1
|
Zhang Y, Zheng X, Liu C, Shen L, Xue L, Cong H. Effects of microwave energy transfer on release and degradation of anthocyanins in berry puree. Food Chem 2024; 464:141833. [PMID: 39504906 DOI: 10.1016/j.foodchem.2024.141833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/17/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
To elucidate the distinctive effects of microwave energy on the anthocyanins content in berry puree, comparative experiments and simulation analysis of essentially heating modes are introduced via radiation (microwave), convective and conductive. Microwave energy has the strongest action on anthocyanins state due to uniform generation of in situ heating through entire volume of berry puree. Microwave heating may promote the release or hinder the degradation of anthocyanins as variable polar response and reaction barrier of anthocyanins depending on electric field direction with the unsymmetrical structure in polar molecules. The intermolecular force (hydrogen bond, van der Waals force etc.) may be broken in berry puree to form order arrangements of anthocyanins till tolerance temperature 80 °C under microwave heating. The optimal parameters of microwave heating are developed as microwave intensity of 30 W·g-1 and temperature of 50 °C to achieve the highest anthocyanins retention till target moisture less than 0.5 (d.b.).
Collapse
Affiliation(s)
- Yuhan Zhang
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Xianzhe Zheng
- College of Engineering, Northeast Agricultural University, Harbin 150030, China.
| | - Chenghai Liu
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Liuyang Shen
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Liangliang Xue
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Hongyue Cong
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
2
|
Gómez-Cruz I, Contreras MDM, Romero I, Castro E. Lower Energy-Demanding Extraction of Bioactive Triterpene Acids by Microwave as the First Step towards Biorefining Residual Olive Skin. Antioxidants (Basel) 2024; 13:1212. [PMID: 39456465 PMCID: PMC11504040 DOI: 10.3390/antiox13101212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
In the olive oil industry, a pit fraction is collected from olive pomace and split into a clean pit fraction and a residual olive skin-rich fraction, which does not an industrial application. Therefore, in this work, microwave-assisted extraction (MAE) was applied to obtain high-value triterpene acids (maslinic acid and oleanolic acid) from this biomass using the renewable solvent ethanol. The response surface methodology was used to gain a deeper understanding of how the solvent (ethanol-water, 50-100% v/v), time (4-30 min), and temperature (50-120 °C) affect the extraction performance, as well as the energy required for the process. The effect of milling was also studied and the solid-to-liquid ratio was also evaluated, and overall, a good compromise was found at 10% (w/v) using the raw sample (unmilled biomass). The optimised conditions were applied to residual olive skin sourced from various industries, yielding up to 5.1 g/100 g and 2.2 g/100 g dry biomass for maslinic acid and oleanolic acid, respectively. In conclusion, the residual olive skin is a promising natural source of these triterpene acids, which can be extracted using MAE, releasing extracted solids rich in polymeric carbohydrates and lignin that can be valorised under a holistic biorefinery process.
Collapse
Affiliation(s)
- Irene Gómez-Cruz
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; (I.G.-C.); (I.R.); (E.C.)
- Institute of Biorefineries Research (I3B), University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - María del Mar Contreras
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; (I.G.-C.); (I.R.); (E.C.)
- Institute of Biorefineries Research (I3B), University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Inmaculada Romero
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; (I.G.-C.); (I.R.); (E.C.)
- Institute of Biorefineries Research (I3B), University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; (I.G.-C.); (I.R.); (E.C.)
- Institute of Biorefineries Research (I3B), University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| |
Collapse
|
3
|
Zhao X, Zhu H, Liu C, Shen L, Zheng X. Microwave heating concentration of raspberry pulp: Evaluation of processing variables on concentration characteristics and quality attributes. Heliyon 2024; 10:e30906. [PMID: 38765029 PMCID: PMC11097058 DOI: 10.1016/j.heliyon.2024.e30906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/21/2024] Open
Abstract
Concentration of fruit pulp is an important unit operation in food processing and has a wide range of applications. In this study, the microwave heating concentration (MHC) of raspberry pulp at different microwave powers, heating times and sample masses were investigated considering concentration characteristics and quality attributes. The results showed that increasing microwave power/heating time or decreasing sample mass significantly decreased the moisture content but had no significant effect on the temperature of raspberry pulp, while these conditions resulted in loss of total anthocyanin content and deterioration of total color difference. LF-NMR and SEM results revealed that the changes in temperature and moisture content caused by MHC significantly affected the total anthocyanin content and total color difference of the final product. Microwave power of 800 W, heating time of 3 min and sample mass of 90 g are selected as suitable parameters for MHC of raspberry pulp. This study may provide guidance for the development of appropriate technology for MHC of berry pulp.
Collapse
Affiliation(s)
- Xinglong Zhao
- College of Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Haihui Zhu
- College of Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Chenghai Liu
- College of Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Liuyang Shen
- College of Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Xianzhe Zheng
- College of Engineering, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
4
|
Xue L, Gao R, Shen L, Zheng X, Gao M. Dependence of degradation of anthocyanins on non-uniformity of microwave heating in blueberry puree. FOOD AND BIOPRODUCTS PROCESSING 2023. [DOI: 10.1016/j.fbp.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
5
|
Mrázková M, Sumczynski D, Orsavová J. Influence of Storage Conditions on Stability of Phenolic Compounds and Antioxidant Activity Values in Nutraceutical Mixtures with Edible Flowers as New Dietary Supplements. Antioxidants (Basel) 2023; 12:antiox12040962. [PMID: 37107337 PMCID: PMC10135932 DOI: 10.3390/antiox12040962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
This paper investigates the effects of storage conditions on the stability of phenolics and their antioxidant activities in unique nutraceutical supplements containing non-traditional cereal flakes, edible flowers, fruits, nuts, and seeds. Significant total phenolic content (TPC) of 1170-2430 mg GAE/kg and total anthocyanin content (TAC) with the values of 322-663 mg C3G/kg were determined with the highest TPC content established in free phenolic fractions. The most notable declines in TPC (by 53%), TAC (by 62%), phenolics (e.g., glycosylated anthocyanins by 35-67%), and antioxidant activity (by 25% using DPPH) were established in the presence of sunlight at 23 °C followed by the storage at 40 °C. Quercetin, rutin, peonidin, pelargonidin, p-coumaric, ellagic, and p-hydroxybenzoic acids were identified as the least stable phenolics when exposed to sunlight. Furthermore, glycosylated forms of anthocyanins demonstrated a greater stability when compared with anthocyanidins. The mixtures considerably eliminated ABTS and DPPH radicals. In all samples, water-soluble substances showed a higher antioxidant activity than lipid-soluble substances with the main contributors in the following order: delphinidin-3-glucoside (r = +0.9839) > p-coumaric > gallic > sinapic > p-hydroxybenzoic acids > delphinidin > peonidin and malvidin (r = +0.6538). Gluten-free nutraceutical mixtures M3 (containing red rice and black quinoa flakes, red and blue cornflowers, blueberries, and barberries) and M4 (containing red and black rice flakes, rose, blue cornflower, blueberries, raspberries, and barberries) were evaluated as the least stable under all storage conditions although they showed considerable phenolic concentrations. Phenolic contents and antioxidant activity of the nutraceutical mixtures were the highest at 23 °C without the presence of sunlight with the most stable M1 nutraceutical mixture (containing oat and red wheat flakes, hibiscus, lavender, blueberries, raspberries, and barberries).
Collapse
Affiliation(s)
- Martina Mrázková
- Department of Food Analysis and Chemistry, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01 Zlín, Czech Republic
| | - Daniela Sumczynski
- Department of Food Analysis and Chemistry, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01 Zlín, Czech Republic
| | - Jana Orsavová
- Language Centre, Tomas Bata University in Zlín, Štefánikova 5670, 760 01 Zlín, Czech Republic
| |
Collapse
|
6
|
Ghosh S, Sarkar T, Chakraborty R. Underutilized plant sources: A hidden treasure of natural colors. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
7
|
Ghosh S, Sarkar T, Chakraborty R, Shariati MA, Simal-Gandara J. Nature's palette: An emerging frontier for coloring dairy products. Crit Rev Food Sci Nutr 2022; 64:1508-1552. [PMID: 36066466 DOI: 10.1080/10408398.2022.2117785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Consumers all across the world are looking for the most delectable and appealing foods, while also demanding products that are safer, more nutritious, and healthier. Substitution of synthetic colorants with natural colorants has piqued consumer and market interest in recent years. Due to increasing demand, extensive research has been conducted to find natural and safe food additives, such as natural pigments, that may have health benefits. Natural colorants are made up of a variety of pigments, many of which have significant biological potential. Because of the promising health advantages, natural colorants are gaining immense interest in the dairy industry. This review goes over the use of various natural colorants in dairy products which can provide desirable color as well as positive health impacts. The purpose of this review is to provide an in-depth look into the field of food (natural or synthetic) colorants applied in dairy products as well as their potential health benefits, safety, general trends, and future prospects in food science and technology. In this paper, we listed a plethora of applications of natural colorants in various milk-based products.
Collapse
Affiliation(s)
- Susmita Ghosh
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, India
| | - Tanmay Sarkar
- Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | - Runu Chakraborty
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, India
| | - Mohammad Ali Shariati
- Research Department, K. G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), Moscow, Russian Federation
- Department of Scientific Research, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russian Federation
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, Universidade de Vigo, Ourense, E32004, Spain
| |
Collapse
|
8
|
Liu Y, Zhang Y, Zhou Y, Feng XS. Anthocyanins in Different Food Matrices: Recent Updates on Extraction, Purification and Analysis Techniques. Crit Rev Anal Chem 2022; 54:1430-1461. [PMID: 36045567 DOI: 10.1080/10408347.2022.2116556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Anthocyanins (ANCs), a kind of natural pigments, are widely present in food substrates. Evidence has shown that ANCs can promote health in terms of anti-oxidation, anti-tumor, and anti-inflammation. However, the oxidative stability of ANCs limits accurate quantitation and analysis. Therefore, faster, more accurate, and highly sensitive extraction and determination methods are necessary for understanding the role of ANCs in medicine and food. This review presents an updated overview of pretreatment and detection techniques for ANCs in various food substrates since 2015. Liquid-liquid extraction and various green solvent extraction methods, such as accelerated solvents extraction, deep eutectic solvents extraction, ionic liquids extraction, and supercritical fluid extraction, are commonly used pretreatment methods for extraction and purification of ANCs. Liquid chromatography coupled with different detectors (tandem mass spectrometry and UV detectors) and spectrophotometry methods are some of the determination methods for ANC. This study has updated, compared, and discussed different pretreatment and analysis methods. Moreover, the advanced methods and development prospects in this field are comprehensively summarized, which can provide references for further utilization of ANCs.
Collapse
Affiliation(s)
- Ye Liu
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
9
|
Jung J, Lin CY, Zhao Y. Enhancing anthocyanin-phenolic copigmentation through epicarp layer treatment and edible coatings to retain anthocyanins in thermally processed whole blueberries. J Food Sci 2022; 87:3809-3821. [PMID: 35978552 DOI: 10.1111/1750-3841.16269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/17/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022]
Abstract
Anthocyanins in processed fruit degrade significantly due to their heat and oxygen sensitivity and water solubility. Copigmentation for stabilizing anthocyanins is less effective for whole fruit due to anthocyanins' location within cell vacuoles surrounded by the epicarp layer as barrier to prevent copigment complexing with anthocyanins. This study investigated strategies for enhancing anthocyanin-phenolic copigmentation on blueberry surface, and integrated copigmentation with layer-by-layer (LBL) coating to retain anthocyanin stability in thermally processed blueberries. Results indicated that epicarp layer treatment of fruit by Tween 80 (T80) and CaCl2 is important for enhancing anthocyanin-phenolic copigmentation. The sequential copigmentation treatment using T80, ferulic acid, and CaCl2 (T80→FA→CaCl2 ) or T80, tannic acid, and CaCl2 (T80→TA→CaCl2 ) resulted in higher (p < 0.05) retention of total monomeric anthocyanin (3.18 mg/g and 3.38 mg/g, respectively) in thermally processed blueberries after 7-day ambient storage than that of untreated fruit (2.79 mg/g). Percent polymeric color (PPC) of blueberries treated by T80→FA→CaCl2 (15.5%) or T80→TA→CaCl2 (17.4%) was lower (p < 0.05) than that treated by TA alone (22.5%). The LBL coating enhanced microstructure stability for preserving anthocyanins in thermally processed blueberries. This study demonstrated the effectiveness of sequential copigmentation of blueberries after epicarp layer treatment followed by LBL coating for enhancing anthocyanin stability in processed whole fruit. PRACTICAL APPLICATION: When anthocyanin-rich fruit is thermally processed, anthocyanins degrade and leach to aqueous packing solution because of its heat sensitivity and water solubility. This study developed an innovative technology through implementing sequential treatments of copigmentation and water- and heat-resistant coating for preventing heat and water degradation of anthocyanins in whole fruit during processing in aqueous media. The developed technology can be practically applied to enhance the quality and health benefits of thermally processed anthocyanin-rich whole fruit. The technology can not only be utilized to improve existing fruit products, but also develop new and novel fruit products.
Collapse
Affiliation(s)
- Jooyeoun Jung
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Chieh-Yi Lin
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Yanyun Zhao
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
10
|
Zhang Y, Gao M, Gao F, Yang H, Liu Y, Zheng X. Puffing characteristics of berry slice under continuous microwave puffing conditions. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuhan Zhang
- College of Engineering Northeast Agricultural University Harbin China
| | - Ming Gao
- College of Engineering Northeast Agricultural University Harbin China
| | - Feng Gao
- College of Engineering Northeast Agricultural University Harbin China
| | - Hao Yang
- College of Engineering Northeast Agricultural University Harbin China
| | - Yicheng Liu
- College of Engineering Northeast Agricultural University Harbin China
| | - Xianzhe Zheng
- College of Engineering Northeast Agricultural University Harbin China
| |
Collapse
|
11
|
Feng T, Zhang M, Sun Q, Mujumdar AS, Yu D. Extraction of functional extracts from berries and their high quality processing: a comprehensive review. Crit Rev Food Sci Nutr 2022; 63:7108-7125. [PMID: 35187995 DOI: 10.1080/10408398.2022.2040418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Berry fruits have attracted increasing more attention of the food processing industry as well as consumers due to their widely acclaimed advantages as highly effective anti-oxidant properties which may provide protection against some cancers as well as aging. However, the conventional extraction methods are inefficient and wasteful of solvent utilization. This paper presents a critical overview of some novel extraction methods applicable to berries, including pressurized-liquid extraction, ultrasound-assisted extraction, microwave-assisted extraction, supercritical fluid extraction, enzyme-assisted extraction as well as some combined extraction methods. When combined with conventional methods, the new technologies can be more efficient and environmentally friendly. Additionally, high quality processing of the functional extracts from berry fruits, such as refined processing technology, is introduced in this review. Finally, progress of applications of berry functional extracts in the food industry is described in detail; this should encourage further scientific research and industrial utilization.
Collapse
Affiliation(s)
- Tianlin Feng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Qing Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Quebec, Canada
| | - Dongxing Yu
- Shanghao Biotech Co., Ltd, Qingdao, Shandong, China
| |
Collapse
|
12
|
Sun T, Zhang M. Modeling and optimization of microwave drying of rice. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tongsheng Sun
- School of Mechanical Engineering Anhui Polytechnic University Wuhu China
| | - Mingming Zhang
- School of Mechanical Engineering Anhui Polytechnic University Wuhu China
| |
Collapse
|
13
|
A scientific approach to extraction methods and stability of pigments from Amazonian fruits. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Structure and composition of blueberry fiber pectin and xyloglucan that bind anthocyanins during fruit puree processing. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Manzoor M, Singh J, Gani A, Noor N. Valorization of natural colors as health-promoting bioactive compounds: Phytochemical profile, extraction techniques, and pharmacological perspectives. Food Chem 2021; 362:130141. [PMID: 34091168 DOI: 10.1016/j.foodchem.2021.130141] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 01/17/2023]
Abstract
Color is the prime attribute with a large impact on consumers' perception, selection, and acceptance of foods. However, the belief in bio-safety protocols, health benefits, and the nutritional importance of food colors had focused the attention of the scientific community across the globe towards natural colorants that serve to replace their synthetic toxic counterparts. Moreover, multi-disciplinary applications of greener extraction techniques and their hyphenated counterparts for selective extraction of bioactive compounds is a hot topic focusing on process intensification, waste valorization, and retention of highly stable bioactive pigments from natural sources. In this article, we have reviewed available literature to provide all possible information on various aspects of natural colorants, including their sources, photochemistry and associated biological activities explored under in-vitro and in-vivo animal and human studies. However a particular focus is given on innovative technological approaches for the effective extraction of natural colors for nutraceutical and pharmaceutical applications.
Collapse
Affiliation(s)
- Mehnaza Manzoor
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu 180009, India.
| | - Jagmohan Singh
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu 180009, India
| | - Adil Gani
- Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India.
| | - Nairah Noor
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu 180009, India
| |
Collapse
|
16
|
Production of Extracts Composed of Pectic Oligo/Polysaccharides and Polyphenolic Compounds from Cranberry Pomace by Microwave-Assisted Extraction Process. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02593-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Zhao Y, Zhang Y, Zhu Y, Liu C, Feng S, Ma W, Gao M, Zheng X. Optimization of processing technology for blue honeysuckle berry snack: From microwave vacuum concentration to freeze‐drying. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.15151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yueming Zhao
- College of Engineering Northeast Agricultural University Harbin China
| | - Yuhan Zhang
- College of Engineering Northeast Agricultural University Harbin China
| | - Yong Zhu
- College of Engineering Northeast Agricultural University Harbin China
| | - Chai Liu
- College of Engineering Northeast Agricultural University Harbin China
| | - Shaoxuan Feng
- College of Engineering Northeast Agricultural University Harbin China
| | - Wenyu Ma
- College of Engineering Northeast Agricultural University Harbin China
| | - Ming Gao
- College of Engineering Northeast Agricultural University Harbin China
| | - Xianzhe Zheng
- College of Engineering Northeast Agricultural University Harbin China
| |
Collapse
|
18
|
Partitioning of bio-active compounds from rinds of garcinia indica using aqueous two-phase system: Process evaluation and optimization. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Zhang R, Chen G, Yang B, Wu Y, Du M, Kan J. Insights into the stability of carotenoids and capsaicinoids in water-based or oil-based chili systems at different processing treatments. Food Chem 2020; 342:128308. [PMID: 33051097 DOI: 10.1016/j.foodchem.2020.128308] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 12/15/2022]
Abstract
Ultrasonication, microwave, heat, and light treatments, as well as storage conditions, were investigated for their effects on the stability of carotenoids and capsaicinoids in water/oil chili systems. The stability of carotenoids and capsaicinoids were found to vary in response to different processing treatments. Carotenoid and capsaicinoid contents in chili juice (CJ, water system) were increased by low-power ultrasonic and microwave treatments, but decreased by high-power treatments. The thermal stability of carotenoids and capsaicinoids in hot pot bottom (HPB, oil system) were superior to those in CJ. Moreover, ultraviolet light significantly reduced the contents of carotenoids and capsaicinoids in both CJ and HPB. It was also demonstrated that low temperature conditions (4 °C) significantly delayed the degradation of carotenoids and capsaicinoids in chili-based food. In conclusion, our findings suggest that the stability of carotenoids and capsaicinoids can be tuned using different processing and storage techniques appropriate to different systems.
Collapse
Affiliation(s)
- Rui Zhang
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing, 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing, 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, PR China
| | - Guangjing Chen
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing, 400715, PR China; Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, Guizhou 550005, PR China.
| | - Bing Yang
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing, 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing, 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, PR China
| | - Yun Wu
- College of Food Science and Pharmacy, Xinjiang Agricultural University, 2 Urumqi, Xinjiang 830052, PR China
| | - Muying Du
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing, 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, PR China
| | - Jianquan Kan
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing, 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing, 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, PR China.
| |
Collapse
|
20
|
Pathak N, Grossi Bovi G, Limnaios A, Fröhling A, Brincat J, Taoukis P, Valdramidis VP, Schlüter O. Impact of cold atmospheric pressure plasma processing on storage of blueberries. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Namrata Pathak
- Quality and Safety of Food and Feed Department of Horticultural Engineering Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB) Potsdam Germany
| | - Graziele Grossi Bovi
- Quality and Safety of Food and Feed Department of Horticultural Engineering Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB) Potsdam Germany
| | - Athanasios Limnaios
- Laboratory of Food Chemistry and Technology School of Chemical Engineering National Technical University of Athens Athens Greece
| | - Antje Fröhling
- Quality and Safety of Food and Feed Department of Horticultural Engineering Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB) Potsdam Germany
| | - Jean‐Pierre Brincat
- Institute of Applied Sciences Malta College of Arts, Science & Technology Paola Malta
| | - Petros Taoukis
- Laboratory of Food Chemistry and Technology School of Chemical Engineering National Technical University of Athens Athens Greece
| | - Vasilis P. Valdramidis
- Department of Food Sciences and Nutrition Faculty of Health Sciences University of Malta Msida Malta
- Centre for Molecular Medicine and Biobanking University of Malta Msida Malta
| | - Oliver Schlüter
- Quality and Safety of Food and Feed Department of Horticultural Engineering Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB) Potsdam Germany
| |
Collapse
|
21
|
Aguilar CN, Ruiz HA, Rubio Rios A, Chávez-González M, Sepúlveda L, Rodríguez-Jasso RM, Loredo-Treviño A, Flores-Gallegos AC, Govea-Salas M, Ascacio-Valdes JA. Emerging strategies for the development of food industries. Bioengineered 2020; 10:522-537. [PMID: 31633446 PMCID: PMC6844418 DOI: 10.1080/21655979.2019.1682109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Undoubtedly, the food industry is undergoing a dynamic process of transformation in its continual development in order to meet the requirements and solve the great problems represented by a constantly growing global population and food claimant in both quantity and quality. In this sense, it is necessary to evaluate the technological trends and advances that will change the landscape of the food processing industry, highlighting the latest requirements for equipment functionality. In particular, it is crucial to evaluate the influence of sustainable green biotechnology-based technologies to consolidate the food industry of the future, today, and it must be done by analyzing the mega-consumption trends that shape the future of industry, which range from local sourcing to on-the-go food, to an increase in organic foods and clean labels (understanding ingredients on food labels). While these things may seem alien to food manufacturing, they have a considerable influence on the way products are manufactured. This paper reviews in detail the conditions of the food industry, and particularly analyzes the application of emerging technologies in food preservation, extraction of bioactive compounds, bioengineering tools and other bio-based strategies for the development of the food industry.
Collapse
Affiliation(s)
- Cristóbal N Aguilar
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Mexico
| | - Hector A Ruiz
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Mexico
| | - Anilú Rubio Rios
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Mexico
| | - Mónica Chávez-González
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Mexico
| | - Leonardo Sepúlveda
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Mexico
| | - Rosa M Rodríguez-Jasso
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Mexico
| | - Araceli Loredo-Treviño
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Mexico
| | - Adriana C Flores-Gallegos
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Mexico
| | - Mayela Govea-Salas
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Mexico
| | - Juan A Ascacio-Valdes
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Mexico
| |
Collapse
|