1
|
Laishram D, Kim SB, Lee SY, Park SJ. Advancements in Biochar as a Sustainable Adsorbent for Water Pollution Mitigation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2410383. [PMID: 40245172 DOI: 10.1002/advs.202410383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 02/05/2025] [Indexed: 04/19/2025]
Abstract
Biochar, a carbon-rich material produced from the partial combustion of biomass wastes is often termed "black gold" for its potential in water pollution mitigation and carbon sequestration. By customizing biomass feedstock and optimizing preparation strategies, biochar can be engineered with specific physicochemical properties to enhance its effectiveness in removing contaminants from wastewater. Recent studies demonstrate that biochar can achieve > 90% removal efficiency for heavy metals such as lead and cadmium, > 85% adsorption capacity for organic pollutants such as dyes and phenols, and > 80% reduction in microplastics and nanoplastics. This review explores recent advancements in biochar preparation technologies, such as pyrolysis, carbonization, gasification, torrefaction, and rectification, along with physical, chemical, and biological modifications that are crucial for efficient pollutant removal. The core of this review focuses on biochar's applications in removing a wide range of pollutants from wastewater, detailing mechanisms for organic pollutants, inorganic salts, pharmaceutical contaminants, microplastics, nanoplastics, and volatile organic compounds. In addition, the review introduces machine learning as a key technique for optimizing biochar production and functionality, showcasing its potential in advancing biochar technology. The conclusion provides a comprehensive outlook on biochar's future, emphasizing ongoing research and its role in sustainable environmental management.
Collapse
Affiliation(s)
- Devika Laishram
- Department of Mechanical Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Su-Bin Kim
- Department of Mechanical Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Seul-Yi Lee
- Department of Mechanical Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Soo-Jin Park
- Department of Mechanical Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea
- Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin, 17104, Republic of Korea
| |
Collapse
|
2
|
Soyertaş Yapıcıoğlu P. An empirical and statistical investigation on decarbonizing groundwater using industrial waste-based biochar: Trading-off zero-waste management and zero-emission target. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125129. [PMID: 40154255 DOI: 10.1016/j.jenvman.2025.125129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/07/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
This study recommended a trade-off between zero-waste management of a brewery industry and zero-aim target of the drinking water sector. This study mainly aimed to decrease the carbon dioxide (CO2) emissions resulting from groundwater treatment using biochar derived from malt sprout (MS) which is a waste by-product of a brewery industry. Also, CO2 resulting from groundwater treatment was collected and gas adsorption was performed to define the CO2 adsorption capacity of each biochar. Data Envelopment Analysis (DEA) was performed to determine the effect of groundwater quality on CO2 emissions. In the result of experimental and computational analysis, a new carbon capture indicator (CCIB) was derived depending on biochar adsorption process, in this study. The results revealed that averagely 28.98 % of reduction on CO2 emission from groundwater treatment was reported using the mixture of three malt sprout derived biochar. MS1 had the highest carbon capture capacity which was derived at 300 °C. According to (DEA) results, the optimum total organic carbon (TOC) should be 3.2 mg/L for the minimum CO2 emission. Also, optimum biochar dose, contact time and gas flow were 8 g, 10 min and 965 mL/d, respectively for the maximum CO2 adsorption by biochar according to Box-Behnken design method.
Collapse
|
3
|
Mei Y, Zhuang S, Wang J. Adsorption of heavy metals by biochar in aqueous solution: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 968:178898. [PMID: 39986038 DOI: 10.1016/j.scitotenv.2025.178898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/08/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
Heavy metal pollution (e.g., Cd, Hg, Pb, Cu, Ni, Zn, As and Cr) has become a crucial issue worldwide. Among various remediation strategies, adsorption is widely recognized for its environmental sustainability, cost-effectiveness, and operational simplicity. In this context, biochar has gained significant attention due to its promising adsorption performance. To systematically support adsorption studies, this review compiled essential models for adsorption experiments, including commonly used adsorption kinetics models, isotherm models, and thermodynamic analysis methods. Moreover, we systematically analyzed key factors affecting heavy metal adsorption by biochar, such as its physicochemical properties, environmental pH, temperature, initial concentration, dosage, and the presence of coexisting ions, to identify the conditions that govern adsorption capacity. In addition, the adsorption performance of biochar toward eight significant heavy metals is reviewed in detail, with a focus on elucidating the underlying mechanisms, including complexation, ion exchange, cation-π bonding, electrostatic interactions, and precipitation. Finally, based on identified research gaps and critical challenges, we discuss emerging research tools, including machine learning and advanced surface modifications, to guide the targeted design of biochar materials for enhanced adsorption capacity.
Collapse
Affiliation(s)
- Yichuan Mei
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, PR China
| | - Shuting Zhuang
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
4
|
Guimaray J, Alfredo K, Ergas SJ, Ghebremichael K. Aluminum hydroxide-coated pumice and biochar enhance biosand filter defluoridation and water treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:9004-9016. [PMID: 40100504 DOI: 10.1007/s11356-025-36246-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 03/05/2025] [Indexed: 03/20/2025]
Abstract
Chronic exposure to high fluoride levels in drinking water can cause serious health effects, including skeletal and dental fluorosis. Although conventional biosand filters (BSFs) can provide safe drinking water at the household scale, it has a low fluoride adsorption capacity. In this study, fluoride removal in BSF was enhanced by using aluminum hydroxide coated materials, such as pumice and biochar in place of sand. Bench-scale BSFs were set up with (a) uncoated sand as a control, (b) coated pumice, and (c) coated biochar. BSFs were charged with fluoride spiked surface water (≥ 5 mg/L) for more than a year. While fluoride breakthrough was observed in the sand column on day 49, fluoride concentrations remained below the World Health Organization limit (< 1.5 mg/L) for 313 and 418 days for coated biochar and coated pumice, respectively. Columns with coated media also effectively removed turbidity, fecal indicator bacteria, and organic matter and maintained acceptable filtration rates (> 0.25 m/h) without requiring frequent cleaning. Although pumice had a higher fluoride adsorption capacity (1.1 mg/g) than biochar (0.94 mg/g), filtered water pH in the pumice column was unacceptable (4.18 ± 0.25). However, a post-treatment process, using an oyster shell-filled column, restored pH to within drinking water standards without compromising water quality.
Collapse
Affiliation(s)
- Joshelyn Guimaray
- Department of Civil & Environmental Engineering, University of South Florida (USF), 4202 E. Fowler Ave, ENG 030, FL, 33620, Tampa, USA
| | - Katherine Alfredo
- Department of Civil & Environmental Engineering, University of South Florida (USF), 4202 E. Fowler Ave, ENG 030, FL, 33620, Tampa, USA
| | - Sarina J Ergas
- Department of Civil & Environmental Engineering, University of South Florida (USF), 4202 E. Fowler Ave, ENG 030, FL, 33620, Tampa, USA.
| | - KebreAb Ghebremichael
- Patel College of Global Sustainability, University of South Florida (USF), 4202 E. Fowler Ave, CGS 101, Tampa, 33620, FL, USA
| |
Collapse
|
5
|
Gebrewold BD, Werkneh AA, Kijjanapanich P, Rene ER, Lens PNL, Annachhatre AP. Low cost materials for fluoride removal from groundwater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122937. [PMID: 39490019 DOI: 10.1016/j.jenvman.2024.122937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 11/05/2024]
Abstract
In several parts of the world, high fluoride concentrations in groundwater have been reported.Fluoride concentrations above the World Health Organization's (WHO) threshold level of 1.5 mg/L in drinkable water pose a health concern for communities and the environment. The distribution of fluoride is mainly related to the geological environment: rocks that contain fluorine, for example basalt, shale, and granite, release their respective minerals containing fluoride to the groundwater by dissolution. Excessive fluoride intake leads to dental and skeletal fluorosis, fragile bones, cancer, infertility, damage to the brain function, Alzheimer syndrome, and thyroid disorder. Cheap, abundant, and locally available fluoride removal techniques are needed to meet the requirement for fluoride-free drinking water in developing countries, especially in rural communities. Different conventional methods, such as membrane technologies, ion exchange, coagulation and precipitation techniques, are employed to remove fluoride from drinking water. However, only a few of these techniques can be applied at large-scale in developing countries due to their high investment costs, high maintenance and operating costs, and the possibility of producing toxic intermediates during the treatment process. Unlike conventional methods, adsorption is a promising technology due to its simple operation in a batch or continuous systems, simple design, low-cost of operation and wide range of locally available adsorbents. Adsorption is widely applied for removing fluoride from groundwater and wastewater, effectively maintaining water quality and taste. Based on the review, adsorption stands out as the best method for fluoride removal, considering surface modification and regeneration to increase the efficiency of adsorbent materials. This makes it an ideal solution for ensuring safe drinking water in resource-limited settings.
Collapse
Affiliation(s)
| | - Adhena Ayaliew Werkneh
- Department of Environmental Health Science, School of Public Health, College of Health Sciences, Mekelle University, P.O. Box 1871, Mekelle, Ethiopia; Faculty of Engineering and Environment, Northumbria University, NE1 8ST, Newcastle Upon Tyne, United Kingdom
| | - Pimluck Kijjanapanich
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Eldon R Rene
- IHE Delft Institute for Water Education, Westvest 7, 2611 AX, Delft, the Netherlands
| | - Piet N L Lens
- IHE Delft Institute for Water Education, Westvest 7, 2611 AX, Delft, the Netherlands
| | - Ajit P Annachhatre
- Environmental Engineering and Management, Asian Institute of Technology, P. O. Box 4, Klongluang, Pathumthani 12120, Thailand
| |
Collapse
|
6
|
Yu YL, Chen CY, Dhanasinghe C, Verpoort F, Surampalli RY, Chen SC, Kao CM. Development of modified MgO/biochar composite for chemical adsorption enhancement to cleanup fluoride-contaminated groundwater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123016. [PMID: 39442393 DOI: 10.1016/j.jenvman.2024.123016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/28/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Fluoride contamination in groundwater has become a global environmental issue. Magnesium oxide (MgO) has demonstrated effectiveness as an adsorbent in treating fluoride pollution in groundwater. However, its use in powder and fine granular form often results in losses during the adsorption process, posing challenges for post-treatment recovery and potentially causing secondary environmental pollution. In this study, two novel fluoride adsorbents [rice husk (RH) and spent coffee grounds (SCG)-based magnesium oxide (MgO) biochar composites (MgO/RH and MgO/SCG)] were developed to cleanup fluoride-polluted groundwater. During the adsorbent synthesis process, RH and SCG biochar were pyrolyzed at 500 °C and modified by calcination using MgO. Both MgO/RH and MgO/SCG surfaces exhibited abundant pore structures and formed MgO crystal phases. Batch experiments results show that when the MgO/RH and MgO/SCG material dosages were 1 g/L, fluoride removal rates reached 80% and 86% respectively. The isotherms and kinetics of fluoride adsorption with MgO/RH and MgO/SCG followed the Langmuir isotherm equation and pseudo-second-order kinetic model. The maximum fluoride adsorption capacities of MgO/RH and MgO/SCG were 63.47 mg/g and 141.98 mg/g, respectively, indicating these materials used mono-layer adsorption mechanism for fluoride adsorption. The addition of MgO into the pores of porous adsorbent materials effectively increased their reactive sites and enhanced the adsorption performance of carbon materials. Particularly, SCG biochar had a richer pore structure than RH biochar, providing a larger contact surface area, facilitating the effective dispersion and doping of MgO into the pores. Therefore, MgO/SCG composite exhibited excellent fluoride adsorption properties in water, indicating the potential for developing a new type of MgO-modified SCG adsorbent material with green prospects. This composite effectively mitigated fluoride contamination, reducing the fluoride concentration in groundwater. Both RH and SCG are agricultural and food waste by-products, thus offering the opportunity to significantly reduce production, operation, and maintenance costs.
Collapse
Affiliation(s)
- Ying-Liang Yu
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chiann-Yi Chen
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chathura Dhanasinghe
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China; Joint Institute of Chemical Research (FFMiEN), Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| | - Rao Y Surampalli
- Global Institute for Energy, Environment and Sustainability, Lenexa, KS, USA
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Taoyuan, 32001, Taiwan.
| | - Chih-Ming Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
7
|
Dar FA, Kurella S. Utilization of organic waste from Chinar leaves as sustainable and eco-friendly adsorbent for fluoride removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35147-z. [PMID: 39327322 DOI: 10.1007/s11356-024-35147-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
Due to concerns about high water fluoride concentrations and their detrimental consequences on health, particularly dental and skeletal fluorosis, dependable and cost-effective defluoridation techniques are needed. Chinar leaves (Platanus orientalis), a common waste, might be utilized for the production of activated carbon. For Chinar leaf activated carbon (CLAC) manufacturing, two pre-pyrolysis chemical modification procedures were used: acidic HCl (H-activation) and alkaline NaOH (OH-activation). The success of fluoride removal suggests further research and implementation in locations with fluoride-related water quality issues. This study examines how CLAC dosage, fluoride concentration, temperature, pH, and contact exposure effect defluoridation efficiency. The pseudo-second-order non-linear kinetic model and Freundlich non-linear isotherm model with R2 = 0.99 fit the data, resulting in a peak adsorption capacity of 30.3 mg/g for 0.3 g CLAC. In the present work, the adsorption mechanism was regulated by more than intraparticle diffusion. Adsorption occurred spontaneously as exothermic monolayer chemisorption, according to thermodynamic studies. Adsorbent activated with HCl (H-activated) showed promising results, with 73% F- removal efficiency for OH-activated and 91% for H-activated CLAC.
Collapse
Affiliation(s)
- Firdous Ahmad Dar
- Department of Chemical Engineering, National Institute of Technology, Srinagar, Jammu and Kashmir, 190006, India
| | - Swamy Kurella
- Department of Chemical Engineering, National Institute of Technology, Srinagar, Jammu and Kashmir, 190006, India.
| |
Collapse
|
8
|
Patro A, Dwivedi S, Thakur A, Sahoo PK, Biswas JK. Recent approaches and advancement in biochar-based environmental sustainability: Is biochar fulfilling the sustainable development goals? iScience 2024; 27:110812. [PMID: 39310752 PMCID: PMC11416529 DOI: 10.1016/j.isci.2024.110812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
This review highlights the application of biochar (BC) for attaining different SDGs (SDG 6: clean water and sanitation, SDG 7: affordable and clean energy, SDG 13: climate action, and SDG 15: life on land). These goals coincide with the various existing environmental problems including wastewater treatment, soil amendment, greenhouse gas remediation, and bioenergy generation. So, the review encompasses the various mechanisms involved in the BC-assisted treatment and reclamation of water, pollutant immobilization and enhancing soil properties, reduction of greenhouse gas emission during the wastewater treatment process and soil amendment mechanisms, bioenergy generation through various electrode material, biodiesel production, and many more. The review also explains the various drawbacks and limitations of BC application to the available environmental issues. Conclusively, it was apprehended that BC is an appropriate material for several environmental applications. More research interventions are further required to analyze the applicability of different BC materials for attaining other available SDGs.
Collapse
Affiliation(s)
- Ashmita Patro
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Saurabh Dwivedi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Anjali Thakur
- Department of Environmental Science and Technology, Central University of Punjab, V.P.O. Ghudda, Bathinda 151401, Punjab, India
| | - Prafulla Kumar Sahoo
- Department of Environmental Science and Technology, Central University of Punjab, V.P.O. Ghudda, Bathinda 151401, Punjab, India
| | - Jayanta Kumar Biswas
- Department of Ecological Studies and International Centre for Ecological Engineering, University of Kalyani, Kalyani, Nadia 741235, West Bengal, India
| |
Collapse
|
9
|
Yang R, Bai F, Mei L, Guo W, Qiao H, Chen G, Liu J, Ke F, Peng C, Hou R, Wan X, Cai H. Zirconium‑cerium modified polyvinyl alcohol/NaCMC biocomposite film: Synthesis of films through high-speed shear assisted technique and removal fluoride from water. Carbohydr Polym 2024; 339:122239. [PMID: 38823909 DOI: 10.1016/j.carbpol.2024.122239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/28/2024] [Accepted: 05/05/2024] [Indexed: 06/03/2024]
Abstract
A new zirconium and cerium-modified polyvinyl alcohol (PVA) sodium carboxymethyl cellulose (NaCMC) film (PVA/CMC-Zr-Ce) was synthesized thru a high-speed shear-assisted method and its adsorption for the removal of fluoride was studied, in which the NaCMC provided -COONa for ion exchange between Na and Zr-Ce, thus the loading amount of Zr-Ce on films was accordingly increased. The morphology and structure of PVA/CMC-Zr-Ce were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). Besides, the mechanical properties, water contact angle, and swelling ratio of film were also evaluated. The addition of high-speed shear improved the dispersion of the emulsion system, and PVA/CMC-Zr-Ce film with good adsorption performance and film stability was prepared. While, it was found that the adsorption capacity could reach 67.25 mg/g and equilibrium time could reach 20 min. The adsorption mechanism of PVA/CMC-Zr-Ce revealed that ion exchange between hydroxide and fluoride, electrostatic interactions and complexation were the dominating influencing factors. Based on these findings, it can be concluded that PVA/CMC-Zr-Ce film- synthesized with high-speed shear assistance technique is a promising adsorbent for fluoride removal from water.
Collapse
Affiliation(s)
- Ruirui Yang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Fuqing Bai
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Liping Mei
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Wei Guo
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Huanhuan Qiao
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Guijie Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Junsheng Liu
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiu Avenue, Hefei 230601, PR China
| | - Fei Ke
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Chuanyi Peng
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Ruyan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, PR China.
| | - Huimei Cai
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, PR China.
| |
Collapse
|
10
|
Jha A, Mishra S. Exploring the potential of waste biomass-derived pectin and its functionalized derivatives for water treatment. Int J Biol Macromol 2024; 275:133613. [PMID: 38960223 DOI: 10.1016/j.ijbiomac.2024.133613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 02/02/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Environmental pollution remains a constant challenge due to the indiscriminate use of fossil fuels, mining activities, chemicals, drugs, aromatic compounds, pesticides, etc. Many emerging pollutants with no fixed standards for monitoring and control are being reported. These have adverse impacts on human life and the environment around us. This alarms the wastewater management towards developing materials that can be used for bulk water treatment and are easily available, low cost, non-toxic and biodegradable. Waste biomass like pectin is extracted from fruit peels which are a discarded material. It is used in pharmaceutical and nutraceutical applications but its application as a material for water treatment is very limited in literature. The scientific gap in literature review reports are evident with discussion only on pectin based hydrogels or specific pectin derivatives for some applications. This review focuses on the chemistry, extraction, functionalization and production of pectin derivatives and their applications in water treatment processes. Pectin functionalized derivatives can be used as a flocculant, adsorbent, nano biopolymer, biochar, hybrid material, metal-organic frameworks, and scaffold for the removal of heavy metals, ions, toxic dyes, and other contaminants. The huge quantum of pectin biomass may be explored further to strengthen environmental sustainability and circular economy practices.
Collapse
Affiliation(s)
- Adya Jha
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Sumit Mishra
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi 835215, India.
| |
Collapse
|
11
|
Foroutan R, Mohammadi R, Razeghi J, Ahmadi M, Ramavandi B. Amendment of Sargassum oligocystum bio-char with MnFe 2O 4 and lanthanum MOF obtained from PET waste for fluoride removal: A comparative study. ENVIRONMENTAL RESEARCH 2024; 251:118641. [PMID: 38458588 DOI: 10.1016/j.envres.2024.118641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
The use of biomass and waste to produce adsorbent reduces the cost of water treatment. The bio-char of Sargassum oligocystum (BCSO) was modified with MnFe2O4 magnetic particles and La-metal organic framework (MOF) to generate an efficient adsorbent (BCSO/MnFe2O4@La-MOF) for fluoride ions (F-) removal from aqueous solutions. The performance of BCSO/MnFe2O4@La-MOF was compared with BCSO/MnFe2O4 and BCSO. The characteristics of the adsorbents were investigated using various techniques, which revealed that the magnetic composites were well-synthesized and exhibited superparamagnetic properties. The maximum adsorption efficiencies (BCSO: 97.84%, BCSO/MnFe2O4: 97.85%, and BCSO/MnFe2O4@La-MOF: 99.36%) were achieved under specific conditions of pH 4, F- concentration of 10 mg/L, and adsorbent dosage of 3, 1.5, and 1 g/L for BCSO, BCSO/MnFe2O4, and BCSO/MnFe2O4@La-MOF, respectively. The results demonstrated that the experimental data adheres to a pseudo-second-order kinetic model. The enthalpy, entropy, and Gibbs free energy were determined to be negative; thus, the F- adsorption was exothermic and spontaneous in the range of 25-50 °C. The equilibrium data of the process exhibited conformity with the Langmuir model. The maximum adsorption capacities of F- ions were determined as 10.267 mg/g for BCSO, 14.903 mg/g for the BCSO/MnFe2O4, and 31.948 mg/g for BCSO/MnFe2O4@La-MOF. The KF and AT values for the F- adsorption were obtained at 21.03 mg/g (L/mg)1/n and 100 × 10+9 L/g, indicating the pronounced affinity of the BCSO/MnFe2O4@La-MOF towards F- than other samples. The significant potential of the BCSO/MnFe2O4@La-MOF magnetic composite for F- removal from industrial wastewater, makes it suitable for repeated utilization in the adsorption process.
Collapse
Affiliation(s)
- Rauf Foroutan
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Reza Mohammadi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Jafar Razeghi
- Department of Plant Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Mehrshad Ahmadi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Bahman Ramavandi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
12
|
Cruz-Briano SA, Medellin-Castillo NA, Delgado-Sanchez P, Castro-Larragoitia GJ, Leyva-Ramos R, Cortina-Rangel MA, Labrada-Delgado GJ, Villela-Martinez DE, Flores-Rojas AI, Gonzalez-Fernandez LA, Cisneros-Ontiveros HG. Binary fluoride and As(V) adsorption in water using pleco fish bone chars. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:40156-40173. [PMID: 37556064 DOI: 10.1007/s11356-023-29101-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023]
Abstract
The present work studied individual and binary adsorption of fluorides and As(V) in water on pleco fish bone chars (BC), as well as the effect of BC mass variation on the adsorption capacity of fluoride and As(V) in water for human consumption. The results of individual adsorption indicated that the adsorption of fluoride and As(V) on BC depends on solution pH. The adsorption capacity of fluorides at an initial concentration of 30 mg L-1 increases approximately 3 times, from 5.9 to 15.3 mg g-1, when decreasing the pH of the solution from 9 to 5, however, for the case of As(V) an antagonistic effect is observed, the adsorption capacity increases 7 times when raising the pH from 5 to 9, from 18.4 to 132.1 µg g-1 at an initial As(V) concentration of 300 µg L-1. Besides, in the binary adsorption, BC showed a higher affinity to adsorb fluoride since its adsorption capacity decreased from 16.55 to 12.50 mg g-1 as the As(V) concentration increased from 0 to 800 µg L-1 in solution. In contrast, As(V) adsorption was severely affected, decreasing from 140.2 to 32.7 µg g-1 when the fluoride concentration in the solution increased from 0 to 100 mg L-1. On the other hand, in the adsorption of groundwater contaminated with fluoride and As(V), it was determined that increasing the mass of BC from 0.5 to 20 g increases the removal percentage, reaching 99.3 and 75.7% removal for fluoride and As(V), respectively, due to the fact that increasing the mass of the adsorbent leads to a larger area and a greater number of sites that allow the adsorption of these contaminants. The thermodynamic study revealed the spontaneity of fluoride and As(V) adsorption, better affinity for fluoride but higher adsorption rate of As(V) on BC. Characterization techniques such as XRD and EDS allowed identifying hydroxyapatite as the mineral phase of BC, which is responsible for the adsorption of BC. By studying the effect of solution pH on the adsorption capacities and the characterization of BC such as XRD, EDS and TGA, it was determined that the mechanisms of fluoride adsorption are by electrostatic attractions and ion exchange, and for As(V) it is by coprecipitation and ion exchange. It was concluded that BC from pleco fish could be an alternative for treating water contaminated by fluorides and As(V).
Collapse
Affiliation(s)
- Sergio A Cruz-Briano
- Environmental Agenda, Multidisciplinary Graduate Program in Environmental Sciences, University of San Luis Potosi, Av. Dr. M Nava No. 201, Zona Universitaria, 78210, San Luis Potosi, Mexico
| | - Nahum A Medellin-Castillo
- Environmental Agenda, Multidisciplinary Graduate Program in Environmental Sciences, University of San Luis Potosi, Av. Dr. M Nava No. 201, Zona Universitaria, 78210, San Luis Potosi, Mexico.
- Postgraduate Study and Research Center, Faculty of Engineering, Autonomous University of San Luis Potosi, Zona Universitaria, Av. Dr. M Nava No. 8, 78290, San Luis Potosi, Mexico.
| | - Pablo Delgado-Sanchez
- Faculty of Agronomy, Autonomous University of San Luis Potosi, San Luis - Matehuala Palma de La Cruz, Soledad de Graciano Sanchez, Km. 14.5 Carr, 78321, San Luis Potosi, Mexico
| | - Guillermo J Castro-Larragoitia
- Environmental Agenda, Multidisciplinary Graduate Program in Environmental Sciences, University of San Luis Potosi, Av. Dr. M Nava No. 201, Zona Universitaria, 78210, San Luis Potosi, Mexico
| | - Roberto Leyva-Ramos
- Postgraduate Study and Research Center, Faculty of Chemical Sciences, Autonomous University of San Luis Potosi, Av. Dr. M Nava No. 6, Zona Universitaria, 78210, San Luis Potosi, Mexico
| | - Miguel A Cortina-Rangel
- Geochemistry Laboratory, Geology Institute, Autonomous University of San Luis Potosi, Av. Dr. M Nava No. 5, Zona Universitaria, 78240, San Luis Potosi, Mexico
| | - Gladis J Labrada-Delgado
- LINAN-IPICYT, Cam. a La Presa de San José No. 2055, Lomas 4Ta Secc, 78216, San Luis Potosi, Mexico
| | - Diana E Villela-Martinez
- Postgraduate Study and Research Center, Faculty of Chemical Sciences, Autonomous University of San Luis Potosi, Av. Dr. M Nava No. 6, Zona Universitaria, 78210, San Luis Potosi, Mexico
| | - Alfredo I Flores-Rojas
- Postgraduate Study and Research Center, Faculty of Engineering, Autonomous University of San Luis Potosi, Zona Universitaria, Av. Dr. M Nava No. 8, 78290, San Luis Potosi, Mexico
| | - Lázaro A Gonzalez-Fernandez
- Environmental Agenda, Multidisciplinary Graduate Program in Environmental Sciences, University of San Luis Potosi, Av. Dr. M Nava No. 201, Zona Universitaria, 78210, San Luis Potosi, Mexico
| | - Hilda G Cisneros-Ontiveros
- Environmental Agenda, Multidisciplinary Graduate Program in Environmental Sciences, University of San Luis Potosi, Av. Dr. M Nava No. 201, Zona Universitaria, 78210, San Luis Potosi, Mexico
| |
Collapse
|
13
|
Umare S, Thawait AK, Dhawane SH. Remediation of arsenic and fluoride from groundwater: a critical review on bioadsorption, mechanism, future application, and challenges for water purification. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37877-37906. [PMID: 38771540 DOI: 10.1007/s11356-024-33679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
In the past few decades, the excessive and inadequate use of technological advances has led to groundwater contamination, mainly caused by organic and inorganic pollutants, which are highly harmful to human health, agriculture, water bodies, and aquaculture. Among all toxic pollutants, As and F- play a significant role in groundwater contamination due to their excellent reactivity with other elements. To mitigate the prevalence of arsenic and fluoride within the water system, the use of biochar gives an attractive strategy for removing them mainly because of the substantial surface area, pore size, pH, aromatic structure, and functional groups inherent in biochar, which are primarily dependent upon its raw material and pyrolysis temperature. Researcher develops different methods like physiochemical and electrochemical for treating arsenic and fluoride contamination. Among all removal methods, bioadsorption using agricultural waste residues shows effective/feasible removal of As and F- due to its low cost, ecofriendly nature, readily available, and efficient reuse compared with several other harmful synthetic materials that demand costly design specifications. This study discusses current developments in bioadsorption methods for As and F- that use agricultural-based biomaterials and describes the prevailing state of arsenic and fluoride removal strategies that use biomaterials precisely.
Collapse
Affiliation(s)
- Shubhangi Umare
- Department of Civil Engineering, Maulana Azad National Institute of Technology, Bhopal, 462003, India
| | - Ajay K Thawait
- Department of Civil Engineering, Maulana Azad National Institute of Technology, Bhopal, 462003, India
| | - Sumit H Dhawane
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, 462003, India.
| |
Collapse
|
14
|
Das K, Sukul U, Chen JS, Sharma RK, Banerjee P, Dey G, Taharia M, Wijaya CJ, Lee CI, Wang SL, Nuong NHK, Chen CY. Transformative and sustainable insights of agricultural waste-based adsorbents for water defluoridation: Biosorption dynamics, economic viability, and spent adsorbent management. Heliyon 2024; 10:e29747. [PMID: 38681598 PMCID: PMC11046213 DOI: 10.1016/j.heliyon.2024.e29747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024] Open
Abstract
With the progression of civilization, the harmony within nature has been disrupted, giving rise to various ecocidal activities that are evident in every spheres of the earth. These activities have had a profound and far-reaching impact on global health. One significant example of this is the presence of fluoride in groundwater exceeding acceptable limits, resulting in the widespread occurrence of "Fluorosis" worldwide. It is imperative to mitigate the concentration of fluoride in drinking water to meet safety standards. While various defluoridation techniques exist, they often have drawbacks. Biosorption, being a simple, affordable and eco-friendly method, has gained preference for defluoridation. However, its limited commercialization underscores the pressing need for further research in this domain. This comprehensive review article offers a thorough examination of the defluoridation potential of agro-based adsorbents, encompassing their specific chemical compositions and preparation methods. The review presents an in-depth discussion of the factors influencing fluoride biosorption and conducts a detailed exploration of adsorption isotherm and adsorption kinetic models to gain a comprehensive understanding of the nature of the adsorption process. Furthermore, it evaluates the commercial viability through an assessment of regeneration potential and a cost analysis of these agro-adsorbents, with the aim of facilitating the scalability of the defluoridation process. The elucidation of the adsorption mechanism and recommendations for overcoming challenges in large-scale implementation offer a comprehensive outlook on this eco-friendly and sustainable approach to fluoride removal. In summary, this review article equips readers with a lucid understanding of agro-adsorbents, elucidates their ideal conditions for improved performance, offers a more profound insight into the fluoride biosorption mechanism, and introduces the concept of effective spent adsorbent management.
Collapse
Affiliation(s)
- Koyeli Das
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| | - Uttara Sukul
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung, 82445, Taiwan
| | - Raju Kumar Sharma
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| | - Pritam Banerjee
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| | - Gobinda Dey
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| | - Md. Taharia
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| | - Christian J. Wijaya
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surbaya, 60114, Indonesia
- Collaborative Research Center for Zero Waste and Sustainability, Kalijudan 37, Surabaya, 60114, Indonesia
| | - Cheng-I Lee
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
- Center for Nano Bio-Detection, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, 168, University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| | - Shan-Li Wang
- Department of Agricultural Chemistry, National Taiwan University, Taipei, 106319, Taiwan
| | - Nguyen Hoang Kim Nuong
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| | - Chien-Yen Chen
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
- Center for Nano Bio-Detection, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, 168, University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| |
Collapse
|
15
|
Ahmed Khan B, Ahmad M, Bolan N, Farooqi A, Iqbal S, Mickan B, Solaiman ZM, Siddique KHM. A mechanistic approach to arsenic adsorption and immobilization in aqueous solution, groundwater, and contaminated paddy soil using pine-cone magnetic biochar. ENVIRONMENTAL RESEARCH 2024; 245:117922. [PMID: 38151150 DOI: 10.1016/j.envres.2023.117922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/19/2023] [Accepted: 12/09/2023] [Indexed: 12/29/2023]
Abstract
Arsenic (As) poisoning in groundwater and rice paddy soil has increased globally, impacting human health and food security. There is an urgent need to deal with As-contaminated groundwater and soil. Biochar can be a useful remedy for toxic contaminants. This study explains the synthesis of pinecone-magnetic biochar (PC-MBC) by engineering the pinecone-pristine biochar with iron salts (FeCl3.6H2O and FeSO4.7H2O) to investigate its effects on As(V) adsorption and immobilization in water and soil, respectively. The results indicated that PC-MBC can remediate As(V)-contaminated water, with an adsorption capacity of 12.14 mg g-1 in water. Isotherm and kinetic modeling showed that the adsorption mechanism involved multilayer, monolayer, and diffusional processes, with chemisorption operating as the primary interface between As(V) and biochar. Post-adsorption analysis of PC-MBC, using FTIR and XRD, further revealed chemical fixing and outer-sphere complexation between As(V) and Fe, O, NH, and OH as the main reasons for As(V) adsorption onto PC-MBC. Recycling of PC-MBC also had excellent adsorption even after several regeneration cycles. Similarly, PC-MBC successfully immobilized As in paddy soil. Single and sequential extraction results showed the transformation of mobile forms of As to a more stable form, confirmed by non-destructive analysis using SEM, EDX, and elemental dot mapping. Thus, Fe-modified pine-cone biochar could be a suitable and cheap adsorbent for As-contaminated water and soil.
Collapse
Affiliation(s)
- Basit Ahmed Khan
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan; The UWA Institute of Agriculture and UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia
| | - Mahtab Ahmad
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Nanthi Bolan
- The UWA Institute of Agriculture and UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia
| | - Abida Farooqi
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Sajid Iqbal
- Department of Nuclear & Quantum Engineering, Korea Advance Institute of Science and Technology (KAIST), 291-Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Bede Mickan
- The UWA Institute of Agriculture and UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia
| | - Zakaria M Solaiman
- The UWA Institute of Agriculture and UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture and UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia
| |
Collapse
|
16
|
Li W, Xie P, Zhou H, Zhao H, Yang B, Xiong J. Preparation of Lanthanum-Modified Tea Waste Biochar and Its Adsorption Performance on Fluoride in Water. MATERIALS (BASEL, SWITZERLAND) 2024; 17:766. [PMID: 38591626 PMCID: PMC10856180 DOI: 10.3390/ma17030766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 04/10/2024]
Abstract
In this study, tea waste was used as a raw material, and TBC (tea waste biochar) was prepared by pyrolysis at 700 °C. La(NO3)3·6H2O was used as the modifier to optimize one-way modification; the orthogonal experiment was undertaken to determine the optimal preparation conditions; and La-TBC (lanthanum-modified biochar) was obtained. The key factors for the adsorption of fluoride by La-TBC were investigated by means of batch adsorption experiments, and kinetics and isothermal adsorption experiments were carried out on the adsorption of fluoride in geothermal hot spring water. The adsorption mechanism of fluoride by La-TBC was analyzed via characterization methods such as SEM-EDS (Scanning Electron Microscope and Energy Dispersive Spectrometer), BET (Brunauer-Emmett-Teller), FTIR (Fourier transform infrared), XRD (X-ray diffraction), and so on. The results show that La-TBC had the best adsorption effect on fluoride at pH 7. The process of adsorption of fluoride follows the pseudo-second-order kinetics and Langmuir isothermal model, and the maximum theoretical adsorption quantity was 47.47 mg/g at 80 °C, while the removal rate of fluoride from the actual geothermal hot spring water reached more than 95%. The adsorption process was dominated by the monolayer adsorption of chemicals, and the mechanisms mainly include pore filling, ion exchange, and electrostatic interaction.
Collapse
Affiliation(s)
| | | | | | | | | | - Jian Xiong
- School of Ecology and Environment, Tibet University, Lhasa 850012, China; (W.L.); (P.X.); (H.Z.); (H.Z.); (B.Y.)
| |
Collapse
|
17
|
Cho SK, Igliński B, Kumar G. Biomass based biochar production approaches and its applications in wastewater treatment, machine learning and microbial sensors. BIORESOURCE TECHNOLOGY 2024; 391:129904. [PMID: 37918492 DOI: 10.1016/j.biortech.2023.129904] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/26/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023]
Abstract
Biochar is a stable carbonaceous material derived from various biomass and can be utilized as adsorbents, catalysts and precursors in various environmental applications. This review discusses various feedstock materials and methods of biochar production via traditional as well as modern approaches. Additionally, the biochar characteristics, HTC process, and its modification by employing steam and gas purging, acidic, basic / alkaline and organo-solvent, electro- and magnetic fields have been discussed. The recent biochar applications for real water, wastewater and industrial wastewater for the abstraction of environmental contaminants also reviewed. Moreover, applications in machine learning and microbial sensors were discussed. In the meantime, analyses on commercial and environmental profit, current ecological concerns and the future directions of biochar application have been well presented.
Collapse
Affiliation(s)
- Si-Kyung Cho
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, 10326, Republic of Korea
| | - Bartłomiej Igliński
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
18
|
Mahmoud ME, Ibrahim GAA. Cr(VI) and doxorubicin adsorptive capture by a novel bionanocomposite of Ti-MOF@TiO 2 incorporated with watermelon biochar and chitosan hydrogel. Int J Biol Macromol 2023; 253:126489. [PMID: 37625740 DOI: 10.1016/j.ijbiomac.2023.126489] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Biodegradable polymers, biochars and metal organic frameworks (MOFs) have manifested as top prospects for elimination of harmful pollutants. In the current study, Ti-MOF was synthesized and decorated with TiO2 nanoparticles, then embedded into watermelon peel biochar and functionalized with chitosan hydrogel to produce Ti-MOF@TiO2@WMPB@CTH. Various instruments were employed to assure the effective production of the bionanocomposite. The HR-TEM and SEM studies referred to excellent surface porosity and homogeneity of Ti-MOF@TiO2@WMPB@CTH bionanocomposite, with 51.02-74.23 nm. Based on the BET analysis, the mesoporous structure has a significant surface area of 366.04 m2 g-1 and a considerable total pore volume of 11.38 × 10-2 cm3 g-1, with a mean pore size of 12.434 nm. Removal of doxorubicin (DOX) and hexavalent chromium (Cr(VI)) was examined under various experimentations. Pseudo-second order kinetic models in addition to Langmuir isotherm offered the best fitting. Thermodynamic experiments of the two contaminants demonstrated spontaneous and endothermic interactions. After five subsequent adsorption and desorption cycles, Ti-MOF@TiO2@WMPB@CTH bionanocomposite demonstrated an exceptional recyclability for the elimination of DOX and Cr(VI) ions, reaching 97.96 % and 95.28 %, respectively. Finally, the newly designed Ti-MOF@TiO2@WMPB@CTH bionanocomposite demonstrated a high removing efficiency of Cr(VI) ions and DOX from samples of real water.
Collapse
Affiliation(s)
- Mohamed E Mahmoud
- Faculty of Sciences, Chemistry Department, Alexandria University, Moharem Bey, Alexandria, Egypt.
| | - Ghada A A Ibrahim
- Faculty of Education, Physics and Chemistry Department, Alexandria University, Alexandria, Egypt
| |
Collapse
|
19
|
Nigussie Z, Habtu NG. Performance evaluation of biocoagulant for the effective removal of turbidity and microbial pathogens from drinking water. JOURNAL OF WATER AND HEALTH 2023; 21:1158-1176. [PMID: 37756187 PMCID: wh_2023_059 DOI: 10.2166/wh.2023.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
In this study, Moringa seeds, aloe vera leaves, and cactus leaves were used as biocoagulants for the treatment of drinking water. The effects of coagulant type, coagulant dosage, and pH were studied on the quality of the treated water. Response surface methodology was used to predict and optimize the parameters. The standard Six Jar test was used to measure the performance of coagulants. Three mixing modes were used in the jar test: quick mixing at 1 min at 120 rpm, slow mixing for 19 min at 40 rpm, and 15 min settling. The characterization results showed that extracts of Moringa seeds, aloe vera leaves, and cactus leaves contain 43.95 ± 0.49, 13.9 ± 0.42, and 10.94% ± 0.37 protein, respectively. It was revealed that coagulant type, coagulant dosage, and the interaction between (coagulant type (MS-SC and AV-SC) and pH) were significant (p < 0.05) for turbidity removal. Jar test results showed a removal efficiency of turbidity 98.83%, and 98.74% and 69.83% using MS-SC, and AV-SC and Ca-SC bio, respectively. These results imply that the three coagulants can be considered as effective, low-cost, and eco-friendly resources for the treatment of drinking water in rural communities of Ethiopia where access to clean water is scarce.
Collapse
Affiliation(s)
- Zenebe Nigussie
- Department of Chemical Engineering, Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia E-mail:
| | - Nigus Gabbiye Habtu
- Department of Chemical Engineering, Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia
| |
Collapse
|
20
|
Musa N, Allam BK, Singh NB, Banerjee S. Investigation on water defluoridation via batch and continuous mode using Ce-Al bimetallic oxide: Adsorption dynamics, electrochemical and LCA analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121639. [PMID: 37062400 DOI: 10.1016/j.envpol.2023.121639] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023]
Abstract
With variable atomic ratios, Ce-Al bimetallic oxides were fabricated using the sol-gel combustion method and utilized for efficient fluoride removal. The synthesized bimetallic oxides were extensively studied using advanced characterization techniques, including TGA, XRD, FTIR, BET surface area analysis, EDX-assisted FESEM, XPS and impedance analysis. These techniques facilitate the interpretation of the chemical and physical properties of the synthesized material. The Ce-Al (1:1) bimetallic oxide was selected as an adsorbent for the defluoridation. The Ce-Al (1:1) oxide demonstrates a moderately high surface area of 108.67 m2/g. The sorption behaviour of fluoride on Ce-Al (1:1) was thoroughly investigated using batch and column modes. The maximum fluoride removal efficiency (99.4%) was achieved at a temperature of 45 °C and pH of 7.0 using an adsorbent dose of 0.18 g/L for 35 min. Pseudo-second-order kinetic model appropriately describes the sorption process. Freundlich's adsorption isotherm was more pertinent in representing fluoride adsorption behaviour. The maximum fluoride adsorption capacity is 146.73 mg/g at 45 °C. Thermodynamics study indicates fluoride adsorption on Ce-Al (1:1) bimetallic oxide is spontaneous and feasible. The adsorption mechanism was interpreted through XPS spectra, indicating that the physisorption process is mainly responsible for fluoride adsorption. An in-depth investigation of the adsorption dynamics was carried out using mass transfer models and found that the external diffusion process limits the overall adsorption rate. An electrochemical investigation was performed to understand the effect of fluoride adsorption on the electrochemical behaviour of bimetallic oxide. The fixed-bed column adsorption study suggested that the lower flow rate and increased bed height favourably impacted the overall defluoridation process, and column adsorption results were suitably interpreted through both the Adam-Bohart model and Yoon-Nelson dynamics model. The sustainable aspect of the defluoridation process was elucidated in terms of carbon footprint measurement using life cycle assessment analysis. The carbon footprint of the entire treatment process was calculated as 0.094 tons/year.
Collapse
Affiliation(s)
- Neksumi Musa
- Department of Environmental Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Bharat Kumar Allam
- Department of Chemistry, Faculty of Basic Sciences, Rajiv Gandhi University (A Central University), Rono Hills, Doimukh, Arunachal Pradesh, India
| | - Nakshatra Bahadur Singh
- Department of Chemistry and Biochemistry, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India; Research Development Cell, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Sushmita Banerjee
- Department of Environmental Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
21
|
Kiprono P, Kiptoo J, Nyawade E, Ngumba E. Iron functionalized silica particles as an ingenious sorbent for removal of fluoride from water. Sci Rep 2023; 13:8018. [PMID: 37198268 DOI: 10.1038/s41598-023-34357-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/28/2023] [Indexed: 05/19/2023] Open
Abstract
The paucity of safe drinking water remains a global concern. Fluoride is a pollutant prevalent in groundwater that has adverse health effects. To resolve this concern, we devised a silica-based defluoridation sorbent from pumice rock obtained from the Paka volcano in Baringo County, Kenya. The alkaline leaching technique was used to extract silica particles from pumice rock, which were subsequently modified with iron to enhance their affinity for fluoride. To assess its efficacy, selected borehole water samples were used. Scanning electron microscopy, X-ray diffraction, Fourier transform infrared and X-ray fluorescence spectroscopy was used to characterize the sorbent. The extracted silica particles were 96.71% pure and amorphous, whereas the iron-functionalized silica particles contained 93.67% SiO2 and 2.93% Fe2O3. The optimal pH, sorbent dose and contact time for defluoridation of a 20 mg/L initial fluoride solution were 6, 1 g and 45 min, respectively. Defluoridation followed pseudo-second-order kinetics and fitted Freundlich's isotherm. Fluoride levels in borehole water decreased dramatically; Intex 4.57-1.13, Kadokoi 2.46-0.54 and Naudo 5.39-1.2 mg/L, indicating that the silica-based sorbent developed from low-cost, abundant and locally available pumice rock is efficient for defluoridation.
Collapse
Affiliation(s)
- Paul Kiprono
- Department of Chemistry, School of Mathematics and Physical Sciences, Jomo Kenyatta University of Agriculture and Technology, P.O Box 62000-00200, Nairobi, Kenya.
| | - Jackson Kiptoo
- Department of Chemistry, School of Mathematics and Physical Sciences, Jomo Kenyatta University of Agriculture and Technology, P.O Box 62000-00200, Nairobi, Kenya
| | - Eunice Nyawade
- Department of Chemistry, School of Mathematics and Physical Sciences, Jomo Kenyatta University of Agriculture and Technology, P.O Box 62000-00200, Nairobi, Kenya
| | - Elijah Ngumba
- Department of Chemistry, School of Mathematics and Physical Sciences, Jomo Kenyatta University of Agriculture and Technology, P.O Box 62000-00200, Nairobi, Kenya
| |
Collapse
|
22
|
Chu KH, Bashiri H, Hashim MA, Abd Shukor MY, Bollinger JC. The Halsey isotherm for water contaminant adsorption is fake. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
23
|
Mukkanti VB, Tembhurkar AR. Taguchi optimization for water defluoridation by thermally treated biosorbent developed from the waste snail shells. J DISPER SCI TECHNOL 2023. [DOI: 10.1080/01932691.2023.2194383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
24
|
Yi M, Wang K, Wei H, Wei D, Wei X, Wei B, Shao L, Fujita T, Cui X. Efficient preparation of red mud-based geopolymer microspheres (RM@GMs) and adsorption of fluoride ions in wastewater. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130027. [PMID: 36162305 DOI: 10.1016/j.jhazmat.2022.130027] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
In this paper, red mud-based geopolymer microspheres (RM@GMs: 75-150 µm) was prepared by dispersion-suspension-solidification method to remove fluoride ions (F-). It was found that RM@GMs still had good mechanical properties and better F- removal effect at RM content reached 80 % of the total solid mass. The batch adsorption experiment results showed that the F- concentration (< 1.5 mg/L) reached the drinking water standard in 45 min at pH = 2 and RM@GMs dosage was 1 g/L. RM@GMs showed maximum adsorption capacity of 76.57 mg/g for F-, and the adsorption kinetics and isotherm fitted the pseudo-second-order kinetic and Langmuir isotherm model, respectively. RM@GMs exhibited excellent dynamic separation effect at the flow rate of 4 mL/min and column height of 1 cm. In addition, RM@GMs had good selectivity for F- in the competitive adsorption experiments and followed an order of: PO43- > > SO42- ≈ NO3- ≈ Cl-. In real seawater, natural surface water and tap water, RM@GMs still had excellent F- removal effect. The adsorption mechanism revealed that RM@GMs removed F- mainly through the synergistic effect of adsorption and ion exchange. Therefore, this paper provides the potential value for the large-scale utilization of RM in the application of F--containing wastewater.
Collapse
Affiliation(s)
- Min Yi
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 Guangxi, PR China
| | - Kaituo Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 Guangxi, PR China; School of Resources, Environment and Materials, Guangxi University, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning 530004 Guangxi, PR China; MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Nanning 530004 Guangxi, PR China.
| | - Hongyang Wei
- School of Resources, Environment and Materials, Guangxi University, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning 530004 Guangxi, PR China
| | - Deshuai Wei
- School of Resources, Environment and Materials, Guangxi University, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning 530004 Guangxi, PR China
| | - Xuefei Wei
- School of Resources, Environment and Materials, Guangxi University, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning 530004 Guangxi, PR China
| | - Binghu Wei
- School of Resources, Environment and Materials, Guangxi University, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning 530004 Guangxi, PR China
| | - Lin Shao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 Guangxi, PR China.
| | - Toyohisa Fujita
- School of Resources, Environment and Materials, Guangxi University, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning 530004 Guangxi, PR China
| | - Xuemin Cui
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 Guangxi, PR China
| |
Collapse
|
25
|
Qing J, Zhang G, Zeng L, Guan W, Cao Z, Li Q, Wang M, Chen Y, Wu S. Deep fluoride removal from the sulfate leaching solution of spent LIBs by complexation extraction with Al3+ loaded solvent. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Application of bottom ash from cattle manure combustion for removing fluoride and inactivating pathogenic bacteria in wastewater. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Ashraf I, Li R, Chen B, Al-Ansari N, Rizwan Aslam M, Altaf AR, Elbeltagi A. Nanoarchitectonics and Kinetics Insights into Fluoride Removal from Drinking Water Using Magnetic Tea Biochar. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13092. [PMID: 36293670 PMCID: PMC9603494 DOI: 10.3390/ijerph192013092] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Fluoride contamination in water is a key problem facing the world, leading to health problems such as dental and skeletal fluorosis. So, we used low-cost multifunctional tea biochar (TBC) and magnetic tea biochar (MTBC) prepared by facile one-step pyrolysis of waste tea leaves. The TBC and MTBC were characterized by XRD, SEM, FTIR, and VSM. Both TBC and MTBC contain high carbon contents of 63.45 and 63.75%, respectively. The surface area of MTBC (115.65 m2/g) was higher than TBC (81.64 m2/g). The modified biochar MTBC was further used to remediate the fluoride-contaminated water. The fluoride adsorption testing was conducted using the batch method at 298, 308, and 318 K. The maximum fluoride removal efficiency (E%) using MTBC was 98% when the adsorbent dosage was 0.5 g/L and the fluoride concentration was 50 mg/L. The experiment data for fluoride adsorption on MTBC best fit the pseudo 2nd order, rather than the pseudo 1st order. In addition, the intraparticle diffusion model predicts the boundary diffusion. Langmuir, Freundlich, Temkin, and Dubnin-Radushkevich isotherm models were fitted to explain the fluoride adsorption on MTBC. The Langmuir adsorption capacity of MTBC = 18.78 mg/g was recorded at 298 K and decreased as the temperature increased. The MTBC biochar was reused in ten cycles, and the E% was still 85%. The obtained biochar with a large pore size and high removal efficiency may be an effective and low-cost adsorbent for treating fluoride-containing water.
Collapse
Affiliation(s)
- Imtiaz Ashraf
- School of Chemical Engineering, Northwest University, Xi’an 710069, China
| | - Rong Li
- School of Chemical Engineering, Northwest University, Xi’an 710069, China
| | - Bin Chen
- School of Chemical Engineering, Northwest University, Xi’an 710069, China
| | - Nadhir Al-Ansari
- Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden
| | - Muhammad Rizwan Aslam
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310027, China
| | - Adnan Raza Altaf
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Ahmed Elbeltagi
- Agricultural Engineering Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
28
|
Choi MY, Kang JK, Lee CG, Park SJ. Feasibility of fluoride removal using calcined Mactra veneriformis shells: Adsorption mechanism and optimization study using RSM and ANN. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Li X, Feng D, He X, Qian D, Nasen B, Qi B, Fan S, Shang J, Cheng X. Z-scheme heterojunction composed of Fe doped g-C3N4 and MoS2 for efficient ciprofloxacin removal in a photo-assisted peroxymonosulfate system. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
30
|
Zhao Y, Yang H, Xia S, Wu Z. Removal of ammonia nitrogen, nitrate, and phosphate from aqueous solution using biochar derived from Thalia dealbata Fraser: effect of carbonization temperature. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57773-57789. [PMID: 35352229 DOI: 10.1007/s11356-022-19870-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Thalia dealbata Fraser-derived biochar was prepared at different carbonization temperatures to remove nutrients in aqueous solution. Thermogravimetry/differential thermogravimetry (TG/DTG) was used to analyze the carbonization and decomposition procedure of Thalia dealbata Fraser. X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), zeta potential, and N2 adsorption-desorption isotherms were employed to characterize the prepared biochar. The carbonization temperature obviously effected the physical and chemical properties of biochar. The adsorption efficiency of ammonia (NH4+-N), nitrate (NO3--N), and phosphate (PO43-) adsorption on biochar was tested. Pseudo-first-order kinetic, pseudo-second-order kinetic, and intra-particle diffusion kinetic models were used to fit adsorption kinetic. Langmuir and Freundlich models were used to fit adsorption isotherms. The theoretical adsorption capacity of NH4+-N, NO3--N, and PO43- on biochar was 5.8 mg/g, 3.8 mg/g, and 1.3 mg/g, respectively. This study provides the insights for effect of carbonization temperature on biochar preparation and application.
Collapse
Affiliation(s)
- Yuqing Zhao
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| | - Hang Yang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| | - Shibin Xia
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| |
Collapse
|
31
|
Microbially induced calcium precipitation based anaerobic biosynthetic crystals for removal of F− and Ca2+ in groundwater: Performance optimization, kinetics, and reactor operation. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1184-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
32
|
Tang J, Xiang B, Li Y, Tan T, Zhu Y. Adsorption Characteristics and Charge Transfer Kinetics of Fluoride in Water by Different Adsorbents. Front Chem 2022; 10:917511. [PMID: 35783207 PMCID: PMC9243583 DOI: 10.3389/fchem.2022.917511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Water containing high concentrations of fluoride is widely distributed and seriously harmful, largely because long-term exposure to fluoride exceeding the recommended level will lead to fluorosis of teeth and bones. Therefore, it is imperative to develop cost-effective and environmentally friendly adsorbents to remove fluoride from polluted water sources. In this study, diatomite (DA), calcium bentonite (CB), bamboo charcoal (BC), and rice husk biochar (RHB) were tested as adsorbents to adsorb fluoride (F‐) from water, and this process was characterized by scanning electron microscopy (FEI-SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FT-IR). The effects of pH, dosage, and the initial mass concentration of each treatment solution upon adsorption of F‐ were determined. Kinetic and thermodynamic models were applied to reveal the mechanism of defluoridation, and an orthogonal experiment was designed to obtain the optimal combination of conditions. The results show that the surfaces of CB, BC, and RHB have an irregular pore structure and rough surface, whereas DA has a rich pore structure, clear pores, large specific surface area, and high silica content. With regard to the adsorption process for F‐, DA has an adsorption complex electron interaction; that of CB, BC, and RHB occur mainly via ion exchange with positive and negative charges; and CB on F‐ relies on chemical electron bonding adsorption. The maximum adsorption capacity of DA can reach 32.20 mg/g. When the mass concentration of fluoride is 100 mg/L, the pH value is 6.0 and the dosage is 4.0 g/L; the adsorption rate of F‐ by DA can reach 91.8%. Therefore, we conclude that DA soil could be used as an efficient, inexpensive, and environmentally friendly adsorbent for fluoride removal, perhaps providing an empirical basis for improving the treatment of fluorine-containing water in the future.
Collapse
Affiliation(s)
- Jiaxi Tang
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, China
- Liaoning Academy of Agricultural Sciences, Shenyang, China
- *Correspondence: Jiaxi Tang,
| | - Biao Xiang
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, China
| | - Yu Li
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, China
| | - Ting Tan
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, China
| | - Yongle Zhu
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, China
| |
Collapse
|
33
|
Zhong X, Chen C, Yan K, Zhong S, Wang R, Xu Z. Efficient Coagulation Removal of Fluoride Using Lanthanum Salts: Distribution and Chemical Behavior of Fluorine. Front Chem 2022; 10:859969. [PMID: 35308792 PMCID: PMC8931680 DOI: 10.3389/fchem.2022.859969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/14/2022] [Indexed: 11/29/2022] Open
Abstract
Abstract: La-loaded absorbents have been widely reported for fluoride removal due to the strong affinity of La3+ towards fluoride ion. Herein, chemical removal of fluoride from flue gas scrubbing wastewater using lanthanum salt is investigated. The retaining free F− concentration, phase composition and morphology of filtration residues, and the distribution of fluorine have been investigated using ion-selective electrode, analytical balance, scanning electron microscopy, and X-ray diffractor. The results show that at La/F molar ratio ≥1:3.05, the majority of fluorine exists as LaFx3−x complexes, leading to the failure of fluoride removal. At 1:3.20 ≤ La/F molar ratio ≤1:3.10, the formation of LaF3 is facilitated. However, co-existing LaFx3−x tends to absorb on the surface of LaF3 particles, leading to the formation of colloidal solution with large numbers of LaF3·LaFx3−x suspended solids. At an optimized La/F molar ratio of 1:3.10, a fluoride removal of 97.86% is obtained with retaining fluorine concentration of 6.42 mg L−1. Considering the existing of positively charged LaFx3−x and LaF3·LaFx3−x, coagulation removal of fluoride is proposed and investigated using lanthanum salts and negatively charged SiO2·nH2O colloidal particles, which is in-situ provided via Na2SiO3 hydrolysis at pH near 5.5. At a La/F molar ratio of 1:3.00 and Na2SiO3 dose of 0.50 g L−1, a fluoride removal of 99.25% is obtained with retaining fluorine concentration of 2.24 mg L−1. When Na2SiO3 dose increases to 1.00 g L−1, the retaining fluorine concentration could be further reduced to 0.80 mg L−1.
Collapse
Affiliation(s)
- Xiaocong Zhong
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, China
- State Key Laboratory of Separation and Comprehensive Utilization of Rare Metals, Guangzhou, China
| | - Chen Chen
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, China
| | - Kang Yan
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, China
| | - Shuiping Zhong
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, China
| | - Ruixiang Wang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, China
- *Correspondence: Ruixiang Wang, ; Zhifeng Xu,
| | - Zhifeng Xu
- Jiangxi College of Applied Technology, Ganzhou, China
- *Correspondence: Ruixiang Wang, ; Zhifeng Xu,
| |
Collapse
|
34
|
Herath A, Navarathna C, Warren S, Perez F, Pittman CU, Mlsna TE. Iron/titanium oxide-biochar (Fe 2TiO 5/BC): A versatile adsorbent/photocatalyst for aqueous Cr(VI), Pb 2+, F - and methylene blue. J Colloid Interface Sci 2022; 614:603-616. [PMID: 35123214 DOI: 10.1016/j.jcis.2022.01.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 12/19/2022]
Abstract
This is the first report of the metal Fe-Ti oxide/biochar (Fe2TiO5/BC) composite for simultaneous removal of aqueous Pb2+, Cr6+, F- and methylene blue (MB). Primary Fe2TiO5 nano particles and aggregates were dispersed on a high surface area Douglas fir BC (∼700 m2/g) by a simple chemical co-precipitation method using FeCl3 and TiO(acac)2 salts treated by base and heated to 80 °C. This was followed by calcination at 500 °C. This method previously was used without BC to make the neat mixed oxide Fe2TiO5, exhibiting a lower energy band gap than TiO2. Adsorption of Cr(VI), Pb(II), fluoride, and MB on Fe2TiO5/BC was studied as a function of pH, equilibrium time, initial adsorbate concentration, and temperature. Adsorption isotherm studies were conducted at 5, 25, and 45 ℃ and kinetics for all four adsorbates followed the pseudo second order model. Maximum Langmuir adsorption capacities for Pb2+, Cr6+, F- and MB at their initial pH values were 141 (pH 2), 200 (pH 5), 36 (pH 6) and 229 (pH 6) mg/g at 45 ℃ and 114, 180, 26 and 210 mg/g at 25 ℃, respectively. MB was removed from the water on Fe2TiO5/BC by synergistic adsorption and photocatalytic degradation at pH 3 and 6 under UV (365 nm) light irradiation. Cr6+, Pb2+, F-, and MB each exhibited excellent removal capacities in the presence of eight different competitive ions in simulated water samples. The removal mechanisms on Fe2TiO5/BC and various competitive ion interactions were proposed. Some iron ion leaching at pH 3 catalyzed Photo-Fenton destruction of MB. Fe2TiO5, BC, and Fe2TiO5/BC bandgaps were studied to help understand photocatalysis of MB and to advance supported metal oxide photodegradation using smaller energy band gaps than the larger bandgap of TiO2 for water treatment. A long range goal is to photocatalytically destroy some sorbates with adsorbents to avoid the need for regeneration steps.
Collapse
Affiliation(s)
- Amali Herath
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| | - Chanaka Navarathna
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| | - Shannon Warren
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| | - Felio Perez
- Material Science Lab, Integrated Microscopy Center, University of Memphis, Memphis, TN 38152, USA
| | - Charles U Pittman
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| | - Todd E Mlsna
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA.
| |
Collapse
|
35
|
Performance modeling of layered double hydroxide incorporated mixed matrix beads for fluoride removal from contaminated groundwater with the scale up study. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|