 570228, China
| | - Dongfang Liu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, No. 92, Weijin Road, Nankai District, Tianjin 300350, China
| | - Yingxin Zhao
- College of Environmental Science and Engineering, Tianjin University, Tianjin 300384, China
| | - Wenli Huang
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, No. 92, Weijin Road, Nankai District, Tianjin 300350, China.
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
49
|
Zeng Z, Zhang M, Kang D, Li Y, Yu T, Li W, Xu D, Zhang W, Shan S, Zheng P. Enhanced anaerobic treatment of swine wastewater with exogenous granular sludge: Performance and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134180. [PMID: 32380626 DOI: 10.1016/j.scitotenv.2019.134180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 06/11/2023]
Abstract
Anaerobic biotechnology has been widely used to the treatment of swine wastewater, but its organic loading rate is far lower than the expected. In this study, the fatigue effect was observed for indigenous anaerobic sludge (IAS) of anaerobic digestion system treating swine wastewater. On the contrary, the enhancement effect was demonstrated for exogenous granular sludge (EGS) originated from the internal circulation reactor treating pulping wastewater. The results showed the anaerobic digestion of swine wastewater with acclimatized EGS was much better than with IAS, 10th-day COD removal efficiency of 85% and 37% respectively. The better performance of acclimatized EGS was attributed to the more efficient degradation of volatile fatty acids (VFAs) as well as a stronger tolerance to the ammonia inhibition of swine wastewater. Revealed by molecular techniques, the acclimatized EGS contained more abundant syntrophic bacteria and methanogens than IAS. These functional microbes colonized in the acclimatized EGS could overcome the fatigue effect of IAS which contained a similar microbial community to pig gastrointestinal tract microbes. This study provides a feasible and promising way to enhance the efficiency of anaerobic digestion of swine wastewater.
Collapse
Affiliation(s)
- Zhuo Zeng
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Meng Zhang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, PR China; Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Da Kang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Yiyu Li
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Tao Yu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Wenji Li
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Dongdong Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Wudi Zhang
- School of Energy & Environmental Science, Yunnan Normal University, Kunming 650500, Yunnan, PR China
| | - Shengdao Shan
- School of Environmental and Natural Resources, Zhejiang University of Science & Technology, 318 Liuhe Rd, Hangzhou 310023, Zhejiang, PR China
| | - Ping Zheng
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, PR China.
| |
Collapse
|
50
|
Performance of Anammox Processes for Wastewater Treatment: A Critical Review on Effects of Operational Conditions and Environmental Stresses. WATER 2019. [DOI: 10.3390/w12010020] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The anaerobic ammonium oxidation (anammox) process is well-known as a low-energy consuming and eco-friendly technology for treating nitrogen-rich wastewater. Although the anammox reaction was widely investigated in terms of its application in many wastewater treatment processes, practical anammox application at the pilot and industrial scales is limited because nitrogen removal efficiency and anammox activity are dependent on many operational factors such as temperature, pH, dissolved oxygen concentration, nitrogen loading, and organic matter content. In practical application, anammox bacteria are possibly vulnerable to non-essential compounds such as sulfides, toxic metal elements, alcohols, phenols, and antibiotics that are potential inhibitors owing to the complexity of the wastewater stream. This review systematically summarizes up-to-date studies on the effect of various operational factors on nitrogen removal performance along with reactor type, mode of operation (batch or continuous), and cultured anammox bacterial species. The effect of potential anammox inhibition factors such as high nitrite concentration, high salinity, sulfides, toxic metal elements, and toxic organic compounds is listed with a thorough interpretation of the synergistic and antagonistic toxicity of these inhibitors. Finally, the strategy for optimization of anammox processes for wastewater treatment is suggested, and the importance of future studies on anammox applications is indicated.
Collapse
|