1
|
Ismail Z, W Idris WF, Abdullah AH. Graphene-based temperature, humidity, and strain sensor: A review on progress, characterization, and potential applications during Covid-19 pandemic. SENSORS INTERNATIONAL 2022; 3:100183. [PMID: 35633818 PMCID: PMC9126002 DOI: 10.1016/j.sintl.2022.100183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022] Open
Abstract
Graphene's potential as material for wearable, highly sensitive and robust sensor in various fields of technology has been widely investigated until now in order to capitalize on its unique intrinsic physical and chemical properties. In the wake of Covid-19 pandemic, it has been noticed that there are various potentials roles that can be fulfilled by graphene-based temperature, humidity and strain sensor, whose roles has not been widely explored to date. This paper takes the liberty to mainly highlight the progress layout and characterization technique for graphene-based sensor while including a brief discussion on the possible strategy of sensing data analysis that can be employed to minimize and prevent the risk of Covid-19 infection within a living community. While majority of the reported sensor is still in the in-progress status, its highlighted role in this work may provide a brief idea on how the ongoing research in graphene-based sensor may lead to the future implementation of the device for routine healthcare check-up and diagnostic point-care during and post-pandemic era. On the other hand, the sensitivity and response time data against working temperature, humidity and strain range that are provided could serve as a reference for benchmarking purpose, which certainly would help enthusiast in the development of a graphene-based sensor with a better performance for the future.
Collapse
|
2
|
Sutar R, Lahiri A, Singh G, Chaudhary S. Development and Validation of Structured COVID Perception Interview Guide (COPING) for Assessing the Acute Impact of COVID-19 Diagnosis. J Neurosci Rural Pract 2022; 13:196-203. [PMID: 35694061 PMCID: PMC9187395 DOI: 10.1055/s-0041-1742232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Objective
Structured COVID Perception INterview Guide (COPING) is a novel tool developed to understand the acute impact after receiving the diagnosis of coronavirus disease 2019 (COVID-19) in the Indian setting. The approach carries importance for interviewing patients in a state of shock immediately after receiving the diagnosis of COVID. The tool is developed emphasizing the grief, stigma, and acute psychological perception in the immediate aftermath of receiving the positive test results of COVID-19. Since COVID-19 is characteristically different from other infectious illnesses, a structured interview guide could help to address the concerns related to acute loss of health.
Materials and Methods
This study follows a mixed method design conducted from August 2020 to January 2021. In-depth telephonic interviews with mild to moderate COVID patients admitted to a tertiary hospital in central India was followed by development of COPING questionnaire.
Statistical Analysis
Item-Content Validity Index (I-CVI) and Scale-Content Validity Index Universal Agreement (S-CVI/UA) was computed. Factor analysis, Bartlett's test, and Kaiser–Meier–Olkin measure of sampling adequacy was performed. Principal component analysis, scree plots, and parallel analysis with varimax rotation was used to determine the number of factors to extract. For measuring internal consistency, Cronbach's
α
was computed.
Results
Out of 40 items, the final tool had 15 items after computing content validity, performing factor analysis and achieving desired level of internal consistency (Cronbach's
α
= 0.702). Five domains identified after factor analysis were awareness, grief/bereavement, stigma, social reciprocity, and stress adaptation/coping.
Conclusion
COPING is a valid and reliable interview guide for Indian setting that will allow the assessment of perception of patients with acute COVID-19 infection. Taking into consideration the mental health implications of COVID-19, the availability of such a validated and reliable tool is a timely step to address the public health problem and assist the ongoing research on COVID-19 and similar illnesses in the future.
Collapse
Affiliation(s)
- Roshan Sutar
- Department of Psychiatry, All India Institute of Medical Sciences (AIIMS), Bhopal, Madhya Pradesh, India
| | - Anuja Lahiri
- Department of Community and Family Medicine, All India Institute of Medical Sciences (AIIMS), Bhopal, Madhya Pradesh, India
| | - Gaurav Singh
- Department of Psychiatry, All India Institute of Medical Sciences (AIIMS), Bhopal, Madhya Pradesh, India
| | - Swanzil Chaudhary
- Department of Radiodiagnosis, All India Institute of Medical Sciences (AIIMS), Bhopal, Madhya Pradesh, India
| |
Collapse
|
3
|
Hasan MM, Ahmed M, Urmy SA. Efficacy of limited antiviral treatment, testing, hospitalization, and social distancing for COVID-19 pandemic. SENSORS INTERNATIONAL 2021; 2:100112. [PMID: 34766060 PMCID: PMC8234322 DOI: 10.1016/j.sintl.2021.100112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/03/2022] Open
Abstract
The control measures of a pandemic must be cautiously evaluated, especially when resources are “limited”. A model of COVID-19 transmission dynamics is applied to assess the impact of antiviral treatment, testing, hospitalization, and social distancing. Under the assumption of “unlimited” resources, five control strategies involving social distancing, testing, hospitalization, and antiviral treatment are tested. Then these “optimal” policies are sought in the case of limited resources on behalf of a COVID-19 pandemic scenario. The amplitude of peak epidemics will often be minimized by executing strategies from the beginning of a pandemic, spreading the epidemics’ greatest impact over a longer time frame. Therefore, the timing and potency of control measures can reduce the pressure on the system during the top of the epidemic through the pandemic, decreasing the pressure on the healthcare infrastructure. In case of limited access to antiviral supplies, the role of testing, hospitalization, and social distancing strategies is emphasized in this study.
Collapse
Affiliation(s)
- Md Mehadi Hasan
- Department of Mathematics, Jagannath University, Dhaka, 1100, Bangladesh
| | - Mostak Ahmed
- Department of Mathematics, Jagannath University, Dhaka, 1100, Bangladesh
| | - Suraiya Akter Urmy
- Department of Mathematics, Jahangirnagar University, Dhaka, 1342, Bangladesh
| |
Collapse
|
4
|
Javaid M, Haleem A, Pratap Singh R, Suman R. Pedagogy and innovative care tenets in COVID-19 pandemic: An enhancive way through Dentistry 4.0. SENSORS INTERNATIONAL 2021; 2:100118. [PMID: 34766061 PMCID: PMC8302480 DOI: 10.1016/j.sintl.2021.100118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/24/2022] Open
Abstract
The global oral healthcare sector has now woken to implement Dentistry 4.0. The implementation of this revolution is feasible with extensive digital and advanced technologies applications and the adoption of new sets of processes in dentistry & its support areas. COVID-19 has bought new challenges to dental professionals and patients towards their customised requirements, regular dental health checkups, fast-paced and safe procedures. People are not visiting the dentist even for mild cases as they fear COVID-19 infection. We see that this set of technologies will help improve health education and treatment process and materials and minimise the infection. During the COVID-19 pandemic, there is a need to understand the possible impact of Dentistry 4.0 for education and innovative care. This paper discusses the significant benefits of Dentistry 4.0 technologies for the smart education platform and dentistry treatment. Finally, this article identifies twenty significant enhancements in dental education and effective care platforms during the COVID-19 pandemic by employing Dentistry 4.0 technologies. Thus, proper implementation of these technologies will improve the process efficiency in healthcare during the COVID-19 pandemic. Dentistry 4.0 technologies drive innovations to improve the quality of internet-connected healthcare devices. It creates automation and exchanges data to make a smart health care system. Therefore, helps better healthcare services, planning, monitoring, teaching, learning, treatment, and innovation capability. These technologies moved to smart transportation systems in the hospital during the COVID-19 Pandemic. Modern manufacturing technologies create digital transformation in manufacturing, optimises the operational processes and enhances productivity.
Collapse
Affiliation(s)
- Mohd Javaid
- Department of Mechanical Engineering, Jamia Millia Islamia, New Delhi, India
| | - Abid Haleem
- Department of Mechanical Engineering, Jamia Millia Islamia, New Delhi, India
| | - Ravi Pratap Singh
- Department of Industrial and Production Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India
| | - Rajiv Suman
- Department of Industrial & Production Engineering, G.B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India
| |
Collapse
|
5
|
Kalkal A, Allawadhi P, Pradhan R, Khurana A, Bharani KK, Packirisamy G. Allium sativum derived carbon dots as a potential theranostic agent to combat the COVID-19 crisis. SENSORS INTERNATIONAL 2021; 2:100102. [PMID: 34766058 PMCID: PMC8164516 DOI: 10.1016/j.sintl.2021.100102] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is one of the worst pandemics to have hit the humanity. The manifestations are quite varied, ranging from severe lung infections to being asymptomatic. Hence, there is an urgent need to champion new tools to accelerate the end of this pandemic. Compromised immunity is a primary feature of COVID-19. Allium sativum (AS) is an effective dietary supplement known for its immune-modulatory, antibacterial, anti-inflammatory, anticancer, antifungal, and anti-viral properties. In this paper, it is hypothesized that carbon dots (CDs) derived from AS (AS-CDs) may possess the potential to downregulate the expression of pro-inflammatory cytokines and revert the immunological aberrations to normal in case of COVID-19. CDs have already been explored in the world of nanobiomedicine as a promising theranostic candidates for bioimaging and drug/gene delivery. The antifibrotic and antioxidant effects of AS are elaborated, as demonstrated in several studies. It is found that the most active constituent of AS, allicin has a highly potent antioxidant and reactive oxygen species (ROS) scavenging effect. The antibacterial, antifungal, and anti-viral effects along with their capability of negating inflammatory effects and cytokine storm are discussed. The synthesis of theranostic CDs from AS may provide a novel weapon in the therapeutic armamentarium for the management of COVID-19 infection and, at the same time, could act as a diagnostic agent for COVID-19.
Collapse
Affiliation(s)
- Ashish Kalkal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee- 247667, Uttarakhand, India
| | - Prince Allawadhi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee- 247667, Uttarakhand, India
| | - Rangadhar Pradhan
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee- 247667, Uttarakhand, India
| | - Amit Khurana
- Centre for Biomedical Engineering (CBME), Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110016, India
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad, 500030, P. V. Narasimha Rao Telangana Veterinary University (PVNRTVU), Telangana India
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal, 506166, P. V. Narasimha Rao Telangana Veterinary University (PVNRTVU), Telangana, India
| | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal, 506166, P. V. Narasimha Rao Telangana Veterinary University (PVNRTVU), Telangana, India
- Department of Aquatic Animal Health Management, College of Fishery Science, Pebbair, Wanaparthy, 509104, P. V. Narasimha Rao Telangana Veterinary University (PVNRTVU), Telangana, India
| | - Gopinath Packirisamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee- 247667, Uttarakhand, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee- 247667, Uttarakhand, India
| |
Collapse
|
6
|
Singh YD, Ningthoujam R, Panda MK, Jena B, Babu PJ, Mishra AK. Insight from nanomaterials and nanotechnology towards COVID-19. SENSORS INTERNATIONAL 2021; 2:100099. [PMID: 34766056 PMCID: PMC8117484 DOI: 10.1016/j.sintl.2021.100099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/01/2021] [Accepted: 05/01/2021] [Indexed: 12/24/2022] Open
Abstract
The pandemic coronavirus disease 2019 (COVID-19) becomes one of the most dreadful disease in the history of mankind in the entire world. The covid-19 outbreak started from Wuhan city of China and then rapidly transmitted throughout the world causing mass destruction and seldom. This sporadical disease has taken many lives due to sudden outbreak and no particular vaccines were available at the early wave. All the vaccines developed are mostly targeted to spike protein of the virus which involves the encapsulation of mRNA and nanoparticles. Nanotechnology intervention in fighting against the covid-19 is one way to tackle the disease from different angles including nano coating mask, nano diagnostic kits, nano sanitizer, and nano medicine. This article highlights the intervention of nanotechnology and its possible treatment against the covid-19. It is high time to come together all the units of material science and biological science to fight against the dreadful COVID-19. As an alternative strategy, a multidisciplinary research effort, consisting of classical epidemiology and clinical methodologies, drugs and nanotechnology, engineering science and biological apprehension, can be adopted for developing improved drugs exhibiting antiviral activities. The employment of nanotechnology and its allied fields can be explored to detect, treat, and prevent the covid-19 disease.
Collapse
Affiliation(s)
- Yengkhom Disco Singh
- Biomaterials and Bioprocessing Research Laboratory, Department of Post-Harvest Technology, College of Horticulture and Forestry, Central Agricultural University, Pasighat, 791102, Arunachal Pradesh, India
| | - Rina Ningthoujam
- Department of Vegetable Science, College of Horticulture and Forestry, Central Agricultural University, Pasighat, Arunachal Pradesh, 791102, India
| | - Manasa Kumar Panda
- Environment & Sustainability Department, CSIR- Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India
| | - Barsarani Jena
- Department of Botany, School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, 752050, Odisha, India
| | - Punuri Jayasekhar Babu
- Biomaterials and Bioengineering Research Laboratory, Department of Biotechnology, Mizoram University, Pachhunga University College Campus, Aizawl, 796001, Mizoram , India
| | - Avanindra Kumar Mishra
- Deputy Director of Research, Central Agricultural University, Imphal, 7 95004, Manipur, India
| |
Collapse
|
7
|
Agrahari R, Mohanty S, Vishwakarma K, Nayak SK, Samantaray D, Mohapatra S. "Update vision on COVID-19: Structure, immune pathogenesis, treatment and safety assessment". SENSORS INTERNATIONAL 2020; 2:100073. [PMID: 34766048 PMCID: PMC7722487 DOI: 10.1016/j.sintl.2020.100073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/15/2022] Open
Abstract
The on-going SARS-CoV-2 causing COVID-19 discovered in December 2019, is responsible for a global pandemic. The virus belongs to the group of enveloped viruses containing linear, non-segmented, single stranded, positive sense strand RNA as genetic material. Already six different strains Coronaviruses are being reported to infect humans, however the seventh one is genetically similar to the SARS Coronavirus and termed as SARS-CoV-2. Specific crucial macromolecules such as membrane, nuclear, spike and enveloped proteins including HE esterase are present in the virus that interact with ACE2, APN, NEU-5, 9SC2 moiety of humans plays significant role in occurrence and transmission of the devastating disease. This review article summarizes the structure, histopathology, transmission of novel Coronavirus, its symptoms with preventive measures & currently prescribed drugs. Though various drugs and therapy have been administrated or implemented to restrict COVID-19, however it is imperative to develop an antidote against SARS-CoV-2 by the scientific or research community to save life.
Collapse
Affiliation(s)
- Rishabh Agrahari
- Amity Institute of Microbial Technology, Amity University, Uttar-pradesh, Noida, India
| | - Sonali Mohanty
- Department of Microbiology, CBSH, OUAT, Bhubaneswar, Odisha, India
| | - Kanchan Vishwakarma
- Amity Institute of Microbial Technology, Amity University, Uttar-pradesh, Noida, India
| | | | | | - Swati Mohapatra
- Amity Institute of Microbial Technology, Amity University, Uttar-pradesh, Noida, India
| |
Collapse
|