1
|
Gebru H, Belete T, Faye G. Growth and Yield Performance of Pleurotus ostreatus Cultivated on Agricultural Residues. MYCOBIOLOGY 2024; 52:388-397. [PMID: 39845174 PMCID: PMC11749117 DOI: 10.1080/12298093.2024.2399353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 01/24/2025]
Abstract
Food insecurity and malnutrition are among the major problems in most developing nations recently. Mushroom cultivation is one of the promising strategies to overcome these challenges. The growth and productivity of mushrooms differ because of their wide range of cultivation substrates. Cultivating Pleurotus ostreatus on suitable substrates is one of the key factors affecting its growth and productivity. This study was, therefore, conducted to investigate the effect of cultivation substrates, namely straws of tef (Trt1), barley (Trt2), and wheat (Trt3), husks of faba bean (Trt4) and field pea (Trt5), and sawdust (Trt6) alone, and their mixture (1:1, w/w) (Trt7) on the growth and yield of P. ostreatus. Mycelial colonization, primordial formation, and days to first harvest were faster (13.00, 19.67, and 22.67 days) for the P. ostreatus cultivated on Trt7 whereas those grown on Trt6 were delayed (18.00, 27.00, and 29.67 days), respectively. Trt7 gave a higher (67.33) fruiting body/bunch and total yield (2001.70 g/bag). Biological efficiency was also significantly (p < 0.05) higher for Trt7 (238.64%). Strong relationships between cap diameter and mushroom yield (r = 0.84***), number of bunches (r = 0.76***), number of fruiting bodies (r = 0.80***), stipe length (r = 0.83***), and total yield (r = 0.84***) were among significant positive correlations observed. In conclusion, cultivating P. ostreatus on the Trt7 (mixed substrate) is recommended rather than using either of the residues alone.
Collapse
Affiliation(s)
- Hailu Gebru
- Department of Horticulture, College of Agriculture and Natural Resources, Salale University, Fiche, Ethiopia
| | - Tolosa Belete
- Department of Biology, College of Natural Sciences, Salale University, Fiche, Ethiopia
| | - Gezahegn Faye
- Department of Chemistry, College of Natural Sciences, Salale University, Fiche, Ethiopia
| |
Collapse
|
2
|
Drewinski MP, Zied DC, Gomes EPC, Menolli N. Cultivation of a Wild Strain of Wood Ear Auricularia cornea from Brazil. Curr Microbiol 2024; 81:390. [PMID: 39367930 DOI: 10.1007/s00284-024-03920-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024]
Abstract
Auricularia cornea has become one of the most important cultivated mushrooms worldwide. Although not remarkably flavorful, Auricularia species are very versatile and rehydrate easily after drying, adding a unique and pleasing texture to the dishes. In this study, we collected, identified, and domesticated a wild strain of A. cornea from the Brazilian Atlantic Rainforest. The wild strain was evaluated for mycelial growth at different temperatures and substrates, biological efficiency, and nutritional composition. The temperature that best favored the A. cornea mycelium growth was 30 °C, and the substrate was sterile Eucalyptus sawdust. The highest biological efficiency value obtained was 106.90 ± 13.28%. Nutritional analysis showed that the produced wood ears contained 71.02% carbohydrates, 19.63% crude fiber, 11.59% crude protein, 10.19% crude fat, and 4.24% ash on dry matter basis. For the mineral content profile, the elements K and P were the most abundant. This is the first report on cultivation of a wild strain of A. cornea from Brazil.
Collapse
Affiliation(s)
- Mariana P Drewinski
- Núcleo de Pós-Graduação Stricto Sensu, Pós-Graduação em Biodiversidade Vegetal e Meio Ambiente, Instituto de Pesquisas Ambientais, Av. Miguel Stefano 3687, Água Funda, São Paulo, SP, 04301-012, Brazil.
- IFungiLab, Subárea de Biologia, Departamento de Ciências da Natureza e Matemática, Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Câmpus São Paulo, Rua Pedro Vicente 625, São Paulo, SP, 01109-010, Brazil.
| | - Diego C Zied
- Faculdade de Ciências Agrárias e Tecnológicas, Universidade Estadual Paulista Júlio de Mesquita Filho, Câmpus Dracena, Rod. Comandante João Ribeiro de Barros, Km 651, Dracena, SP, 17900-000, Brazil
| | - Eduardo P C Gomes
- Núcleo de Pós-Graduação Stricto Sensu, Pós-Graduação em Biodiversidade Vegetal e Meio Ambiente, Instituto de Pesquisas Ambientais, Av. Miguel Stefano 3687, Água Funda, São Paulo, SP, 04301-012, Brazil
| | - Nelson Menolli
- Núcleo de Pós-Graduação Stricto Sensu, Pós-Graduação em Biodiversidade Vegetal e Meio Ambiente, Instituto de Pesquisas Ambientais, Av. Miguel Stefano 3687, Água Funda, São Paulo, SP, 04301-012, Brazil
- IFungiLab, Subárea de Biologia, Departamento de Ciências da Natureza e Matemática, Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Câmpus São Paulo, Rua Pedro Vicente 625, São Paulo, SP, 01109-010, Brazil
| |
Collapse
|
3
|
Aswathy S, Shyamalagowri S, Hari S, Kanimozhi M, Meenambiga SS, Thenmozhi M, Karthiyayini R, Suresh D, Manjunathan J. Comparative studies on the cultivation, yield, and nutritive value of an edible mushroom, Pleurotus tuber-regium (Rumph. ex Fr.) Singer, grown under different agro waste substrates. 3 Biotech 2024; 14:123. [PMID: 38562248 PMCID: PMC10981651 DOI: 10.1007/s13205-024-03968-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
In the present study, Pleurotus tuber-regium (Rumph. ex Fr.) Singer collected from Keeriparai forest of Kanyakumari district, South India was cultivated using environmentally benign, low-cost agricultural waste residues (paddy straw, sugarcane bagasse, rice husk, and sawdust) as growth substrates. The main goal of this study was to assess the cultivation, yield, and nutritional value of P. tuber-regium fruiting bodies grown under different growth substrates. Spawn running time and time for primordia formation were found to be shorter in mushroom growing with paddy straw substrate compared to sawdust and sugarcane bagasse. A quick spawn run time was observed in paddy straw substrate (12 ± 1 day) followed by sugarcane bagasse (15 ± 1 day) and sawdust (23 ± 1 day). The primordia was well developed in the macrofungus grown with paddy straw substrate on 18 ± 1 day followed by sugarcane bagasse (22 ± 1 day) and sawdust (32 ± 1 day). Significantly higher yield of fruiting bodies with increased contents of protein and carbohydrate and low level of fat was obtained when P. tuber-regium was cultivated with paddy straw substrate. While, cultivation of P. tuber-regium in sawdust and sugarcane bagasse resulted in increased contents of K, Na, Ca, and Mg along with highest energy value. On the other hand, rice husk did not support the cultivation of this macrofungus. Therefore, it is of significant interest to initiate the commercial production of this macrofungus so as to fight against the problems of malnutrition found in few African and south Asian countries.
Collapse
Affiliation(s)
- S. Aswathy
- Department of Biotechnology, Vel’s Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, TN 600044 India
| | - S. Shyamalagowri
- Department of Botany, Pachaiyappa’s College, Chennai, TN 600030 India
| | - Sowmya Hari
- Department of Bioengineering, School of Engineering, Vel’s Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, TN 600044 India
| | - M. Kanimozhi
- Department of Plant Biology and Plant Biotechnology, Ethiraj College for Women, Chennai, TN 600008 India
| | - S. S. Meenambiga
- Department of Bioengineering, School of Engineering, Vel’s Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, TN 600044 India
| | - M. Thenmozhi
- Department of Biotechnology, Vel’s Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, TN 600044 India
| | - R. Karthiyayini
- Department of Botany, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, TN 641043 India
| | - D. Suresh
- Department of Microbiology, Vel’s Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, TN 600044 India
| | - J. Manjunathan
- Department of Biotechnology, Vel’s Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, TN 600044 India
| |
Collapse
|
4
|
Zhu H, Chen Z, Hu Y, Li G, Yao X, Cao L. Nutritional value, elemental bioaccumulation and antioxidant activity of fruiting bodies and mycelial cultures of an unrecorded wild Lactarius hatsudake from Nanyue mountainous region in China. Food Res Int 2023; 173:113358. [PMID: 37803660 DOI: 10.1016/j.foodres.2023.113358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 10/08/2023]
Abstract
An unrecorded wild mushroom Lactarius hatsudake from Nanyue mountainous region in China was identified. Subsequently, comparative investigation on the nutritional value, elemental bioaccumulation, and antioxidant activity was performed in the fruiting body (FB) and mycelium (MY) samples of this species. It revealed that the contents of moisture (87.66 ± 0.16 g/100 g fw) and ash (6.97 ± 0.16 g/100 g dw) were significantly higher in FB, and the total carbohydrate, fat, and protein concentrations of FB were similar to those in MY. Among nutritionally important elements, FB possessed higher concentrations of potassium (37808.61 ± 1237.38 mg/kg dw), iron (470.69 ± 85.54 mg/kg dw), and zinc (136.13 ± 5.16 mg/kg dw), whereas MY was a better source of magnesium (1481.76 ± 18.03 mg/kg dw), calcium (2203.87 ± 69.61 mg/kg dw), and sodium (277.44 ± 22.93 mg/kg dw). According to the health risk estimation, FB might pose an aluminum-related health problem when a prolonged period of exposure, while MY was risk-free for consumers. The results of antioxidant capacity (1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) assays) in FB and MY were within the range of 104.19 ± 5.70 mg ascorbic acid equivalents (AAE)/g to 169.50 ± 4.94 mg AAE/g, and half maximal effective concentration EC50 values ranged from 0.23 ± 0.01 mg/mL to 0.62 ± 0.05 mg/mL. The aqueous extracts of MY demonstrated a strong ABTS radical scavenging capacity with the highest AAE value.
Collapse
Affiliation(s)
- Hanyu Zhu
- College of Life Science, Hengyang Normal University, Hengyang 421000, China; Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, Hengyang Normal University, Hengyang 421008, China.
| | - Zheng Chen
- College of Life Science, Hengyang Normal University, Hengyang 421000, China; Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, Hengyang Normal University, Hengyang 421008, China
| | - Yujing Hu
- College of Nanyue, Hengyang Normal University, Hengyang 421000, China
| | - Geqing Li
- College of Life Science, Hengyang Normal University, Hengyang 421000, China
| | - Xiaoqian Yao
- College of Life Science, Hengyang Normal University, Hengyang 421000, China
| | - Limin Cao
- College of Life Science, Hengyang Normal University, Hengyang 421000, China; Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, Hengyang Normal University, Hengyang 421008, China
| |
Collapse
|
5
|
Wannasawang N, Luangharn T, Thawthong A, Charoensup R, Jaidee W, Tongdeesoontorn W, Hyde KD, Thongklang N. Study of Optimal Conditions to Grow Thai Ganoderma, Fruiting Test, Proximate and Their Alpha Glucosidase Inhibitory Activity. Life (Basel) 2023; 13:1887. [PMID: 37763291 PMCID: PMC10532565 DOI: 10.3390/life13091887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Ganoderma (Ganodermataceae) has a worldwide distribution and has been widely used in traditional medicines. In this study, we report wild strains of Ganoderma that include two G. sichuanense and one G. orbiforme from northern Thailand. Optimal conditions for mycelium growth were ensured. The most favourable medium was potato sucrose agar for G. sichuanense and oatmeal agar for G. orbiforme and at 25 °C and 30 °C and pH 4-8. All types of cereal grains can be used to promote the growth of the mycelia of Ganoderma species. Fruiting tests were performed. All strains of Ganoderma produce fruiting bodies successfully in bag culture at 28 ± 1 °C with 75-85% relative humidity. Only G. orbiforme produced fruiting bodies in field cultivation at the laboratory scale. In the first flush yields, the G. sichuanense strain MFLUCC 22-0064 gave better production (the B.E was 152.35 ± 6.98 g). This study is the first to document the bag and field cultivation of wild Thai G. orbiforme. Ganoderma species are revealed to contain high amounts of fiber (47.90-52.45% d.b.), protein (12.80-14.67% d.b.), fat (4.90-5.70% d.b.), and carbohydrates (3.16-4.02% d.b.). Additionally, G. sichuanense and G. orbiforme were preliminarily screened for biological activity for inhibition of alpha-glucosidase enzyme activity. The IC50 values of G. orbiforme (MFLUCC 22-0066) was 105.97 ± 1.36 µg/mL and G. sichuanense (MFLUCC 22-0064) was 126.94 ± 0.87 µg/mL. Both strains had better inhibition than acarbose (168.18 ± 0.89 µM). These results on wild strains of Ganoderma will be useful for further studies on the applications of Ganoderma. Later the species can be introduced to domestic markets for cultivation and medicinal use.
Collapse
Affiliation(s)
- Naruemon Wannasawang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (N.W.); (T.L.); (A.T.); (K.D.H.)
| | - Thatsanee Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (N.W.); (T.L.); (A.T.); (K.D.H.)
| | - Anan Thawthong
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (N.W.); (T.L.); (A.T.); (K.D.H.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Rawiwan Charoensup
- School of Integrative Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand;
- Medicinal Plant Innovation Center of Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Wuttichai Jaidee
- Medicinal Plant Innovation Center of Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Wirongrong Tongdeesoontorn
- School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand;
- Research Group of Innovative Food Packaging and Biomaterials, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (N.W.); (T.L.); (A.T.); (K.D.H.)
| | - Naritsada Thongklang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (N.W.); (T.L.); (A.T.); (K.D.H.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|
6
|
Mineroff J, Jagdeo J. The potential cutaneous benefits of Tremella fuciformis. Arch Dermatol Res 2023; 315:1883-1886. [PMID: 36757441 DOI: 10.1007/s00403-023-02550-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/14/2022] [Accepted: 01/22/2023] [Indexed: 02/10/2023]
Abstract
Tremella fuciformis, also known as snow mushroom, is an edible mushroom that has historically been popular in herbal and Asian medicine and cuisine. The main polysaccharide ingredients have been extracted and used as treatment in a variety of conditions, demonstrating positive effects in a range of biological functions including those involved in antioxidation, antitumor, antidiabetic, immunomodulatory, and neuroprotective pathways. Studies have demonstrated the role this extract may play in skin antiaging, photoprotection, wound healing, and barrier protection. Most studies have been limited to in vitro and in vivo animal models. Future clinical research is needed to further understand the role of T. fuciformis in dermatology. This review will discuss the existing research findings and potential future applications for T. fuciformis as a treatment in skin conditions.
Collapse
Affiliation(s)
- Jessica Mineroff
- Department of Dermatology, SUNY Downstate Medical Center, State University of New York, Downstate Health Sciences University, 450 Clarkson Avenue, 8th Floor, Brooklyn, NY, 11203, USA
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System, Brooklyn Campus, Brooklyn, NY, USA
| | - Jared Jagdeo
- Department of Dermatology, SUNY Downstate Medical Center, State University of New York, Downstate Health Sciences University, 450 Clarkson Avenue, 8th Floor, Brooklyn, NY, 11203, USA.
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System, Brooklyn Campus, Brooklyn, NY, USA.
| |
Collapse
|
7
|
Khan AA, Lu LX, Yao FJ, Fang M, Wang P, Zhang YM, Meng JJ, Ma XX, He Q, Shao KS, Wei YH, Xu B. Characterization, antioxidant activity, and mineral profiling of Auricularia cornea mushroom strains. Front Nutr 2023; 10:1167805. [PMID: 37404858 PMCID: PMC10315456 DOI: 10.3389/fnut.2023.1167805] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/19/2023] [Indexed: 07/06/2023] Open
Abstract
Background Mushrooms are considered as next-generation healthy food components. Owing to their low-fat content, high-quality proteins, dietary fiber, and rich source of nutraceuticals. They are ideally preferred in formulation of low-caloric functional foods. In this view, the breeding strategies of mushroom Auricularia cornea (A. cornea) focusing on high yield and higher quality with rich nutritional values and health benefits are still needed. Materials and methods A total of 50 strains of A. cornea were used to analyze the bio efficiency and the time required for fruiting body formation following the cultivation experiment. The calorimetric method was used to evaluate the antioxidant activity and quantify the crude polysaccharides and minerals content thereafter. Results The results showed that the time required for fruiting body formation and biological efficiency varied significantly among the selected strains. Noticeably, the wild domesticated strain Ac13 of A. cornea mushroom showed the shortest fruit development time (80 days). Similarly, the hybrid strains including Ac3 and Ac15 possessed the highest biological efficiency (82.40 and 94.84%). Hybrid strains Ac18 (15.2%) and cultivated strains Ac33 (15.6%) showed the highest content of crude polysaccharides, while cultivated strains Ac1 and Ac33, demonstrated the highest content of total polysaccharides in the fruiting body (216 mg. g-1 and 200 mg. g-1). In the case of mineral content, the highest zinc contents were observed from the cultivated strain Ac46 (486.33 mg·kg-1). The maximum iron content was detected from the hybrid strain Ac3 (788 mg·kg-1), and the wild domesticated strain Ac28 (350 mg·kg-1). The crude polysaccharides of the A. cornea strain showed significant antioxidant potential, and the ability of Ac33 and Ac24 to scavenge DPPH radicals and ABTS, which was significantly improved compared to other strains, respectively. Principal component analysis was applied to examine the agronomic traits and chemical compounds of various strains of A. cornea mushrooms. The results revealed that cultivated, wild domesticated, and hybrid strains of A. cornea exhibited distinct characteristics in terms of growth, yield, and nutritional properties. Conclusion The crude polysaccharides from A. cornea mushroom strains act as natural antioxidants, the wild, hybrid, and commercial A. cornea mushroom strains can achieve rapid growth, early maturation, and high yields. The evaluation of biochemical indexes and nutritional characteristics of strains with excellent traits provided a scientific basis for initiating high-quality breeding, provided germplasm resources for the production of "functional food" with real nutritional and health value.
Collapse
Affiliation(s)
- Asif Ali Khan
- College of Horticulture, Jilin Agricultural University, Changchun, China
- International Cooperation Research Center of China for New Germplasm Breeding of Edible Mushrooms, Jilin Agricultural University, Changchun, China
| | - Li-Xin Lu
- College of Horticulture, Jilin Agricultural University, Changchun, China
| | - Fang-Jie Yao
- College of Horticulture, Jilin Agricultural University, Changchun, China
- International Cooperation Research Center of China for New Germplasm Breeding of Edible Mushrooms, Jilin Agricultural University, Changchun, China
| | - Ming Fang
- College of Horticulture, Jilin Agricultural University, Changchun, China
| | - Peng Wang
- Institute of Economical Plants Research, Academy of Agricultural Science of Jilin Province, Gongzhuling, China
| | - You-Min Zhang
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| | - Jing-Jing Meng
- College of Horticulture, Jilin Agricultural University, Changchun, China
| | - Xiao-Xu Ma
- International Cooperation Research Center of China for New Germplasm Breeding of Edible Mushrooms, Jilin Agricultural University, Changchun, China
| | - Qi He
- International Cooperation Research Center of China for New Germplasm Breeding of Edible Mushrooms, Jilin Agricultural University, Changchun, China
| | - Kai-Sheng Shao
- International Cooperation Research Center of China for New Germplasm Breeding of Edible Mushrooms, Jilin Agricultural University, Changchun, China
| | - Yun-hui Wei
- Jiangxi Academy of Agricultural Sciences Nanchang, Nanchang, China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, China
| |
Collapse
|
8
|
Lucas de Jesus G, José Lavoranti O, Schafer G, Dias de Oliveira G, Scheffer de Andrade Silva R, Lorena Cuquel F. Nutrient uptake in supplemented substrate by oyster mushroom. World J Microbiol Biotechnol 2023; 39:175. [PMID: 37115411 DOI: 10.1007/s11274-023-03622-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023]
Abstract
Spent mushroom substrate (SMS) is a promising alternative for supplementing oyster mushroom substrate, replacing conventional cereal bran. Therefore, the objective was to evaluate the production of Pleurotus ostreatus supplemented with Lentinula edodes' SMS, through the nutritional analysis of the substrate. Wheat straw was used as substrate and supplemented with rice bran (RB) or SMS in 0%, 7%,15% and 30%. Ca, K, Mg, Mn, Zn, Cu and Fe contents of the cultivation substrates (before and after harvest) were determined through atomic absorption spectrophotometry. Mycelial growth (cm²/day), mycelial time colonization (days), number of clusters, number of pileus, average clusters weight (g), pileus lenght (cm) and width (cm), productivity (1st, 2nd and 3rd flush) (%), biological efficiency (%) of mushrooms were evaluated. Results indicated mycelial growth was higher (0.87 cm²/day compared to the Control) when the substrate was supplemented regardless of the source. The proportions of 15% of SMS achieved the highest biological efficiency (107% - 15% SMS versus 66% - Control). The only nutrients that showed differences in absorption were Ca, K and Mn, in which substrates supplemented with SMS had greater absorption of Ca (5.37 g.kg- 1 versus 1.94 g.kg- 1 in Control) while substrates supplemented with RB absorbed more K (6.56 g.kg- 1 versus 3.74 g.kg- 1 in Control). The mineral composition of the substrate has a direct impact on the growth and yield of P. ostreatus, highlighting the potential of SMS as a alternative to traditional bran supplementation.
Collapse
Affiliation(s)
| | | | - Gilmar Schafer
- Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | |
Collapse
|
9
|
Jahedi A, Salehi M, Goltapeh EM, Safaie N. Multilayer perceptron-genetic algorithm as a promising tool for modeling cultivation substrate of Auricularia cornea Native to Iran. PLoS One 2023; 18:e0281982. [PMID: 36809254 PMCID: PMC9942997 DOI: 10.1371/journal.pone.0281982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 02/05/2023] [Indexed: 02/23/2023] Open
Abstract
Auricularia cornea Ehrenb (syn. A. polytricha) is a wood-decaying fungi known as black ear mushroom. Earlike gelatinous fruiting body distinguishes them from other fungi. Industrial wastes have the potential to be used as the basic substrate to produce mushrooms. Therefore, 16 substrate formulations were prepared from different ratios of beech (BS) and hornbeam sawdust (HS) supplemented with wheat (WB) and rice brans (RB). The pH and initial moisture content of substrate mixtures were adjusted to 6.5 and 70%, respectively. The comparison of in vitro growth characteristics of the fungal mycelia under the different temperatures (25, 28, and 30°C), and culture media [yeast extract agar (YEA), potato extract agar (PEA), malt extract agar (MEA), and also HS and BS extract agar media supplemented with maltose, dextrose, and fructose revealed that the highest mycelial growth rate (MGR; 7.5 mm/day) belonged to HS and BS extract agar media supplemented with three mentioned sugar at 28°C. In A. cornea spawn study, the substrate combination of BS (70%) + WB (30%) at 28°C and moisture contents of 75% displayed the highest mean MGR (9.3 mm/day) and lowest spawn run period (9.0 days). In the bag test, "BS (70%) + WB (30%)" was the best substrate displaying the shortest spawn run period (19.7 days), and the highest fresh sporophore yield (131.7 g/bag), biological efficiency (53.1%) and number of basidiocarp (9.0/bag) of A. cornea. Also, A. cornea cultivation was processed to model yield, biological efficiency (BE), spawn run period (SRP), days for pinhead formation (DPHF), days for the first harvest (DFFH), and total cultivation period (TCP) by multilayer perceptron-genetic algorithm (MLP-GA). MLP-GA (0.81-0.99) exhibited a higher predictive ability than stepwise regression (0.06-0.58). The forecasted values of the output variables were in good accordance with their observed ones corroborating the good competency of established MLP-GA models. MLP-GA modeling exhibited a powerful tool for forecasting and thus selecting the optimal substrate for maximum A. cornea production.
Collapse
Affiliation(s)
- Akbar Jahedi
- Department of Plant Pathology, Tarbiat Modares University, Jalal, Iran
| | - Mina Salehi
- Department of Plant Genetics and Breeding, Tarbiat Modares University, Jalal, Iran
| | | | - Naser Safaie
- Department of Plant Pathology, Tarbiat Modares University, Jalal, Iran
- * E-mail:
| |
Collapse
|
10
|
Phithakrotchanakoon C, Mayteeworakoon S, Siriarchawatana P, Kitikhun S, Harnpicharnchai P, Wansom S, Eurwilaichitr L, Ingsriswang S. Beneficial bacterial- Auricularia cornea interactions fostering growth enhancement identified from microbiota present in spent mushroom substrate. Front Microbiol 2022; 13:1006446. [PMID: 36299733 PMCID: PMC9589457 DOI: 10.3389/fmicb.2022.1006446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Complex dynamic bacterial-fungal interactions play key roles during mushroom growth, ranging from mutualism to antagonism. These interactions convey a large influence on mushroom's mycelial and fruiting body formation during mushroom cultivation. In this study, high-throughput amplicon sequencing was conducted to investigate the structure of bacterial communities in spent mushroom substrates obtained from cultivation of two different groups of Auricularia cornea with (A) high yield and (B) low yield of fruiting body production. It was found that species richness and diversity of microbiota in group (A) samples were significantly higher than in group (B) samples. Among the identified 765 bacterial OTUs, 5 bacterial species found to exhibit high differential abundance between group (A) and group (B) were Pseudonocardia mangrovi, Luteimonas composti, Paracoccus pantotrophus, Sphingobium jiangsuense, and Microvirga massiliensis. The co-cultivation with selected bacterial strains showed that A. cornea TBRC 12900 co-cultivated with P. mangrovi TBRC-BCC 42794 promoted a high level of mycelial growth. Proteomics analysis was performed to elucidate the biological activities involved in the mutualistic association between A. cornea TBRC 12900 and P. mangrovi TBRC-BCC 42794. After co-cultivation of A. cornea TBRC 12900 and P. mangrovi TBRC-BCC 42794, 1,616 proteins were detected including 578 proteins of A. cornea origin and 1,038 proteins of P. mangrovi origin. Functional analysis and PPI network construction revealed that the high level of mycelial growth in the co-culture condition most likely resulted from concerted actions of (a) carbohydrate-active enzymes including hydrolases, glycosyltransferases, and carbohydrate esterases important for carbohydrate metabolism and cell wall generation/remodeling, (b) peptidases including cysteine-, metallo-, and serine-peptidases, (c) transporters including the ABC-type transporter superfamily, the FAT transporter family, and the VGP family, and (d) proteins with proposed roles in formation of metabolites that can act as growth-promoting molecules or those normally contain antimicrobial activity (e.g., indoles, terpenes, β-lactones, lanthipeptides, iturins, and ectoines). The findings will provide novel insights into bacterial-fungal interactions during mycelial growth and fruiting body formation. Our results can be utilized for the selection of growth-promoting bacteria to improve the cultivation process of A. cornea with a high production yield, thus conveying potentially high socio-economic impact to mushroom agriculture.
Collapse
Affiliation(s)
- Chitwadee Phithakrotchanakoon
- Microbial Systems and Computational Biology Research Team, Thailand Bioresource Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sermsiri Mayteeworakoon
- Microbial Systems and Computational Biology Research Team, Thailand Bioresource Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Paopit Siriarchawatana
- Microbial Systems and Computational Biology Research Team, Thailand Bioresource Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Supattra Kitikhun
- Microbial Systems and Computational Biology Research Team, Thailand Bioresource Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Piyanun Harnpicharnchai
- Microbial Systems and Computational Biology Research Team, Thailand Bioresource Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Supaporn Wansom
- National Energy Technology Center, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Lily Eurwilaichitr
- National Energy Technology Center, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Supawadee Ingsriswang
- Microbial Systems and Computational Biology Research Team, Thailand Bioresource Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| |
Collapse
|
11
|
Suwannarach N, Kumla J, Zhao Y, Kakumyan P. Impact of Cultivation Substrate and Microbial Community on Improving Mushroom Productivity: A Review. BIOLOGY 2022; 11:biology11040569. [PMID: 35453768 PMCID: PMC9027886 DOI: 10.3390/biology11040569] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Lignocellulosic material and substrate formulations affect mushroom productivity. The microbial community in cultivation substrates affects the quality of the substrates and the efficiency of mushroom production. The elucidation of the key microbes and their biochemical function can serve as a useful guide in the development of a more effective system for mushroom cultivation. Abstract Lignocellulosic materials commonly serve as base substrates for mushroom production. Cellulose, hemicellulose, and lignin are the major components of lignocellulose materials. The composition of these components depends upon the plant species. Currently, composted and non-composted lignocellulosic materials are used as substrates in mushroom cultivation depending on the mushroom species. Different substrate compositions can directly affect the quality and quantity of mushroom production yields. Consequently, the microbial dynamics and communities of the composting substrates can significantly affect mushroom production. Therefore, changes in both substrate composition and microbial diversity during the cultivation process can impact the production of high-quality substrates and result in a high degree of biological efficiency. A brief review of the current findings on substrate composition and microbial diversity for mushroom cultivation is provided in this paper. We also summarize the advantages and disadvantages of various methods of mushroom cultivation by analyzing the microbial diversity of the composting substrates during mushroom cultivation. The resulting information will serve as a useful guide for future researchers in their attempts to increase mushroom productivity through the selection of suitable substrate compositions and their relation to the microbial community.
Collapse
Affiliation(s)
- Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (J.K.)
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (J.K.)
| | - Yan Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Correspondence: (Y.Z.); (P.K.)
| | - Pattana Kakumyan
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Correspondence: (Y.Z.); (P.K.)
| |
Collapse
|
12
|
Chai WY, Krishnan UG, Sabaratnam V, Tan JBL. Assessment of coffee waste in formulation of substrate for oyster mushrooms Pleurotus pulmonarius and Pleurotus floridanus. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
13
|
Zięba P, Sękara A, Sułkowska-Ziaja K, Muszyńska B. Culinary and Medicinal Mushrooms: Insight into Growing Technologies. ACTA MYCOLOGICA 2021. [DOI: 10.5586/am.5526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Humans have used mushrooms from the beginning of their history. However, during the last few decades, the market demand for these fruiting bodies has increased significantly owing to the spread in the capabilities of culinary and pharmacological exploitation. Natural mushroom resources have become insufficient to meet the support needs. Therefore, traditional methods of extensive cultivation as well as modern technologies have been exploited to develop effective growing recommendations for dozens of economically important mushroom species. Mushrooms can decompose a wide range of organic materials, including organic waste. They play a fundamental role in nutrient cycling and exchange in the environment. The challenge is a proper substrate composition, including bio-fortified essential elements, and the application of growing conditions to enable a continuous supply of fruiting bodies of market quality and stabilized chemical composition. Many mushroom species are used for food preparation. Moreover, they are treated as functional foods, because they have health benefits beyond their nutritional value, and are used as natural medicines in many countries. Owing to the rapid development of mushroom farming, we reviewed the growing technologies used worldwide for mushroom species developed for food, processing, and pharmacological industries.
Collapse
|
14
|
Lu H, Lou H, Hu J, Liu Z, Chen Q. Macrofungi: A review of cultivation strategies, bioactivity, and application of mushrooms. Compr Rev Food Sci Food Saf 2020; 19:2333-2356. [DOI: 10.1111/1541-4337.12602] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 05/31/2020] [Accepted: 06/05/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Hongyun Lu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou Zhejiang China
| | - Hanghang Lou
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou Zhejiang China
| | - Jingjin Hu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou Zhejiang China
| | - Zhengjie Liu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou Zhejiang China
| | - Qihe Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou Zhejiang China
| |
Collapse
|
15
|
Sarono, Sukaryana Y, Arifin Z, Astuti S. The analysis of straw mushroom potential development using an empty fruit bunches materials. ACTA ACUST UNITED AC 2020. [DOI: 10.1088/1757-899x/857/1/012017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Kumla J, Suwannarach N, Sujarit K, Penkhrue W, Kakumyan P, Jatuwong K, Vadthanarat S, Lumyong S. Cultivation of Mushrooms and Their Lignocellulolytic Enzyme Production Through the Utilization of Agro-Industrial Waste. Molecules 2020; 25:molecules25122811. [PMID: 32570772 PMCID: PMC7355594 DOI: 10.3390/molecules25122811] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 12/18/2022] Open
Abstract
A large amount of agro-industrial waste is produced worldwide in various agricultural sectors and by different food industries. The disposal and burning of this waste have created major global environmental problems. Agro-industrial waste mainly consists of cellulose, hemicellulose and lignin, all of which are collectively defined as lignocellulosic materials. This waste can serve as a suitable substrate in the solid-state fermentation process involving mushrooms. Mushrooms degrade lignocellulosic substrates through lignocellulosic enzyme production and utilize the degraded products to produce their fruiting bodies. Therefore, mushroom cultivation can be considered a prominent biotechnological process for the reduction and valorization of agro-industrial waste. Such waste is generated as a result of the eco-friendly conversion of low-value by-products into new resources that can be used to produce value-added products. Here, we have produced a brief review of the current findings through an overview of recently published literature. This overview has focused on the use of agro-industrial waste as a growth substrate for mushroom cultivation and lignocellulolytic enzyme production.
Collapse
Affiliation(s)
- Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (N.S.); (K.J.); (S.V.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (N.S.); (K.J.); (S.V.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kanaporn Sujarit
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi, Pathumthani 12110, Thailand;
| | - Watsana Penkhrue
- School of Preclinic, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
- Center of Excellence in Microbial Technology for Agricultural Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pattana Kakumyan
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Kritsana Jatuwong
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (N.S.); (K.J.); (S.V.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Santhiti Vadthanarat
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (N.S.); (K.J.); (S.V.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saisamorn Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (N.S.); (K.J.); (S.V.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
- Correspondence: ; Tel.: +668-1881-3658
| |
Collapse
|
17
|
Deng B, Shi Y, Zhang L, Fang H, Gao Y, Luo L, Feng W, Hu X, Wan S, Huang W, Guo X, Siemann E. Effects of spent mushroom substrate-derived biochar on soil CO 2 and N 2O emissions depend on pyrolysis temperature. CHEMOSPHERE 2020; 246:125608. [PMID: 31884231 DOI: 10.1016/j.chemosphere.2019.125608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/03/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
Edible mushroom cultivation is an important industry in intensively managed forest understories. However, proper disposal of spent mushroom substrate (SMS) presents a challenge to its sustainable development. Biochar derived from SMS could be used to improve soil quality while providing a solution for SMS disposal. But SMS biochar pyrolyzed at different temperatures may alter carbon dioxide (CO2) and nitrous oxide (N2O) emissions associated with global warming, especially under the context of nitrogen (N) addition and warming. We conducted a factorial incubation study to examine greenhouse gas emissions and N transformations in moso bamboo forest soil amended with SMS-biochar (control vs. pyrolyzed at 300, 450 or 600 °C) in different N-addition (0 or 100 mg N kg-1 soil) and temperature (20, 25 or 30 °C) treatments. Pyrolysis temperature affected pH, C and N of SMS-biochars. N-transformations depended on the interaction of pyrolysis temperature, N-addition, and incubation temperature but were generally lower with 450 °C biochar addition. Soil N2O emissions increased with N-addition and they were more sensitive to incubation temperatures without biochar. Soil CO2 emissions increased with incubation temperature or biochar pyrolyzed at lower temperatures. Pyrolysis temperature might have regulated the effects of SMS-derived biochar on N2O emissions via changes in dissolved C, N, pH and associated changes in soil microbial community compositions. Because of the importance of sustainable development of this understory industry, amending soils with biochar produced at higher temperatures may be the best strategy for both the disposal of SMS and the mitigation of greenhouse gas emissions.
Collapse
Affiliation(s)
- Bangliang Deng
- Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China; Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, 27695, USA
| | - Yanzhen Shi
- Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ling Zhang
- Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Haifu Fang
- Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yu Gao
- Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Laicong Luo
- Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Weixun Feng
- Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaofei Hu
- School of Management, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Songze Wan
- Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wei Huang
- Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaomin Guo
- Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Evan Siemann
- Department of Biosciences, Rice University, Houston, 77005, USA
| |
Collapse
|
18
|
|
19
|
The effect of different substrates on the growth of six cultivated mushroom species and composition of macro and trace elements in their fruiting bodies. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3174-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Carrasco J, Zied DC, Pardo JE, Preston GM, Pardo-Giménez A. Supplementation in mushroom crops and its impact on yield and quality. AMB Express 2018; 8:146. [PMID: 30229415 PMCID: PMC6143494 DOI: 10.1186/s13568-018-0678-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/14/2018] [Indexed: 11/10/2022] Open
Abstract
Mushroom supplementation is an agronomic process which consists of the application of nutritional amendments to the substrates employed for mushroom cultivation. Different nitrogen and carbohydrate rich supplements have been evaluated in crops with a substantial impact on mushroom yield and quality; however, there is still controversy regarding the nutritional requirements of mushrooms and the necessity for the development of new commercial additives. The addition of external nutrients increases the productivity of some low-yielding mushroom varieties, and therefore is a useful tool for the industry to introduce new commercially viable varieties. Spent mushroom compost is a waste material that could feasibly be recycled as a substrate to support a new commercially viable crop cycle when amended with supplements. On the other hand, a new line of research based on the use of mushroom growth promoting microorganisms is rising above the horizon to supplement the native microbiota, which appears to cover nutritional deficiencies. Several supplements employed for the cultivated mushrooms and their agronomic potential in terms of yield and quality are reviewed in this paper as a useful guide to evaluate the nutritional requirements of the crop and to design new formulas for commercial supplementation.
Collapse
Affiliation(s)
- Jaime Carrasco
- Department of Plant Sciences, University of Oxford, S Parks Rd, Oxford, OX1 3RB UK
| | - Diego C. Zied
- Universidade Estadual Paulista (UNESP), Câmpus de Dracena, Dracena, São Paulo 17900-000 Brazil
| | - Jose E. Pardo
- Escuela Técnica Superior de Ingenieros Agrónomos y de Montes (ETSIAM), Universidad de Castilla-La Mancha, Campus Universitario, s/n, 02071 Albacete, Spain
| | - Gail M. Preston
- Department of Plant Sciences, University of Oxford, S Parks Rd, Oxford, OX1 3RB UK
| | - Arturo Pardo-Giménez
- Centro de Investigación, Experimentación y Servicios del Champiñón, Quintanar del Rey, Cuenca Spain
| |
Collapse
|
21
|
Zhang X, Zhang B, Miao R, Zhou J, Ye L, Jia D, Peng W, Yan L, Zhang X, Tan W, Li X. Influence of Temperature on the Bacterial Community in Substrate and Extracellular Enzyme Activity of Auricularia cornea. MYCOBIOLOGY 2018; 46:224-235. [PMID: 30294482 PMCID: PMC6171455 DOI: 10.1080/12298093.2018.1497795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/15/2018] [Accepted: 05/19/2018] [Indexed: 06/08/2023]
Abstract
Temperature is an important environmental factor that can greatly influence the cultivation of Auricularia cornea. In this study, lignin peroxidase, laccase, manganese peroxidase, and cellulose in A. cornea fruiting bodies were tested under five different temperatures (20 °C, 25 °C, 30 °C, 35 °C, and 40 °C) in three different culture periods (10 days, 20 days and 30 days). In addition, the V4 region of bacterial 16S rRNA genes in the substrate of A. cornea cultivated for 30 days at different temperatures were sequenced using next-generation sequencing technology to explore the structure and diversity of bacterial communities in the substrate. Temperature and culture days had a significant effect on the activities of the four enzymes, and changes in activity were not synchronized with changes in temperature and culture days. Overall, we obtained 487,694 sequences from 15 samples and assigned them to 16 bacterial phyla. Bacterial community composition and structure in the substrate changed when the temperature was above 35 °C. The relative abundances of some bacteria were significantly affected by temperature. A total of 35 genera at five temperatures in the substrate were correlated, and 41 functional pathways were predicted in the study. Bacterial genes associated with the membrane transport pathway had the highest average abundance (16.16%), and this increased at 35 °C and 40 °C. Generally, different temperatures had impacts on the physiological activity of A. cornea and the bacterial community in the substrate; therefore, the data presented herein should facilitate cultivation of A. cornea.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Soil and Fertilizer Institute, Sichuan Academy of Agriculture Sciences, Chengdu, China
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Bo Zhang
- Soil and Fertilizer Institute, Sichuan Academy of Agriculture Sciences, Chengdu, China
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Renyun Miao
- Soil and Fertilizer Institute, Sichuan Academy of Agriculture Sciences, Chengdu, China
| | - Jie Zhou
- Soil and Fertilizer Institute, Sichuan Academy of Agriculture Sciences, Chengdu, China
| | - Lei Ye
- Soil and Fertilizer Institute, Sichuan Academy of Agriculture Sciences, Chengdu, China
| | - Dinghong Jia
- Soil and Fertilizer Institute, Sichuan Academy of Agriculture Sciences, Chengdu, China
| | - Weihong Peng
- Soil and Fertilizer Institute, Sichuan Academy of Agriculture Sciences, Chengdu, China
| | - Lijuan Yan
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University, Jena,Germany
| | - Xiaoping Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Wei Tan
- Soil and Fertilizer Institute, Sichuan Academy of Agriculture Sciences, Chengdu, China
| | - Xiaolin Li
- Soil and Fertilizer Institute, Sichuan Academy of Agriculture Sciences, Chengdu, China
| |
Collapse
|
22
|
Jin Z, Li Y, Ren J, Qin N. Yield, Nutritional Content, and Antioxidant Activity of Pleurotus ostreatus on Corncobs Supplemented with Herb Residues. MYCOBIOLOGY 2018; 46:24-32. [PMID: 29998030 PMCID: PMC6037074 DOI: 10.1080/12298093.2018.1454014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/02/2018] [Accepted: 02/13/2018] [Indexed: 05/03/2023]
Abstract
Improper disposal of herb residues in China has caused severe problems to the surrounding environment and human safety. Three herb residues, i.e., compound Kushen injection residues (CKI) and part one and part two of Qizhitongluo Capsule residues (QC1 and QC2, respectively), were used for the cultivation of Pleurotus ostreatus. The effect of the supplementation of corncobs (CC) with different herb residues on yield, nutritional composition, and antioxidant activity of P. ostreatus was investigated. Compared to the control, the higher mycelial growth rate was observed on substrates CC +30% CKI and CC +30% QC1, while the higher yield was obtained from substrates CC +30% QC2 and CC +30% CKI. Moreover, chemical analysis of fruit bodies revealed that the addition of herb residues to CC significantly increased proteins, amino acids, ashes, minerals (Na and Ca), and total phenolic contents but significantly reduced carbohydrates and IC50 values of DPPH radicals. In addition, no heavy metals (Pb, Cd, and As) were detected in the fruiting bodies harvested from different substrate combinations. These results demonstrated that mixtures of CC with herb residues might be utilized as a novel, practical, and easily available substrate for the cultivation of P. ostreatus, which is beneficial for the effective management of herb residues.
Collapse
Affiliation(s)
- Zhiqiang Jin
- Department of Biological Science and Technology, Changzhi University, Changzhi, Shanxi, China
| | - Yunling Li
- Department of Biological Science and Technology, Changzhi University, Changzhi, Shanxi, China
| | - Jiahong Ren
- Department of Biological Science and Technology, Changzhi University, Changzhi, Shanxi, China
| | - Nan Qin
- Department of Pharmaceutical and Food Engineering, Shanxi University of Traditional Chinese Medicine, Yuci, Shanxi, China
| |
Collapse
|
23
|
Xiao JJ, Duan JS, Wu YC, Shi YH, Fang QK, Liao M, Hua RM, Cao HQ. Dissipation and Migration of Pyrethroids in Auricularia polytricha Mont. from Cultivation to Postharvest Processing and Dietary Risk. Molecules 2018; 23:E791. [PMID: 29596356 PMCID: PMC6017079 DOI: 10.3390/molecules23040791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/25/2018] [Accepted: 03/28/2018] [Indexed: 11/24/2022] Open
Abstract
In order to ensure raw consumption safety the dissipation behavior, migration, postharvest processing, and dietary risk assessment of five pyrethroids in mushroom (Auricularia polytricha Mont.) cultivated under Chinese greenhouse-field conditions. Half-lives (t1/2) of pyrethroids in fruiting body and substrate samples were 3.10-5.26 and 17.46-40.06 d, respectively. Fenpropathrin dissipated rapidly in fruiting bodies (t1/2 3.10 d); bifenthrin had the longest t1/2. At harvest, pyrethroid residues in A. polytricha (except fenpropathrin) were above the respective maximum residue limits (MRLs). Some migration of lambda-cyhalothrin was observed in the substrate-fruit body system. In postharvest-processing, sun-drying and soaking reduced pyrethroid residues by 25-83%. We therefore recommend that consumers soak these mushrooms in 0.5% NaHCO₃ at 50 °C for 90 min. Pyrethroids exhibit a particularly low PF value of 0.08-0.13%, resulting in a negligible exposure risk upon mushroom consumption. This study provides guidance for the safe application of pyrethroids to edible fungi, and for the establishment of MRLs in mushrooms to reduce pesticide exposure in humans.
Collapse
Affiliation(s)
- Jin-Jing Xiao
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, Anhui, China; (J.-J.X.); (Y.-C.W.); (Y.-H.S.); (Q.-K.F.); (M.L.)
- Provincial Key Laboratory for Agri-Food Safety, Anhui Agricultural University, Hefei 230036, Anhui, China;
| | - Jin-Sheng Duan
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China;
| | - Yan-Can Wu
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, Anhui, China; (J.-J.X.); (Y.-C.W.); (Y.-H.S.); (Q.-K.F.); (M.L.)
- Hefei Testing and Inspection Center for Agricultural Products Quality of Anhui Province, Hefei 230091, Anhui, China
| | - Yan-Hong Shi
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, Anhui, China; (J.-J.X.); (Y.-C.W.); (Y.-H.S.); (Q.-K.F.); (M.L.)
- Provincial Key Laboratory for Agri-Food Safety, Anhui Agricultural University, Hefei 230036, Anhui, China;
| | - Qing-Kui Fang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, Anhui, China; (J.-J.X.); (Y.-C.W.); (Y.-H.S.); (Q.-K.F.); (M.L.)
- Provincial Key Laboratory for Agri-Food Safety, Anhui Agricultural University, Hefei 230036, Anhui, China;
| | - Min Liao
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, Anhui, China; (J.-J.X.); (Y.-C.W.); (Y.-H.S.); (Q.-K.F.); (M.L.)
- Provincial Key Laboratory for Agri-Food Safety, Anhui Agricultural University, Hefei 230036, Anhui, China;
| | - Ri-Mao Hua
- Provincial Key Laboratory for Agri-Food Safety, Anhui Agricultural University, Hefei 230036, Anhui, China;
| | - Hai-Qun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, Anhui, China; (J.-J.X.); (Y.-C.W.); (Y.-H.S.); (Q.-K.F.); (M.L.)
- Provincial Key Laboratory for Agri-Food Safety, Anhui Agricultural University, Hefei 230036, Anhui, China;
| |
Collapse
|
24
|
Bandara AR, Karunarathna SC, Mortimer PE, Hyde KD, Khan S, Kakumyan P, Xu J. First successful domestication and determination of nutritional and antioxidant properties of the red ear mushroom Auricularia thailandica (Auriculariales, Basidiomycota). Mycol Prog 2017. [DOI: 10.1007/s11557-017-1344-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|