1
|
Sharma P, Mahongnao S, Ahamad A, Gupta R, Goel A, Kumar N, Nanda S. 16S rRNA metagenomic profiling of red amaranth grown organically with different composts and soils. Appl Microbiol Biotechnol 2024; 108:129. [PMID: 38229333 DOI: 10.1007/s00253-023-12982-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/14/2023] [Accepted: 12/20/2023] [Indexed: 01/18/2024]
Abstract
In recent years organic food is gaining popularity as it is believed to promote better human health and improve soil sustainability, but there are apprehensions about pathogens in organic produces. This study was designed to understand the effect of different composts and soils on the status of the microbiome present in organically grown leafy vegetables. 16S rRNA metagenomic profiling of the leaves was done, and data were analyzed. It was found that by adding composts, the OTU of the microbiome in the organic produce was higher than in the conventional produce. The beneficial genera identified across the samples included plant growth promoters (Achromobacter, Paenibacillus, Pseudomonas, Sphingobacterium) and probiotics (Lactobacillus), which were higher in the organic produce. Some pathogenic genera, viz., plant pathogenic bacteria (Cellvibrio, Georgenia) and human pathogenic bacteria (Corynebacterium, Acinetobacter, Streptococcus, Streptomyces) were also found but with relatively low counts in the organic produce. Thus, the present study highlights that organic produce has lesser pathogen contamination than the conventional produce. KEY POINTS: • 16S rRNA metagenomics profiling done for organic red amaranth cultivar • Microbial richness varied with respect to the soil and compost type used • The ratio of beneficial to pathogenic genera improves with the addition of compost.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Biochemistry, Daulat Ram College, University of Delhi, 4, Patel Marg, Maurice Nagar, Delhi, 110007, India
| | - Sophayo Mahongnao
- Department of Biochemistry, Daulat Ram College, University of Delhi, 4, Patel Marg, Maurice Nagar, Delhi, 110007, India
| | - Arif Ahamad
- Department of Environmental Science, Jamia Millia Islamia University, New Delhi, 110025, India
| | - Radhika Gupta
- Department of Biochemistry, Daulat Ram College, University of Delhi, 4, Patel Marg, Maurice Nagar, Delhi, 110007, India
| | - Anita Goel
- Department of Biochemistry, Daulat Ram College, University of Delhi, 4, Patel Marg, Maurice Nagar, Delhi, 110007, India
| | - Narendra Kumar
- Department of Biochemistry, Daulat Ram College, University of Delhi, 4, Patel Marg, Maurice Nagar, Delhi, 110007, India
| | - Sarita Nanda
- Department of Biochemistry, Daulat Ram College, University of Delhi, 4, Patel Marg, Maurice Nagar, Delhi, 110007, India.
| |
Collapse
|
2
|
Zhong J, Wu X, Guo R, Li J, Li X, Zhu J. Biocontrol potential of Bacillus velezensis HG-8-2 against postharvest anthracnose on chili pepper caused by Colletotrichum scovillei. Food Microbiol 2024; 124:104613. [PMID: 39244365 DOI: 10.1016/j.fm.2024.104613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/10/2024] [Accepted: 07/25/2024] [Indexed: 09/09/2024]
Abstract
Anthracnose caused by Colletotrichum scovillei is a significant disease of pepper, including in postharvest stage. Bacillus species represent a potential microbial resource for controlling postharvest plant diseases. Here, a strain HG-8-2 was obtained and identified as Bacillus velezensis through morphological, biochemical, physiological, and molecular analyses. The culture filtrate showed highly antifungal activity against C. scovillei both in vitro and on pepper fruit. Crude lipopeptide extracts, which had excellent stability, could effectively inhibit mycelial growth of C. scovillei with an EC50 value of 28.48 ± 1.45 μg mL-1 and inhibited conidial germination. Pretreatment with the extracts reduced the incidence and lesion size of postharvest anthracnose on pepper fruit. Analysis using propidium iodide staining, malondialdehyde content detection and scanning electron microscope observation suggested that the crude lipopeptide extracts harbored antifungal activity by damaging cell membranes and mycelial structures. The RNA-seq analysis conducted on C. scovillei samples treated with the extracts, as compared to untreated samples, revealed significant alterations in the expression of multiple genes involved in protein biosynthesis. Overall, these results demonstrated that B. velezensis HG-8-2 and its crude lipopeptide extracts exhibit highly antagonistic ability against C. scovillei, thereby offering an effective biological agent for the control of anthracnose in pepper fruit.
Collapse
Affiliation(s)
- Jie Zhong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan Province, 410128, PR China
| | - Xiao Wu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan Province, 410128, PR China
| | - Rui Guo
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan Province, 410128, PR China
| | - Jiaxin Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan Province, 410128, PR China
| | - Xiaogang Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan Province, 410128, PR China.
| | - Junzi Zhu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan Province, 410128, PR China.
| |
Collapse
|
3
|
Ogunyemi AK, Buraimoh OM, Dauda WP, Akapo OO, Ogunyemi BC, Samuel TA, Ilori MO, Amund OO. Analysis of the genome of Bacillus safensis strain WOB3 KX774195, a Linamarin-utilizing bacterium (LUB) isolated from Cassava wastewater (CWW), Lagos State, Nigeria. Data Brief 2024; 57:110807. [PMID: 39296627 PMCID: PMC11408756 DOI: 10.1016/j.dib.2024.110807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/08/2024] [Accepted: 08/02/2024] [Indexed: 09/21/2024] Open
Abstract
Linamarin-utilizing bacterium (LUB) is a microorganism that uses and breaks down cassava's principal cyanogenic compound, linamarin. Here, we present the draft genome sequence of Bacillus safensis strain WOB3 (previously Bacillus pumilus strain WOB3) sequenced and assembled with a total reads of 8,750,054 bp. The genome has 1,269 contigs and, G+C content of 41.55%. The genome has 4,749 total genes, 4,614 protein-coding sequences (CDSs), 3, 8 and 10 rRNA genes, 74 tRNA genes, and 5 ncRNA genes. This whole genome shotgun project has been deposited in GenBank under accession number JAYSGU000000000.
Collapse
Affiliation(s)
- Adewale K Ogunyemi
- Department of Microbiology, Trinity University, Yaba, Lagos State, Nigeria
- Department of Biological Sciences (Microbiology Unit), Lagos State University of Science & Technology, Ikorodu, Lagos State, Nigeria
| | - Olanike M Buraimoh
- Department of Microbiology, University of Lagos, Akoka, Lagos State, Nigeria
- TETFund Centre of Excellence on Biodiversity Conservation and Ecosystem Management (TCEBCEM), University of Lagos, Akoka, Lagos State, Nigeria
| | - Wadzani P Dauda
- Department of Agronomy (Crop Science Unit), Federal University Gashua, Gashua, Yobe State, Nigeria
| | - Olufunmilayo O Akapo
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa Main Campus, KwaDlangezwa, 3886, South Africa
| | - Bukola C Ogunyemi
- Department of Biochemistry, University of Lagos, Id-Araba, Lagos State, Nigeria
| | - Titilola A Samuel
- Department of Biochemistry, University of Lagos, Id-Araba, Lagos State, Nigeria
- TETFund Centre of Excellence on Biodiversity Conservation and Ecosystem Management (TCEBCEM), University of Lagos, Akoka, Lagos State, Nigeria
| | - Matthew O Ilori
- Department of Microbiology, University of Lagos, Akoka, Lagos State, Nigeria
| | - Olukayode O Amund
- Department of Microbiology, University of Lagos, Akoka, Lagos State, Nigeria
| |
Collapse
|
4
|
Balint R, Boajă IP. Assisted phytoextraction as a nature-based solution for the sustainable remediation of metal(loid)-contaminated soils. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:2003-2022. [PMID: 38441364 DOI: 10.1002/ieam.4907] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/22/2023] [Accepted: 02/01/2024] [Indexed: 10/18/2024]
Abstract
Soil contamination is a significant environmental issue that poses a threat to human health and the ecosystems. Conventional remediation techniques, such as excavation and landfilling, are often expensive, disruptive, and unsustainable. As a result, there has been growing interest in developing sustainable remediation strategies that are cost-effective, environmentally friendly, and socially acceptable. One such solution is phytoextraction: a nature-based approach that uses the abilities of hyperaccumulator plants to uptake and accumulate metals and metalloids (potentially toxic elements [PTE]) without signs of toxicity. Once harvested, plant biomass can be treated to reduce its volume and weight by combustion, thus obtaining bioenergy, and the ashes can be used for the recovery of metals or in the construction industry. However, phytoextraction has shown variable effectiveness due to soil conditions and plant species specificity, which has led researchers to develop additional approaches known as assisted phytoextraction to enhance its success. Assisted phytoextraction is a remediation strategy based on modifying certain plant traits or using different materials to increase metal uptake or bioavailability. This review article provides a practical and up-to-date overview of established strategies and the latest scientific advancements in assisted phytoextraction. Our focus is on improving plant performance and optimizing the uptake, tolerance, and accumulation of PTE, as well as the accessibility of these contaminants. While we highlight the advantages of using hyperaccumulator plants for assisted phytoextraction, we also address the challenges and limitations associated with this approach. Factors such as soil pH, nutrient availability, and the presence of other contaminants can affect its efficiency. Furthermore, the real-world challenges of implementing phytoextraction on a large scale are discussed and strategies to modify plant traits for successful phytoremediation are presented. By exploring established strategies and the latest scientific developments in assisted phytoextraction, this review provides valuable guidance for optimizing a sustainable, nature-based technology. Integr Environ Assess Manag 2024;20:2003-2022. © 2024 SETAC.
Collapse
Affiliation(s)
| | - Iustina Popescu Boajă
- Geological Institute of Romania, Bucharest, Romania
- National University of Science and Technlogy Politehnica, Bucharest, Romania
| |
Collapse
|
5
|
Akram W, Sharif S, Rehman A, Anjum T, Ali B, Aftab ZEH, Shafqat A, Afzal L, Munir B, Rizwana H, Li G. Exploring the Potential of Bacillus subtilis IS1 and B. amyloliquificiens IS6 to Manage Salinity Stress and Fusarium Wilt Disease in Tomato Plants by Induced Physiological Responses. Microorganisms 2024; 12:2092. [PMID: 39458401 PMCID: PMC11510684 DOI: 10.3390/microorganisms12102092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
The intensified concerns related to agrochemicals' ecological and health risks have encouraged the exploration of microbial agents as eco-friendly alternatives. Some members of Bacillus spp. are potential plant-growth-promoting agents and benefit numerous crop plants globally. This study aimed to explore the beneficial effects of two Bacillus strains (B. subtilis strain IS1 and B. amyloliquificiens strain IS6) capable of alleviating the growth of tomato plants against salinity stress and Fusarium wilt disease. These strains were able to significantly promote the growth of tomato plants and biomass accumulation in pot trials in the absence of any stress. Under salinity stress conditions (150 mM NaCl), B. subtilis strain IS1 demonstrated superior performance and significantly increased shoot length (45.74%), root length (101.39%), fresh biomass (62.17%), and dry biomass (49.69%) contents compared to control plants. Similarly, B. subtilis strain IS1 (63.7%) and B. amyloliquificiens strain IS6 (32.1%) effectively suppressed Fusarium wilt disease and significantly increased plant growth indices compared to the pathogen control. Furthermore, these strains increased the production of chlorophyll, carotenoid, and total phenolic contents. They significantly affected the activities of enzymes involved in antioxidant machinery and the phenylpropanoid pathway. Hence, this study effectively demonstrates that these Bacillus strains can effectively alleviate the growth of tomato plants under multiple stress conditions and can be used to develop bio-based formulations for use in the fields.
Collapse
Affiliation(s)
- Waheed Akram
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan (S.S.); (T.A.)
| | - Shama Sharif
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan (S.S.); (T.A.)
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Areeba Rehman
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
- College of Earth and Environmental Sciences, University of the Punjab, Lahore 54590, Pakistan; (L.A.); (B.M.)
| | - Tehmina Anjum
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan (S.S.); (T.A.)
| | - Basharat Ali
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore 54590, Pakistan;
| | - Zill-e-Huma Aftab
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan (S.S.); (T.A.)
| | - Ayesha Shafqat
- School of Botany, Minhaj University, Lahore 54770, Pakistan;
| | - Laiba Afzal
- College of Earth and Environmental Sciences, University of the Punjab, Lahore 54590, Pakistan; (L.A.); (B.M.)
| | - Bareera Munir
- College of Earth and Environmental Sciences, University of the Punjab, Lahore 54590, Pakistan; (L.A.); (B.M.)
| | - Humaira Rizwana
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Guihua Li
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| |
Collapse
|
6
|
He T, Yang M, Du H, Du R, He Y, Wang S, Deng W, Liu Y, He X, Zhu Y, Zhu S, Du F. Biocontrol agents transform the stability and functional characteristics of the grape phyllosphere microenvironment. FRONTIERS IN PLANT SCIENCE 2024; 15:1439776. [PMID: 39479547 PMCID: PMC11524152 DOI: 10.3389/fpls.2024.1439776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024]
Abstract
The spread of grape leaf diseases has a negative impact on the sustainable development of agriculture. Diseases induced by Uncinula necator significantly affect the quality of grapes. Bacillus biocontrol agents have been proven effective in disease management. However, limited research has been conducted on the impact of biocontrol agents on the assembly and potential functions of plant phyllosphere microbial communities. This study used high-throughput sequencing combined with bioinformatics analysis and culture omics technology for analysis. The results showed that biocontrol bacteria B. subtilis utilized in this study can significantly reduce the disease index of powdery mildew (p<0.05); concurrently, it exhibits a lower disease index compared to traditional fungicides. A comprehensive analysis has revealed that biocontrol bacteria have no significant impact on the diversity of phyllosphere fungi and bacteria, while fungicides can significantly reduce bacterial diversity. Additionally, biocontrol agents can increase the complexity of fungal networks and enhance the degree of modularity and stability of the bacterial network. The results also showed that the biocontrol agents, which contained a high amount of B. subtilis, were able to effectively colonize the grapevine phyllosphere, creating a microenvironment that significantly inhibits pathogenic bacteria on grape leaves while enhancing leaf photosynthetic capacity. In conclusion, biocontrol agents significantly reduce the grape powdery mildew disease index, promote a microenvironment conducive to symbiotic microorganisms and beneficial bacteria, and enhance plant photosynthetic capacity. These findings provide a basis for promoting biocontrol agents and offer valuable insights into sustainable agriculture development.
Collapse
Affiliation(s)
- Tao He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Meng Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Hongyan Du
- Institute of Ecological Agriculture in Hot Areas, Yunnan Academy of Agricultural Sciences, Yuanmou, Yunnan, China
| | - Ronghui Du
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Yueqiu He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Sheng Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Weiping Deng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Yixiang Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Xiahong He
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Youyong Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Shusheng Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Fei Du
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
7
|
Sun ZB, Song HJ, Liu YQ, Ren Q, Wang QY, Li XF, Pan HX, Huang XQ. The Potential of Microorganisms for the Control of Grape Downy Mildew-A Review. J Fungi (Basel) 2024; 10:702. [PMID: 39452654 PMCID: PMC11508768 DOI: 10.3390/jof10100702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/27/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
Plasmopara viticola (Berk.et Curtis) Berl. Et de Toni is the pathogen that causes grape downy mildew, which is an airborne disease that severely affects grape yield and causes huge economic losses. The usage of effective control methods can reduce the damage to plants induced by grape downy mildew. Biocontrol has been widely used to control plant diseases due to its advantages of environmental friendliness and sustainability. However, to date, only a few comprehensive reviews on the biocontrol of grape downy mildew have been reported. In this review, we summarize the biological characteristics of P. viticola and its infection cycle, followed by a detailed overview of current biocontrol agents, including bacteria and fungi that could be used to control grape downy mildew, and their control effects. Furthermore, potential control mechanisms of biocontrol agents against grape downy mildew are discussed. Lastly, suggestions for future research on the biocontrol of grape downy mildew are provided. This review provides the basis for the application of grape downy mildew biocontrol.
Collapse
Affiliation(s)
- Zhan-Bin Sun
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Z.-B.S.)
| | - Han-Jian Song
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Z.-B.S.)
| | - Yong-Qiang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qing Ren
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Z.-B.S.)
| | - Qi-Yu Wang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Z.-B.S.)
| | - Xiao-Feng Li
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Z.-B.S.)
| | - Han-Xu Pan
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Z.-B.S.)
| | - Xiao-Qing Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
8
|
Tyulenev A, Smirnova G, Ushakov V, Kalashnikova T, Sutormina L, Oktyabrsky O. Stress-Induced Sulfide Production by Bacillus subtilis and Bacillus megaterium. Microorganisms 2024; 12:1856. [PMID: 39338531 PMCID: PMC11433681 DOI: 10.3390/microorganisms12091856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
It was previously discovered that, in the Gram-negative bacterium Escherichia coli growing on a minimal medium with sulfate, stress-induced growth arrest is accompanied by the release of hydrogen sulfide. The source of the sulfide is the desulfurization of intracellular cysteine as one of the ways of maintaining it at a safe level. The danger of excess cysteine is associated with its participation in the Fenton reaction, leading to the formation of highly toxic hydroxyl radicals. Using electrochemical sensors, we identified stress-induced sulfide production in the Gram-positive bacteria Bacillus subtilis and Bacillus megaterium, growing on a minimal medium with sulfate, and changes in physiological parameters such as Eh, pH, and oxygen and potassium consumption. Sulfide production was observed during growth arrest due to the depletion of glucose, ammonium or antibiotic action. The use of sensors allowed to continuously record, in growing cultures, even small changes in parameters. There were significant differences in the amount and kinetics of sulfide production between Bacillus and E. coli. These differences are thought to be due to the lack of glutathione in Bacillus. It is suggested that stress-induced sulfide production by Bacillus under the described conditions may be one of the previously unknown sources of hydrogen sulfide in nature.
Collapse
Affiliation(s)
- Alexey Tyulenev
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, Perm 614081, Russia
| | - Galina Smirnova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, Perm 614081, Russia
| | - Vadim Ushakov
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, Perm 614081, Russia
| | - Tatyana Kalashnikova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, Perm 614081, Russia
| | - Lyubov Sutormina
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, Perm 614081, Russia
| | - Oleg Oktyabrsky
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, Perm 614081, Russia
| |
Collapse
|
9
|
Boanares D, Cardoso AF, Escobar DFE, Costa KJA, Bitencourt JA, Costa PHO, Ramos S, Gastauer M, Caldeira CF. The Impact of Rhizospheric and Endophytic Bacteria on the Germination of Carajasia cangae: A Threatened Rubiaceae of the Amazon Cangas. Microorganisms 2024; 12:1843. [PMID: 39338517 PMCID: PMC11433783 DOI: 10.3390/microorganisms12091843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Carajasia cangae (Rubiaceae) is a narrow endemic species from the canga ecosystems of the Carajás National Forest that is facing extinction due to a limited range and habitat disturbance from hydroclimatological changes and mining activities. This study examines the influence of rhizospheric and endophytic bacteria on C. cangae seed germination to support conservation efforts. Soil samples, both rhizospheric and non-rhizospheric, as well as plant root tissues, were collected. Bacteria from these samples were subsequently isolated, cultured, and identified. DNA sequencing revealed the presence of 16 isolates (9 rhizospheric and 7 endophytic), representing 19 genera and 6 phyla: Proteobacteria, Actinobacteria, Acidobacteria, Firmicutes, Bacteroidetes, and Chloroflexi. The endophytic isolates of Bacillus and the rhizospheric isolates of Planococcus and Lysinibacillus reduced the median germination time and initiation time, while the rhizospheric isolates Serratia and Comamonas increased the germination time and decreased the germination percentage in comparison to the control sample. These findings emphasize the crucial role of endophytic bacteria in the germination of C. cangae and highlight isolates that could have beneficial effects in the following stages of plant growth. Understanding the impact of endophytic and rhizospheric bacterial isolates on seed germination can enhance conservation efforts by shortening the germination period of this species and thereby improving seedling production. Additionally, this knowledge will pave the way for future research on the role of bacteria in the establishment of C. cangae.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Cecilio Frois Caldeira
- Instituto Tecnológico Vale, Belém 66055-090, PA, Brazil; (D.B.); (A.F.C.); (D.F.E.E.); (K.J.A.C.); (J.A.B.); (P.H.O.C.); (S.R.); (M.G.)
| |
Collapse
|
10
|
Huasasquiche L, Alejandro L, Ccori T, Cántaro-Segura H, Samaniego T, Quispe K, Solórzano R. Bacillus subtilis and Rhizophagus intraradices Improve Vegetative Growth, Yield, and Fruit Quality of Fragaria × ananassa var. San Andreas. Microorganisms 2024; 12:1816. [PMID: 39338490 PMCID: PMC11434249 DOI: 10.3390/microorganisms12091816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
Strawberry cultivation requires strategies that maintain or improve its yield within a scheme in which reducing fertilizers and other chemical products can make its consumption safer and more environmentally friendly. This study aims to evaluate the effect of Bacillus subtilis and Rhizophagus intraradices on strawberry growth, yield, and fruit quality. B. subtilis and R. intraradices were inoculated and co-inoculated under three fertilization levels of 225-100-250, 112-50-125, and 0-0-0 kg∙ha-1 of N, P2O5 and K2O. Vegetative growth was evaluated in plant height (cm), leaf area (cm2), aerial fresh weight (g), aerial dry weight (g), and plant coverage (%) variables. Fruit quality parameters such as total acidity (g∙100 mL-1), soluble solids (Brix°), and firmness (kg) were also determined, as well as the number of fruits per m2 and yield (t∙ha-1). The results showed that the pre-treatment of root immersion in a nutrient solution with B. subtilis and the fractionation of 6 L B. subtilis inoculation per plant at a concentration of 107 CFU∙mL-1, in combination with 225-100-250 kg∙ha-1 of N, P2O5, and K2O, achieved the highest accumulation of dry matter (12.9 ± 1.9 g∙plant-1), the highest number of fruits (28.2 ± 4.5 fruits∙m-2), and the highest yield (7.2 ± 1.4 t∙ha-1). In addition, this treatment increased the soluble sugar content by 34.78% and fruit firmness by 26.54% compared to the control without inoculation. This study highlights the synergistic effect of mineral nutrition and microbial inoculation with B. subtilis in increasing strawberry yield and fruit quality.
Collapse
Affiliation(s)
- Lucero Huasasquiche
- Estación Experimental Agraria Donoso, Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15200, Peru
| | - Leonela Alejandro
- Facultad de Agronomía, Universidad Nacional Agraria La Molina (UNALM), Lima 15024, Peru
| | - Thania Ccori
- Facultad de Agronomía, Universidad Nacional Agraria La Molina (UNALM), Lima 15024, Peru
| | - Héctor Cántaro-Segura
- Facultad de Agronomía, Universidad Nacional Agraria La Molina (UNALM), Lima 15024, Peru
| | - Tomás Samaniego
- Estación Experimental Agraria Donoso, Dirección de Supervisión y Monitoreo de las Estaciones Experimentales, Instituto Nacional de Innovación Agraria (INIA), Lima 15200, Peru
| | - Kenyi Quispe
- Centro Experimental La Molina, Dirección de Supervisión y Monitoreo de las Estaciones Experimentales, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru
| | - Richard Solórzano
- Facultad de Ciencias Ambientales, Universidad Científica del Sur (UCSUR), Lima 15067, Peru
| |
Collapse
|
11
|
Niron H, Vienne A, Frings P, Poetra R, Vicca S. Exploring the synergy of enhanced weathering and Bacillus subtilis: A promising strategy for sustainable agriculture. GLOBAL CHANGE BIOLOGY 2024; 30:e17511. [PMID: 39295254 DOI: 10.1111/gcb.17511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/21/2024]
Abstract
Climate change is one of the most urgent environmental challenges that humanity faces. In addition to the reduction of greenhouse gas emissions, safe and robust carbon dioxide removal (CDR) technologies that capture atmospheric CO2 and ensure long-term sequestration are required. Among CDR technologies, enhanced silicate weathering (ESW) has been suggested as a promising option. While ESW has been demonstrated to depend strongly on pH, water, and temperature, recent studies suggest that biota may accelerate mineral weathering rates. Bacillus subtilis is a plant growth-promoting rhizobacterium that can facilitate weathering to obtain mineral nutrients. It is a promising agricultural biofertilizer, as it helps plants acquire nutrients and protects them from environmental stresses. Given that croplands are optimal implementation fields for ESW, any synergy between ESW and B. subtilis can hold great potential for further practice. B. subtilis was reported to enhance weathering under laboratory conditions, but there is a lack of data for soil applications. In a soil-mesocosm experiment, we examined the effect of B. subtilis on basalt weathering. B. subtilis-basalt interaction stimulated basalt weathering and increased soil extractable Fe. The combined application displayed higher CDR potential compared to basalt-only application (3.7 vs. 2.3 tons CO2 ha-1) taking solid and liquid cation pools into account. However, the cumulative CO2 efflux decreased by approximately 2 tons CO2 ha-1 with basalt-only treatment, while the combined application did not affect the CO2 efflux. We found limited mobilization of cations to the liquid phase as most were retained in the soil. Additionally, we found substantial mobilization of basalt-originated Mg, Fe, and Al to oxide- and organic-bound soil fractions. We, therefore, conclude that basalt addition showed relatively low inorganic CDR potential but a high capacity for SOM stabilization. The outcomes indicated the importance of weathering rate-GHG emission integration and the high potential of SOM stabilization in ESW studies.
Collapse
Affiliation(s)
- Harun Niron
- Biobased Sustainability Engineering (SUSTAIN), Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Arthur Vienne
- Biobased Sustainability Engineering (SUSTAIN), Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Patrick Frings
- GFZ German Research Centre for Geosciences, Potsdam, Germany
| | - Reinaldy Poetra
- Institute for Geology, Centre for Earth System Research and Sustainability, University of Hamburg, Hamburg, Germany
| | - Sara Vicca
- Biobased Sustainability Engineering (SUSTAIN), Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
12
|
Moroz N, Colvin B, Jayasinghe S, Gleason C, Tanaka K. Phytocytokine StPep1-Secreting Bacteria Suppress Potato Powdery Scab Disease. PHYTOPATHOLOGY 2024; 114:2055-2063. [PMID: 38970808 DOI: 10.1094/phyto-01-24-0019-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Powdery scab is an important potato disease caused by the soilborne pathogen Spongospora subterranea f. sp. subterranea. Currently, reliable chemical control and resistant cultivars for powdery scab are unavailable. As an alternative control strategy, we propose a novel approach involving the effective delivery of a phytocytokine to plant roots by the rhizobacterium Bacillus subtilis. The modified strain is designed to secrete the plant elicitor peptide StPep1. In our experiments employing a hairy root system, we observed a significant reduction in powdery scab pathogen infection when we directly applied the StPep1 peptide. Furthermore, our pot assay, which involved pretreating potato roots with StPep1-secreting B. subtilis, demonstrated a substantial decrease in disease symptoms, including reduced root galling and fewer tuber lesions. These findings underscore the potential of engineered bacteria as a promising strategy for safeguarding plants against powdery scab.
Collapse
Affiliation(s)
- Natalia Moroz
- Department of Plant Pathology, Washington State University, Pullman, WA 99164
| | - Benjamin Colvin
- Department of Plant Pathology, Washington State University, Pullman, WA 99164
| | - Samodya Jayasinghe
- Department of Plant Pathology, Washington State University, Pullman, WA 99164
| | - Cynthia Gleason
- Department of Plant Pathology, Washington State University, Pullman, WA 99164
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, WA 99164
| |
Collapse
|
13
|
Kumari R, Pandey E, Bushra S, Faizan S, Pandey S. Plant Growth Promoting Rhizobacteria (PGPR) induced protection: A plant immunity perspective. PHYSIOLOGIA PLANTARUM 2024; 176:e14495. [PMID: 39247988 DOI: 10.1111/ppl.14495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/03/2024] [Accepted: 08/10/2024] [Indexed: 09/10/2024]
Abstract
Plant-environment interactions, particularly biotic stress, are increasingly essential for global food security due to crop losses in the dynamic environment. Therefore, understanding plant responses to biotic stress is vital to mitigate damage. Beneficial microorganisms and their association with plants can reduce the damage associated with plant pathogens. One such group is PGPR (Plant growth-promoting rhizobacteria), which influences plant immunity significantly by interacting with biotic stress factors and plant signalling compounds. This review explores the types, metabolism, and mechanisms of action of PGPR, including their enzyme pathways and the signalling compounds secreted by PGPR that modulate gene and protein expression during plant defence. Furthermore, the review will delve into the crosstalk between PGPR and other plant growth regulators and signalling compounds, elucidating the physiological, biochemical, and molecular insights into PGPR's impact on plants under multiple biotic stresses, including interactions with fungi, bacteria, and viruses. Overall, the review comprehensively adds to our knowledge about PGPR's role in plant immunity and its application for agricultural resilience and food security.
Collapse
Affiliation(s)
- Rinkee Kumari
- Environmental Physiology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, (U.P.), India
| | - Ekta Pandey
- Environmental Physiology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, (U.P.), India
| | - Sayyada Bushra
- Environmental Physiology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, (U.P.), India
| | - Shahla Faizan
- Environmental Physiology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, (U.P.), India
| | - Saurabh Pandey
- Department of Agriculture, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
14
|
Das R, Saikia K, Sarma PP, Devi R, Thakur D. Evaluating the Potential of Bacillus Isolates for Chlorpyrifos Degradation and Their Role in Tea Growth Promotion and Suppression of Pathogens. Curr Microbiol 2024; 81:332. [PMID: 39198319 DOI: 10.1007/s00284-024-03859-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 08/18/2024] [Indexed: 09/01/2024]
Abstract
Pesticides employed for controlling domestic and agricultural pests are among the most dangerous environmental contaminants. Nevertheless, negligent usage and a lack of technical expertise have led to the contamination and pollution of various ecological niches. The extensive utilization of the organophosphate chlorpyrifos (CPs) for insect infestation control, coupled with its detrimental effects and persistence in the ecosystem, has led to calls for its removal from contaminated sites. The study is mainly focused on degradation of CPs; using viz. Bacillus wiedmannii A3 and Bacillus cereus P14 isolated from tea rhizosphere soil having pesticide contamination in Sonitpur district, Assam, India. These two bacterial strains were able to degrade CPs in vitro within 3 days. Reverse-phase HPLC analysis suggested about 96% reduction of CPs concentration upon bacterial treatment. Again, in case of A3, GC-MS analysis revealed that CPs was modified to 2-hydroxy-3,5,6-trichloropyridine and chlorpyrifos-oxon, thus finally metabolized into non-toxic products. While analyzing P14, silane, dimethyl (2,2,2-trichloroethoxy) propoxy, and 3-aminobenzoic acid, N-trimethylsilyl-, trimethylsilyl ester were identified. These compounds were subsequently transformed into non-toxic products. In addition to this, they demonstrated a significant boost of plant growth-promoting traits in both absence and presence of CPs; also showed growth development in nursery scale condition. Moreover, they functioned as biocontrol agents against Phellinus lamaensis and Colletotrichum gloeosporioides, responsible for brown root rot and anthracnose in North East India tea plantations, respectively. Thus, the pesticide-tolerant Bacilli strains A3 and P14 could be used as bioremediation of contaminated sites and also as biostimulants, and biocontrols in tea crop production.
Collapse
Affiliation(s)
- Rictika Das
- Microbial Biotechnology Laboratory, Life Science Division, Institute of Advanced Study in Science and Technology (IASST), Paschim Boragaon, Garchuk, Guwahati, Assam, 781035, India
- Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, Assam, India
| | - Kangkon Saikia
- Microbial Biotechnology Laboratory, Life Science Division, Institute of Advanced Study in Science and Technology (IASST), Paschim Boragaon, Garchuk, Guwahati, Assam, 781035, India
| | - Partha Pratim Sarma
- Chemical Biology Laboratory, Life Science Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Rajlakshmi Devi
- Life Science Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Debajit Thakur
- Microbial Biotechnology Laboratory, Life Science Division, Institute of Advanced Study in Science and Technology (IASST), Paschim Boragaon, Garchuk, Guwahati, Assam, 781035, India.
| |
Collapse
|
15
|
Rigobelo EC, de Andrade LA, Santos CHB, Frezarin ET, Sales LR, de Carvalho LAL, Guariz Pinheiro D, Nicodemo D, Babalola OO, Verdi MCQ, Mondin M, Desoignies N. Effects of Trichoderma harzianum and Bacillus subtilis on the root and soil microbiomes of the soybean plant INTACTA RR2 PRO™. FRONTIERS IN PLANT SCIENCE 2024; 15:1403160. [PMID: 39258296 PMCID: PMC11383790 DOI: 10.3389/fpls.2024.1403160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/06/2024] [Indexed: 09/12/2024]
Abstract
Introduction Soybean is a significant export product for several countries, including the United States and Brazil. There are numerous varieties of soybean. Among them, a genetically modified type known as INTACTA RR2 PRO™ has been designed to demonstrate resistance to glyphosate and to produce toxins that are lethal to several species of caterpillars. Limited information is available on the use of Trichoderma harzianum and Bacillus subtilis to promote plant growth and their impact on the plant microbiome. Methods This study aimed to evaluate the effects of these microorganisms on this soybean cultivar by analyzing parameters, such as root and shoot dry matter, nutritional status, and root and soil microbial diversity. Results The results indicated that treatments with B. subtilis alone or in combination with T. harzianum as seed or seed and soil applications significantly enhanced plant height and biomass compared to the other treatments and the control. No significant differences in phosphorus and nitrogen concentrations were detected across treatments, although some treatments showed close correlations with these nutrients. Microbial inoculations slightly influenced the soil and root microbiomes, with significant beta diversity differences between soil and root environments, but had a limited overall impact on community composition. Discussion The combined application of B. subtilis and T. harzianum particularly enhanced plant growth and promoted plant-associated microbial groups, such as Rhizobiaceae, optimizing plant-microbe interactions. Furthermore, the treatments resulted in a slight reduction in fungal richness and diversity.
Collapse
Affiliation(s)
- Everlon Cid Rigobelo
- Agricultural and Livestock Microbiology Postgraduate Program, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil
| | - Luana Alves de Andrade
- Agricultural and Livestock Microbiology Postgraduate Program, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil
| | - Carlos Henrique Barbosa Santos
- Agricultural and Livestock Microbiology Postgraduate Program, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil
| | - Edvan Teciano Frezarin
- Agricultural and Livestock Microbiology Postgraduate Program, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil
| | - Luziane Ramos Sales
- Agricultural and Livestock Microbiology Postgraduate Program, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil
| | - Lucas Amoroso Lopes de Carvalho
- Agricultural and Livestock Microbiology Postgraduate Program, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil
| | - Daniel Guariz Pinheiro
- Agricultural and Livestock Microbiology Postgraduate Program, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil
| | - Daniel Nicodemo
- Faculty of Agrarian and Veterinary Sciences, State University of São Paulo (UNESP), Jaboticabal, Brazil
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Maria Caroline Quecine Verdi
- University of São Paulo, College of Agriculture "Luiz de Queiroz", Genetics Science Department, Piracicaba, Brazil
| | - Mateus Mondin
- University of São Paulo, College of Agriculture "Luiz de Queiroz", Genetics Science Department, Piracicaba, Brazil
| | - Nicolas Desoignies
- University of São Paulo, College of Agriculture "Luiz de Queiroz", Genetics Science Department, Piracicaba, Brazil
- Phytopathology, Microbial and Molecular Farming Lab, Center D'Etudes et Recherche Appliquée-Haute Ecole Provinciale du Hainaut Condorcet, Ath, Belgium
| |
Collapse
|
16
|
de Souza Heidel BL, Benson J, O'Keane S, Dodge AG, Wackett LP, Aksan A. A Model for Mechanical Stress Limited Bacterial Growth and Resporulation in Confinement. ACS APPLIED MATERIALS & INTERFACES 2024; 16:41800-41809. [PMID: 39088721 DOI: 10.1021/acsami.4c04354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
In this study, we propose a self-limiting growth model forBacillus subtilisspores confined within porous polyacrylamide (PA) hydrogels. We observed thatB. subtilisspores germinate into vegetative cells within the hydrogel matrix, forming spherical colonies. These colonies expand until the mechanical stress they exert on their environment surpasses the yield stress of the hydrogel, leading to formation of a nonpermeable layer that halts nutrient diffusion and forces the bacteria to resporulate. These novel observations suggest a model to explain why bacterial growth in confined environments and material interfaces may be limited, providing insight for natural phenomena and biotechnological applications involving bacterial encapsulation.
Collapse
Affiliation(s)
- Beatriz L de Souza Heidel
- Bioencapsulation Laboratory, Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joey Benson
- Bioencapsulation Laboratory, Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Sophie O'Keane
- Bioencapsulation Laboratory, Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Anthony G Dodge
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Lawrence P Wackett
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota 55108, United States
- The BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Alptekin Aksan
- Bioencapsulation Laboratory, Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
- The BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108, United States
| |
Collapse
|
17
|
Huang W, Wang D, Zhang XX, Zhao M, Sun L, Zhou Y, Guan X, Xie Z. Regulatory roles of the second messenger c-di-GMP in beneficial plant-bacteria interactions. Microbiol Res 2024; 285:127748. [PMID: 38735241 DOI: 10.1016/j.micres.2024.127748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Abstract
The rhizosphere system of plants hosts a diverse consortium of bacteria that confer beneficial effects on plant, such as plant growth-promoting rhizobacteria (PGPR), biocontrol agents with disease-suppression activities, and symbiotic nitrogen fixing bacteria with the formation of root nodule. Efficient colonization in planta is of fundamental importance for promoting of these beneficial activities. However, the process of root colonization is complex, consisting of multiple stages, including chemotaxis, adhesion, aggregation, and biofilm formation. The secondary messenger, c-di-GMP (cyclic bis-(3'-5') dimeric guanosine monophosphate), plays a key regulatory role in a variety of physiological processes. This paper reviews recent progress on the actions of c-di-GMP in plant beneficial bacteria, with a specific focus on its role in chemotaxis, biofilm formation, and nodulation.
Collapse
Affiliation(s)
- Weiwei Huang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Dandan Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Xue-Xian Zhang
- School of Natural Sciences, Massey University at Albany, Auckland 0745, New Zealand
| | - Mengguang Zhao
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Li Sun
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Yanan Zhou
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Xin Guan
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Zhihong Xie
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong Province 271018, China.
| |
Collapse
|
18
|
Jannat M, Auyon ST, Tushar ASM, Tonny SH, Hasan MH, Shahi M, Singha UR, Sultana A, Akter S, Islam MR. Seed Priming with Rhizospheric Bacillus subtilis: A Smart Strategy for Reducing Fumonisin Contamination in Pre-Harvest Maize. Toxins (Basel) 2024; 16:337. [PMID: 39195747 PMCID: PMC11358949 DOI: 10.3390/toxins16080337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 08/29/2024] Open
Abstract
Maize, one of the most important cereal crops in Bangladesh, is severely contaminated by fumonisin, a carcinogenic secondary metabolite produced by Fusarium including Fusarium proliferatum. Biocontrol with Bacillus strains is an effective approach to controlling this F. proliferatum as Bacillus has proven antagonistic properties against this fungus. Therefore, the present study aimed to determine how native Bacillus strains can reduce fumonisin in maize cultivated in Bangladesh, where BDISO76MR (Bacillus subtilis) strains showed the highest efficacy both in vitro in detached cob and in planta under field conditions. The BDISO76MR strain could reduce the fumonisin concentration in detached cob at 98.52% over untreated control, by inhibiting the conidia germination and spore formation of F. proliferatum at 61.56% and 77.01%, respectively in vitro. On the other hand, seed treatment with formulated BDISO76MR showed higher efficacy with a reduction of 97.27% fumonisin contamination compared to the in planta cob inoculation (95.45%) over untreated control. This implies that Bacillus-based formulation might be a potential approach in mitigating fumonisin contamination in maize to ensure safe food and feed.
Collapse
Affiliation(s)
- Muhtarima Jannat
- Plant Bacteriology & Biotechnology Laboratory, Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.J.); (A.S.M.T.); (S.H.T.); (M.H.H.); (M.S.)
| | - Shah Tasdika Auyon
- Department of Environmental Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Abu Sina Md. Tushar
- Plant Bacteriology & Biotechnology Laboratory, Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.J.); (A.S.M.T.); (S.H.T.); (M.H.H.); (M.S.)
| | - Sadia Haque Tonny
- Plant Bacteriology & Biotechnology Laboratory, Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.J.); (A.S.M.T.); (S.H.T.); (M.H.H.); (M.S.)
| | - Md. Hasibul Hasan
- Plant Bacteriology & Biotechnology Laboratory, Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.J.); (A.S.M.T.); (S.H.T.); (M.H.H.); (M.S.)
| | - Mangal Shahi
- Plant Bacteriology & Biotechnology Laboratory, Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.J.); (A.S.M.T.); (S.H.T.); (M.H.H.); (M.S.)
| | - Uday Rana Singha
- Department of Agricultural Extension, Khamarbari, Dhaka 1215, Bangladesh; (U.R.S.); (A.S.); (S.A.)
| | - Ayesha Sultana
- Department of Agricultural Extension, Khamarbari, Dhaka 1215, Bangladesh; (U.R.S.); (A.S.); (S.A.)
| | - Sabera Akter
- Department of Agricultural Extension, Khamarbari, Dhaka 1215, Bangladesh; (U.R.S.); (A.S.); (S.A.)
| | - Md. Rashidul Islam
- Plant Bacteriology & Biotechnology Laboratory, Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.J.); (A.S.M.T.); (S.H.T.); (M.H.H.); (M.S.)
| |
Collapse
|
19
|
Al-Shammari WB, Abdulkreem Al-Huquil A, Alshammery K, Lotfi S, Altamimi H, Alshammari A, Al-Harbi NA, Rashed AA, Abdelaal K. Alleviation of drought stress damages by melatonin and Bacillus thuringiensis associated with adjusting photosynthetic efficiency, antioxidative system, and anatomical structure of Glycine max (L.). Heliyon 2024; 10:e34754. [PMID: 39149001 PMCID: PMC11325389 DOI: 10.1016/j.heliyon.2024.e34754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
These experiments were performed to study the effect of exogenous treatment with melatonin at 100 μM and seed treatment with Bacillus thuringiensis (106-8 CFU/cm3) on growth, physio-biochemical characters, antioxidant enzymes, and anatomical features of soybean plants cv. Giza 111 under drought conditions. The findings showed that leaves number, nodules number, branches number, relative water content (RWC), chlorophyll content, and maximum quantum efficiency of PSII (Fv/Fm) were significantly reduced in soybean under drought stress. In addition, anatomical structure of stems and leaves were negatively affected in stressed plants. Moreover, proline, electrolyte leakage (EL%) lipid peroxidation (MDA), superoxide (O2 ·-), hydrogen peroxide (H2O2), and antioxidant enzymes, such as catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD), were significantly increased under drought stress. However, application of melatonin or Bacillus caused an improvement in growth characters, such as branches number, and increased chlorophyll a and b content, RWC as well as Fv/Fm in drought stressed soybean plants. Furthermore, melatonin and Bacillus treatments showed a significant decrease in EL%, MDA, O2 ·- and H2O2, besides regulating the activity of antioxidant enzymes under drought stress. The stems and leaves anatomical structure, such as lamina thickness, lower and upper epidermis thickness, number of xylem vessels/bundle, stem diameter, xylem vessels diameter, and phloem thickness, were improved under drought conditions with melatonin and Bacillus treatments. Therefore, the outcomes of this investigation recommended the use of melatonin as foliar spray and Bacillus thuringiensis as seed treatment, which could regulate a number of stress-responsive mechanisms to protect the stressed soybean plants, improve their growth under drought stress.
Collapse
Affiliation(s)
- Wasimah B Al-Shammari
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail, 55476, Saudi Arabia
| | - Arwa Abdulkreem Al-Huquil
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Kholoud Alshammery
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail, 55476, Saudi Arabia
| | - Salwa Lotfi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail, 55476, Saudi Arabia
| | - Haya Altamimi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail, 55476, Saudi Arabia
| | - Abeer Alshammari
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail, 55476, Saudi Arabia
| | - Nadi Awad Al-Harbi
- Biology Department, University College of Tayma, University of Tabuk, P.O. Box 741, Tabuk, Saudi Arabia
| | - Afaf Abdullah Rashed
- Biology Department, College of Applied Sciences, Umm Al-Qura University, Makkah, 24382, Saudi Arabia
| | - Khaled Abdelaal
- EPCRS Excellence Center, Plant Pathology and Biotechnology Lab., Faculty of Agriculture, Kafrelsheikh University, 33516, Egypt
| |
Collapse
|
20
|
Xuan Z, Wang Y, Shen Y, Pan X, Wang J, Liu W, Miao W, Jin P. Bacillus velezensis HN-2: a potent antiviral agent against pepper veinal mottle virus. FRONTIERS IN PLANT SCIENCE 2024; 15:1403202. [PMID: 39049860 PMCID: PMC11266135 DOI: 10.3389/fpls.2024.1403202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024]
Abstract
Background Pepper veinal mottle virus (PVMV) belongs to the genus Potyvirus within the family Potyviridae and is a major threat to pepper production, causing reduction in yield and fruit quality; however, efficient pesticides and chemical treatments for plant protection against viral infections are lacking. Hence, there is a critical need to discover highly active and environment-friendly antiviral agents derived from natural sources. Bacillus spp. are widely utilized as biocontrol agents to manage fungal, bacterial, and viral plant diseases. Particularly, Bacillus velezensis HN-2 exhibits a strong antibiotic activity against plant pathogens and can also induce plant resistance. Methods The experimental subjects employed in this study were Bacillus velezensis HN-2, benzothiadiazole, and dufulin, aiming to evaluate their impact on antioxidant activity, levels of reactive oxygen species, activity of defense enzymes, and expression of defense-related genes in Nicotiana benthamiana. Furthermore, the colonization ability of Bacillus velezensis HN-2 in Capsicum chinense was investigated. Results The results of bioassays revealed the robust colonization capability of Bacillus velezensis HN-2, particularly in intercellular spaces, leading to delayed infection and enhanced protection against PVMV through multiple plant defense mechanisms, thereby promoting plant growth. Furthermore, Bacillus velezensis HN-2 increased the activities of antioxidant enzymes, thereby mitigating the PVMV-induced ROS production in Nicotiana benthamiana. Moreover, the application of Bacillus velezensis HN-2 at 5 dpi significantly increased the expression of JA-responsive genes, whereas the expression of salicylic acid-responsive genes remained unchanged, implying the activation of the JA signaling pathway as a crucial mechanism underlying Bacillus velezensis HN-2-induced anti-PVMV activity. Immunoblot analysis revealed that HN-2 treatment delayed PVMV infection at 15 dpi, further highlighting its role in inducing plant resistance and promoting growth and development. Conclusions These findings underscore the potential of Bacillus velezensis HN-2 for field application in managing viral plant diseases effectively.
Collapse
Affiliation(s)
- Zhe Xuan
- College of Plant Protection, Hainan University/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Yu Wang
- College of Plant Protection, Hainan University/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| | - Yuying Shen
- College of Plant Protection, Hainan University/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| | - Xiao Pan
- College of Plant Protection, Hainan University/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| | - Jiatong Wang
- College of Plant Protection, Hainan University/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| | - Wenbo Liu
- College of Plant Protection, Hainan University/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| | - Weiguo Miao
- College of Plant Protection, Hainan University/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| | - Pengfei Jin
- College of Plant Protection, Hainan University/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| |
Collapse
|
21
|
Jian Q, Zhang T, Wang Y, Guan L, Li L, Wu L, Chen S, He Y, Huang H, Tian S, Tang H, Lu L. Biocontrol potential of plant growth-promoting rhizobacteria against plant disease and insect pest. Antonie Van Leeuwenhoek 2024; 117:92. [PMID: 38949726 DOI: 10.1007/s10482-024-01975-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/27/2024] [Indexed: 07/02/2024]
Abstract
Biological control is a promising approach to enhance pathogen and pest control to ensure high productivity in cash crop production. Therefore, PGPR biofertilizers are very suitable for application in the cultivation of tea plants (Camellia sinensis) and tobacco, but it is rarely reported so far. In this study, production of a consortium of three strains of PGPR were applied to tobacco and tea plants. The results demonstrated that plants treated with PGPR exhibited enhanced resistance against the bacterial pathogen Pseudomonas syringae (PstDC3000). The significant effect in improving the plant's ability to resist pathogen invasion was verified through measurements of oxygen activity, bacterial colony counts, and expression levels of resistance-related genes (NPR1, PR1, JAZ1, POD etc.). Moreover, the application of PGPR in the tea plantation showed significantly reduced population occurrences of tea green leafhoppers (Empoasca onukii Matsuda), tea thrips (Thysanoptera:Thripidae), Aleurocanthus spiniferus (Quaintanca) and alleviated anthracnose disease in tea seedlings. Therefore, PGPR biofertilizers may serve as a viable biological control method to improve tobacco and tea plant yield and quality. Our findings revealed part of the mechanism by which PGPR helped improve plant biostresses resistance, enabling better application in agricultural production.
Collapse
Affiliation(s)
- Qinhao Jian
- College of Tea Science, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Tongrui Zhang
- College of Tea Science, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yingying Wang
- College of Tea Science, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Li Guan
- College of Tea Science, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Linlin Li
- College of Tea Science, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Longna Wu
- College of Tea Science, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Shiyan Chen
- College of Tea Science, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yumei He
- College of Tea Science, Guizhou University, Guiyang, 550025, People's Republic of China
| | | | - Shugang Tian
- Wengfu Group Agriservice Co, Ltd, 550500, Fuquan, China
| | - Hu Tang
- College of Tea Science, Guizhou University, Guiyang, 550025, People's Republic of China.
| | - Litang Lu
- College of Tea Science, Guizhou University, Guiyang, 550025, People's Republic of China.
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
22
|
Li C, Hua C, Chen L, Miao Z, Xu R, Peng S, Ge Z, Mao L. Preparation of bacterial fertilizer from biogas residue after anaerobic co-digestion of kitchen waste and residual sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44005-44022. [PMID: 38918298 DOI: 10.1007/s11356-024-33924-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024]
Abstract
Azotobacter chroococcum and Bacillus subtilis were selected as fermentation strains, and biogas residue after anaerobic digestion of kitchen waste and residual sludge was used as fermentation substrate. A single factor optimization test was used to optimize the solid-state fermentation parameters of biogas residue with the number of viable bacteria and the number of spores as indexes. The results showed that the optimum inoculation conditions involved the following: 55% initial moisture content, 15% initial inoculation amount, 30 ℃, and 1:1 initial inoculation ratio for 13 days. Pot experiment showed that the prepared three kinds of bacterial fertilizers could not only effectively promote the growth of white clover, improve the composition of soil nutrients, but also change the structure of soil bacterial community, which is of great significance to the health of soil ecosystem in white clover.
Collapse
Affiliation(s)
- Chuan Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Laboratory of Biodiversity and Conservation, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
- National Positioning Observation Station of Hung-Tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, 223100, China
| | - Chang Hua
- Co-Innovation Center for Sustainable Forestry in Southern China, Laboratory of Biodiversity and Conservation, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
- National Positioning Observation Station of Hung-Tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, 223100, China
| | - Lingling Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Laboratory of Biodiversity and Conservation, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
- National Positioning Observation Station of Hung-Tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, 223100, China
| | - Zimei Miao
- College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Longpan Road 159, Nanjing, 210037, China.
| | - Rui Xu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Sili Peng
- Co-Innovation Center for Sustainable Forestry in Southern China, Laboratory of Biodiversity and Conservation, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhiwei Ge
- Co-Innovation Center for Sustainable Forestry in Southern China, Laboratory of Biodiversity and Conservation, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Lingfeng Mao
- Co-Innovation Center for Sustainable Forestry in Southern China, Laboratory of Biodiversity and Conservation, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
23
|
Ali MA, Ahmed T, Ibrahim E, Rizwan M, Chong KP, Yong JWH. A review on mechanisms and prospects of endophytic bacteria in biocontrol of plant pathogenic fungi and their plant growth-promoting activities. Heliyon 2024; 10:e31573. [PMID: 38841467 PMCID: PMC11152693 DOI: 10.1016/j.heliyon.2024.e31573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/08/2024] [Accepted: 05/19/2024] [Indexed: 06/07/2024] Open
Abstract
Endophytic bacteria, living inside plants, are competent plant colonizers, capable of enhancing immune responses in plants and establishing a symbiotic relationship with them. Endophytic bacteria are able to control phytopathogenic fungi while exhibiting plant growth-promoting activity. Here, we discussed the mechanisms of phytopathogenic fungi control and plant growth-promoting actions discovered in some major groups of beneficial endophytic bacteria such as Bacillus, Paenibacillus, and Pseudomonas. Most of the studied strains in these genera were isolated from the rhizosphere and soils, and a more extensive study of these endophytic bacteria is needed. It is essential to understand the underlying biocontrol and plant growth-promoting mechanisms and to develop an effective screening approach for selecting potential endophytic bacteria for various applications. We have suggested a screening strategy to identify potentially useful endophytic bacteria based on mechanistic phenomena. The discovery of endophytic bacteria with useful biocontrol and plant growth-promoting characteristics is essential for developing sustainable agriculture.
Collapse
Affiliation(s)
- Md. Arshad Ali
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, 88400, Sabah, Malaysia
| | - Temoor Ahmed
- Xianghu Laboratory, Hangzhou, 311231, China
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- MEU Research Unit, Middle East University, Amman, Jordan
| | - Ezzeldin Ibrahim
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Department of Vegetable Diseases Research, Plant Pathology Research Institute, Agriculture Research Centre, Giza, Egypt
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Khim Phin Chong
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, 88400, Sabah, Malaysia
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, 23456, Alnarp, Sweden
| |
Collapse
|
24
|
Xiong X, Zeng J, Ning Q, Liu H, Bu Z, Zhang X, Zeng J, Zhuo R, Cui K, Qin Z, Gao Y, Liu X, Zhu Y. Ferroptosis induction in host rice by endophyte OsiSh-2 is necessary for mutualism and disease resistance in symbiosis. Nat Commun 2024; 15:5012. [PMID: 38866764 PMCID: PMC11169551 DOI: 10.1038/s41467-024-49099-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/21/2024] [Indexed: 06/14/2024] Open
Abstract
Ferroptosis is an iron-dependent cell death that was discovered recently. For beneficial microbes to establish mutualistic relationships with hosts, precisely controlled cell death in plant cells is necessary. However, whether ferroptosis is involved in the endophyte‒plant system is poorly understood. Here, we reported that endophytic Streptomyces hygroscopicus OsiSh-2, which established a sophisticated and beneficial interaction with host rice plants, caused ferroptotic cell death in rice characterized by ferroptosis- and immune-related markers. Treatments with ferroptosis inhibitors and inducers, different doses of OsiSh-2, and the siderophore synthesis-deficient mutant ΔcchH revealed that only moderate ferroptosis induced by endophytes is essential for the establishment of an optimal symbiont to enhance plant growth. Additionally, ferroptosis involved in a defence-primed state in rice, which contributed to improved resistance against rice blast disease. Overall, our study provides new insights into the mechanisms of endophyte‒plant interactions mediated by ferroptosis and suggests new directions for crop yield promotion.
Collapse
Affiliation(s)
- Xianqiu Xiong
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Jing Zeng
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Qing Ning
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Heqin Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Zhigang Bu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Xuan Zhang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Jiarui Zeng
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Rui Zhuo
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Kunpeng Cui
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Ziwei Qin
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Yan Gao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China.
| | - Xuanming Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China.
| | - Yonghua Zhu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China.
| |
Collapse
|
25
|
Sivaprakasam S, Mohd Azim Khan NA, Yee Fan T, Kumarasan Y, Sicheritz-Pontén T, Petersen B, Mohd Hata E, Vadamalai G, Parimannan S, Rajandas H. Complete genome sequence of potential plant growth-promoting Bacillus altitudinis strain AIMST-CREST03 isolated from paddy field bulk soil. Microbiol Resour Announc 2024; 13:e0026124. [PMID: 38767404 PMCID: PMC11237514 DOI: 10.1128/mra.00261-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024] Open
Abstract
We present the complete genome of a potential plant growth-promoting bacteria Bacillus altitudinis AIMST-CREST03 isolated from a high-yielding paddy plot. The genome is 3,669,202 bp in size with a GC content of 41%. Annotation predicted 3,327 coding sequences, including several genes required for plant growth promotion.
Collapse
Affiliation(s)
- Sumitra Sivaprakasam
- Center of Excellence for Omics-Driven Computational Biodiscovery (COMBio), AIMST University, Kedah, Malaysia
| | - Nur Arisa Mohd Azim Khan
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Tan Yee Fan
- Center of Excellence for Omics-Driven Computational Biodiscovery (COMBio), AIMST University, Kedah, Malaysia
| | - Yukgehnaish Kumarasan
- Center of Excellence for Omics-Driven Computational Biodiscovery (COMBio), AIMST University, Kedah, Malaysia
| | - Thomas Sicheritz-Pontén
- Center of Excellence for Omics-Driven Computational Biodiscovery (COMBio), AIMST University, Kedah, Malaysia
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Bent Petersen
- Center of Excellence for Omics-Driven Computational Biodiscovery (COMBio), AIMST University, Kedah, Malaysia
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Erneeza Mohd Hata
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Ganesan Vadamalai
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Laboratory of Sustainable Agronomy and Crop Protection, Institute of Plantation Studies, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sivachandran Parimannan
- Center of Excellence for Omics-Driven Computational Biodiscovery (COMBio), AIMST University, Kedah, Malaysia
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Heera Rajandas
- Center of Excellence for Omics-Driven Computational Biodiscovery (COMBio), AIMST University, Kedah, Malaysia
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Castro-Severyn J, Fortt J, Sierralta M, Alegria P, Donoso G, Choque A, Avellaneda AM, Pardo-Esté C, Saavedra CP, Stoll A, Remonsellez F. Rhizospheric bacteria from the Atacama Desert hyper-arid core: cultured community dynamics and plant growth promotion. Microbiol Spectr 2024; 12:e0005624. [PMID: 38687070 PMCID: PMC11237387 DOI: 10.1128/spectrum.00056-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
The Atacama Desert is the oldest and driest desert on Earth, encompassing great temperature variations, high ultraviolet radiation, drought, and high salinity, making it ideal for studying the limits of life and resistance strategies. It is also known for harboring a great biodiversity of adapted life forms. While desertification is increasing as a result of climate change and human activities, it is necessary to optimize soil and water usage, where stress-resistant crops are possible solutions. As many studies have revealed the great impact of the rhizobiome on plant growth efficiency and resistance to abiotic stress, we set up to explore the rhizospheric soils of Suaeda foliosa and Distichlis spicata desert plants. By culturing these soils and using 16S rRNA amplicon sequencing, we address community taxonomy composition dynamics, stability through time, and the ability to promote lettuce plant growth. The rhizospheric soil communities were dominated by the families Pseudomonadaceae, Bacillaceae, and Planococcaceae for S. foliosa and Porphyromonadaceae and Haloferacaceae for D. spicata. Nonetheless, the cultures were completely dominated by the Enterobacteriaceae family (up to 98%). Effectively, lettuce plants supplemented with the cultures showed greater size and biomass accumulation. We identified 12 candidates that could be responsible for these outcomes, of which 5 (Enterococcus, Pseudomonas, Klebsiella, Paenisporosarcina, and Ammoniphilus) were part of the built co-occurrence network. We aim to contribute to the efforts to characterize the microbial communities as key for the plant's survival in extreme environments and as a possible source of consortia with plant growth promotion traits aimed at agricultural applications.IMPORTANCEThe current scenario of climate change and desertification represents a series of incoming challenges for all living organisms. As the human population grows rapidly, so does the rising demand for food and natural resources; thus, it is necessary to make agriculture more efficient by optimizing soil and water usage, thus ensuring future food supplies. Particularly, the Atacama Desert (northern Chile) is considered the most arid place on Earth as a consequence of geological and climatic characteristics, such as the naturally low precipitation patterns and high temperatures, which makes it an ideal place to carry out research that seeks to aid agriculture in future conditions that are predicted to resemble these scenarios. Our main interest lies in utilizing microorganism consortia from plants thriving under extreme conditions, aiming to promote plant growth, improve crops, and render "unsuitable" soils farmable.
Collapse
Affiliation(s)
- Juan Castro-Severyn
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química y de Medio Ambiente, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile
- Centro de Investigación Tecnológica del Agua y Sustentabilidad en el Desierto-CEITSAZA, Universidad Católica del Norte, Antofagasta, Chile
| | - Jonathan Fortt
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química y de Medio Ambiente, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile
| | - Mariela Sierralta
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química y de Medio Ambiente, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile
| | - Paola Alegria
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química y de Medio Ambiente, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile
| | - Gabriel Donoso
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química y de Medio Ambiente, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile
| | - Alessandra Choque
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química y de Medio Ambiente, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile
| | - Andrea M. Avellaneda
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química y de Medio Ambiente, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile
- Centro de Investigación Tecnológica del Agua y Sustentabilidad en el Desierto-CEITSAZA, Universidad Católica del Norte, Antofagasta, Chile
| | - Coral Pardo-Esté
- Laboratorio de Ecología Molecular y Microbiología Aplicada, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta, Chile
| | - Claudia P. Saavedra
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Alexandra Stoll
- Laboratorio de Microbiología Aplicada, Centro de Estudios Avanzados en Zonas Áridas CEAZA, La Serena, Chile
- Instituto de Investigación Multidisciplinar en Ciencia y Tecnología, Universidad de la Serena, La Serena, Chile
| | - Francisco Remonsellez
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química y de Medio Ambiente, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile
- Centro de Investigación Tecnológica del Agua y Sustentabilidad en el Desierto-CEITSAZA, Universidad Católica del Norte, Antofagasta, Chile
| |
Collapse
|
27
|
Bolmanis E, Grigs O, Didrihsone E, Senkovs M, Nikolajeva V. Pilot-scale production of Bacillus subtilis MSCL 897 spore biomass and antifungal secondary metabolites in a low-cost medium. Biotechnol Lett 2024; 46:355-371. [PMID: 38607603 DOI: 10.1007/s10529-024-03481-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 04/13/2024]
Abstract
OBJECTIVES Bacillus subtilis is a plant growth promoting bacterium (PGPB) that acts as a microbial fertilizer and biocontrol agent, providing benefits such as boosting crop productivity and improving nutrient content. It is able to produce secondary metabolites and endospores simultaneously, enhancing its ability to survive in unfavorable conditions and eliminate competing microorganisms. Optimizing cultivation methods to produce B. subtilis MSCL 897 spores on an industrial scale, requires a suitable medium, typically made from food industry by-products, and optimal temperature and pH levels to achieve high vegetative cell and spore densities with maximum productivity. RESULTS This research demonstrates successful pilot-scale (100 L bioreactor) production of a biocontrol agent B. subtilis with good spore yields (1.5 × 109 spores mL-1) and a high degree of sporulation (>80%) using a low-cost cultivation medium. Culture samples showed excellent antifungal activity (1.6-2.3 cm) against several phytopathogenic fungi. An improved methodology for inoculum preparation was investigated to ensure an optimal seed culture state prior to inoculation, promoting process batch-to-batch repeatability. Increasing the molasses concentration in the medium and operating the process in fed-batch mode with additional molasses feed, did not improve the overall spore yield, hence, process operation in batch mode with 10 g molasses L-1 is preferred. Results also showed that the product quality was not significantly impacted for up to 12 months of storage at room temperature. CONCLUSION An economically-feasible process for B. subtilis-based biocontrol agent production was successfully developed at the pilot scale.
Collapse
Affiliation(s)
- Emils Bolmanis
- Laboratory of Bioengineering, Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, Riga, 1006, Latvia
- Latvian Biomedical Research and Study Centre, Ratsupites Street 1-k1, Riga, 1067, Latvia
| | - Oskars Grigs
- Laboratory of Bioengineering, Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, Riga, 1006, Latvia.
| | - Elina Didrihsone
- Laboratory of Bioengineering, Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, Riga, 1006, Latvia
| | - Maris Senkovs
- Bioefekts Ltd., Livzemes Street 30, Salaspils, 2169, Latvia
- Faculty of Biology, University of Latvia, Jelgavas Street 1, Riga, 1004, Latvia
| | - Vizma Nikolajeva
- Bioefekts Ltd., Livzemes Street 30, Salaspils, 2169, Latvia
- Faculty of Biology, University of Latvia, Jelgavas Street 1, Riga, 1004, Latvia
| |
Collapse
|
28
|
Buragohain K, Tamuly D, Sonowal S, Nath R. Impact of Drought Stress on Plant Growth and Its Management Using Plant Growth Promoting Rhizobacteria. Indian J Microbiol 2024; 64:287-303. [PMID: 39011023 PMCID: PMC11246373 DOI: 10.1007/s12088-024-01201-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 01/06/2024] [Indexed: 07/17/2024] Open
Abstract
Drought stress is a significant environmental challenge affecting global agriculture, leading to substantial reductions in crop yields and overall plant productivity. It induces a cascade of physiological and biochemical changes in plants, including reduced water uptake, stomatal closure, and alterations in hormonal balance, all of which contribute to impaired growth and development. Drought stress diminishes crop production by impacting crucial plant metabolic pathways. Plants possess the ability to activate or deactivate specific sets of genes, leading to changes in their physiological and morphological characteristics. This adaptive response enables plants to evade, endure, or prevent the effects of drought stress. Drought stress triggers the activation of various genes, transcription factors, and signal transduction pathways in plants. In this context, imposing plant growth-promoting rhizobacteria (PGPR) emerges as a promising strategy. PGPR, employing diverse mechanisms such as osmotic adjustments, antioxidant activity, and phytohormone production, not only ensures the plant's survival during drought conditions but also enhances its overall growth. This comprehensive review delves into the various mechanisms through which PGPR enhances drought stress resistance, offering a thorough exploration of recent molecular and omics-based approaches to unravel the role of drought-responsive genes. The manuscript encompasses a detailed mechanistic analysis, along with the development of PGPR-based drought stress management in plants.
Collapse
Affiliation(s)
- Kabyashree Buragohain
- Microbiology Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | | | - Sukanya Sonowal
- Microbiology Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Ratul Nath
- Microbiology Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| |
Collapse
|
29
|
Dhanabalan S, Muthusamy K, Iruthayasamy J, Kumaresan PV, Ravikumar C, Kandasamy R, Natesan S, Periyannan S. Unleashing Bacillus species as versatile antagonists: Harnessing the biocontrol potentials of the plant growth-promoting rhizobacteria to combat Macrophomina phaseolina infection in Gloriosa superba. Microbiol Res 2024; 283:127678. [PMID: 38503218 DOI: 10.1016/j.micres.2024.127678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/14/2024] [Accepted: 03/05/2024] [Indexed: 03/21/2024]
Abstract
Charcoal rot caused by Macrophomina phaseolina is one of the most devastating diseases that cause severe yield loss in Gloriosa superba cultivation. Plant growth-promoting rhizobacteria (PGPR) are extensively harnessed as biocontrol agents due to their effectiveness in combating a wide array of plant pathogens through a multifaceted approach. The present study delved into the mechanisms underlying its ability to inhibit root rot pathogen and its capacity to promote plant growth in G. superba, commonly known as glory lily. PGPR isolated from the rhizosphere of glory lily were subjected to in vitro assessments using the dual plate technique. The isolated Bacillus subtilis BGS-10 and B. velezensis BGS-21 showed higher mycelial inhibition (61%) against M. phaseolina. These strains also promote plant growth by producing indole-3-acetic acid, siderophore, ammonia, amylase, cellulase, pectinase, xylanase, and lipase chemicals. Genome screening of BGS-10 and BGS-21 revealed the presence of antimicrobial peptide genes such as Iturin (ituD gene), surfactin (srfA and sfp genes) along with the mycolytic enzyme β-1,3-glucanase. Further, the presence of secondary metabolites in the bacterial secretome was identified through gas chromatography-mass spectrometry (GC/MS) analysis. Notably, pyrrolo[1,2-a] pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl), 9 H-pyrido[3,4-b] indole and L-leucyl-D-leucine exhibited the highest docking score against enzymes responsible for pathogen growth and plant cell wall degradation. Under glasshouse conditions, tuber treatment and soil application of talc-based formulation of B. subtilis BGS-10 and B. velezensis BGS-21 suppress the root rot incidence with a minimal disease incidence of 27.78% over untreated control. Concurrently, there was a notable induction of defense-related enzymes, including peroxidase (PO), polyphenol oxidase (PPO), and phenylalanine ammonia-lyase (PAL), in glory lily. Therefore, it can be concluded that plant growth-promoting Bacillus strains play a significant role in fortifying the plant's defense mechanisms against the root rot pathogen.
Collapse
Affiliation(s)
- Shanmugapriya Dhanabalan
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - Karthikeyan Muthusamy
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India; Centre for Crop Health, School of Agriculture and Environmental Science, University of Southern Queensland, Toowoomba, Queensland 4350, Australia.
| | - Johnson Iruthayasamy
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - Parthiban V Kumaresan
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - Caroline Ravikumar
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - Rajamani Kandasamy
- Department of Floriculture and Landscape, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - Senthil Natesan
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - Sambasivam Periyannan
- Centre for Crop Health, School of Agriculture and Environmental Science, University of Southern Queensland, Toowoomba, Queensland 4350, Australia.
| |
Collapse
|
30
|
Akinsemolu AA, Onyeaka H, Odion S, Adebanjo I. Exploring Bacillus subtilis: Ecology, biotechnological applications, and future prospects. J Basic Microbiol 2024; 64:e2300614. [PMID: 38507723 DOI: 10.1002/jobm.202300614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/28/2024] [Accepted: 02/17/2024] [Indexed: 03/22/2024]
Abstract
From its early identification by Christian Gottfried Ehrenberg to its current prominence in scientific research, Bacillus subtilis (B. subtilis) has emerged as a foundational model organism in microbiology. This comprehensive review delves deep into its genetic, physiological, and biochemical intricacies, revealing a sophisticated cellular blueprint. With the incorporation of advanced techniques such as clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 and integrative computational methodologies, the potential applications of B. subtilis span diverse sectors. These encompass its significant contributions to biotechnology, agriculture, and medical fields and its potential for aiding environmental cleanup efforts. Yet, as we move forward, we must grapple with concerns related to safety, ethics, and the practical implementation of our lab findings in everyday scenarios. As our understanding of B. subtilis deepens, it is evident that its contributions will be central to pioneering sustainable solutions for global challenges in the years to come.
Collapse
Affiliation(s)
- Adenike A Akinsemolu
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
- The Green Microbiology Lab, University of Birmingham, Birmingham, UK
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
- The Green Microbiology Lab, University of Birmingham, Birmingham, UK
| | - Samuel Odion
- The Green Microbiology Lab, University of Birmingham, Birmingham, UK
- The Green Institute, Ondo, Ondo State, Nigeria
| | - Idris Adebanjo
- The Green Microbiology Lab, University of Birmingham, Birmingham, UK
| |
Collapse
|
31
|
Baysal Ö, Studholme DJ, Jimenez-Quiros C, Tör M. Genome sequence of the plant-growth-promoting bacterium Bacillus velezensis EU07. Access Microbiol 2024; 6:000762.v3. [PMID: 38868377 PMCID: PMC11165630 DOI: 10.1099/acmi.0.000762.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/17/2024] [Indexed: 06/14/2024] Open
Abstract
Many Gram-positive spore-forming rhizobacteria of the genus Bacillus show potential as biocontrol biopesticides that promise improved sustainability and ecological safety in agriculture. Here, we present a draft-quality genome sequence for Bacillus velezensis EU07, which shows growth-promotion in tomato plants and biocontrol against Fusarium head blight. We found that the genome of EU07 is almost identical to that of the commercially used strain QST713, but identified 46 single-nucleotide differences that distinguish these strains from each other. The availability of this genome sequence will facilitate future efforts to unravel the genetic and molecular basis for EU07's beneficial properties.
Collapse
Affiliation(s)
- Ömür Baysal
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, 48000 Menteşe, Turkey
- Department of Biological Sciences, University of Worcester, Worcester, UK
| | | | | | - Mahmut Tör
- Department of Biological Sciences, University of Worcester, Worcester, UK
| |
Collapse
|
32
|
Pandey N, Vaishnav R, Rajavat AS, Singh AN, Kumar S, Tripathi RM, Kumar M, Shrivastava N. Exploring the potential of Bacillus for crop productivity and sustainable solution for combating rice false smut disease. Front Microbiol 2024; 15:1405090. [PMID: 38863756 PMCID: PMC11165134 DOI: 10.3389/fmicb.2024.1405090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
Rice false smut, which is caused by the soil-borne fungal pathogen Ustilaginoidea virens (U. virens), is one of the most threatening diseases in most of the rice-growing countries including India that causes 0.5-75% yield loss, low seed germination, and a reduction in seed quality. The assessment of yield loss helps to understand the relevance of disease severity and facilitates the implementation of appropriate management strategies. This study aimed to mitigate biotic stress in rice by employing a rhizobacterial-based bioformulation, which possesses diverse capabilities as both a plant growth promoter and a biocontrol agent against U. virens. Rhizobacteria were isolated from the soil of the rice rhizospheres from the healthy plant of the false smut affected zone. Furthermore, they were identified as Bacillus strains: B. subtilis (BR_4), B. licheniformis (BU_7), B. licheniformis (BU_8), and B. vallismortis (KU_7) via sequencing. Isolates were screened for their biocontrol potential against U. virens under in vitro conditions. The antagonistic study revealed that B. vallismortis (KU_7) inhibited U. virens the most (44.6%), followed by B. subtilis BR_4 (41.4%), B. licheniformis BU_7 (39.8%), and B. licheniformis BU_8 (43.5%). Various biochemical and plant growth promoting attributes, such as phosphate and Zn solubilization, IAA, ammonium, siderophore, and chitinase production, were also investigated for all the selected isolates. Furthermore, the potential of the isolates was tested in both in vitro and field conditions by employing talc-based bioformulation through bio-priming and root treatment. The application of bioformulation revealed a 20% decrease in disease incidence in plants treated with B. vallismortis (KU_7), a 60.5% increase in the biological yield, and a 45% increase in the grain yield. This eco-friendly approach not only controlled the disease but also improved the grain quality and reduced the chaffiness.
Collapse
Affiliation(s)
- Neha Pandey
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
- ICAR- Indian Institute of Seed Science, Maunath Bhanjan, Uttar Pradesh, India
| | - Richa Vaishnav
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Asha Singh Rajavat
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Arvind Nath Singh
- ICAR- Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| | - Sanjay Kumar
- ICAR- Indian Institute of Seed Science, Maunath Bhanjan, Uttar Pradesh, India
| | - Ravi Mani Tripathi
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Madan Kumar
- ICAR- Indian Institute of Agricultural Biotechnology, Garhkhatanga, Ranchi, Jharkhand, India
| | - Neeraj Shrivastava
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| |
Collapse
|
33
|
Li X, Ding Y, Okoye CO, Geng X, Jiang H, Wang Y, Wu Y, Gao L, Fu L, Jiang J, Sun J. Performance of Halo-Alkali-Tolerant Endophytic Bacteria on Hybrid Pennisetum and Bacterial Community under Varying Soil Conditions. Microorganisms 2024; 12:1062. [PMID: 38930444 PMCID: PMC11205500 DOI: 10.3390/microorganisms12061062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Halo-alkali soil threatens agriculture, reducing growth and crop yield worldwide. In this study, physicochemical and molecular techniques were employed to explore the potential of halo-alkali-tolerant endophytic bacteria strains Sphingomonas sp. pp01, Bacillus sp. pp02, Pantoea sp. pp04, and Enterobacter sp. pp06 to enhance the growth of hybrid Pennisetum under varying saline conditions. The strains exhibited tolerance to high salt concentrations, alkaline pH, and high temperatures. Under controlled conditions, all four strains showed significant growth-promoting effects on hybrid Pennisetum inoculated individually or in combination. However, the effects were significantly reduced in coastal saline soil. The best growth-promoting effect was achieved under greenhouse conditions, increasing shoot fresh and dry weights of hybrid Pennisetum by up to 457.7% and 374.7%, respectively, using irrigating trials. Metagenomic sequencing analysis revealed that the diversity and composition of rhizosphere microbiota underwent significant changes after inoculation with endophytic bacteria. Specifically, pp02 and co-inoculation significantly increased the Dyella and Pseudomonas population. Firmicutes, Mycobacteria, and Proteobacteria phyla were enriched in Bacillus PP02 samples. These may explain the best growth-promoting effects of pp02 and co-inoculation on hybrid Pennisetum under greenhouse conditions. Our findings reveal the performance of endophytic bacterial inoculants in enhancing beneficial microbiota, salt stress tolerance, and hybrid Pennisetum growth.
Collapse
Affiliation(s)
- Xia Li
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.D.); (C.O.O.); (X.G.); (H.J.); (Y.W.); (Y.W.); (L.G.); (L.F.); (J.J.)
| | - Yiming Ding
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.D.); (C.O.O.); (X.G.); (H.J.); (Y.W.); (Y.W.); (L.G.); (L.F.); (J.J.)
| | - Charles Obinwanne Okoye
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.D.); (C.O.O.); (X.G.); (H.J.); (Y.W.); (Y.W.); (L.G.); (L.F.); (J.J.)
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
- Department of Zoology & Environmental Biology, University of Nigeria, Nsukka 410001, Nigeria
| | - Xiaoyan Geng
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.D.); (C.O.O.); (X.G.); (H.J.); (Y.W.); (Y.W.); (L.G.); (L.F.); (J.J.)
- Library, Jiangsu University, Zhenjiang 212013, China
| | - Huifang Jiang
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.D.); (C.O.O.); (X.G.); (H.J.); (Y.W.); (Y.W.); (L.G.); (L.F.); (J.J.)
| | - Yongli Wang
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.D.); (C.O.O.); (X.G.); (H.J.); (Y.W.); (Y.W.); (L.G.); (L.F.); (J.J.)
| | - Yanfang Wu
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.D.); (C.O.O.); (X.G.); (H.J.); (Y.W.); (Y.W.); (L.G.); (L.F.); (J.J.)
| | - Lu Gao
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.D.); (C.O.O.); (X.G.); (H.J.); (Y.W.); (Y.W.); (L.G.); (L.F.); (J.J.)
| | - Lei Fu
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.D.); (C.O.O.); (X.G.); (H.J.); (Y.W.); (Y.W.); (L.G.); (L.F.); (J.J.)
| | - Jianxiong Jiang
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.D.); (C.O.O.); (X.G.); (H.J.); (Y.W.); (Y.W.); (L.G.); (L.F.); (J.J.)
| | - Jianzhong Sun
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.D.); (C.O.O.); (X.G.); (H.J.); (Y.W.); (Y.W.); (L.G.); (L.F.); (J.J.)
| |
Collapse
|
34
|
Sevillano-Caño J, García MJ, Córdoba-Galván C, Luque-Cruz C, Agustí-Brisach C, Lucena C, Ramos J, Pérez-Vicente R, Romera FJ. Exploring the Role of Debaryomyces hansenii as Biofertilizer in Iron-Deficient Environments to Enhance Plant Nutrition and Crop Production Sustainability. Int J Mol Sci 2024; 25:5729. [PMID: 38891917 PMCID: PMC11171756 DOI: 10.3390/ijms25115729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
The European "Green Deal" policies are shifting toward more sustainable and environmentally conscious agricultural practices, reducing the use of chemical fertilizer and pesticides. This implies exploring alternative strategies. One promising alternative to improve plant nutrition and reinforce plant defenses is the use of beneficial microorganisms in the rhizosphere, such as "Plant-growth-promoting rhizobacteria and fungi". Despite the great abundance of iron (Fe) in the Earth's crust, its poor solubility in calcareous soil makes Fe deficiency a major agricultural issue worldwide. Among plant promoting microorganisms, the yeast Debaryomyces hansenii has been very recently incorporated, for its ability to induce morphological and physiological key responses to Fe deficiency in plants, under hydroponic culture conditions. The present work takes it a step further and explores the potential of D. hansenii to improve plant nutrition and stimulate growth in cucumber plants grown in calcareous soil, where ferric chlorosis is common. Additionally, the study examines D. hansenii's ability to induce systemic resistance (ISR) through a comparative relative expression study by qRT-PCR of ethylene (ET) biosynthesis (ACO1), or ET signaling (EIN2 and EIN3), and salicylic acid (SA) biosynthesis (PAL)-related genes. The results mark a significant milestone since D. hansenii not only enhances nutrient uptake and stimulates plant growth and flower development but could also amplify induced systemic resistance (ISR). Although there is still much work ahead, these findings make D. hansenii a promising candidate to be used for sustainable and environmentally friendly integrated crop management.
Collapse
Affiliation(s)
- Jesús Sevillano-Caño
- Departamento de Agronomía (DAUCO) María de Maeztu Unit of Excellence 2021–2024, Campus de Excelencia Internacional Agroalimentario de Rabanales (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain; (J.S.-C.); (C.C.-G.); (C.L.-C.); (C.A.-B.); (C.L.); (F.J.R.)
| | - María José García
- Departamento de Agronomía (DAUCO) María de Maeztu Unit of Excellence 2021–2024, Campus de Excelencia Internacional Agroalimentario de Rabanales (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain; (J.S.-C.); (C.C.-G.); (C.L.-C.); (C.A.-B.); (C.L.); (F.J.R.)
| | - Clara Córdoba-Galván
- Departamento de Agronomía (DAUCO) María de Maeztu Unit of Excellence 2021–2024, Campus de Excelencia Internacional Agroalimentario de Rabanales (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain; (J.S.-C.); (C.C.-G.); (C.L.-C.); (C.A.-B.); (C.L.); (F.J.R.)
| | - Carmen Luque-Cruz
- Departamento de Agronomía (DAUCO) María de Maeztu Unit of Excellence 2021–2024, Campus de Excelencia Internacional Agroalimentario de Rabanales (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain; (J.S.-C.); (C.C.-G.); (C.L.-C.); (C.A.-B.); (C.L.); (F.J.R.)
| | - Carlos Agustí-Brisach
- Departamento de Agronomía (DAUCO) María de Maeztu Unit of Excellence 2021–2024, Campus de Excelencia Internacional Agroalimentario de Rabanales (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain; (J.S.-C.); (C.C.-G.); (C.L.-C.); (C.A.-B.); (C.L.); (F.J.R.)
| | - Carlos Lucena
- Departamento de Agronomía (DAUCO) María de Maeztu Unit of Excellence 2021–2024, Campus de Excelencia Internacional Agroalimentario de Rabanales (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain; (J.S.-C.); (C.C.-G.); (C.L.-C.); (C.A.-B.); (C.L.); (F.J.R.)
| | - José Ramos
- Departamento de Química Agrícola, Edafología y Microbiología, Campus de Excelencia Internacional Agroalimentario de Rabanales (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain;
| | - Rafael Pérez-Vicente
- Departamento de Botánica, Ecología y Fisiología Vegetal, Campus de Excelencia Internacional Agroalimentario de Rabanales (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain;
| | - Francisco Javier Romera
- Departamento de Agronomía (DAUCO) María de Maeztu Unit of Excellence 2021–2024, Campus de Excelencia Internacional Agroalimentario de Rabanales (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain; (J.S.-C.); (C.C.-G.); (C.L.-C.); (C.A.-B.); (C.L.); (F.J.R.)
| |
Collapse
|
35
|
Miljaković D, Marinković J, Tamindžić G, Milošević D, Ignjatov M, Karačić V, Jakšić S. Bio-Priming with Bacillus Isolates Suppresses Seed Infection and Improves the Germination of Garden Peas in the Presence of Fusarium Strains. J Fungi (Basel) 2024; 10:358. [PMID: 38786713 PMCID: PMC11122518 DOI: 10.3390/jof10050358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Seed infection caused by Fusarium spp. is one of the major threats to the seed quality and yield of agricultural crops, including garden peas. The use of Bacillus spp. with multiple antagonistic and plant growth-promoting (PGP) abilities represents a potential disease control strategy. This study was performed to evaluate the biocontrol potential of new Bacillus spp. rhizosphere isolates against two Fusarium strains affecting garden peas. Six Bacillus isolates identified by 16S rDNA sequencing as B. velezensis (B42), B. subtilis (B43), B. mojavensis (B44, B46), B. amyloliquefaciens (B50), and B. halotolerans (B66) showed the highest in vitro inhibition of F. proliferatum PS1 and F. equiseti PS18 growth (over 40%). The selected Bacillus isolates possessed biosynthetic genes for endoglucanase (B42, B43, B50), surfactin (B43, B44, B46), fengycin (B44, B46), bacillomycin D (B42, B50), and iturin (B42), and were able to produce indole-3-acetic acid (IAA), siderophores, and cellulase. Two isolates, B. subtilis B43 and B. amyloliquefaciens B50, had the highest effect on final germination, shoot length, root length, shoot dry weight, root dry weight, and seedling vigor index of garden peas as compared to the control. Their individual or combined application reduced seed infection and increased seed germination in the presence of F. proliferatum PS1 and F. equiseti PS18, both after seed inoculation and seed bio-priming. The most promising results were obtained in the cases of the bacterial consortium, seed bio-priming, and the more pathogenic strain PS18. The novel Bacillus isolates may be potential biocontrol agents intended for the management of Fusarium seed-borne diseases.
Collapse
Affiliation(s)
- Dragana Miljaković
- Institute of Field and Vegetable Crops, 21000 Novi Sad, Serbia; (J.M.); (G.T.); (D.M.); (M.I.); (S.J.)
| | - Jelena Marinković
- Institute of Field and Vegetable Crops, 21000 Novi Sad, Serbia; (J.M.); (G.T.); (D.M.); (M.I.); (S.J.)
| | - Gordana Tamindžić
- Institute of Field and Vegetable Crops, 21000 Novi Sad, Serbia; (J.M.); (G.T.); (D.M.); (M.I.); (S.J.)
| | - Dragana Milošević
- Institute of Field and Vegetable Crops, 21000 Novi Sad, Serbia; (J.M.); (G.T.); (D.M.); (M.I.); (S.J.)
| | - Maja Ignjatov
- Institute of Field and Vegetable Crops, 21000 Novi Sad, Serbia; (J.M.); (G.T.); (D.M.); (M.I.); (S.J.)
| | - Vasiljka Karačić
- Faculty of Agriculture, University of Belgrade, 11080 Belgrade, Serbia;
| | - Snežana Jakšić
- Institute of Field and Vegetable Crops, 21000 Novi Sad, Serbia; (J.M.); (G.T.); (D.M.); (M.I.); (S.J.)
| |
Collapse
|
36
|
Ren Y, Wang G, Su Y, Li J, Zhang H, Han J. Response of antioxidant activity, active constituent and rhizosphere microorganisms of Salvia miltiorrhiza to combined application of microbial inoculant, microalgae and biochar under Cu stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171812. [PMID: 38508267 DOI: 10.1016/j.scitotenv.2024.171812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Salvia miltiorrhiza, a widely used medicinal herb renowned for its properties in promoting blood circulation, removing blood stasis and alleviating pain, is currently facing quality degradation due to excessive heavy metal levels, posing a threat to medication safety. In order to investigate the effects of microbial inoculant, microalgae and biochar on the growth of Salvia miltiorrhiza under copper (Cu) stress, as well as its Cu absorption, antioxidant activity, active component contents and rhizosphere microbial community, a pot experiment was conducted. Salvia miltiorrhiza plants were cultivated in the soil containing 400 mg/kg of Cu for six months and treated with microbial inoculant, microalgae and biochar, either individually or in combination. Almost all soil amendment treatments led to an increase in root biomass. Notably, co-application of microbial inoculant and microalgae had the optimal effect with a 63.07 % increase compared to the group treated solely with Cu. Moreover, when microbial inoculant was applied alone or in combination with microalgae, the Cu content in plant roots was reduced by 19.29 % and 25.37 %, respectively, whereas other treatments failed to show a decreasing trend. Intriguingly, Cu stress increased the active component contents in plant roots, and they could also be enhanced beyond non-stress levels when microbial inoculant and microalgae were applied together or in combination with biochar. Analyses of plant antioxidant activity, soil properties and rhizosphere microorganisms indicated that these amendments may alleviate Cu stress by enhancing peroxidase activity, facilitating plant nutrient absorption, and enriching beneficial microorganisms capable of promoting plant growth and mitigating heavy metal-induced damage. This study suggests that the combined application of microbial inoculant and microalgae can reduce Cu levels in Salvia miltiorrhiza while enhancing its quality under Cu stress.
Collapse
Affiliation(s)
- Ying Ren
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Gang Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yuying Su
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jinfeng Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hui Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jianping Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
37
|
Ganesh J, Hewitt K, Devkota AR, Wilson T, Kaundal A. IAA-producing plant growth promoting rhizobacteria from Ceanothus velutinus enhance cutting propagation efficiency and Arabidopsis biomass. FRONTIERS IN PLANT SCIENCE 2024; 15:1374877. [PMID: 38807777 PMCID: PMC11131947 DOI: 10.3389/fpls.2024.1374877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024]
Abstract
Climate-induced drought impacts plant growth and development. Recurring droughts increase the demand for water for food production and landscaping. Native plants in the Intermountain West region of the US are of keen interest in low water use landscaping as they are acclimatized to dry and cold environments. These native plants do very well at their native locations but are difficult to propagate in landscape. One of the possible reasons is the lack of associated microbiome in the landscaping. Microbiome in the soil contributes to soil health and impacts plant growth and development. Here, we used the bulk soil from the native plant Ceanothus velutinus (snowbrush ceanothus) as inoculant to enhance its propagation. Snowbrush ceanothus is an ornamental plant for low-water landscaping that is hard to propagate asexually. Using 50% native bulk soil as inoculant in the potting mix significantly improved the survival rate of the cuttings compared to no-treated cuttings. Twenty-four plant growth-promoting rhizobacteria (PGPR) producing indole acetic acid (IAA) were isolated from the rhizosphere and roots of the survived snowbrush. Seventeen isolates had more than 10µg/mL of IAA were shortlisted and tested for seven different plant growth-promoting (PGP) traits; 76% showed nitrogen-fixing ability on Norris Glucose Nitrogen free media,70% showed phosphate solubilization activity, 76% showed siderophore production, 36% showed protease activity, 94% showed ACC deaminase activity on DF-ACC media, 76% produced catalase and all of isolates produced ammonia. Eight of seventeen isolates, CK-6, CK-22, CK-41, CK-44, CK-47, CK-50, CK-53, and CK-55, showed an increase in shoot biomass in Arabidopsis thaliana. Seven out of eight isolates were identified as Pseudomonas, except CK-55, identified as Sphingobium based on 16S rRNA gene sequencing. The shortlisted isolates are being tested on different grain and vegetable crops to mitigate drought stress and promote plant growth.
Collapse
Affiliation(s)
| | | | | | | | - Amita Kaundal
- Plants, Soils, and Climate, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| |
Collapse
|
38
|
Hirpara KR, Hinsu AT, Kothari RK. Metagenomic evaluation of peanut rhizosphere microbiome from the farms of Saurashtra regions of Gujarat, India. Sci Rep 2024; 14:10525. [PMID: 38720057 PMCID: PMC11079051 DOI: 10.1038/s41598-024-61343-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/05/2024] [Indexed: 05/12/2024] Open
Abstract
The narrow zone of soil around the plant roots with maximum microbial activity termed as rhizosphere. Rhizospheric bacteria promote the plant growth directly or indirectly by providing the nutrients and producing antimicrobial compounds. In this study, the rhizospheric microbiota of peanut plants was characterized from different farms using an Illumina-based partial 16S rRNA gene sequencing to evaluate microbial diversity and identify the core microbiome through culture-independent (CI) approach. Further, all rhizospheric bacteria that could grow on various nutrient media were identified, and the diversity of those microbes through culture-dependent method (CD) was then directly compared with their CI counterparts. The microbial population profiles showed a significant correlation with organic carbon and concentration of phosphate, manganese, and potassium in the rhizospheric soil. Genera like Sphingomicrobium, Actinoplanes, Aureimonas _A, Chryseobacterium, members from Sphingomonadaceae, Burkholderiaceae, Pseudomonadaceae, Enterobacteriaceae family, and Bacilli class were found in the core microbiome of peanut plants. As expected, the current study demonstrated more bacterial diversity in the CI method. However, a higher number of sequence variants were exclusively present in the CD approach compared to the number of sequence variants shared between both approaches. These CD-exclusive variants belonged to organisms that are more typically found in soil. Overall, this study portrayed the changes in the rhizospheric microbiota of peanuts in different rhizospheric soil and environmental conditions and gave an idea about core microbiome of peanut plant and comparative bacterial diversity identified through both approaches.
Collapse
Affiliation(s)
- Krunal R Hirpara
- Department of Biosciences, Saurashtra University, Rajkot, Gujarat, 360005, India
| | - Ankit T Hinsu
- Department of Biosciences, Saurashtra University, Rajkot, Gujarat, 360005, India
- Royal Veterinary College, London, AL9 7TA, UK
| | - Ramesh K Kothari
- Department of Biosciences, Saurashtra University, Rajkot, Gujarat, 360005, India.
| |
Collapse
|
39
|
Agunbiade VF, Fadiji AE, Agbodjato NA, Babalola OO. Isolation and Characterization of Plant-Growth-Promoting, Drought-Tolerant Rhizobacteria for Improved Maize Productivity. PLANTS (BASEL, SWITZERLAND) 2024; 13:1298. [PMID: 38794369 PMCID: PMC11125291 DOI: 10.3390/plants13101298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 05/26/2024]
Abstract
Drought is one of the main abiotic factors affecting global agricultural productivity. However, the application of bioinocula containing plant-growth-promoting rhizobacteria (PGPR) has been seen as a potential environmentally friendly technology for increasing plants' resistance to water stress. In this study, rhizobacteria strains were isolated from maize (Zea mays L.) and subjected to drought tolerance tests at varying concentrations using polyethylene glycol (PEG)-8000 and screened for plant-growth-promoting activities. From this study, 11 bacterial isolates were characterized and identified molecularly, which include Bacillus licheniformis A5-1, Aeromonas caviae A1-2, A. veronii C7_8, B. cereus B8-3, P. endophytica A10-11, B. halotolerans A9-10, B. licheniformis B9-5, B. simplex B15-6, Priestia flexa B12-4, Priestia flexa C6-7, and Priestia aryabhattai C1-9. All isolates were positive for indole-3-acetic acid (IAA), siderophore, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, ammonia production, nitrogen fixation, and phosphate solubilization, but negative for hydrogen cyanide production. Aeromonas strains A1-2 and C7_8, showing the highest drought tolerance of 0.71 and 0.77, respectively, were selected for bioinoculation, singularly and combined. An increase in the above- and below-ground biomass of the maize plants at 100, 50, and 25% water-holding capacity (WHC) was recorded. Bacterial inoculants, which showed an increase in the aerial biomass of plants subjected to moderate water deficiency by up to 89%, suggested that they can be suitable candidates to enhance drought tolerance and nutrient acquisition and mitigate the impacts of water stress on plants.
Collapse
Affiliation(s)
| | | | | | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa
| |
Collapse
|
40
|
Thuraga V, Ghadamgahi F, Dadi FA, Vetukuri RR, Chawade A. A new bacterial consortia for management of Fusarium head blight in wheat. Sci Rep 2024; 14:10131. [PMID: 38698085 PMCID: PMC11066059 DOI: 10.1038/s41598-024-60356-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/22/2024] [Indexed: 05/05/2024] Open
Abstract
Fusarium head blight (FHB) is a significantly important disease in cereals primarily caused by Fusarium species. FHB control is largely executed through chemical strategies, which are costlier to sustainable wheat production, resulting in leaning towards sustainable sources such as resistance breeding and biological control methods for FHB. The present investigation was aimed at evaluating newly identified bacterial consortium (BCM) as biocontrol agents for FHB and understanding the morpho-physiological traits associated with the disease resistance of spring wheat. Preliminary evaluation through antagonistic plate assay and in vivo assessment indicated that BCM effectively inhibited Fusarium growth in spring wheat, reducing area under disease progress curve (AUDPC) and deoxynivalenol (DON), potentially causing type II and V resistance, and improving single spike yield (SSPY). Endurance to FHB infection with the application of BCM is associated with better sustenance of spike photosynthetic performance by improving the light energy harvesting and its utilization. Correlation and path-coefficient analysis indicated that maximum quantum yield (QY_max) is directly influencing the improvement of SSPY and reduction of grain DON accumulation, which is corroborated by principal component analysis. The chlorophyll fluorescence traits identified in the present investigation might be applied as a phenotyping tool for the large-scale identification of wheat sensitivity to FHB.
Collapse
Affiliation(s)
- Vishnukiran Thuraga
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Växtförädling, Box 190, 234 22, Lomma, Sweden
| | - Farideh Ghadamgahi
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Växtförädling, Box 190, 234 22, Lomma, Sweden
| | - Fantaye Ayele Dadi
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Växtförädling, Box 190, 234 22, Lomma, Sweden
| | - Ramesh Raju Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Växtförädling, Box 190, 234 22, Lomma, Sweden
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Växtförädling, Box 190, 234 22, Lomma, Sweden.
| |
Collapse
|
41
|
Chen J, Cai R, Tang L, Wang D, Lv R, Guo C. Antagonistic activity and mechanism of Bacillus subtilis CG-6 suppression of root rot and growth promotion in Alfalfa. Microb Pathog 2024; 190:106616. [PMID: 38492826 DOI: 10.1016/j.micpath.2024.106616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
Root rot is a common disease, that severely affects the yield and quality of alfalfa. Biocontrol is widely used to control plant diseases caused by pathogenic fungi, however, biocontrol strains for alfalfa root rot are very limited. In this study, a Bacillus subtilis CG-6 strain with a significant biocontrol effect on alfalfa root rot was isolated. CG-6 secretes antibacterial enzymes and siderophore, phosphate solubilization and indoleacetic acid (IAA). The inhibition rate of strain CG-6 against Fusarium oxysporum was 87.33%, and it showed broad-spectrum antifungal activity. Inoculation with CG-6 significantly reduced the incidence of alfalfa root rot, the control effect of greenhouse cultivation reached 58.12%, and CG-6 treatment significantly increased alfalfa plant height, root length, fresh weight, and dry weight. The treatment with CG-6 significantly increased the levels of antioxidant enzymes (catalase, peroxidase, superoxide dismutase, and lipoxygenase) in alfalfa leaves by 15.52%-34.03%. Defensive enzymes (chitinase and β-1,3-glucanase) increased by 24.37% and 28.08%, respectively. The expression levels of regulatory enzyme genes (MsCAT, MsPOD, MsCu, Zn-SOD1, MsCu, Zn-SOD2, MsCu, Zn-SOD3, and MsLOX2) and systemic resistance genes (MsPR1, MsPDF1.2, and MsVSP2) increased by 0.50-2.85 fold, which were higher than those in the pathogen treatment group. Therefore, CG-6 could be used as a potential strain to develop biopesticides against alfalfa root rot.
Collapse
Affiliation(s)
- Jiaxin Chen
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Limin Development Zone, Harbin Normal University, No. 1 of Shida Road, Harbin 150025, China
| | - Run Cai
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Limin Development Zone, Harbin Normal University, No. 1 of Shida Road, Harbin 150025, China
| | - Lu Tang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Limin Development Zone, Harbin Normal University, No. 1 of Shida Road, Harbin 150025, China
| | - Dan Wang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Limin Development Zone, Harbin Normal University, No. 1 of Shida Road, Harbin 150025, China
| | - Ruiwei Lv
- Science and Technology Building, Heilongjiang Guohong Environmental Co., Ltd., No. 600 of Chuangxin Third Road, Songbei Zone, Harbin 150029, China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Limin Development Zone, Harbin Normal University, No. 1 of Shida Road, Harbin 150025, China.
| |
Collapse
|
42
|
Tang Y, Zhang Z, Tao C, Wang X. The mechanism of biofilm detachment in porous medium under flow field. BIOMICROFLUIDICS 2024; 18:034103. [PMID: 38737754 PMCID: PMC11080962 DOI: 10.1063/5.0203061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024]
Abstract
Biofilms are communities formed by bacteria adhering to surfaces, widely present in porous medium, and their growth can lead to clogging. Our experiment finds that under certain flow conditions, biofilms detach in pores and form a dynamically changing flow path. We define detachment that occurs far from the boundary of the flow path (with a distance greater than 200 μm) as internal detachment and detachment that occurs at the boundary of the flow path as external detachment. To understand the mechanism of biofilm detachment, we study the detachment behaviors of the Bacillus subtilis biofilm in a porous medium in a microfluidic device, where Bacillus subtilis strain is triple fluorescent labeled, which can represent three main phenotypes during the biofilm formation: motile cells, matrix-producing cells, and spores. We find that slow small-scale internal detachment occurs in regions with very few motile cells and matrix-producing cells, and bacterial movement in these areas is disordered. The increase in the number of matrix-producing cells induces clogging, and after clogging, the rapid detachment of the bulk internal biofilm occurs due to the increased pressure difference at the inlet and outlet. When both internal and external detachments occur simultaneously, the number of matrix-producing cells in the internal detachment area is 2.5 times that in the external detachment area. The results indicate that biofilm detachment occurs in areas with fewer matrix-producing cells, as matrix-producing cells can help resist detachment by secreting extracellular polymeric substances (EPSs).
Collapse
Affiliation(s)
- Yangyang Tang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zheng Zhang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Cong Tao
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | | |
Collapse
|
43
|
James N, Umesh M. Multifarious Potential of Biopolymer-Producing Bacillus subtilis NJ14 for Plant Growth Promotion and Stress Tolerance in Solanum lycopercicum L. and Cicer arietinum L: A Way Toward Sustainable Agriculture. Mol Biotechnol 2024; 66:1031-1050. [PMID: 38097901 DOI: 10.1007/s12033-023-01001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/20/2023] [Indexed: 05/12/2024]
Abstract
Diverse practices implementing biopolymer-producing bacteria have been examined in various domains lately. PHAs are among the major biopolymers whose relevance of PHA-producing bacteria in the field of crop improvement is one of the radical unexplored aspects in the field of agriculture. Prolonging shelf life is one serious issue hindering the establishment of biofertilizers. Studies support that PHA can help bacteria survive stressed conditions by providing energy. Therefore, PHA-producing bacteria with Plant Growth-Promoting ability can alter the existing problem of short shelf life in biofertilizers. In the present study, Bacillus subtilis NJ14 was isolated from the soil. It was explored to understand the ability of the strain to produce PHA and augment growth in Solanum lycopersicum and Cicer arietinum. NJ14 strain improved the root and shoot length of both plants significantly. The root and shoot length of S. lycopersicum was increased by 3.49 and 0.41 cm, respectively. Similarly, C. arietinum showed a 9.55 and 8.24 cm increase in root and shoot length, respectively. The strain also exhibited halotolerant activity (up to 10%), metal tolerance to lead (up to 1000 μg/mL) and mercury (up to 100 μg/mL), indicating that the NJ14 strain can be an ideal candidate for a potent biofertilizer.
Collapse
Affiliation(s)
- Nilina James
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bengaluru, Karnataka, 560029, India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bengaluru, Karnataka, 560029, India.
| |
Collapse
|
44
|
Yang D, Zhang X, Li Z, Chu R, Shah S, Wang X, Zhang X. Antagonistic effect of Bacillus and Pseudomonas combinations against Fusarium oxysporum and their effect on disease resistance and growth promotion in watermelon. J Appl Microbiol 2024; 135:lxae074. [PMID: 38632051 DOI: 10.1093/jambio/lxae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/19/2024] [Accepted: 04/16/2024] [Indexed: 04/19/2024]
Abstract
AIMS We aimed to develop an effective bacterial combination that can combat Fusarium oxysporum infection in watermelon using in vitro and pot experiments. METHODS AND RESULTS In total, 53 strains of Bacillus and 4 strains of Pseudomonas were screened. Pseudomonas strains P3 and P4 and Bacillus strains XY-2-3, XY-13, and GJ-1-15 exhibited good antagonistic effects against F. oxysporum. P3 and P4 were identified as Pseudomonas chlororaphis and Pseudomonas fluorescens, respectively. XY-2-3 and GJ-1-15 were identified as B. velezensis, and XY-13 was identified as Bacillus amyloliquefaciens. The three Bacillus strains were antifungal, promoted the growth of watermelon seedlings and had genes to synthesize antagonistic metabolites such as bacilysin, surfactin, yndj, fengycin, iturin, and bacillomycin D. Combinations of Bacillus and Pseudomonas strains, namely, XY-2-3 + P4, GJ-1-15 + P4, XY-13 + P3, and XY-13 + P4, exhibited a good compatibility. These four combinations exhibited antagonistic effects against 11 pathogenic fungi, including various strains of F. oxysporum, Fusarium solani, and Rhizoctonia. Inoculation of these bacterial combinations significantly reduced the incidence of Fusarium wilt in watermelon, promoted plant growth, and improved soil nutrient availability. XY-13 + P4 was the most effective combination against Fusarium wilt in watermelon with the inhibition rate of 78.17%. The number of leaves; aboveground fresh and dry weights; chlorophyll, soil total nitrogen, and soil available phosphorus content increased by 26.8%, 72.12%, 60.47%, 16.97%, 20.16%, and 16.50%, respectively, after XY-13 + P4 inoculation compared with the uninoculated control. Moreover, total root length, root surface area, and root volume of watermelon seedlings were the highest after XY-13 + P3 inoculation, exhibiting increases by 265.83%, 316.79%, and 390.99%, respectively, compared with the uninoculated control. CONCLUSIONS XY-13 + P4 was the best bacterial combination for controlling Fusarium wilt in watermelon, promoting the growth of watermelon seedlings, and improving soil nutrient availability.
Collapse
Affiliation(s)
- Dongya Yang
- School of Wine and Horticulture, Ningxia University, Helanshan Xilu No. 489, Yinchuan 750021, China
| | - Xueqing Zhang
- School of Wine and Horticulture, Ningxia University, Helanshan Xilu No. 489, Yinchuan 750021, China
| | - Zhaoxuan Li
- School of Wine and Horticulture, Ningxia University, Helanshan Xilu No. 489, Yinchuan 750021, China
| | - Rui Chu
- School of Wine and Horticulture, Ningxia University, Helanshan Xilu No. 489, Yinchuan 750021, China
| | - Sadiq Shah
- Department of Food Science and Technology, Garden Campus, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Xiaozhuo Wang
- School of Wine and Horticulture, Ningxia University, Helanshan Xilu No. 489, Yinchuan 750021, China
| | - Xueyan Zhang
- School of Wine and Horticulture, Ningxia University, Helanshan Xilu No. 489, Yinchuan 750021, China
| |
Collapse
|
45
|
Jiao W, Wen J, Li N, Ou T, Qiu C, Ji Y, Lin K, Liu X, Xie J. The biocontrol potentials of rhizospheric bacterium Bacillus velezensis K0T24 against mulberry bacterial wilt disease. Arch Microbiol 2024; 206:213. [PMID: 38616201 DOI: 10.1007/s00203-024-03935-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Mulberry bacterial wilt disease, caused by Ralstonia pseudosolanacearum, is a devastating soil-borne disease in the silk-mulberry-related industry. In this study, through high-throughput sequencing, we compared the rhizosphere bacterial composition of the mulberry-resistant cultivar (K10) and susceptible cultivar (G12), confirming Bacillus as a genus-level biomarker for K10. Next, twelve Bacillus spp. isolates, derived from the rhizosphere of K10, were screened for their antagonistic activity against R. pseudosolanacearum. The isolate showing strong antagonism was identified as B. velezensis K0T24 and selected for further analysis. The fermentation supernatant of B. velezensis K0T24 significantly inhibited the growth of R. pseudosolanacearum (82.47%) and the expression of its pathogenic genes. Using B. velezensis K0T24 in mulberry seedlings also increased defense enzyme activities and achieved a control efficacy of up to 55.17% against mulberry bacterial wilt disease. Collectively, our findings demonstrate the potential of B. velezensis K0T24 in suppressing mulberry bacterial wilt disease.
Collapse
Affiliation(s)
- Wenlian Jiao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Ju Wen
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Na Li
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Ting Ou
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Changyu Qiu
- Guangxi Key Laboratory of Sericultural Genetic Improvement and Efficient Breeding, Guangxi Zhuang Autonomous Region Sericultural Technology Promotion Station, Nanning, Guangxi Zhuang Autonomous Region, 530007, China
| | - Yutong Ji
- Westa College, Southwest University, Chongqing, 400715, China
| | - Kai Lin
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Xiaojiao Liu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing, 400715, China.
| | - Jie Xie
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing, 400715, China.
- Westa College, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
46
|
Akram W, Waqar S, Hanif S, Anjum T, Aftab ZEH, Li G, Ali B, Rizwana H, Hassan A, Rehman A, Munir B, Umer M. Comparative Effect of Seed Coating and Biopriming of Bacillus aryabhattai Z-48 on Seedling Growth, Growth Promotion, and Suppression of Fusarium Wilt Disease of Tomato Plants. Microorganisms 2024; 12:792. [PMID: 38674736 PMCID: PMC11052163 DOI: 10.3390/microorganisms12040792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Beneficial plant microbes can enhance the growth and quality of field crops. However, the benefits of microbes using cheap and efficient inoculation methods are still uncommon. Seed coating with biocontrol agents can reduce the amount of inocula along with having the potential for large-scale application. Hence, in this research work, the comparative potential of tomato seed coating and biopriming with Bacillus aryabhattai Z-48, harboring multiple plant-beneficial traits, to suppress Fusarium wilt disease along with its beneficial effect on seedling and plant growth promotion was analyzed. Among two bacterial strains, B. aryabhattai Z-48 was able to antagonize the mycelial growth of Fusarium oxysporum f.sp. lycopersici in vitro and its application as a seed coating superiorly benefited seedling traits like the germination percentage, vigor index, and seedling growth index along with a reduced germination time. The seed coating with B. aryabhattai Z-48 resulted in significant increases in the shoot length, root length, dry biomass, and total chlorophyll contents when compared with the bioprimed seeds with the same bacterial strain and non-inoculated control plants. The seed coating with B. aryabhattai Z-48 significantly reduced the disease index (>60%) compared with the pathogen control during pot trials. Additionally, the seed coating with B. aryabhattai Z-48 resulted in a significantly higher production of total phenolics, peroxidase, polyphenol oxidase, and phenylalanine ammonia lyase enzyme in tomato plants. The GC/MS-based non-targeted metabolic profiling indicated that the seed coating with B. aryabhattai Z-48 could cause large-scale metabolite perturbations in sugars, sugar alcohols, amino acids, and organic acids to increase the fitness of tomato plants against biotic stress. Our study indicates that a tomato seed coating with B. aryabhattai Z-48 can improve tomato growth and suppress Fusarium wilt disease effectively under conventional agricultural systems.
Collapse
Affiliation(s)
- Waheed Akram
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan; (S.W.); (S.H.); (T.A.); (Z.-e.-H.A.); (A.H.); (M.U.)
| | - Sara Waqar
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan; (S.W.); (S.H.); (T.A.); (Z.-e.-H.A.); (A.H.); (M.U.)
| | - Sana Hanif
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan; (S.W.); (S.H.); (T.A.); (Z.-e.-H.A.); (A.H.); (M.U.)
| | - Tehmina Anjum
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan; (S.W.); (S.H.); (T.A.); (Z.-e.-H.A.); (A.H.); (M.U.)
| | - Zill-e-Huma Aftab
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan; (S.W.); (S.H.); (T.A.); (Z.-e.-H.A.); (A.H.); (M.U.)
| | - Guihua Li
- Guangdong Key Laboratory for New Technology Research of Vegetables/Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Basharat Ali
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore 54590, Pakistan;
| | - Humaira Rizwana
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Ali Hassan
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan; (S.W.); (S.H.); (T.A.); (Z.-e.-H.A.); (A.H.); (M.U.)
| | - Areeba Rehman
- College of Earth and Environmental Sciences, University of the Punjab, Lahore 54590, Pakistan; (A.R.); (B.M.)
| | - Bareera Munir
- College of Earth and Environmental Sciences, University of the Punjab, Lahore 54590, Pakistan; (A.R.); (B.M.)
| | - Muhammad Umer
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan; (S.W.); (S.H.); (T.A.); (Z.-e.-H.A.); (A.H.); (M.U.)
| |
Collapse
|
47
|
Galindo FS, Pagliari PH, da Silva EC, de Lima BH, Fernandes GC, Thiengo CC, Bernardes JVS, Jalal A, Oliveira CES, de Sousa Vilela L, Furlani Junior E, Nogueira TAR, do Nascimento V, Teixeira Filho MCM, Lavres J. Impact of nitrogen fertilizer sustainability on corn crop yield: the role of beneficial microbial inoculation interactions. BMC PLANT BIOLOGY 2024; 24:268. [PMID: 38605320 PMCID: PMC11008049 DOI: 10.1186/s12870-024-04971-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Considering the challenges posed by nitrogen (N) pollution and its impact on food security and sustainability, it is crucial to develop management techniques that optimize N fertilization in croplands. Our research intended to explore the potential benefits of co-inoculation with Azospirillum brasilense and Bacillus subtilis combined with N application rates on corn plants. The study focused on evaluating corn photosynthesis-related parameters, oxidative stress assay, and physiological nutrient use parameters. Focus was placed on the eventual improved capacity of plants to recover N from applied fertilizers (AFR) and enhance N use efficiency (NUE) during photosynthesis. The two-year field trial involved four seed inoculation treatments (control, A. brasilense, B. subtilis, and A. brasilense + B. subtilis) and five N application rates (0 to 240 kg N ha-1, applied as side-dress). RESULTS Our results suggested that the combined effects of microbial consortia and adequate N-application rates played a crucial role in N-recovery; enhanced NUE; increased N accumulation, leaf chlorophyll index (LCI), and shoot and root growth; consequently improving corn grain yield. The integration of inoculation and adequate N rates upregulated CO2 uptake and assimilation, transpiration, and water use efficiency, while downregulated oxidative stress. CONCLUSIONS The results indicated that the optimum N application rate could be reduced from 240 to 175 kg N ha-1 while increasing corn yield by 5.2%. Furthermore, our findings suggest that replacing 240 by 175 kg N ha-1 of N fertilizer (-65 kg N ha-1) with microbial consortia would reduce CO2 emission by 682.5 kg CO2 -e ha-1. Excessive N application, mainly with the presence of beneficial bacteria, can disrupt N-balance in the plant, alter soil and bacteria levels, and ultimately affect plant growth and yield. Hence, highlighting the importance of adequate N management to maximize the benefits of inoculation in agriculture and to counteract N loss from agricultural systems intensification.
Collapse
Affiliation(s)
- Fernando Shintate Galindo
- College of Agricultural and Technological Sciences, Department of Crop Production, São Paulo State University, Dracena, 17900-000, Brazil.
| | - Paulo Humberto Pagliari
- Southwest Research and Outreach Center, Department of Soil, Water, and Climate, University of Minnesota, Lamberton, MN, 56152, USA
| | - Edson Cabral da Silva
- Department of Plant Health, Rural Engineering, and Soils, São Paulo State University, Ilha Solteira, 15345-000, Brazil
| | - Bruno Horschut de Lima
- Department of Plant Health, Rural Engineering, and Soils, São Paulo State University, Ilha Solteira, 15345-000, Brazil
| | - Guilherme Carlos Fernandes
- Department of Plant Health, Rural Engineering, and Soils, São Paulo State University, Ilha Solteira, 15345-000, Brazil
| | - Cassio Carlette Thiengo
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, 13416-000, Brazil
| | | | - Arshad Jalal
- King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Carlos Eduardo Silva Oliveira
- Department of Plant Health, Rural Engineering, and Soils, São Paulo State University, Ilha Solteira, 15345-000, Brazil
| | - Lucila de Sousa Vilela
- College of Agricultural and Technological Sciences, Department of Crop Production, São Paulo State University, Dracena, 17900-000, Brazil
| | - Enes Furlani Junior
- Department of Plant Health, Rural Engineering, and Soils, São Paulo State University, Ilha Solteira, 15345-000, Brazil
| | | | - Vagner do Nascimento
- College of Agricultural and Technological Sciences, Department of Crop Production, São Paulo State University, Dracena, 17900-000, Brazil
| | | | - José Lavres
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, 13416-000, Brazil
| |
Collapse
|
48
|
Sivaprakasam S, Mohd Azim Khan NA, Yee Fan T, Kumarasan Y, Sicheritz-Pontén T, Petersen B, Mohd Hata E, Vadamalai G, Parimannan S, Rajandas H. Complete genome sequence of plant growth-promoting Bacillus stratosphericus AIMST-CREST02 isolated from bulk soil of a paddy field. Microbiol Resour Announc 2024; 13:e0113723. [PMID: 38506531 PMCID: PMC11008120 DOI: 10.1128/mra.01137-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/02/2024] [Indexed: 03/21/2024] Open
Abstract
Here, we present the complete genome of a plant growth-promoting strain, Bacillus stratosphericus AIMST-CREST02 isolated from the bulk soil of a high-yielding paddy plot. The genome is 3,840,451 bp in size with a GC content of 41.25%. Annotation predicted the presence of 3,907 coding sequences, including genes involved in auxin biosynthesis regulation and gamma-aminobutyric acid (GABA) metabolism.
Collapse
Affiliation(s)
- Sumitra Sivaprakasam
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), AIMST University, Bedong, Kedah, Malaysia
| | - Nur Arisa Mohd Azim Khan
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Tan Yee Fan
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), AIMST University, Bedong, Kedah, Malaysia
| | - Yukgehnaish Kumarasan
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), AIMST University, Bedong, Kedah, Malaysia
| | - Thomas Sicheritz-Pontén
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), AIMST University, Bedong, Kedah, Malaysia
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Bent Petersen
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), AIMST University, Bedong, Kedah, Malaysia
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Erneeza Mohd Hata
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Ganesan Vadamalai
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Laboratory of Sustainable Agronomy and Crop Protection, Institute of Plantation Studies, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sivachandran Parimannan
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), AIMST University, Bedong, Kedah, Malaysia
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Heera Rajandas
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), AIMST University, Bedong, Kedah, Malaysia
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
49
|
Walaszczyk A, Jasińska A, Bernat P, Różalska S, Sas-Paszt L, Lisek A, Paraszkiewicz K. The Combined Effects of Azoxystrobin and the Biosurfactant-Producing Bacillus sp. Kol B3 against the Phytopathogenic Fungus Fusarium sambucinum IM 6525. Int J Mol Sci 2024; 25:4175. [PMID: 38673760 PMCID: PMC11049953 DOI: 10.3390/ijms25084175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
This study aimed to evaluate how the combined presence of the synthetic fungicide azoxystrobin (AZ) and the biosurfactant-producing Bacillus sp. Kol B3 influences the growth of the phytopathogenic fungus Fusarium sambucinum IM 6525. The results showed a noticeable increase in antifungal effectiveness when biotic and abiotic agents were combined. This effect manifested across diverse parameters, including fungal growth inhibition, changes in hyphae morphology, fungal membrane permeability and levels of intracellular reactive oxygen species (ROS). In response to the presence of Fusarium and AZ in the culture, the bacteria changed the proportions of biosurfactants (surfactin and iturin) produced. The presence of both AZ and/or Fusarium resulted in an increase in iturin biosynthesis. Only in 72 h old bacterial-fungal co-culture a 20% removal of AZ was noted. In the fungal cultures (with and without the addition of the bacteria), the presence of an AZ metabolite named azoxystrobin free acid was detected in the 48th and 72nd hours of the process. The possible involvement of increased iturin and ROS content in antifungal activity of Bacillus sp. and AZ when used together are also discussed. Biosurfactants were analyzed by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Microscopy techniques and biochemical assays were also used.
Collapse
Affiliation(s)
- Aleksandra Walaszczyk
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, Doctoral School of Exact and Natural Sciences, University of Lodz, 90-136 Lodz, Poland;
| | - Anna Jasińska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland; (A.J.); (P.B.); (S.R.)
| | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland; (A.J.); (P.B.); (S.R.)
| | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland; (A.J.); (P.B.); (S.R.)
| | - Lidia Sas-Paszt
- Department of Microbiology and Rhizosphere, The National Institute of Horticultural Research, 96-100 Skierniewice, Poland; (L.S.-P.); (A.L.)
| | - Anna Lisek
- Department of Microbiology and Rhizosphere, The National Institute of Horticultural Research, 96-100 Skierniewice, Poland; (L.S.-P.); (A.L.)
| | - Katarzyna Paraszkiewicz
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland; (A.J.); (P.B.); (S.R.)
| |
Collapse
|
50
|
Wang L, Huang J, Chen S, Su X, Zhang X, Wang L, Zhang W, Wang Z, Zeng Q, Wang Q, Li Y. Endogenous cell wall degrading enzyme LytD is important for the biocontrol activity of Bacillus subtilis. FRONTIERS IN PLANT SCIENCE 2024; 15:1381018. [PMID: 38660441 PMCID: PMC11039861 DOI: 10.3389/fpls.2024.1381018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/14/2024] [Indexed: 04/26/2024]
Abstract
Autolysins are endogenous cell wall degrading enzymes (CWDEs) in bacteria that remodel the peptidoglycan layer of its own cell wall. In the Bacillus subtilis genome, at least 35 autolysin genes have been identified. However, the study of their roles in bacterial physiology has been hampered by their complexity and functional redundancy. B. subtilis GLB191 is an effective biocontrol strain against grape downy mildew disease, the biocontrol effect of which results from both direct effect against the pathogen and stimulation of the plant defense. In this study, we show that the autolysin N-acetylglucosaminidase LytD, a major autolysin of vegetative growth in B. subtilis, plays an important role in its biocontrol activity against grape downy mildew. Disruption of lytD resulted in reduced suppression of the pathogen Plasmopara viticola and stimulation of the plant defense. LytD is also shown to affect the biofilm formation and colonization of B. subtilis on grape leaves. This is the first report that demonstrates the role of an endogenous CWDE in suppressing plant disease infection of a biological control microorganism. These findings not only expand our knowledge on the biological function of autolysins but also provide a new target to promote the biocontrol activity of B. subtilis.
Collapse
Affiliation(s)
- Luotao Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jianquan Huang
- The Research Institute of Forestry and Pomology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Si Chen
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xin Su
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xun Zhang
- Airport Research Institute, China Academy of Civil Aviation Science and Technology, Beijing, China
| | - Lujun Wang
- Weinan Grapevine Research Institute, Weinan, China
| | - Wei Zhang
- Weinan Grapevine Research Institute, Weinan, China
| | - Zhenshuo Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Qingchao Zeng
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Qi Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yan Li
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|