1
|
Jamil S, Ahmad S, Shahzad R, Umer N, Kanwal S, Rehman HM, Rana IA, Atif RM. Leveraging Multiomics Insights and Exploiting Wild Relatives' Potential for Drought and Heat Tolerance in Maize. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16048-16075. [PMID: 38980762 DOI: 10.1021/acs.jafc.4c01375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Climate change, particularly drought and heat stress, may slash agricultural productivity by 25.7% by 2080, with maize being the hardest hit. Therefore, unraveling the molecular nature of plant responses to these stressors is vital for the development of climate-smart maize. This manuscript's primary objective was to examine how maize plants respond to these stresses, both individually and in combination. Additionally, the paper delved into harnessing the potential of maize wild relatives as a valuable genetic resource and leveraging AI-based technologies to boost maize resilience. The role of multiomics approaches particularly genomics and transcriptomics in dissecting the genetic basis of stress tolerance was also highlighted. The way forward was proposed to utilize a bunch of information obtained through omics technologies by an interdisciplinary state-of-the-art forward-looking big-data, cyberagriculture system, and AI-based approach to orchestrate the development of climate resilient maize genotypes.
Collapse
Affiliation(s)
- Shakra Jamil
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad 38000, Pakistan
| | - Shakeel Ahmad
- Seed Centre and Plant Genetic Resources Bank Ministry of Environment, Water and Agriculture, Riyadh 14712, Saudi Arabia
| | - Rahil Shahzad
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad 38000, Pakistan
| | - Noroza Umer
- Dr. Ikram ul Haq - Institute of Industrial Biotechnology, Government College University, Lahore 54590, Pakistan
| | - Shamsa Kanwal
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad 38000, Pakistan
| | - Hafiz Mamoon Rehman
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Iqrar Ahmad Rana
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad 38000, Pakistan
| | - Rana Muhammad Atif
- Department of Plant Sciences, University of California Davis, California 95616, United States
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan
- Precision Agriculture and Analytics Lab, Centre for Advanced Studies in Agriculture and Food Security, National Centre in Big Data and Cloud Computing, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
2
|
Song X, Wang H, Wang Y, Zeng Q, Zheng X. Metabolomics combined with physiology and transcriptomics reveal how Nicotiana tabacum leaves respond to cold stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108464. [PMID: 38442629 DOI: 10.1016/j.plaphy.2024.108464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
Low temperature-induced cold stress is a major threat to plant growth, development and distribution. Unraveling the responses of temperature-sensitive crops to cold stress and the mechanisms of cold acclimation are critical for food demand. In this study, combined physiological, transcriptomic, and metabolomic analyses were conducted on Nicotiana tabacum suffering short-term 4 °C cold stress. Our results showed that cold stress destroyed cellular membrane stability, decreased the chlorophyll (Chl) and carotenoid contents, and closed stomata, resulting in lipid peroxidation and photosynthesis restriction. Chl fluorescence measurements revealed that primary photochemistry, photoelectrochemical quenching and photosynthetic electron transport in Nicotiana tabacum leaves were seriously suppressed upon exposer to cold stress. Enzymatic and nonenzymatic antioxidants, including superoxide dismutase, catalase, peroxidase, reduced glutathione, proline, and soluble sugar, were all profoundly increased to trigger the cold acclimation defense against oxidative damage. A total of 178 metabolites and 16,204 genes were differentially expressed in cold-stressed Nicotiana tabacum leaves. MEturquoise and MEblue modules identified by WGCNA were highly correlated with physiological indices, and the corresponding hub genes were significantly enriched in pathways related to photosynthesis - antenna proteins and flavonoid biosynthesis. Untargeted metabolomic analysis identified specific metabolites, including sucrose, phenylalanine, glutamine, glutamate, and proline, that enhance plant cold acclimation. Combined transcriptomics and metabolomic analysis highlight the vital roles of carbohydrate and amino acid metabolism in enhancing the cold tolerance of Nicotiana tabacum. Our comprehensive investigation provides novel insights for efforts to alleviate low temperature-induced oxidative damage to Nicotiana tabacum plants and proposes a breeding target for cold stress-tolerant cultivars.
Collapse
Affiliation(s)
- Xiliang Song
- College of Life Sciences, Dezhou University, De'zhou, 253023, China
| | - Hui Wang
- Henan Tobacco Company, Luoyang Branch, Luoyang, 471000, China
| | - Yujie Wang
- Henan Tobacco Company, Luoyang Branch, Luoyang, 471000, China
| | - Qiangcheng Zeng
- College of Life Sciences, Dezhou University, De'zhou, 253023, China.
| | - Xuebo Zheng
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences China, Qingdao, 266101, China.
| |
Collapse
|
3
|
Aina O, Bakare OO, Fadaka AO, Keyster M, Klein A. Plant biomarkers as early detection tools in stress management in food crops: a review. PLANTA 2024; 259:60. [PMID: 38311674 PMCID: PMC10838863 DOI: 10.1007/s00425-024-04333-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 01/07/2024] [Indexed: 02/06/2024]
Abstract
MAIN CONCLUSION Plant Biomarkers are objective indicators of a plant's cellular state in response to abiotic and biotic stress factors. They can be explored in crop breeding and engineering to produce stress-tolerant crop species. Global food production safely and sustainably remains a top priority to feed the ever-growing human population, expected to reach 10 billion by 2050. However, abiotic and biotic stress factors negatively impact food production systems, causing between 70 and 100% reduction in crop yield. Understanding the plant stress responses is critical for developing novel crops that can adapt better to various adverse environmental conditions. Using plant biomarkers as measurable indicators of a plant's cellular response to external stimuli could serve as early warning signals to detect stresses before severe damage occurs. Plant biomarkers have received considerable attention in the last decade as pre-stress indicators for various economically important food crops. This review discusses some biomarkers associated with abiotic and biotic stress conditions and highlights their importance in developing stress-resilient crops. In addition, we highlighted some factors influencing the expression of biomarkers in crop plants under stress. The information presented in this review would educate plant researchers, breeders, and agronomists on the significance of plant biomarkers in stress biology research, which is essential for improving plant growth and yield toward sustainable food production.
Collapse
Affiliation(s)
- Omolola Aina
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville, 7530, South Africa
| | - Olalekan O Bakare
- Department of Biochemistry, Faculty of Basic Medical Sciences, Olabisi Onabanjo University, Sagamu, 121001, Nigeria
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville, 7530, South Africa
| | - Adewale O Fadaka
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville, 7530, South Africa
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville, 7530, South Africa
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville, 7530, South Africa.
| |
Collapse
|
4
|
Yuan HY, Kagale S, Ferrie AMR. Multifaceted roles of transcription factors during plant embryogenesis. FRONTIERS IN PLANT SCIENCE 2024; 14:1322728. [PMID: 38235196 PMCID: PMC10791896 DOI: 10.3389/fpls.2023.1322728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
Transcription factors (TFs) are diverse groups of regulatory proteins. Through their specific binding domains, TFs bind to their target genes and regulate their expression, therefore TFs play important roles in various growth and developmental processes. Plant embryogenesis is a highly regulated and intricate process during which embryos arise from various sources and undergo development; it can be further divided into zygotic embryogenesis (ZE) and somatic embryogenesis (SE). TFs play a crucial role in the process of plant embryogenesis with a number of them acting as master regulators in both ZE and SE. In this review, we focus on the master TFs involved in embryogenesis such as BABY BOOM (BBM) from the APETALA2/Ethylene-Responsive Factor (AP2/ERF) family, WUSCHEL and WUSCHEL-related homeobox (WOX) from the homeobox family, LEAFY COTYLEDON 2 (LEC2) from the B3 family, AGAMOUS-Like 15 (AGL15) from the MADS family and LEAFY COTYLEDON 1 (LEC1) from the Nuclear Factor Y (NF-Y) family. We aim to present the recent progress pertaining to the diverse roles these master TFs play in both ZE and SE in Arabidopsis, as well as other plant species including crops. We also discuss future perspectives in this context.
Collapse
Affiliation(s)
| | | | - Alison M. R. Ferrie
- Aquatic and Crop Resource Development Research Center, National Research Council Canada, Saskatoon, SK, Canada
| |
Collapse
|
5
|
Debnath T, Dhar DG, Dhar P. Molecular switches in plant stress adaptation. Mol Biol Rep 2023; 51:20. [PMID: 38108912 DOI: 10.1007/s11033-023-09051-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/23/2023] [Indexed: 12/19/2023]
Abstract
Climate change poses a significant threat to the global ecosystem, prompting plants to use various adaptive mechanisms via molecular switches to combat biotic and abiotic stress factors. These switches activate stress-induced pathways by altering their configuration between stable states. In this review, we investigated the regulation of molecular switches in different plant species in response to stress, including the stress-regulated response of multiple switches in Arabidopsis thaliana. We also discussed techniques for developing stress-resilient crops using molecular switches through advanced biotechnological tools. The literature search, conducted using databases such as PubMed, Google Scholar, Web of Science, and SCOPUS, utilized keywords such as molecular switch, plant adaptation, biotic and abiotic stresses, transcription factors, Arabidopsis thaliana, and crop improvement. Recent studies have shown that a single molecular switch can regulate multiple stress networks, and multiple switches can regulate a single stress condition. This multifactorial understanding provides clarity to the switch regulatory network and highlights the interrelationships of different molecular switches. Advanced breeding techniques, along with genomic and biotechnological tools, have paved the way for further research on molecular switches in crop improvement. The use of synthetic biology in molecular switches will lead to a better understanding of plant stress biology and potentially bring forth a new era of stress-resilient, climate-smart crops worldwide.
Collapse
Affiliation(s)
- Tista Debnath
- Post Graduate Department of Botany, Brahmananda Keshab Chandra College, 111/2 B.T. Road, Bon-Hooghly, Kolkata, West Bengal, 700108, India
| | - Debasmita Ghosh Dhar
- Kataganj Spandan, Social Welfare Organization, Kalyani, West Bengal, 741250, India
| | - Priyanka Dhar
- Post Graduate Department of Botany, Brahmananda Keshab Chandra College, 111/2 B.T. Road, Bon-Hooghly, Kolkata, West Bengal, 700108, India.
| |
Collapse
|
6
|
Yadav B, Majhi A, Phagna K, Meena MK, Ram H. Negative regulators of grain yield and mineral contents in rice: potential targets for CRISPR-Cas9-mediated genome editing. Funct Integr Genomics 2023; 23:317. [PMID: 37837547 DOI: 10.1007/s10142-023-01244-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/16/2023]
Abstract
Rice is a major global staple food crop, and improving its grain yield and nutritional quality has been a major thrust research area since last decades. Yield and nutritional quality are complex traits which are controlled by multiple signaling pathways. Sincere efforts during past decades of research have identified several key genetic and molecular regulators that governed these complex traits. The advent of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-mediated gene knockout approaches has accelerated the development of improved varieties; however, finding out target gene with negative regulatory function in particular trait without giving any pleiotropic effect remains a challenge. Here, we have reviewed past and recent literature and identified important negative regulators of grain yield and mineral contents which could be potential targets for CRISPR-Cas9-mediated gene knockout. Additionally, we have also compiled a list of microRNAs (miRNAs), which target positive regulators of grain yield, plant stress tolerance, and grain mineral contents. Knocking out these miRNAs could help to increase expression of such positive regulators and thus improve the plant trait. The knowledge presented in this review would help to further accelerate the CRISPR-Cas9-mediated trait improvement in rice.
Collapse
Affiliation(s)
- Banita Yadav
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ashis Majhi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kanika Phagna
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mukesh Kumar Meena
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Hasthi Ram
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
7
|
Lewicka A, Roman C, Jones S, Disare M, Rice P, Piccirilli J. Crystal structure of a cap-independent translation enhancer RNA. Nucleic Acids Res 2023; 51:8891-8907. [PMID: 37548413 PMCID: PMC10484670 DOI: 10.1093/nar/gkad649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/14/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023] Open
Abstract
In eukaryotic messenger RNAs, the 5' cap structure binds to the translation initiation factor 4E to facilitate early stages of translation. Although many plant viruses lack the 5' cap structure, some contain cap-independent translation elements (CITEs) in their 3' untranslated region. The PTE (Panicum mosaic virus translation element) class of CITEs contains a G-rich asymmetric bulge and a C-rich helical junction that were proposed to interact via formation of a pseudoknot. SHAPE analysis of PTE homologs reveals a highly reactive guanosine residue within the G-rich region proposed to mediate eukaryotic initiation factor 4E (eIF4E) recognition. Here we have obtained the crystal structure of the PTE from Pea enation mosaic virus 2 (PEMV2) RNA in complex with our structural chaperone, Fab BL3-6. The structure reveals that the G-rich and C-rich regions interact through a complex network of interactions distinct from those expected for a pseudoknot. The motif, which contains a short parallel duplex, provides a structural mechanism for how the guanosine is extruded from the core stack to enable eIF4E recognition. Homologous PTE elements harbor a G-rich bulge and a three-way junction and exhibit covariation at crucial positions, suggesting that the PEMV2 tertiary architecture is conserved among these homologs.
Collapse
Affiliation(s)
- Anna Lewicka
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Christina Roman
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Stacey Jones
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Michael Disare
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Phoebe A Rice
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Joseph A Piccirilli
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
8
|
Rani V, Joshi DC, Joshi P, Singh R, Yadav D. "Millet Models" for harnessing nuclear factor-Y transcription factors to engineer stress tolerance in plants: current knowledge and emerging paradigms. PLANTA 2023; 258:29. [PMID: 37358736 DOI: 10.1007/s00425-023-04186-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
MAIN CONCLUSION The main purpose of this review is to shed light on the role of millet models in imparting climate resilience and nutritional security and to give a concrete perspective on how NF-Y transcription factors can be harnessed for making cereals more stress tolerant. Agriculture faces significant challenges from climate change, bargaining, population, elevated food prices, and compromises with nutritional value. These factors have globally compelled scientists, breeders, and nutritionists to think of some options that can combat the food security crisis and malnutrition. To address these challenges, mainstreaming the climate-resilient and nutritionally unparalleled alternative crops like millet is a key strategy. The C4 photosynthetic pathway and adaptation to low-input marginal agricultural systems make millets a powerhouse of important gene and transcription factor families imparting tolerance to various kinds of biotic and abiotic stresses. Among these, the nuclear factor-Y (NF-Y) is one of the prominent transcription factor families that regulate diverse genes imparting stress tolerance. The primary purpose of this article is to shed light on the role of millet models in imparting climate resilience and nutritional security and to give a concrete perspective on how NF-Y transcription factors can be harnessed for making cereals more stress tolerant. Future cropping systems could be more resilient to climate change and nutritional quality if these practices were implemented.
Collapse
Affiliation(s)
- Varsha Rani
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - D C Joshi
- ICAR-Vivekananda Institute of Hill Agriculture, Almora, Uttarakhand, 263601, India
| | - Priyanka Joshi
- Plant and Environmental Sciences, 113 Biosystems Research Complex, Clemson University, Clemson, South Carolina, 29634, USA
| | - Rajesh Singh
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Dinesh Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India.
| |
Collapse
|
9
|
Menhas S, Yang X, Hayat K, Bundschuh J, Chen X, Hui N, Zhang D, Chu S, Zhou Y, Ali EF, Shahid M, Rinklebe J, Lee SS, Shaheen SM, Zhou P. Pleiotropic melatonin-mediated responses on growth and cadmium phytoextraction of Brassica napus: A bioecological trial for enhancing phytoremediation of soil cadmium. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131862. [PMID: 37329597 DOI: 10.1016/j.jhazmat.2023.131862] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/04/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023]
Abstract
Melatonin (MT) has recently gained significant scientific interest, though its mechanism of action in enhancing plant vigor, cadmium (Cd) tolerance, and Cd phytoremediation processes are poorly understood. Therefore, here we investigated the beneficial role of MT in improving growth and Cd remediation potential of rapeseed (Brassica napus). Plants, with or without MT (200 µM L-1), were subjected to Cd stress (30 mg kg1). Without MT, higher Cd accumulation (up to 99%) negatively affected plant growth and developmental feature as well as altered expression of several key genes (DEGs) involved in different molecular pathways of B. napus. As compared to only Cd-stressed counterparts, MT-treated plants exhibited better physiological performance as indicated by improved leaf photosynthetic and gaseous exchange processes (3-48%) followed by plant growth (up to 50%), fresh plant biomass (up to 45%), dry plant biomass (up to 32%), and growth tolerance indices (up to 50%) under Cd exposure. MT application enhanced Cd tolerance and phytoremediation capacity of B. napus by augmenting (1) Cd accumulation in plant tissues and its translocation to above-ground parts (by up to 45.0%), (2) Cd distribution in the leaf cell wall (by up to 42%), and (3) Cd detoxification by elevating phytochelatins (by up to 8%) and metallothioneins (by upto 14%) biosynthesis, in comparison to Cd-treated plants. MT played a protective role in stabilizing hydrogen peroxide and malondialdehyde levels in the tissue of the Cd-treated plants by enhancing the content of osmolytes (proline and total soluble protein) and activities of antioxidant enzymes (SOD, CAT, APX and GR). Transcriptomic analysis revealed that MT regulated 1809 differentially expressed genes (828 up and 981 down) together with 297 commonly expressed DEGs (CK vs Cd and Cd vs CdMT groups) involved in plant-pathogen interaction pathway, protein processing in the endoplasmic reticulum pathway, mitogen-activated protein kinase signaling pathway, and plant hormone signal transduction pathway which ultimately promoted plant growth and Cd remediation potential in the Cd-stressed plants. These results provide insights into the unexplored pleiotropic beneficial action of MT in enhancing in the growth and Cd phytoextraction potential of B. napus, paving the way for developing Cd-tolerant oilseed crops with higher remediation capacity as a bioecological trial for enhancing phytoremediation of hazardous toxic metals in the environment.
Collapse
Affiliation(s)
- Saiqa Menhas
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, PR China
| | - Xijia Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China
| | - Kashif Hayat
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Jochen Bundschuh
- Department of Earth and Environmental Sciences, National Chung Cheng University, Taiwan, ROC; School of Civil Engineering and Surveying, University of Southern Queensland, Australia
| | - Xunfeng Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, PR China
| | - Nan Hui
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, PR China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, PR China
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, PR China
| | - Yuanfei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, PR China
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari 61100, Pakistan
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, South Korea.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah 21589, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt.
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, PR China.
| |
Collapse
|
10
|
Yang F, Yuan Y, Liu Q, Zhang X, Gai S, Jin Y, Cheng K. Artificial humic acid promotes growth of maize seedling under alkali conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121588. [PMID: 37028787 DOI: 10.1016/j.envpol.2023.121588] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/02/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Salinization of cropland is one of the major abiotic stresses affecting global agricultural sustainability, posing a serious threat to agricultural productivity and food security. Application of artificial humic acid (A-HA) as plant biostimulants has been increasingly attracting farmers and researchers. However, its regulation of seed germination and growth under alkali stress has rarely received attention. The purpose of this study was to investigate the response of maize (Zea mays L.) seed germination and seedling growth after the addition of A-HA. The effects of A-HA on seed germination, seedling growth, chlorophyll contents and osmoregulation substance under black and saline soil conditions were studied by soaking maize in solutions with and without various concentrations of A-HA. Artificial humic acid treatments significantly increased the seed germination index and dry weight of seedlings. The effects of maize root in absence and presence of A-HA under alkali stress were also evaluated using transcriptome sequencing. GO and KEGG analyzes were performed on differentially expressed genes, and the reliability of transcriptome data was verified by qPCR analysis. Results showed that A-HA significantly activated phenylpropanoid biosynthesis, oxidative phosphorylation pathways and plant hormone signal transduction. Moreover, Transcription factor analysis revealed that A-HA induced the expression of several transcription factors under alkali stress which had a regulatory effect on the alleviation of alkali damage in the root system. Overall, our results suggested that soaking seeds with A-HA can alleviate alkali accumulation and toxicity in maize, constituting a simple and effective strategy to mitigate saline toxicity. These results will provide new insights for the application of A-HA in management to reduce alkali-caused crop loss.
Collapse
Affiliation(s)
- Fan Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China.
| | - Yue Yuan
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China
| | - Qingyu Liu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China
| | - Xi Zhang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China
| | - Shuang Gai
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China
| | - Yongxu Jin
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China
| | - Kui Cheng
- Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China; College of Engineering, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
11
|
Singh R, Singh A, Mahato AK, Paliwal R, Tiwari G, Kumar A. De Novo Transcriptome Profiling for the Generation and Validation of Microsatellite Markers, Transcription Factors, and Database Development for Andrographis paniculata. Int J Mol Sci 2023; 24:ijms24119212. [PMID: 37298166 DOI: 10.3390/ijms24119212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 06/12/2023] Open
Abstract
Andrographis paniculata belongs to the family Acanthaceae and is known for its medicinal properties owing to the presence of unique constituents belonging to the lactones, diterpenoids, diterpene glycosides, flavonoids, and flavonoid glycosides groups of chemicals. Andrographolide, a major therapeutic constituent of A. paniculata, is extracted primarily from the leaves of this plant and exhibits antimicrobial and anti-inflammatory activities. Using 454 GS-FLX pyrosequencing, we have generated a whole transcriptome profile of entire leaves of A. paniculata. A total of 22,402 high-quality transcripts were generated, with an average transcript length and N50 of 884 bp and 1007 bp, respectively. Functional annotation revealed that 19,264 (86%) of the total transcripts showed significant similarity with the NCBI-Nr database and were successfully annotated. Out of the 19,264 BLAST hits, 17,623 transcripts were assigned GO terms and distributed into three major functional categories: molecular function (44.62%), biological processes (29.19%), and cellular component (26.18%) based on BLAST2GO. Transcription factor analysis showed 6669 transcripts, belonging to 57 different transcription factor families. Fifteen TF genes that belong to the NAC, MYB, and bHLH TF categories were validated by RT PCR amplification. In silico analysis of gene families involved in the synthesis of biochemical compounds having medicinal values, such as cytochrome p450, protein kinases, heat shock proteins, and transporters, was completed and a total of 102 different transcripts encoding enzymes involved in the biosynthesis of terpenoids were predicted. Out of these, 33 transcripts belonged to terpenoid backbone biosynthesis. This study also identified 4254 EST-SSRs from 3661 transcripts, representing 16.34% of the total transcripts. Fifty-three novel EST-SSR markers generated from our EST dataset were used to assess the genetic diversity among eighteen A. paniculata accessions. The genetic diversity analysis revealed two distinct sub-clusters and all accessions based on the genetic similarity index were distinct from each other. A database based on EST transcripts, EST-SSR markers, and transcription factors has been developed using data generated from the present study combined with available transcriptomic resources from a public database using Meta transcriptome analysis to make genomic resources available in one place to the researchers working on this medicinal plant.
Collapse
Affiliation(s)
- Rakesh Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India
| | - Akshay Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India
| | - Ajay Kumar Mahato
- The Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Ritu Paliwal
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India
| | - Gunjan Tiwari
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Ashok Kumar
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India
| |
Collapse
|
12
|
Santos M, Egea-Cortines M, Gonçalves B, Matos M. Molecular mechanisms involved in fruit cracking: A review. FRONTIERS IN PLANT SCIENCE 2023; 14:1130857. [PMID: 36937999 PMCID: PMC10016354 DOI: 10.3389/fpls.2023.1130857] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Several fleshy fruits are highly affected by cracking, a severe physiological disorder that compromises their quality and causes high economical losses to the producers. Cracking can occur due to physiological, genetic or environmental factors and may happen during fruit growth, development and ripening. Moreover, in fleshy fruits, exocarp plays an important role, acting as a mechanical protective barrier, defending against biotic or abiotic factors. Thus, when biochemical properties of the cuticle + epidermis + hypodermis are affected, cracks appear in the fruit skin. The identification of genes involved in development such as cell wall modifications, biosynthesis and transport of cuticular waxes, cuticular membrane deposition and associated transcription factors provides new insights to better understand how fruit cracking is affected by genetic factors. Amongst the major environmental stresses causing cracking are excessive water during fruit development, leading to imbalances in cations such as Ca. This review focus on expression of key genes in these pathways, in their influence in affected fruits and the potential for molecular breeding programs, aiming to develop cultivars more resistant to cracking under adverse environmental conditions.
Collapse
Affiliation(s)
- Marlene Santos
- Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Marcos Egea-Cortines
- Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Berta Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- Department of Biology and Environment (DeBA), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Manuela Matos
- Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| |
Collapse
|
13
|
Ectopic Expression of Arabidopsis thaliana zDof1.3 in Tomato ( Solanum lycopersicum L.) Is Associated with Improved Greenhouse Productivity and Enhanced Carbon and Nitrogen Use. Int J Mol Sci 2022; 23:ijms231911229. [PMID: 36232530 PMCID: PMC9570051 DOI: 10.3390/ijms231911229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
A large collection of transgenic tomato lines, each ectopically expressing a different Arabidopsis thaliana transcription factor, was screened for variants with alterations in leaf starch. Such lines may be affected in carbon partitioning, and in allocation to the sinks. We focused on ‘L4080’, which harbored an A. thaliana zDof (DNA-binding one zinc finger) isoform 1.3 (AtzDof1.3) gene, and which had a 2−4-fold higher starch-to-sucrose ratio in source leaves over the diel (p < 0.05). Our aim was to determine whether there were associated effects on productivity. L4080 plants were altered in nitrogen (N) and carbon (C) metabolism. The N-to-C ratio was higher in six-week-old L4080, and when treated with 1/10 N, L4080 growth was less inhibited compared to the wild-type and this was accompanied by faster root elongation (p < 0.05). The six-week-old L4080 acquired 42% more dry matter at 720 ppm CO2, compared to ambient CO2 (p < 0.05), while the wild-type (WT) remained unchanged. GC-MS-TOF data showed that L4080 source leaves were enriched in amino acids compared to the WT, and at 49 DPA, fruit had 25% greater mass, higher sucrose, and increased yield (25%; p < 0.05) compared to the WT. An Affymetrix cDNA array analysis suggested that only 0.39% of the 9000 cDNAs were altered by 1.5-fold (p < 0.01) in L4080 source leaves. 14C-labeling of fruit disks identified potential differences in 14-DPA fruit metabolism suggesting that post-transcriptional regulation was important. We conclude that AtzDof1.3 and the germplasm derived therefrom, should be investigated for their ‘climate-change adaptive’ potential.
Collapse
|
14
|
Whole-Genome Identification of APX and CAT Gene Families in Cultivated and Wild Soybeans and Their Regulatory Function in Plant Development and Stress Response. Antioxidants (Basel) 2022; 11:antiox11081626. [PMID: 36009347 PMCID: PMC9404807 DOI: 10.3390/antiox11081626] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Plants coevolved with their antioxidant defense systems, which detoxify and adjust levels of reactive oxygen species (ROS) under multiple plant stresses. We performed whole-genome identification of ascorbate peroxidase (APX) and catalase (CAT) families in cultivated and wild soybeans. In cultivated and wild soybean genomes, we identified 11 and 10 APX genes, respectively, whereas the numbers of identified CAT genes were four in each species. Comparative phylogenetic analysis revealed more homology among cultivated and wild soybeans relative to other legumes. Exon/intron structure, motif and synteny blocks are conserved in cultivated and wild species. According to the Ka/Ks value, purifying selection is a major force for evolution of these gene families in wild soybean; however, the APX gene family was evolved by both positive and purifying selection in cultivated soybean. Segmental duplication was a major factor involved in the expansion of APX and CAT genes. Expression patterns revealed that APX and CAT genes are differentially expressed across fourteen different soybean tissues under water deficit (WD), heat stress (HS) and combined drought plus heat stress (WD + HS). Altogether, the current study provides broad insights into these gene families in soybeans. Our results indicate that APX and CAT gene families modulate multiple stress response in soybeans.
Collapse
|
15
|
Analysis of TCP Transcription Factors Revealed Potential Roles in Plant Growth and Fusarium oxysporum f.sp. cubense Resistance in Banana (cv. Rasthali). Appl Biochem Biotechnol 2022; 194:5456-5473. [DOI: 10.1007/s12010-022-04065-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 11/02/2022]
|
16
|
TritiKBdb: A Functional Annotation Resource for Deciphering the Complete Interaction Networks in Wheat-Karnal Bunt Pathosystem. Int J Mol Sci 2022; 23:ijms23137455. [PMID: 35806459 PMCID: PMC9267065 DOI: 10.3390/ijms23137455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 02/01/2023] Open
Abstract
The study of molecular interactions, especially the inter-species protein-protein interactions, is crucial for understanding the disease infection mechanism in plants. These interactions play an important role in disease infection and host immune responses against pathogen attack. Among various critical fungal diseases, the incidences of Karnal bunt (Tilletia indica) around the world have hindered the export of the crops such as wheat from infected regions, thus causing substantial economic losses. Due to sparse information on T. indica, limited insight is available with regard to gaining in-depth knowledge of the interaction mechanisms between the host and pathogen proteins during the disease infection process. Here, we report the development of a comprehensive database and webserver, TritiKBdb, that implements various tools to study the protein-protein interactions in the Triticum species-Tilletia indica pathosystem. The novel ‘interactomics’ tool allows the user to visualize/compare the networks of the predicted interactions in an enriched manner. TritiKBdb is a user-friendly database that provides functional annotations such as subcellular localization, available domains, KEGG pathways, and GO terms of the host and pathogen proteins. Additionally, the information about the host and pathogen proteins that serve as transcription factors and effectors, respectively, is also made available. We believe that TritiKBdb will serve as a beneficial resource for the research community, and aid the community in better understanding the infection mechanisms of Karnal bunt and its interactions with wheat. The database is freely available for public use at http://bioinfo.usu.edu/tritikbdb/.
Collapse
|
17
|
de Moura SM, Freitas EO, Ribeiro TP, Paes-de-Melo B, Arraes FBM, Macedo LLP, Paixão JFR, Lourenço-Tessutti IT, Artico S, da Cunha Valença D, Silva MCM, de Oliveira AC, Alves-Ferreira M, Grossi-de-Sa MF. Discovery and functional characterization of novel cotton promoters with potential application to pest control. PLANT CELL REPORTS 2022; 41:1589-1601. [PMID: 35665839 DOI: 10.1007/s00299-022-02880-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
pGhERF105 and pGhNc-HARBI1 promoters are highly responsive to CBW infestation and exhibit strong activity in vegetative and reproductive tissues, increasing their potential application in GM crop plants for pest control. The main challenge to cotton (Gossypium hirsutum) crop productivity is the constant attack of several pests, including the cotton boll weevil (CBW, Anthonomus grandis), which uses cotton floral buds for feeding and egg-laying. The endophytic nature of the early developmental stages of CBW makes conventional pesticide-based control poorly efficient. Most biotechnological assets used for pest control are based on Bacillus thurigiensis insecticidal Cry toxins or the silencing of insect-pest essential genes using RNA-interference technology. However, suitable plant promoter sequences are required to efficiently drive insecticidal molecules to the target plant tissue. This study selected the Ethylene Responsive Factor 105 (GhERF105) and Harbinger transposase-derived nuclease (GhNc-HARBI1) genes based on available transcriptome-wide data from cotton plants infested by CBW larvae. The GhERF105 and GhNc-HARBI1 genes showed induction kinetics from 2 to 96 h under CBW's infestation in cotton floral buds, uncovering the potential application of their promoters. Therefore, the promoter regions (1,500 base pairs) were assessed and characterized using Arabidopsis thaliana transgenic plants. The pGhERF105 and pGhNc-HARBI1 promoters showed strong activity in plant vegetative (leaves and roots) and reproductive (flowers and fruits) tissues, encompassing higher GUS transcriptional activity than the viral-constitutive Cauliflower Mosaic Virus 35S promoter (pCaMV35S). Notably, pGhERF105 and pGhNc-HARBI1 promoters demonstrated more efficiency in driving reporter genes in flowers than other previously characterized cotton flower-specific promoters. Overall, the present study provides a new set of cotton promoters suitable for biotechnological application in cotton plants for pest resistance.
Collapse
Affiliation(s)
- Stéfanie Menezes de Moura
- Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Elinea Oliveira Freitas
- Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-917, Brazil
- Federal University of Brasilia (UnB), Brasília, DF, Brazil
| | - Thuanne Pires Ribeiro
- Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
- Federal University of Brasilia (UnB), Brasília, DF, Brazil
| | - Bruno Paes-de-Melo
- Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Fabrício B M Arraes
- Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
- Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Leonardo Lima Pepino Macedo
- Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Joaquin F R Paixão
- Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-917, Brazil
| | - Isabela T Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Sinara Artico
- Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - David da Cunha Valença
- Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-917, Brazil
| | - Maria Cristina Mattar Silva
- Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Antonio C de Oliveira
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
- Federal University of Pelotas (UFPEL), Pelotas, RS, Brazil
| | - Marcio Alves-Ferreira
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
- Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, PqEB, Final W5 North, PO Box 02372, Brasília, DF, 70770-917, Brazil.
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil.
- Catholic University of Brasília (UCB), Brasília, DF, Brazil.
| |
Collapse
|
18
|
Li C, Zhang J, Zhang Q, Dong A, Wu Q, Zhu X, Zhu X. Genome-Wide Identification and Analysis of the NAC Transcription Factor Gene Family in Garden Asparagus (Asparagus officinalis). Genes (Basel) 2022; 13:genes13060976. [PMID: 35741738 PMCID: PMC9222252 DOI: 10.3390/genes13060976] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
As a large plant-specific gene family, the NAC (NAM, ATAF1/2, and CUC2) transcription factor is related to plant growth, development, and response to abiotic stresses. Although the draft genome of garden asparagus (Asparagus officinalis) has been released, the genome-wide investigation of the NAC gene family is still unavailable. In this study, a total of 85 A. officinalis NAC genes were identified, and a comprehensive analysis of the gene family was performed, including physicochemical properties, phylogenetic relationship, chromosome localization, gene structure, conserved motifs, intron/exon, cis-acting elements, gene duplication, syntenic analysis, and differential gene expression analysis. The phylogenetic analysis demonstrated that there were 14 subgroups in both A. officinalis and Arabidopsis thaliana, and the genes with a similar gene structure and motif distribution were clustered in the same group. The cis-acting regulatory analysis of AoNAC genes indicated four types of cis-acting elements were present in the promoter regions, including light-responsive, hormone-responsive, plant-growth-and-development-related, and stress-responsive elements. The chromosomal localization analysis found that 81 NAC genes in A. officinalis were unevenly distributed on nine chromosomes, and the gene duplication analysis showed three pairs of tandem duplicated genes and five pairs of segmental duplications, suggesting that gene duplication is possibly associated with the amplification of the A. officinalis NAC gene family. The differential gene expression analysis revealed one and three AoNAC genes that were upregulated and downregulated under different types of salinity stress, respectively. This study provides insight into the evolution, diversity, and characterization of NAC genes in garden asparagus and will be helpful for future understanding of their biological roles and molecular mechanisms in plants.
Collapse
Affiliation(s)
- Caifeng Li
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (C.L.); (Q.Z.); (A.D.); (Q.W.); (X.Z.)
| | - Jingyang Zhang
- Tandon School of Engineering, New York University, New York, NY 11201, USA;
| | - Qianqian Zhang
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (C.L.); (Q.Z.); (A.D.); (Q.W.); (X.Z.)
| | - Ang Dong
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (C.L.); (Q.Z.); (A.D.); (Q.W.); (X.Z.)
| | - Qiuhong Wu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (C.L.); (Q.Z.); (A.D.); (Q.W.); (X.Z.)
| | - Xingyu Zhu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (C.L.); (Q.Z.); (A.D.); (Q.W.); (X.Z.)
| | - Xuli Zhu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (C.L.); (Q.Z.); (A.D.); (Q.W.); (X.Z.)
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Ministry of Education, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
- Correspondence:
| |
Collapse
|
19
|
Mishra M, Rathore RS, Joshi R, Pareek A, Singla-Pareek SL. DTH8 overexpression induces early flowering, boosts yield, and improves stress recovery in rice cv IR64. PHYSIOLOGIA PLANTARUM 2022; 174:e13691. [PMID: 35575899 DOI: 10.1111/ppl.13691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/17/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Rice yield and heading date are the two discrete traits controlled by quantitative trait loci (QTLs). Both traits are influenced by the genetic make-up of the plant as well as the environmental factors where it thrives. Drought and salinity adversely affect crop productivity in many parts of the world. Tolerance to these stresses is multigenic and complex in nature. In this study, we have characterized a QTL, DTH8 (days to heading) from Oryza sativa L. cv IR64 that encodes a putative HAP3/NF-YB/CBF subunit of CCAAT-box binding protein (HAP complex). We demonstrate DTH8 to be positively influencing the yield, heading date, and stress tolerance in IR64. DTH8 up-regulates the transcription of RFT1, Hd3a, GHD7, MOC1, and RCN1 in IR64 at the pre-flowering stage and plays a role in early flowering, increased number of tillers, enhanced panicle branching, and improved tolerance towards drought and salinity stress at the reproductive stage. The presence of DTH8 binding elements (CCAAT) in the promoter regions of all of these genes, predicted by in silico analysis of the promoter region, indicates the regulation of their expression by DTH8. In addition, DTH8 overexpressing transgenic lines showed favorable physiological parameters causing less yield penalty under stress than the WT plants. Taken together, DTH8 is a positive regulator of the network of genes related to early flowering/heading, higher yield, as well as salinity and drought stress tolerance, thus, enabling the crops to adapt to a wide range of climatic conditions.
Collapse
Affiliation(s)
- Manjari Mishra
- Plant Stress Biology, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ray Singh Rathore
- Plant Stress Biology, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | - Rohit Joshi
- Plant Stress Biology, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
20
|
Mohd Afandi NS, Habib MAH, Ismail MN. Recent insights on gene expression studies on Hevea Brasiliensis fatal leaf fall diseases. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:471-484. [PMID: 35400887 PMCID: PMC8943083 DOI: 10.1007/s12298-022-01145-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Hevea brasiliensis is one of the most important agricultural commodities globally, heavily cultivated in Southeast Asia. Fatal leaf fall diseases cause aggressive leaf defoliation, linked to lower latex yield and death of crops before maturity. Due to the significant consequences of the disease to H. brasiliensis, the recent gene expression studies from four fall leaf diseases of H. brasiliensis were gathered; South American leaf blight, powdery mildew, Corynespora cassiicola and Phytophthora leaf fall disease. The differential analysis observed the pattern of commonly expressed genes upon fungi triggers using RT-PCR, DDRT-PCR, Real-time qRT-PCR and RNA-Seq. We have observed that RNA-Seq is the best tool to seek novel genes. Among the identified genes with defence-against fungi were pathogenesis-related genes such as β-1,3-glucanase and chitinase, the reactive oxygen species, and the phytoalexin biosynthesis. This manuscript also provided functional elaboration on the responsive genes and predicted possible biosynthetic pathways to identify and characterise novel genes in the future. At the end of the manuscript, the PCR methods and proteomic approaches were presented for future molecular and biochemical studies in the related diseases to H. brasiliensis.
Collapse
Affiliation(s)
- Nur Syafiqah Mohd Afandi
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11900 Bayan Lepas, Penang, Malaysia
| | - Mohd Afiq Hazlami Habib
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11900 Bayan Lepas, Penang, Malaysia
| | - Mohd Nazri Ismail
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11900 Bayan Lepas, Penang, Malaysia
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM Penang, Malaysia
| |
Collapse
|
21
|
Shahzad R, Jamil S, Ahmad S, Nisar A, Khan S, Amina Z, Kanwal S, Aslam HMU, Gill RA, Zhou W. Biofortification of Cereals and Pulses Using New Breeding Techniques: Current and Future Perspectives. Front Nutr 2021; 8:721728. [PMID: 34692743 PMCID: PMC8528959 DOI: 10.3389/fnut.2021.721728] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/23/2021] [Indexed: 12/25/2022] Open
Abstract
Cereals and pulses are consumed as a staple food in low-income countries for the fulfillment of daily dietary requirements and as a source of micronutrients. However, they are failing to offer balanced nutrition due to deficiencies of some essential compounds, macronutrients, and micronutrients, i.e., cereals are deficient in iron, zinc, some essential amino acids, and quality proteins. Meanwhile, the pulses are rich in anti-nutrient compounds that restrict the bioavailability of micronutrients. As a result, the population is suffering from malnutrition and resultantly different diseases, i.e., anemia, beriberi, pellagra, night blindness, rickets, and scurvy are common in the society. These facts highlight the need for the biofortification of cereals and pulses for the provision of balanced diets to masses and reduction of malnutrition. Biofortification of crops may be achieved through conventional approaches or new breeding techniques (NBTs). Conventional approaches for biofortification cover mineral fertilization through foliar or soil application, microbe-mediated enhanced uptake of nutrients, and conventional crossing of plants to obtain the desired combination of genes for balanced nutrient uptake and bioavailability. Whereas, NBTs rely on gene silencing, gene editing, overexpression, and gene transfer from other species for the acquisition of balanced nutritional profiles in mutant plants. Thus, we have highlighted the significance of conventional and NBTs for the biofortification of cereals and pulses. Current and future perspectives and opportunities are also discussed. Further, the regulatory aspects of newly developed biofortified transgenic and/or non-transgenic crop varieties via NBTs are also presented.
Collapse
Affiliation(s)
- Rahil Shahzad
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Shakra Jamil
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Shakeel Ahmad
- Maize Research Station, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Amina Nisar
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Sipper Khan
- Tropics and Subtropics Group, Institute of Agricultural Engineering, University of Hohenheim, Stuttgart, Germany
| | - Zarmaha Amina
- Tropics and Subtropics Group, Institute of Agricultural Engineering, University of Hohenheim, Stuttgart, Germany
| | - Shamsa Kanwal
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | | | - Rafaqat Ali Gill
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Weijun Zhou
- Key Laboratory of Spectroscopy Sensing, The Ministry of Agriculture and Rural Affairs, Institute of Crop Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Ritonga FN, Ngatia JN, Wang Y, Khoso MA, Farooq U, Chen S. AP2/ERF, an important cold stress-related transcription factor family in plants: A review. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1953-1968. [PMID: 34616115 PMCID: PMC8484489 DOI: 10.1007/s12298-021-01061-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/19/2021] [Accepted: 09/02/2021] [Indexed: 05/07/2023]
Abstract
Increasing the vulnerability of plants especially crops to a wide range of cold stress reduces plant growth, development, yield production, and plant distribution. Cold stress induces physiological, morphological, biochemical, phenotypic, and molecular changes in plants. Transcription factor (TF) is one of the most important regulators that mediate gene expression. TF is activated by the signal transduction pathway, together with cis-acting element modulate the transcription of cold-responsive genes which contribute to increasing cold tolerance in plants. Here, AP2/ERF TF family is one of the most important cold stress-related TF families that along with other TF families, such as WRKY, bHLH, bZIP, MYB, NAC, and C2H2 interrelate to enhance cold stress tolerance. Over the past decade, significant progress has been found to solve the role of transcription factors (TFs) in improving cold tolerance in plants, such as omics analysis. Furthermore, numerous studies have identified and characterized the complexity of cold stress mechanisms among TFs or between TFs and other factors (endogenous and exogenous) including phytohormones, eugenol, and light. The role, function, and relationship among these TFs or between TFs and other factors to enhance cold tolerance still need to be clarified. Here, the current study analysed the role of AP2/ERF TF and the linkages among AP2/ERF with MYB, WRKY, bZIP, bHLH, C2H2, or NAC against cold stress tolerance.
Collapse
Affiliation(s)
| | - Jacob Njaramba Ngatia
- College of Wildlife and Protected Areas, Northeast Forestry University, Harbin, 150040 China
| | - Yiran Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040 China
| | - Muneer Ahmed Khoso
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Department of Life Science, Northeast Forestry University, Harbin, 150040 China
| | - Umar Farooq
- College of Life Science, Northeast Forestry University, Harbin, 150040 China
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040 China
| |
Collapse
|
23
|
Ahmad S, Tang L, Shahzad R, Mawia AM, Rao GS, Jamil S, Wei C, Sheng Z, Shao G, Wei X, Hu P, Mahfouz MM, Hu S, Tang S. CRISPR-Based Crop Improvements: A Way Forward to Achieve Zero Hunger. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8307-8323. [PMID: 34288688 DOI: 10.1021/acs.jafc.1c02653] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Zero hunger is one of the sustainable development goals set by the United Nations in 2015 to achieve global food security by 2030. The current harvest of crops is insufficient; feeding the world's population and meeting the goal of zero hunger by 2030 will require larger and more consistent crop production. Clustered regularly interspaced short palindromic repeats-associated protein (CRISPR-Cas) technology is widely used for the plant genome editing. In this review, we consider this technology as a potential tool for achieving zero hunger. We provide a comprehensive overview of CRISPR-Cas technology and its most important applications for food crops' improvement. We also conferred current and potential technological breakthroughs that will help in breeding future crops to end global hunger. The regulatory aspects of deploying this technology in commercial sectors, bioethics, and the production of transgene-free plants are also discussed. We hope that the CRISPR-Cas system will accelerate the breeding of improved crop cultivars compared with conventional breeding and pave the way toward the zero hunger goal.
Collapse
Affiliation(s)
- Shakeel Ahmad
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
- Maize Research Station, Ayub Agricultural Research Institute, Faisalabad 38000, Pakistan
| | - Liqun Tang
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Rahil Shahzad
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad 38000, Pakistan
| | - Amos Musyoki Mawia
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Gundra Sivakrishna Rao
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Shakra Jamil
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad 38000, Pakistan
| | - Chen Wei
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Peisong Hu
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Magdy M Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Shikai Hu
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| |
Collapse
|